Clean Diesel Emission Control Technologies

EPA Marine Emissions Seminar
Mexico City
September 26, 2012

Joe Kubsh
Manufacturers of Emission Controls Association
Who is MECA?

• Industry association founded in 1976 to be the technical spokesperson for the mobile source emission control industry

• Primary mission is to inform regulatory groups and other stakeholders about the available emission control options for reducing pollution from mobile sources (cars, trucks, off-road equipment, small engines, marine engines, locomotives)

• Currently, 47 member companies:
 – Catalytic Converters (All Fuels)
 – Diesel Particulate Filters
 – Sensor Technologies
 – Thermal Management Strategies
 – Engine/Fuel System Management Technologies
 – Enhanced Combustion Technologies
Clean Diesel Technology Driven By a Decade of U.S. EPA Mobile Source Emission Regulations

Average Benefit:Cost = 20:1

Tier 2 Light-Duty
- final rule 1999
- fully phased in 2009
- Diesels held to same standards as gasoline vehicles
- Diesel Sulfur now 15 ppm

Heavy-Duty Highway
- final rule 2000
- Sulfur now 15 ppm
- fully phased in 2007-2010

Nonroad Diesel Tier 4
- final rule 2004
- Sulfur now 15 ppm
- fully phased in 2015

Ocean-going Vessels
- final rule 2009; IMO ECA in 2010
- ECA: 1000 ppm Sulfur by 2015; 80% lower NOx by 2016

Locomotive / Marine Tier 4
- final rule 2008
- 15 ppm Sulfur starting mid-2012
- fully phased in 2017
Wall-Flow Diesel Particulate Filters Offer the Highest PM Filtration Efficiency

- Large reduction in toxics from catalyzed DPFs
- Large reduction in black carbon (GHG)
- DPFs on U.S. MY 2007+ OE trucks; Euro VI trucks
- >250,000 retrofits worldwide; growing off-road experience
SCR Becoming a Dominant NOx Control Technology for Mobile and Stationary Sources

- Power Plants
- Heavy Duty Vehicles
- Gas Turbines
- Marine Engines
- Tier 4 Off-Road Engines
- Waste Incineration
- Diesel Passenger Cars
- Tier 4 Locomotive Engines
- SCR Products
- Stationary Engines
Large Marine Emission Control Options

Emerging for Marine Engines

- EGR
- Scrubber
- SCR
- Lean burn gas Otto cycle

Combination 1: Low sulfur fuel, EGR
Combination 2: SOx or NOx
Combination 3: SCR, SOx
Combination 4: EGR, NOx

> 500 Ship Installations

Wet & Dry Options; 29 Marine Dems
EGR for Large Marine Diesel Engines
U.S. Clean Diesel Marine Demonstrations

- SCR Retrofits on 2 Staten Island Ferries
- DPF+SCR Retrofit on LA Port Tug
- DOC + Crankcase Filter Retrofits On Mississippi Barge Tugs
- Long Beach Hybrid Tug Retrofit
US 2010+ HD Engines Available with DPF+SCR Systems

2010 DPF+SCR HD System

- Zeolite-based SCR with low NH$_3$ slip
- Achieves 0.2 g NOx 2010 EPA standard
- DEF usage of 1.5-2% of diesel fuel usage (10 gal. of DEF for about 5,000 miles)
- Up to 5% lower diesel fuel consumption
- Lower PM load on DPF
List of Available EPA/CARB-Verified Level 3 Retrofit Technologies Continues to Expand (as of August 2012)

• U.S. EPA (epa.gov/cleandiesel/verification/verif-list.htm)
 – 5 on-road passive DPFs (includes 2 DPF+SCR)
 – 2 on-road active DPFs
 – 1 off-road passive DPF
 – 1 off-road SCR (NOx control only)

• California ARB (www.arb.ca.gov/diesel/verdev/vt/cvt.htm)
 – 12 on-road passive DPFs (includes 1 DPF+LNC and 1 DPF+EGR)
 – 8 on-road active DPFs
 – 6 off-road passive DPFs (includes 1 DPF+LNC)
 – 3 off-road active DPFs
 – 6 Level 3 devices for TRUs or APUs
 – 11 Level 3 devices for stationary engines
U.S. EPA/Semarnat Mexico City Bus Retrofit Demonstration Program

<table>
<thead>
<tr>
<th>Test Route</th>
<th>PM</th>
<th>NOx</th>
<th>CO</th>
<th>PM</th>
<th>NOx</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4,000 km*</td>
<td>55,000 km*</td>
<td>4,000 km*</td>
<td>55,000 km*</td>
<td>4,000 km*</td>
<td>55,000 km*</td>
</tr>
<tr>
<td>DOCs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulo 23</td>
<td>12.8</td>
<td>44.5</td>
<td>14.0</td>
<td>5.0</td>
<td>42.7</td>
<td>43.0</td>
</tr>
<tr>
<td>Insurgentes Norte</td>
<td>22.4</td>
<td>--</td>
<td>9.8</td>
<td>--</td>
<td>72.4</td>
<td>--</td>
</tr>
<tr>
<td>Montevideo</td>
<td>--</td>
<td>29.2</td>
<td>--</td>
<td>11.8</td>
<td>--</td>
<td>77.0</td>
</tr>
<tr>
<td>DPFs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulo 23</td>
<td>79.2</td>
<td>91.7</td>
<td>+9.5</td>
<td>+1.1</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Insurgentes Norte</td>
<td>92.6</td>
<td>--</td>
<td>5.1</td>
<td>--</td>
<td>97.9</td>
<td>--</td>
</tr>
<tr>
<td>Montevideo</td>
<td>--</td>
<td>90.5</td>
<td>--</td>
<td>+3.0</td>
<td>--</td>
<td>100</td>
</tr>
</tbody>
</table>

1. The baseline emissions measurements were taken with no retrofit devices, using 350 ppm sulfur fuel; * using 15 ppm sulfur fuel

Twelve 2001 Buses Fitted with Passive DPFs;
Eight Older Buses Fitted with DOCs; all fueled with 15 ppm S diesel
Level 3 DPF Retrofit Demonstration at Port of LA

- Tier 2 and 3 Cummins QSM, 375hp
- Electrical regeneration with catalyzed filter element
- Tier 2: Plug-in at every preventative maintenance
- Tier 3: Bi-weekly plug-in
Clean Diesel Vehicles Include Sophisticated Sensors and Diagnostics

- Combined O_2/NOx Sensor
- Ammonia Sensor
- Soot Sensors targeted for 2013 LD/2016 HD OBD
- Urea Quality Sensor
- Diagnostic Systems
- Heated Urea Tanks
www.meca.org & www.dieselretrofit.org – Your emission control technology resources on the web

- Emission control technology white papers and fact sheets
- Public testimony
- Regulatory information

The Manufacturers of Emission Controls Association (MECA) is a non-profit association incorporated in Washington, DC. MECA’s mission is to provide technical information on emission control technology, thereby facilitating the establishment of strong and effective state, federal, and international air quality programs that promote public health, environmental quality, and industrial progress.

For an overview of this website, please refer to our Site Map.

The purpose of this web site is to provide useful information related to diesel retrofit emission control technology. By making this information available, MECA hopes to assist interested stakeholders in establishing and operating more effective diesel retrofit programs.

• Retrofit technology descriptions
• Contacts for retrofit suppliers
• Case study reports
DOCs and DPFs Form the Technology Base for Reducing PM Emissions from US 2007 Diesel Engines

Diesel Particulate Filters

- Significant experience base with LDD in Europe (> 6 M) & HDD retrofits (> 250 K)

Crankcase Filters Provide Additional PM Control

2007+ DPF Systems Feature Active & Passive Filter Regeneration
Types of Diesel Retrofit Technologies

PM Reduction

• Diesel Particulate Filter
 – Wall-flow device that physically traps PM in exhaust stream on surface of substrate; PM burned off through regeneration (passive or active)
 – >85% PM reduction

• Flow-Through Filter
 – Wire-mesh substrate or metal foil-based substrate with sintered metal sheets that traps a portion of the PM; passive regeneration with catalyst
 – 50-75% PM reduction

• Diesel Oxidation Catalyst
 – Flow-through device with catalytic coating on substrate that oxidizes soluble organic fraction of PM
 – 25-50% PM reduction

• Closed Crankcase Ventilation System
 – Replaceable filter that reduces engine blow-by emissions
 – >90% PM reduction (crankcase emissions)
Wider Range of Active DPFs Available for Low Exhaust Temperature Applications

- Suited for on- and off-road applications with low exhaust temperatures.

- Uncatalyzed or catalyzed wall-flow filter with electrical regeneration.
 - Catalyzed filter + electrical element combines passive and active functions

- Wall-flow filter with a fuel burner for regeneration.
Types of Diesel Retrofit Technologies

NOx Reduction

• Selective Catalytic Reduction
 – Flow-through device that reduces NOx with injection of a reductant (urea) over the catalyst
 – 60-90% NOx reduction

• Lean NOx Catalyst
 – Flow-through device that reduces NOx with injection of a reductant (diesel fuel) over the catalyst
 – 25-40% NOx reduction
MECA Diesel Retrofit Sales Survey Results (U.S.)

- **DPFs**
- **FTFs**
- **DOCs**
- **CCVs**

- **2007**
 - Total of 26,863

- **2008**
 - Total of 31,283

- **2009**
 - Total of 29,180

- **2010**
 - Total of 24,640

- **2011**
 - Total of 21,177
Technical Considerations for Successful Retrofit Projects

- Vehicle should be properly maintained before considering retrofit
- Application engineering – Matching the right technology to the specific piece of equipment and application
- Proper professional installation – Retrofits can be installed safely (visibility concerns addressed)
- On-vehicle monitors – Provide important user feedback on performance (don’t ignore warning lights)
- Maintenance – Vehicle/equipment and retrofit device require inspection and maintenance

Successful Retrofits Require a Cooperative Effort Between Fleet Owners, Operators, and Technology Providers
Experience with Diesel Retrofits Spans a Variety of On-Road Vehicle Applications
Clean Diesel Technology Expanding into U.S. Off-road Applications

Tier 4 Interim Tractors with SCR

Tier 4 Interim Machines with DPFS

Locomotives Repowered with DPFs