Toxicological Priority Index (ToxPi) as a Platform for Incorporation of Exposure Data for Chemical Prioritization

Sumit Gangwal, PhD
David Reif, PhD

This work was reviewed by EPA and approved for presentation but does not necessarily reflect Agency policy
Diversity of data from ToxCast™ *in vitro* HTS assays

Cellular Assays
- **Cell lines**
 - HepG2 human hepatoblastoma
 - A549 human lung carcinoma
 - HEK 293 human embryonic kidney
- **Primary cells**
 - Human endothelial cells
 - Human monocytes
 - Human keratinocytes
 - Human fibroblasts
 - Human proximal tubule kidney cells
 - Human small airway epithelial cells
- **Biotransformation competent cells**
 - Primary rat hepatocytes
 - Primary human hepatocytes
- **Assay formats**
 - Cytotoxicity
 - Reporter gene
 - Gene expression
 - Biomarker production
 - High-content imaging for cellular phenotype

Biochemical Assays
- **Protein families**
 - GPCR
 - NR
 - Kinase
 - Phosphatase
 - Protease
 - Other enzyme
 - Ion channel
 - Transporter
- **Assay formats**
 - Radioligand binding
 - Enzyme activity
 - Co-activator recruitment

Judson et al., 2010, Environ. Health Perspect. (doi: 10.1289/ehp.0901392)

http://www.epa.gov/ncct/toxcast/
A numerical index that can be used for ranking (instead of absolute thresholds) is more flexible for different prioritization tasks. Can better accommodate new data, new chemicals, data adjustments, etc.

- Integration over multiple domains of information
- Extensibility to incorporate additional types of data
- Transparency in score derivation and visualization
- Flexibility to customize components for diverse prioritization tasks

ToxPi (Toxicological Priority Index)

In vitro assays (ToxCast)

Chemical properties (descriptors)

Pathways (endocrine)
Rationale for an integrated chemical prioritization scheme

- Integration over multiple domains of information
- Extensibility to incorporate additional types of data
- Transparency in score derivation and visualization
- Flexibility to customize components for diverse prioritization tasks

A numerical index that can be used for ranking (instead of absolute thresholds) is more flexible for different prioritization tasks. Can better accommodate new data, new chemicals, data adjustments, etc.
Definitions & notation

Slice: “Pie” slices representing individual components or aggregations of multiple related components.

Component: Individual in-vitro assays, chemical properties/descriptors, etc.

\[\text{ToxPi} = f(\text{In vitro assays} + \text{Chemical properties} + \text{Pathways}) \]

Domain: Domain/field of knowledge; represented by the slice(s) of a given color family.

Each chemical signature gives a score index (ToxPi) used for ranking chemicals fingerprint.
Interpreting ToxPis for individual chemicals

Example: Endocrine profiling and prioritization of environmental chemicals using ToxCast™

ToxPi = \sum_{i=1}^{I} w_i \ast \text{assay}_i + \sum_{c=1}^{C} w_c \ast \text{chemProp}_c + \sum_{p=1}^{P} w_p \ast \text{pathway}_p

Score for \text{In vitro assay}_{i=1}

Reif et al., 2010, submitted
Example of data sources

- **36 assays**
 - 1 technology

- **38 assays**
 - 4 technologies

- Calculated using LeadScope software

- Calculated using QikProp software

- **5 assays**
 - 3 technologies

- **6 assays**
 - 4 technologies

- **5 assays**
 - 4 technologies

- 27 specific pathway components used; data from external knowledgebases
Prioritization of ToxCast™ chemicals
(sorted by overall ToxPi endocrine score)
Example ToxPi scores for reference chemicals from ToxCast™ phase I

Ranks and scores consistent with published bioactivity
Alternative ToxPi implementations for different applications

A) Incorporate additional components (slices) from other domains

B) Customize individual domains (e.g. Add a targeted chemical descriptors)

C) Adjust weighting schemes (e.g. Weights of In vitro assay slices AR, ER, and TR have been increased)
Source for preliminary exposure data

- Exposure data obtained from EPI Suite™ v4.00 (http://www.epa.gov/oppt/exposure/pubs/episuite.htm):
 - **Bioaccumulation/bioconcentration factor** (Log BCF, Log BAF) from BCFBAF program
 - **Persistence** (half life air, half life water, persistence time) from Level III fugacity model

<table>
<thead>
<tr>
<th>BCF (L/kg wet-wt)</th>
<th># of Chemicals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td></td>
</tr>
<tr>
<td>7000</td>
<td></td>
</tr>
<tr>
<td>8000</td>
<td></td>
</tr>
<tr>
<td>9000</td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>log BCF</th>
<th># of Chemicals</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.25</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>1.75</td>
<td></td>
</tr>
<tr>
<td>2.25</td>
<td></td>
</tr>
<tr>
<td>2.75</td>
<td></td>
</tr>
<tr>
<td>3.25</td>
<td></td>
</tr>
<tr>
<td>3.75</td>
<td></td>
</tr>
</tbody>
</table>

Source for preliminary exposure data: ToxCast Phase I
Source for preliminary exposure data

- Exposure data obtained from EPI Suite™ v4.00 (http://www.epa.gov/oppt/exposure/pubs/episuite.htm):
 - **Bioaccumulation/bioconcentration factor** (Log BCF, Log BAF) from BCFBAF program
 - **Persistence** (half life air, half life water, persistence time) from Level III fugacity model

- Ran EPI Suite™ in batch mode passing chemicals smiles/CAS

- From summary results, extracted data for 309 ToxCast Phase I chemicals

- Adjusted data range for negative values and removed null values

- Normalized data to incorporate exposure domain into ToxPi framework with other data domains
Incorporating exposure information: Preliminary ToxPi endocrine scores
(sorted by overall ToxPi score)
Incorporating exposure information: Preliminary ToxPi endocrine scores (sorted by overall ToxPi score)

Previous top 15 prioritized chemicals by overall ToxPi score

New top 15 prioritized chemicals with exposure domain

#22 #31 #33 #18 #26
Interpreting ToxPis with exposure domain for individual chemicals

Bisphenol A

Perfluorooctane sulfonic acid (PFOS)

AR
TR
LogP, TPSA
CaCO2
KEGG path
Ingenuity path

Other
XME/ADME
Other NR

ER
AR
Persistence
BCF/BAF
Disease classes

BCF/BAF
Persistence
Disease classes

Interpreting ToxPis with exposure domain for individual chemicals

Bisphenol A

Perfluorooctane sulfonic acid (PFOS)
Conclusions

This work was reviewed by EPA and approved for presentation but does not necessarily reflect Agency policy

- Combining multiple data sources into an overall, weight-of-evidence ‘ToxPi’ score results in more robust conclusions than any single data source taken alone.

- Framework developed here provides graphical insight and transparent visualization of relative contribution of all sources of data.

- Amenable to incorporating extant prioritization schemes and relevant data from diverse sources.

- Because ToxPis are intended for relative ranking, particular implementations of this framework can be continually updated with new chemicals and future data.

- Adding exposure domain information changes ToxPi scores for ToxCast Phase I chemicals

- Future plans: Incorporate other exposure data (manufacturing volumes, usage, etc.)
Acknowledgments

David Reif
Elaine Cohen Hubal
ToxCast Project – Keith Houck, Richard Judson, Ann Richard, ...

David Dix
Robert Kavlock

... plus many more EPA colleagues that are participating in the continued development of this project

National Center for Computational Toxicology
Office of Research and Development

This work was reviewed by EPA and approved for presentation but does not necessarily reflect Agency policy