Overview on actions to reduce shipping emissions

2012 U.S.-Taiwan Sustainability Symposium: Creating Sustainable Cities and Promoting Sustainable Ports in the Asia Pacific Region

Nic Lutsey, Ph.D. Kaohsiung, Taiwan December 10-11, 2012

Outline

- Background
- Examples of actions to reduce shipping emissions
- Conclusion

Background

- Most global vehicle markets now have emissions/efficiency standards
 - The marine sector becomes one of the foremost transport emission sources

Marine emissions: Future growth

• The marine sector represents about 11% of transport fuel use, CO₂

- Marine sector fuel use/CO₂ to double-triple; percent contribution increases
- Marine sector NO_x , SO_x , $PM_{2.5}$ emissions can be 10-40% of mobile source emissions

Sources: Buhaug et al (2009) Updated 2009 IMO GHG Report; International Transport Forum (2010) Transport Greenhouse Gas Emissions: Country Data. Hong Kong EPD, 2012. http://www.epd.gov.hk/epd/english/environmentinhk/air/data/emission inve.html,

Cleaner ports, ships: Many approaches

Different approaches make sense – are not mutually exclusive

	Voluntary	Regulatory		
General relative advantages	Quicker action	Increased certainty (actions, emission reduction, timing)		
	Local actions to suit local needs, complexity	More uniform approach for competitive global market		
	Provide ground work, data, and experience for later policy	Larger emission reduction potential		
Examples	EEDI efficiency before 2013	Vessel efficiency, CO ₂ standards		
	Fuel switching (e.g., Fair Wind Charter)	Low fuel sulfur requirements		
	Port technology incentives (e.g., from "Incentive Tool")	Tier I-III NO _x , SO _x , PM standards		
	Operational port improvements (e.g., from "Air Quality Toolbox")			

Policies for cleaner shipping

- MARPOL Annex VI
 - NO_x: Tier I-III standards
 - SO_x: Cleaner fuel
 - CO₂: Energy efficiency standards (EEDI, SEEMP)
- Regional and national policy
 - EU and U.S: Low sulfur diesel for inland shipping
 - Stringent regulations on NO_x and HC

Emission Control Areas (ECAs)

• ECAs offer dramatic SO_x, NO_x, PM emission benefits from ships

- Many marine-intensive, heavily polluted areas are yet to have ECA regulations

Graphic: http://www.amnautical.com/blogs/news/5833134-north-american-eca-will-change-shipping-forever

Marine pollution control: Benefits

- North America's Emission Control Area ("ECA") benefits are enormous
 - NO_x , SO_x , $PM_{2.5}$ benefits from ship/port emission reductions in the US shown below
 - Annual health benefits from ECA are larger than all other recent US regulations

	Light Duty "Tier 2"	Heavy Duty 2007-2010+	Nonroad Diesel Tier 4	Locomotive & Marine Diesel	Marine ECA	Totals
NOx (short tons)	2,800,000	2,600,000	738,000	795,000	1,200,000	8,133,000
PM2.5 (short tons)	36,000	109,000	129,000	27,000	143,000	444,000
VOC (short tons)	401,000	115,000	34,000	43,000	0	593,000
SOx (short tons)	281,000	142,000	376,000	0	1,300,000	2,099,000
Total Cost (billion)	\$5.3	\$4.2	\$1.7	\$0.7	\$3.1	\$15
Total Monetized Benefits (billion)	\$25	\$70	\$80	\$11	\$110	\$296
Avoided Premature Mortality	4,300	8,300	12,000	1,400	13,000	39,000
Avoided Hospital Admissions	3,000	7,100	8,900	870	12,400	32,270
Avoided Lost Work Days	700,000	1,500,000	1,000,000	120,000	1,400,000	4,720,000

Marine fuels: Relatively uncontrolled

- Low sulfur fuels directly reduce emissions and enable lower-emission technology on ships and at-port vehicles, equipment
 - 50-90% of NO_x; >90% of SO_x; 75-90% of PM from ports is from <u>ocean-going vessels</u>

Fuelsulfurtontentinppm? Ho, B.Q. Yosthana, S., Taylor, C., 2012. Emission Inventory Approaches and Application for ASEAN Ports.

Marine emissions: Technical potential

- Known efficiency and in-use operation strategies can reduce shipping CO₂ emission rates by over one-third by the year 2030
 - Aggressive slow-steaming, LNG penetration, black carbon controls would go further

Marine emissions: Technical potential

2050 Solar (0.1%) 500 CO, reduction percentage of each measure (interactive) is in parenthesis Many opportunities to 450 per tonne CO₂ reduce fuel cost, CO₂ 375 Lighting (0.03%) - Many with net benefits Propeller polishing (4.0%) 300 US\$ (fuel savings > costs) Autopilot (1.7%) abatement cost, Water flow optimization (2.8%) 225 Weather routing (1.7%) Speed controlled pumps (0.4%) Propeller upgrade (1.8%) 150 Main engine retrofit (0.2%) Hull cleaning (4.8%) Marginal Air lubrication (1.6%) 75 0 300 450 150 200 250 350 400 50 -75 Speed reduction (8.5%) Waste heat reduction (2.2%) -150 Wind power (2.4%) Hull coating (1.1%) -225

Maximum abatement potential, million metric tonnes (MMT) CO₂ per year

ON CLEAN TRANSPORTATION

Conclusions

- Shipping and port activities' emission impacts can be reduced with best practices in deployment of available technology, operational strategies, and improved port management practices.
- Data collection and analysis of potential scenarios can offer powerful tools to prioritize port-level decision-making
- Many actions can bring forth major emission reductions at ports
 - International, national, regional, and local policies
 - Voluntary local actions and incentives can be tailored to local needs
 - Collaboration between and within governments, and with industry are crucial

Thank You

www.theicct.org/marine

