RULES AND REGULATIONS

Section 307(b) of the Act requires the establishment of pretreatment standards for pollutants introduced into publicly owned treatment works and Sec. 403.128 establishes that the Agency will propose specific pretreatment standards at the time effluent limitations are established for point source discharges.

(a) Summary and basis of interim effluent limitations and guidelines for existing sources, proposed effluent limitations and guidelines for existing sources to be achievable by the application of best available technology economically achievable, proposed standards of performance for new sources, and proposed pretreatment standards for both new and existing sources.

(1) General methodology. The effluent limitations and guidelines set forth herein were developed in the following manner. The point source category was first studied for the purpose of determining whether separate limitations are appropriate for different segments within the category. This analysis included a determination of whether differences in raw material used, manufacturing process employed, age, size, waste water constituents and other factors require development of separate limitations for different segments of the point source category. The raw waste characteristics for each such segment were then identified. This included an analysis of the source, flow and volume of water used in the process employed, the sources of waste and waste waters in the operation and the constituents of all waste water. The constituents of the waste waters which should be subject to effluent limitations were identified.

The control and treatment technologies existing within each segment were identified. This included an identification of each treatment or control technology, including both in-plant and end-of-process technologies, which is existent or capable of being designed for each segment. It also included an identification of, in terms of the amount of constituents and the chemical, physical and biological characteristics of pollutants, the effluent level resulting from the application of each of the technologies. The problems, limitations and reliability of each treatment and control technology were also identified. In addition, the nonwater quality environmental impact, such as the effects of the application of such technologies upon other pollution problems, including air, solid waste, noise and radiation were identified. The energy requirements of each control and treatment technology were determined as well as the cost of the application of such technologies.

The information, as outlined above, was then evaluated in order to determine what levels of technology constitute the "best practicable control technology.
currently available." In identifying such technologies, various factors were con-
sidered. These included the total cost of application of technology in relation to the
effluent reduction benefits to be achieved from such application, the age of equip-
ment and facilities involved, the process employed, the engineering aspects of the
process, the availability and cost of control techniques, process changes, nonwater quality environmental impact (including energy requirements) and
other factors.

The data upon which the above analy-
sis was performed included EPA permit
applications, EPA sampling and inspec-
tions, consultant reports, and industry
submissions.

(2) Summary of conclusions with re-
spect to the coal preparation plant sub-
category (Subpart A), the coal storage, refuse storage and the coal preparation
plant ancillary area (Subpart B), the acid or ferruginous mine drainage sub-
category (Subpart C), and the alkaline mine drainage subcategory (Subpart D) of the coal mining point source
categories based on the origin of the waste
water.

(i) Categorization. For the purpose of
studying waste treatment and effluent
limitations the coal mine point source
category was initially subcategorized by the establishment of a set of catego-
rization (SIC) groups applicable to the
coal mining industry. These SIC groups
were then further subdivided by: geo-
graphic location of the mine, type of
mine (surface or deep), and size of mine
(annual tonnage); all based on antici-
pated variations in raw waste water.
After statistical analysis of the data ob-
tained during the study it was deter-
mined that based on waste treatment the
coal mining point source category should be
divided into four discrete subcate-
gories based on the origin of the waste
water, i.e., waste water from the mining
activities themselves and waste water
from the coal preparation activities, or
mining services activities. Waste water
from the mining activities themselves
was further by the characteristics of the raw mine drainage. Coal
preparation, or mining services activi-
ties, were subdivided as to the waste
water from the preparation plants them-
selves and the waste water from coal
storage, refuse storage, and the ancillary
areas associated with the coal prepara-
tion plants.

(1) Subpart A—Coal Preparation
Plant. The provisions of this subpart are
applicable to discharges resulting from
the cleaning or benefication of coal of
any rank including but not limited to bituminous, lignite, and
anthracite.

(2) Subpart B—Technical Area, Refuse
Storage, and the Coal Preparation Plant
Ancillary Area. The provisions of this
subpart are applicable to discharges which are pumped, siphoned or drained
from coal storage, refuse storage, and
coal preparation plant ancillary areas
related to the cleaning or benefication of
coal of any rank including but not
limited to bituminous, lignite and an-
thracite.

(3) Subpart C—Acid or Ferruginous
Mine Drainage. The provisions of this
subpart are applicable to acidic or fer-
ruginous mine drainage resulting from
the mining or coal of any rank including but not limited to bituminous,
lignite, and anthracite.

(4) Subpart D—Alkaline Mine Drain-
age. The data indicates this subpart is
applicable to alkaline mine drainage re-
sulting from the mining of coal of any
rank including but not limited to bitumin-
nous, lignite, and anthracite.

(ii) Process characterization. The raw
waste characteristics of coal prepara-
tion plant process water are highly de-
pendent upon the particular process or
recovery technique utilized in the opera-
tion. Process techniques generally re-
quire an alkaline media for efficient and
economic operation, therefore process
water does not dissolve significant quan-
tities of the constituents present in the
raw coal. The principal pollutant present
in coal preparation plant process water is
suspended solids. In preparation plants
mining coal fines, process water con-
tains less suspended solids than process
water at coal preparation plants which
do not clean or recover coal fines.

The raw waste characteristics of the
discharge from coal storage and refuse
storage and coal preparation plant ancillary areas are characterized as being gen-
erally similar to the raw mine drainage
at the mine served by the preparation
plant. Geologic and geographic setting of
the mine and the nature of the coal
mined affect the characteristics of the
discharge from coal storage, refuse stor-
age, and the coal preparation plant an-
cillary areas.

The raw waste characteristics of the
waste water discharged from the actual
coal mining activities themselves vary
significantly. The chemical character-
istics of raw mine drainage are deter-
mained by local and regional geology of
the coal, associated overburden, and
mine bottom. Raw mine drainage ranges
dependent upon the mine, the processes
requiring neutralization and sedimenta-
tion to reduce concentration of sus-
pected solids.

Effluent limitations guidelines and
standards of performance are estab-
lished to control pollutant parameters
based primarily on the following cri-
teria: (1) pollutants which are fre-
quently present in coal mine point source
discharges in concentrations deleterious
to aquatic organisms; (2) technology
exists for the reduction or removal of the
pollutant in question; and (3) research
indicates that certain concentrations or
discharges of pollutants are capable of dis-
srupting an aquatic ecosystem. The fol-
lowing were identified as the pollutants
in coal mine drainage, coal storage, refuse
storage, and preparation plant ancillary
area waste water discharges: acidity, iron, manganese, aluminum, nickel, zinc, and suspended solids. The
substances were identified as the pollut-
ants in preparation plant waste water
discharges: acidity, iron, and suspended solids.

Several other waste water constituents
were considered including: total dis-
solved solids, sulfates, fluorides, stron-
tium, and ammonia. Effluent limitations
have not been proposed for ammonia,
sulfates, fluoride, and strontium because
these substances are not observed in coal
mine discharges generally do not war-
rant concern. Total dissolved solids con-
centrations in coal mine discharges ap-
pear to vary within levels capable of disrupting an aquatic ecosystem. The fol-
lowing were identified as the pollutants
in coal mine discharges: acidity, iron,
suspended solids.

(iii) Origin of waste water pollutants.
Coal preparation plants fall into three
general stages, based on degree of clean-
ning and unit operations. Stage 1 consists
of crushed and sizing which are basi-
cally dry processes and do not produce a
waste water discharge. Stage 2 con-
ists of crushing, sizing, gravity separa-
tion of coarse coal, dewatering of clean
clean coal and refuse, and removal of
clean coal and refuse fines from process
waters. Stage 3 consists of crushing, sizing, gravity sepa-
rating of all sizes of coal, secondary
separation of coal fines or froth flota-
tion, dewatering of clean coal and refuse,
heavy media recovery when re-
quired, thermal drying of clean coal, and
removal of coal and refuse fines from
process water. Stage 2 and 3 coal prep-
paration plant process water contains
some minerals associated with the coal and
its impurities are dissolved in the coal
preparation plant's process water. Addi-
tional waste water of a non-contact
nature may result from boiler blowdowns
and non-contact cooling waters such as
bearing cooling water.

The waste water situation evident in the
mining segment of the coal industry is
like that encountered in most other
industries. Water enters with precipita-
tion, ground water infiltration, and
runoff which may become polluted by
contact with materials in the coal,
overburden material, or mine bottom.
Except for dust control applica-
tion, water is not used in the actual min-
ing of coal in the U.S. at the present time.

Waste water handling and management
is required, and is a part of most coal mining methods or systems to insure the
continuance of the mining operation and to improve the efficiency of the mining operation. This waste water is discharged from the mine as mine drainage. Mine drainage may be polluted and require
control technology and remediation is not employed, or even increased in intensity after mine closure if proper mine drainage control technology is not employed. Control of mine drainage after mine abandonment is not included in the interim final regulation although techni-
ques are described in the Development Document, referenced below, which can be employed. Control of water influx into mine workings, and process waste water during actual mining opera-
tions or coal preparation plant ancillary areas is required, and is a part of most coal mining methods or systems to insure the
is required, and is a part of most coal mining methods or systems to insure the
is required, and is a part of most coal mining methods or systems to insure the
tions and rules by Agencies of the executive branch are accompanied by a statement certifying that the inflationary impact of the proposal has been evaluated.

OMB Circular A-107 (January 28, 1975) prescribes guidelines for the identification and evaluation of major proposals requiring preparation of inflationary impact certifications. The circular provides that during the interim period prior to final approval by OMB of criteria developed by each Agency, the Administrator is responsible for identifying those regulations which require evaluation and certification. The Administrator has directed that all regulatory actions which are likely to result in capital investment exceeding $100 million or annualized costs in excess of $50 million will require certification.

As the Agency's analysis of the potential economic impacts of these regulations indicates, the capital investment and annualized costs associated with compliance are not estimated to exceed these amounts. The Agency has reviewed and analyzed the projected effect on the prices and economics of the industry as summarized above.

The report entitled "Development Document for Proposed Effluent Limitations Guidelines and New Source Performance Standards for the Coal Mining Point Source Category" details the analysis undertaken in support of the interim final regulation set forth herein and is available for inspection in the EPA Public Information Reference Unit, Room 2404, Waterside Mall, Washington, D.C., at all EPA regional offices, and at State water pollution control offices. A supplementary analysis prepared for EPA of the possible economic effects of the regulation is also available for inspection at these locations. Copies of both of these documents are being sent to persons or institutions affected by the proposed regulation or who have placed comments: (1) Efluent Standards and Water Quality Information Advisory Committee (established under section 315 of the Act); (2) all States and U.S. Territory Pollution Control Agencies; (3) U.S. Department of the Interior; (4) U.S. Department of Agriculture; (5) U.S. Department of Health, Education, and Welfare; (6) U.S. Department of Transportation; (7) American Electric Power Company; (8) Save Our Cumberland Mountains Association; (9) Campaign Clean Water; (10) A. D. Water Resources Council; (11) National Coal Association; (12) American Society of Mechanical Engineers; (13) The Conservation Foundation; (14) Environmental Protection Agency; Region III; (15) Environmental Defense Fund; (16) American Society of Civil Engineers; (17) National Wildlife Federation; (18) American Mining Congress; (19) Institute for Energy Research; (20) Independent Miners Association; (21) Society of Mining Engineers; and (22) National Independent Coal Association.

The following responding with written comments: U.S. Department of the Interior; U.S. Environmental Protection Agency, Region III; American Electric Power Company; Department of Agriculture, Soil Conservation Service; Illinois Environmental Protection Agency; State of Maryland, Water Resources Administration; State of New Mexico Environmental Department; A. D. Water Resources Council; Save Our Cumberland Mountains; State of West Virginia Department of Natural Resources; Campaign Clean Water; Charleston, West Virginia; Efluent Standards and Water Quality Information Advisory Committee; Department of Health, Education, and Welfare; State of Delaware; Department of Natural Resources and Environmental Control; United States Water Resources Council; Trust Territory of the Pacific Islands; State of Florida, Department of Pollution Control; U.S. Department of Transportation; American Mining Congress; Department of the Interior; National Resources Conservation Council; American Electric Power Company; and the National Coal Association.

The primary issues raised in the draft development document and the treatment of these issues herein are as follows:

(1) A commenter stated that provisions should be made for effluent quality during the start of operations at a new mine site. Regulations for the coal mining Industry do take into consideration the factors related to mining operations and the start-up of a new mine.

(2) A commenter suggested that the use of turbidity rather than total suspended solids as a control for surface mines. Turbidity is an indicator of suspended solids and as such can be used to determine the quick effectiveness of suspended solids removal. The turbidity test is highly affected by the type of solids in the water sample. Because the type of solids may change, turbidity will not always indicate accurately the level of solids present in the waste water.

One commenter suggested that the subcategories "acid or ferruginous" and "alkaline" should be replaced by "underground" and "surface" because active deep mines sometimes change from alkaline to acid over a few months period, and some mines may be acid at one location and alkaline at another. Deep mines and surface mines can be subject to change in raw mine drainage characteristics during the life of the mine and may go from alkaline to acid or ferruginous. There may be mines which are on the border line of the two classes of mine drainage and may change, or fluctuate, during the life of the mine. The two classes of mine drainage are generally related to geographic locations, and are directly related to waste treatment facilities.

A commenter indicated that the effect of un-ionized ammonia on aquatic life can be serious and that in raw mine drainage un-ionized ammonia may be a significant pollutant which should be reexamined.

Ammonia was not detected in sufficient concentrations in warrant concern at this time. The Efluent quality information collected during the study of the coal mining industry determined that the concentration of un-ionized ammonia present in industrial waste water was not sufficient to require control.

(6) A commenter suggested that the stringent limits and standards for surface mine discharges in the draft report may not be appropriate because surface mining is a mobile operation in which the active mine area continually changes location.

A mine includes the area "used in and resulting from" the work of extracting coal from its natural deposit. The draft development document supports the position that the limitations applicable to surface mining are achievable and are being achieved today.

(7) A commenter indicated that the Efluent quality information collected during the study of the coal mining industry determined that the concentration of un-ionized ammonia present in industrial waste water was not sufficient to require control.

Over 100 preparation plants in various geographic locations and terrain of the 189 preparation plants included in this study had, or reported, "no discharge." An allowance for discharge is made based

FEDERAL REGISTER, VOL. 40, NO. 202—FRIDAY, OCTOBER 17, 1975
on the design of a facility to handle all process water plus runoff from 10 year
24 hour storm.

(8) One commenter indicated that the analytical data supporting the suggested limitations was inadequate; grab samples were used, and additional sampling was necessary to determine seasonal variations in effluent from treatment systems.

Winter-spring sampling completed at selected mine sites after distribution of the draft report verified that there are insignificant seasonal variations.

(9) One commenter stated that the suggested limits for daily maximums should be three times the thirty day average rather than two times.

The daily maximum allowable discharges of pollutants were determined by a statistical analysis of the data generated in the study.

(10) One commenter indicated that the effluent limitations development study does not justify the conclusion that there is no significant difference between untreated mine drainage from surface and underground mining operations in similar geologic settings.

Variations within the two classes of raw mine drainage may exist, but study confirms that a mine in a specific geographic location with specific geologic conditions will have an alkaline drainage or acid or ferruginous drainage whether the mining method utilized, is deep or surface.

(11) A commenter indicated that if the sampling of strip mines presented in the draft report were not taken during periods of rainfall, further sampling should be done during rainfalls to confirm that the suggested limits are adequate to achieve the required control.

Additional sampling and analysis conducted during the 1975 winter-spring period confirmed that the suggested technology was adequate.

(12) One commenter indicated that the pollutant content of supply water be discharge of sulfates.

The contractor's draft development document determined that the amounts of the above pollutants present in industrial discharges are not sufficient to justify national limitations. Local water quality requirements may justly application of more restrictive limitations.

(17) One commenter indicated that the presence of total dissolved solids, sodium, and fluorides may cause potential health and livestock problems in certain areas of the country and suggested that limits be proposed.

The contractor's draft development document determined that the amounts of the above pollutants present in industrial discharges are not sufficient to justify the establishment of national standards. State or local pollution control agencies have the authority to establish limits on parameters other than those included in effluent limitations guidelines when local water quality requirements warrant.

(18) A commenter stated that settleable solids should be controlled by the suggested effluent limitations in order to prevent solids from settling on the stream bed.

The contractor's draft development document suggested limits on total suspended solids. This limitation effectively controls the discharge of settleable solids from a point source.

(19) A commenter recommended that a limitation on aluminum should be imposed only in special cases because excess concentrations of aluminum are found only in specific locations.

The objective of "the Act" is the establishment of national standards. In specific locations where aluminum is not present in discharges from coal mines, the limitation on aluminum will not result in the application of unnecessary control technology or increased costs. The monitoring requirements will be determined when individual permit conditions are established.

(20) One commenter stated that reclamation procedures for surface mines and preparation plants addressed in the draft report, while helpful background information, "should be included in reclamation laws presently being enforced or enacted" to avoid duplication of enforcement.

Reclamation and revegetation are commonly recognized as water pollution control techniques of substantial value and are in general use. In this light, they are discussed in substantial detail in the Development Document. However, the application of reclamation or revegetation is not required by this regulation. The techniques used as a basis for BPT regulation is end-of-pipe treatment only.

The Agency is subject to an order of the United States District Court for the District of Columbia entered in Natural Resources Defense Council v. Train et al. (Cv. No. 1009-75) which requires the promulgation of regulations for this industry category not later than October 6, 1975. This order also requires that such regulations become effective immediately upon publication. In addition, it is necessary to promulgate regulations establishing limitations on the discharge of pollutants from point sources in this category so that the process of issuing permits to individual dischargers under section 402 of the Act may be expedited.

It has not been practicable to develop and publish regulations for this category in proposed form, to provide a 30 day comment period, and to make any necessary revisions in light of the comments received within the time constraints imposed by the court order referred to above. Accordingly, the Agency has determined pursuant to 5 USC 553(b) that notice and comment on the interim regulations would be impracticable and contrary to the public interest. Good cause is also found for these regulations to become effective immediately upon publication.

Interested persons are encouraged to submit written comments. Comments should be submitted in triplicate to the Environmental Protection Agency, 401 M St. S.W., Washington, D.C. 20460. Attention: Distribution Officer, WH-652. Comments on all aspects of the regulation are solicited. In the event comments are in the nature of criticisms as to the inadequacy of a data base upon which which may be relied upon by the Agency, comments should identify and, if possible, provide any additional data which may be available and should indicate why such data are essential to the amendment or modification of the regulation.

In the event comments address the approach taken by the Agency in the preparation of the Development Document, the guideline EPA solicits suggestions as to what alternative approach should be taken and why and how this alternative better satisfies the demands requirements of sections 301 and 304(b) of the Act.

A copy of all public comments will be available for inspection and copying at the EPA Public Information Reference Unit, Room 2404, Waterside Mall, 401 M Street, S.W., Washington D.C. A copy of preliminary draft contractor reports, the Development Document and economic study referred to above, and certain sup-

FEDERAL REGISTER, VOL. 40, NO. 202—FRIDAY, OCTOBER 17, 1975
RULES AND REGULATIONS

Manganese, total.-- 4.0
Iron, total
Nickel, total 0.40 0.20

In the Development Document for this industry. Unless the economic impact
result in long term water quality degra-
ment addressed to the Interim final

The Agency is aware of the problem and
resulting after mining activities have been

The Agency has completed major tech-
tical studies on which to base the estab-
lishment of detailed effluent standards for coal mining. However, the Agency
has not economic impact or

It is recognized that coal mining may
result in long term water quality degra-
dation caused by mine drainages con-
tinuing after mining activities have been

In addition to encouraging written comments on the interim final regulation,
the Agency would like to encourage writ-
ten comments on the outlined specific

In consideration of the foregoing, 40 CFR Part 434 is hereby established as set forth below.

Dated: October 6, 1975.

RUSSELL E. TRAIN, Administrator.
(c) The term "ten year 24-hour precipitation event" shall mean the maximum 24-hour precipitation event with a probable re-occurrence interval of once in 10 years as defined by the National Weather Service and Technical Paper No. 40, "Rainfall Frequency Atlas of the U.S.," May 1961, and subsequent amendments or equivalent regional or rainfall probability information developed therefrom.

§ 434.12 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available.

In establishing the limitations set forth in this section, EPA took into account all information it was able to collect, develop and solicit with respect to factors (such as age and size of plant, raw materials, manufacturing processes, products produced, treatment technology available, energy requirements and costs) which can affect the industry subcategorization and effluent limitations. Further, possible that data which would affect these limitations have not been available and, as a result, these limitations should be tested for certain plants in this industry. An individual discharger or other interested person may submit evidence to the Regional Administrator (or to the State, if the State has the authority to issue NPDES permits) that factors relating to the equipment or facilities involved, the process applied, or other such factors related to such discharger are fundamentally different from those considered in the establishment of the guidelines. On the basis of such evidence or other available information, the Regional Administrator (or the State) will make a written finding that such factors are or are not fundamentally different for that facility compared to those specified in the Development Document. If such fundamentally different factors are found to exist, the Regional Administrator (or the State) will make a written finding that such factors are or are not fundamentally different for that facility compared to those specified in the Development Document. If such fundamentally different factors are found to exist, the Regional Administrator (or the State) will make a written finding that such factors are or are not fundamentally different for that facility compared to those specified in the Development Document. If such fundamentally different factors are found to exist, the Regional Administrator (or the State) will make a written finding that such factors are or are not fundamentally different for that facility compared to those specified in the Development Document. If such fundamentally different factors are found to exist, the Regional Administrator (or the State) will make a written finding that such factors are or are not fundamentally different for that facility compared to those specified in the Development Document.

§ 434.13—434.16 [Reserved]

Subpart B—Coal Storage, Refuse Storage, and Coal Preparation Plant Ancillary Area Subcategory

§ 434.20 Applicability, description of the coal storage, refuse storage, and coal preparation plant ancillary area subcategory.

The provisions of this subpart are applicable to discharges which are pumped, siphoned or drained from coal storage, refuse storage and coal preparation plant ancillary areas related to the cleaning or treatment of coal of any rank including but not limited to bituminous, lignite and anthracite.

§ 434.21 Specialized definitions.

For the purpose of this subpart:
(a) Except as provided below, the general definitions, abbreviations and methods of analysis set forth in 40 CFR 401 shall apply to this subpart.
(b) The term "coal preparation plant" shall mean a facility where coal is crushed, screened, sized, cleaned, dried, or otherwise prepared and loaded prior to the final handling or loading into transit to or at a consuming facility.
(c) The term "coal preparation plant ancillary area" shall mean the areas associated with a coal preparation plant including: the coal preparation plant yards, access roads, and other areas immediately associated with a coal preparation plant where coal or coal refuse, either purposely or accidentally is allowed to come in contact with precipitation runoff or plant washdown.
(d) The term "ten year 24-hour precipitation event" shall mean the maximum 24-hour precipitation event with a probable re-occurrence interval of once in 10 years as defined by the National Weather Service and Technical Paper No. 40, "Rainfall Frequency Atlas of the U.S.," May 1961, and subsequent amendments or equivalent regional or rainfall probability information developed therefrom.

§ 434.22 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available.

In establishing the limitations set forth in this section, EPA took into account all information it was able to collect, develop and solicit with respect to factors (such as age and size of plant, raw materials, manufacturing processes, products produced, treatment technology available, energy requirements and costs) which can affect the industry subcategorization and effluent levels established. It is, however, possible that data which would affect these limitations have not been available and, as a result, these limitations should be adjusted for certain plants in this industry. An individual discharger or other interested person may submit evidence to the Regional Administrator (or to the State, if the State has the authority to issue NPDES permits) that factors relating to the equipment or facilities involved, the process applied, or other such factors related to such discharger are fundamentally different from those specified in the Development Document. If such fundamentally different factors are found to exist, the Regional Administrator (or the State) will make a written finding that such factors are or are not fundamentally different for that facility compared to those specified in the Development Document.

§ 434.23—434.26 [Reserved]

Subpart C—Acid or Ferruginous Mine Drainage Subcategory

§ 434.30 Applicability, description of the acid or ferruginous mine drainage subcategory.

The provisions of this subpart are applicable to acid or ferruginous mine drainage resulting from the mining of coal of any rank including but not limited to bituminous, lignite, and anthracite.
§ 434.31 Specialized definitions.

For the purpose of this subpart:

(a) Except as provided below, the general definitions, abbreviations and methods of analysis set forth in 40 CFR 401 shall apply to this subpart.

(b) The term “coal mine” shall mean an active mining area of land with all or a portion of the overlying land, used in or resulting from the work of extracting coal from its natural deposits by any means or method including secondary recovery of coal from refuse or other storage piles derived from the mining, cleaning, or preparation of coal.

(c) The term “mine drainage” shall mean any water drained, pumped or seeped from a coal mine.

(d) The term “ten year 24-hour precipitation event” shall mean the maximum 24-hour precipitation event with a probable re-occurrence interval or once in 10 years as defined by the National Weather Service and Technical Paper No. 40, "Rainfall Frequency Atlas of the U.S.,” May 1961, and subsequent amendments or equivalent regional or rainfall probability information developed therefrom.

(e) The term “acidic or ferruginous mine drainage” shall mean mine drainage which before any treatment either has a pH of less than 6.0 or a total iron concentration of more than 10 mg/l.

§ 434.32 Effluent limitations guidelines.

In establishing the limitations set forth in this section, EPA took into account all information it was able to collect, develop and solicit with respect to factors (such as age and size of plant, raw materials, manufacturing processes, products produced, treatment technology currently available, energy requirements and costs) which can affect the industry subcategorization and effluent levels established. It is, however, possible that data which would affect these limitations have not been available and, as a result, these limitations should be adjusted for certain plants in this industry. An individual discharger or other interested person may submit evidence to the Regional Administrator (or to the State, if the State has the authority to issue NPDES permits) that factors relating to the equipment or facilities involved, the process applied, or other such factors related to such discharger are fundamentally different from the factors considered in the establishment of the guidelines.

§ 434.33-434.36 [Reserved]

Subpart D—Alkaline Mine Drainage Subcategory

§ 434.40 Applicability; description of the alkaline mine drainage subcategory.

The provisions of this subpart are applicable to alkaline mine drainage resulting from the mining of coal of any rank including but not limited to bituminous, subbituminous, or anthracite.

§ 434.41 Specialized definitions.

For the purpose of this subpart:

(a) Except as provided below, the general definitions, abbreviations and methods of analysis set forth in 40 CFR 401 shall apply to this subpart.

(b) The term “coal mine” shall mean an active mining area of land with all or a portion of the overlying land, used in or resulting from the work of extracting coal from its natural deposits by any means or method including secondary recovery of coal from refuse or other storage piles derived from the mining, cleaning, or preparation of coal.

(c) The term “mine drainage” shall mean any water drained, pumped or seeped from a coal mine.

(d) The term “ten year 24-hour precipitation event” shall mean the maximum 24-hour precipitation event with a probable re-occurrence interval or once in 10 years as defined by the National Weather Service and Technical Paper No. 40, "Rainfall Frequency Atlas of the U.S.,” May 1961, and subsequent amendments or equivalent regional or rainfall probability information developed therefrom.

(e) The term “alkaline mine drainage” shall mean mine drainage which before any treatment has a pH of more than 6.0 and with a total iron concentration of less than 10 mg/l.

§ 434.42 Effluent limitations guidelines.

In establishing the limitations set forth in this section, EPA took into account all information it was able to collect, develop and solicit with respect to factors (such as age and size of plant, raw materials, manufacturing processes, products produced, treatment technology currently available, energy requirements and costs) which can affect the industry subcategorization and effluent levels established. It is, however, possible that data which would affect these limitations have not been available and, as a result, these limitations should be adjusted for certain plants in this industry. An individual discharger or other interested person may submit evidence to the Regional Administrator (or to the State, if the State has the authority to issue NPDES permits) that factors relating to the equipment or facilities involved, the process applied, or other such factors related to such discharger are fundamentally different from the factors considered in the establishment of the guidelines.

(1) The term “effluent concentration” shall mean any water drained, pumped or seeped from a coal mine.

(2) The term “effective neutralization” shall mean the degree of effluent reduction attainable by the application of the best practicable control technology currently available.

(3) The term “many year 24-hour precipitation event” shall mean the maximum 24-hour precipitation event with a probable re-occurrence interval or once in 10 years as defined by the National Weather Service and Technical Paper No. 40, "Rainfall Frequency Atlas of the U.S.,” May 1961, and subsequent amendments or equivalent regional or rainfall probability information developed therefrom.

(4) The term “alkaline mine drainage” shall mean mine drainage which before any treatment has a pH of more than 6.0 and with a total iron concentration of less than 10 mg/l.
RULES AND REGULATIONS

<table>
<thead>
<tr>
<th>Effluent Characteristic</th>
<th>Maximum for any 1 day</th>
<th>Average of daily values for 30 consecutive days shall not exceed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron, total</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>Iron, dissolved</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>Aluminum, total</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>Manganese, total</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>Nickel, total</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>Zinc, total</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>TSS</td>
<td>()</td>
<td>Within the range 6.0 to 9.0.</td>
</tr>
</tbody>
</table>

1 Numerical value to be determined.

(b) Any untreated overflow from facilities designed, constructed and operated to treat the mine drainage and the runoff at the treatment facility resulting from a 10 year 24 hour precipitation event shall not be subject to the limitations set forth in paragraph (a) of this section.

§ 434.43—434.46 [Reserved]

[FR Doc.75-27898 Filed 10-15-75; 8:45 am]