Screening for Chemical Effects on Neuronal Proliferation and Neurite Outgrowth Using High-Content/High-Throughput Microscopy

Joseph M. Breier, Ph.D.
Curriculum in Toxicology
University of North Carolina at Chapel Hill
Chapel Hill, NC

Neurotoxicology Division
National Health and Environmental Effects Research Laboratory
United States Environmental Protection Agency
Research Triangle Park, NC

Chemical Prioritization Community of Practice
Research Triangle Park, NC
25 September 2008
In Vitro Screening for Developmental Neurotoxicity

- Central nervous system development is complex

- Research focus on processes of development rather than specific targets (e.g. proliferation, migration, neurite growth, synaptogenesis)

- Possible cell-based models:
 - Rodent models (primary cell culture, PC12 cells)
 - Human-derived models (primary neural cells, SH-SY5Y)
 - Embryonic stem cells

- Limitations
 - Need for fresh tissue
 - System of interest
 - Phenotypic/genotypic stability over multiple passages

- Goal is to develop in vitro models of human origin
 - Human neural progenitor cells
ReNcell CX Cells

- Immortalized neural progenitor cells derived from a 14-week sample of human cortex
- Express intermediate filament protein nestin
- Proliferate in the presence of growth factors EGF and FGF-2
- Differentiate into neuronal, astrocytic, and oligodendrocytic cell populations with growth factor removal

Donato et al., 2007
ReNcell CX Cells Are Neural Progenitor Cells

Breier et al., 2008
Cell Proliferation as a Screening Endpoint for Developmental Neurotoxicity

- Cell proliferation is a critical developmental process

- Proliferation is inhibited by chemicals for which evidence of developmental neurotoxicity exists
 - MeHg, Pb, EtOH

- Proliferation has been used as a screening endpoint

- Screening for effects on proliferation
 - BrdU incorporation is one of the most well-established methods
 - Amenable to high-throughput screening

- Cell viability was assessed to evaluate any overt toxicity associated with the chemicals of interest
 - Propidium iodide exclusion
High-Content Microscopy to Assess Cell Proliferation and Viability

Cellomics ArrayScan VTI:
- Fully automated image acquisition and analysis that is time-efficient
- High-content and high-throughput capacity
- Accompanying software (bioapplications) allows automated image analysis and provide data for individual cells

Potential to examine chemical effects on cell proliferation and viability using a 96-well format
Detection of BrdU Incorporation Using a High-Content Screening System

- A – Gray-scale image of nuclei stained with DAPI dye (Channel 1)
- B – Objects were determined by computer algorithm and outlined with a blue mask (Channel 1)
- C – Nuclei positive for BrdU were determined in channel 2 based on objects detected in channel 1

Propidium iodide staining was evaluated using a similar approach.
Known Anti-Proliferative Compounds Inhibit ReNcell CX Cell Proliferation

Others tested: Aphidicolin, 5-fluorouracil, hydroxyurea
Protocol for Chemical Screening Using ReNcell CX cells

Cell expansion with EGF and FGF-2

Subcultured at 10,000 cells per well

Cells were exposed 16 hours later to chemicals from stock plate in the final concentration range of 1 nM – 100 μM

Chemicals dissolved in DMSO vehicle diluted in growth media

Proliferation (BrdU incorporation) or cell viability (propidium iodide exclusion) were determined 24 hours later
Plate Layout for Chemical Screening Using ReNcell CX Cells

11 Chemical Concentrations (Molar)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-9</td>
<td>-8.5</td>
<td>-8</td>
<td>-7.5</td>
<td>-7</td>
<td>UNT</td>
<td>-6.5</td>
<td>-6</td>
<td>-5.5</td>
<td>-5</td>
<td>-4.5</td>
<td>-4</td>
</tr>
<tr>
<td>B</td>
<td>-9</td>
<td>-8.5</td>
<td>-8</td>
<td>-7.5</td>
<td>-7</td>
<td>UNT</td>
<td>-6.5</td>
<td>-6</td>
<td>-5.5</td>
<td>-5</td>
<td>-4.5</td>
<td>-4</td>
</tr>
<tr>
<td>C</td>
<td>-9</td>
<td>-8.5</td>
<td>-8</td>
<td>-7.5</td>
<td>-7</td>
<td>APH</td>
<td>-6.5</td>
<td>-6</td>
<td>-5.5</td>
<td>-5</td>
<td>-4.5</td>
<td>-4</td>
</tr>
<tr>
<td>D</td>
<td>-9</td>
<td>-8.5</td>
<td>-8</td>
<td>-7.5</td>
<td>-7</td>
<td>APH</td>
<td>-6.5</td>
<td>-6</td>
<td>-5.5</td>
<td>-5</td>
<td>-4.5</td>
<td>-4</td>
</tr>
<tr>
<td>E</td>
<td>-9</td>
<td>-8.5</td>
<td>-8</td>
<td>-7.5</td>
<td>-7</td>
<td>DMSG</td>
<td>-6.5</td>
<td>-6</td>
<td>-5.5</td>
<td>-5</td>
<td>-4.5</td>
<td>-4</td>
</tr>
<tr>
<td>F</td>
<td>-9</td>
<td>-8.5</td>
<td>-8</td>
<td>-7.5</td>
<td>-7</td>
<td>DMSG</td>
<td>-6.5</td>
<td>-6</td>
<td>-5.5</td>
<td>-5</td>
<td>-4.5</td>
<td>-4</td>
</tr>
<tr>
<td>G</td>
<td>-9</td>
<td>-8.5</td>
<td>-8</td>
<td>-7.5</td>
<td>-7</td>
<td>-GFs</td>
<td>-6.5</td>
<td>-6</td>
<td>-5.5</td>
<td>-5</td>
<td>-4.5</td>
<td>-4</td>
</tr>
<tr>
<td>H</td>
<td>-9</td>
<td>-8.5</td>
<td>-8</td>
<td>-7.5</td>
<td>-7</td>
<td>-GFs</td>
<td>-6.5</td>
<td>-6</td>
<td>-5.5</td>
<td>-5</td>
<td>-4.5</td>
<td>-4</td>
</tr>
</tbody>
</table>

8 Different Chemicals

- A
- B
- C
- D
- E
- F
- G
- H

- UNT: Untreated
- APH: APH
- DMSG: DMSG
- -GFs: -GFs
Known Anti-Proliferative Compounds *In Vitro*

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Proliferation</th>
<th>Viability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration Range:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1 nM – 100 μM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-Amphetamine Sulfate</td>
<td>.01 μM</td>
<td>20</td>
</tr>
<tr>
<td>Methylmercury (II) chloride</td>
<td>3 μM</td>
<td>75</td>
</tr>
<tr>
<td>Cadmium chloride, hydrate</td>
<td>3 μM</td>
<td>30</td>
</tr>
<tr>
<td>Lead (II) chloride</td>
<td>10 μM</td>
<td>20</td>
</tr>
<tr>
<td>Trans-Retinoic Acid</td>
<td>30 μM</td>
<td>80</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>100 μM</td>
<td>50</td>
</tr>
<tr>
<td>5,5-Diphenylhydantoin</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Valproic Acid</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Chemical Proliferation Viability

Concentration Range: (1 nM – 100 μM)

Lowest Effective Concentration

Percent Inhibition

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Proliferation</th>
<th>Viability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lowest Effective Concentration</td>
<td>Percent Inhibition</td>
</tr>
<tr>
<td>Omeprazole</td>
<td>30 μM</td>
<td>30</td>
</tr>
<tr>
<td>Diphenhydramine hydrochloride</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Acetaminophen</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Saccharin sodium salt hydrate</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>D-Sorbitol</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Dimethyl Phthalate</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
NCCT 320: Screening for Effects on ReNcell CX Cell Proliferation and Viability

• National Center for Computational Toxicology (NCCT) – launched ToxCast in 2007

• Using methodology described above, 320 chemicals provided by the NCCT were screened for effects on ReNcell CX cell proliferation and viability

• Initial Screen: ReNcell CX cells exposed to every chemical at highest concentration only (40 µM)
NCCT 320: Screening for Effects on ReNcell CX Cell Proliferation and Viability

Proliferation

Viability

“Hit” – chemical effects ≥ 3 standard deviations from control
NCCT 320: Hits for Effects on ReNcell CX Cell Proliferation and Viability

“Hit” – chemical effects ≥ 3 standard deviations from control

- **No Effect**: 61% (195 chemicals)
- **Proliferation Only**: 20% (63 chemicals)
- **Viability Only**: 15% (49 chemicals)
- **Proliferation and Viability**: 4% (13 chemicals)
High Content Screening - Neurite Outgrowth

seed, treat, grow PC12 cells in 96-well plate (4 days)

stain cells to visualize neurites (4 hrs)

analyze 96-well plate (30 min) using ArrayScan
Patterns of Effects - Neurite Growth and Cytotoxicity
96hr exposure

1) No effect
Diphenhydramine

2) Outgrowth inhibition at cytotoxic concentrations
Dexamethasone

3) Outgrowth inhibition at concentrations that are not cytotoxic
trans-Retinoic Acid

- Total Neurite Length
- Cell Titer Glo Viability
Training Set Results

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Neurite Growth</th>
<th>DNT in vivo</th>
<th>Chemical</th>
<th>in vitro/in vivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>K252a</td>
<td>+</td>
<td>nd</td>
<td>*Dimethyl phthalate</td>
<td>-</td>
</tr>
<tr>
<td>U0126</td>
<td>+</td>
<td>nd</td>
<td>d-Sorbitol</td>
<td>-</td>
</tr>
<tr>
<td>Okadaic Acid</td>
<td>+</td>
<td>nd</td>
<td>Acetaminophen</td>
<td>-</td>
</tr>
<tr>
<td>Vincristine</td>
<td>+</td>
<td>+</td>
<td>*Omeprazole</td>
<td>-</td>
</tr>
<tr>
<td>Lead Acetate</td>
<td>+</td>
<td>+</td>
<td>Amoxicillin</td>
<td>-</td>
</tr>
<tr>
<td>Valproic Acid</td>
<td>+</td>
<td>+</td>
<td>Diphenhydramine</td>
<td>-</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>+</td>
<td>+</td>
<td>Saccharin</td>
<td>-</td>
</tr>
<tr>
<td>Methylmercury</td>
<td>+</td>
<td>+</td>
<td>Glyphosate</td>
<td>-</td>
</tr>
<tr>
<td>Trans-Retinoic Acid</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Amphetamine</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Increase at highest concentration tested
NCCT 320: Screening for Effects on NS-1 Neurite Outgrowth and Viability

“Hit” – chemical effects ≥ 3 standard deviations from control
NCCT 320: Hits for Effects on NS-1 Neurite Outgrowth and Viability

“Hit” – chemical effects \geq 3 standard deviations from control

- No Effect: 85% (273 chemicals)
- Neurite Outgrowth Only: 9% (29 chemicals)
- Viability Only: 4% (14 chemicals)
- Neurite Outgrowth and Viability: 1% (4 chemicals)
Summary of Screening Effects on Cell Proliferation, Neurite Outgrowth, and Viability

- **Proliferation Hits (ReNcell CX cells)** (112 hits)
- **Viability Hits (ReNcell CX cells)** (63 hits)
- **Neurite Outgrowth Hits (NS-1 cells)** (33 hits)
- **Viability Hits (NS-1 cells)** (43 hits)

- 20 chemicals were hits on all endpoints
- Proliferation most sensitive endpoint
- Neurite outgrowth was not uniquely affected as proliferation was with regard to effects on viability
Summary / Conclusions

• ReNcell CX cells are a useful hNPC model for screening for developmental neurotoxicity

• Screening for chemical effects on cell proliferation, neurite outgrowth and viability can be achieved in a high-throughput format

• Protocols were developed for screening and prioritization of chemicals for further testing that may reduce the demands associated with toxicity testing *in vivo*

• These data will be incorporated into the larger ToxCast dataset and evaluated for their ability to predict *in vivo* toxicities
Acknowledgements

♦ Tim Shafer, Ph.D.
♦ William Mundy, Ph.D.
♦ Nicholas Radio, Ph.D.
♦ Theresa Freudenrich

♦ Kevin Crofton, Ph.D.
♦ Stephanie Padilla, Ph.D.
♦ Keith Houck, Ph.D.

♦ David Holbrook, Ph.D.
 ♦ University of North Carolina, Curriculum in Toxicology

♦ Developmental Neurotoxicity Team
 ♦ Neurotoxicology Division, US EPA