GLOBAL SEA LEVEL RISE

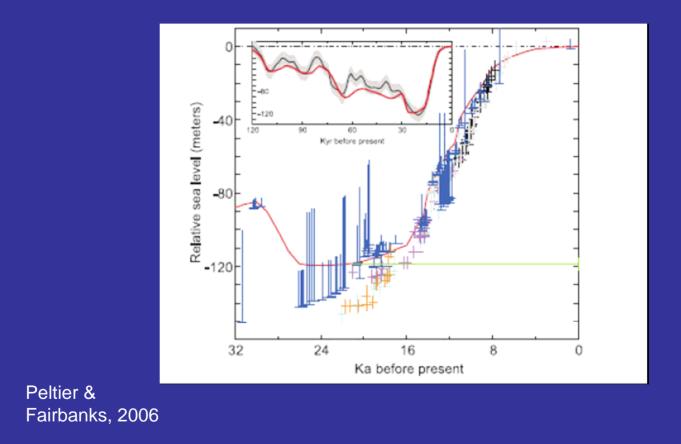
Carl Wunsch, MIT EPA October 2008

Who cares? How does one determine it? Is it understood? What will happen in the future?

Useful general references:

B. C. Douglas, M. S. Kearney and S. P. Leatherman, Eds. *Sea Level Rise. History and Consequences.* Academic Press, 2001.

IPCC (2007) Chapter 10 Sea Level Change (available online).


Disclaimer (added by EPA)

This presentation by Dr. Carl Wunsch on October 16, 2008 has neither been reviewed nor approved by the U.S. Environmental Protection Agency. The views expressed by the presenter are entirely his own. The contents do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. A seemingly simple problem.

In practice, extraordinarily difficult and easy to fall into the trap of thinking one understands it far better than is justified. As a measurement it is extremely difficult; involves processes acting over tens of thousands of years to decades and years and the system is extremely noisy. Prediction is hard. The economic consequences of continued rise are immense. Among the future changes in climate in a world with growing CO₂ there are three elements about which there would be almost no debate at all:

Acidification of the ocean
 Sea level rise
 Increased global mean temperatures

Important background: sea level has been rising for about 16,000 years. In the last interglacial it appears to have been a few meters higher than today.

Sea level is virtually guaranteed to keep rising. The only issue is whether the rate of rise is, or is going to, accelerate.

15,000Y BP

11,5<u>00Y BP</u>

78 The Ice Age World

Fig. 2-49. North America 15 000 years ago. The Cordilleran Ice Sheet (C) was larger and the Laurentide Ice Sheet smaller than 18 000 years ago. The tundra zone had become narrower in the west and midwest, but remained extensive in the east. The maximum ice-sheet model has been used for the Canadian-islands area (see minimum model on Fig. 2-31).

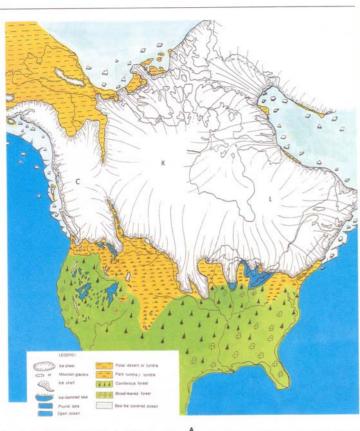
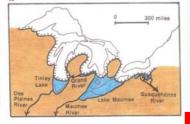



Fig. 2-50. Three selected phases during the deglaciation of the Great Lakes area. Icedammed lakes were formed and increased in size within the basins in front of the ice sheet as the ice front retreated. During an early phase (A) the lakes drained southwards towards the Mississippi River, while some smaller lakes drained through the Susquehanna River to the Hudson River. Later (B) the lakes Erie and Iroquois drained through an outlet at Rome, New York, to the Hudson River. During the final glacier retreat (C) the St. Lawrence Lowland was opened by deglaciation and marine water transgressed into the Lake Ontario basin. At that time the St. Lawrence area (S) was isostatically depressed more than 200 m. Since isostatic depression was greater towards the north (Fig. 1-16A), the northerly located outlets of lakes Chippewa and Stanley lay at relatively low levels, and therefore the lakes experienced a marked low-level phase. As the isostatic uplift and tilting of the land gradually progressed, the lakes were allowed to increase to the size of the present-day lakes Michigan and Superior, and the St. Lawrence Lowland emerged from the sea.

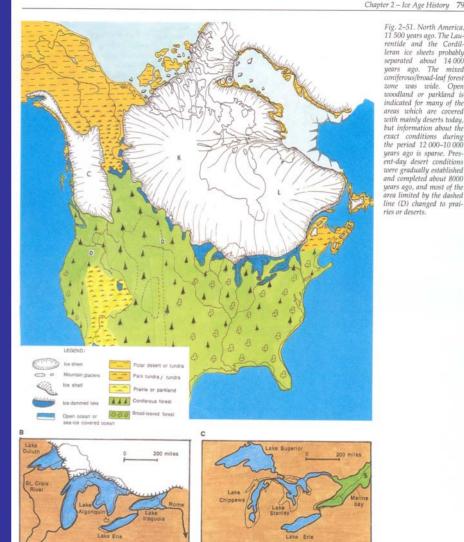


Fig. 2-51, North America 11 500 years ago. The Laurentide and the Cordil leran ice sheets probably separated about 14 000 years ago. The mixed coniferous/broad-leaf fores zone was wide. Open woodland or parkland is indicated for many of the areas which are covered with mainly deserts today but information about th exact conditions during the period 12 000-10 000 years ago is sparse. Present-day desert conditions were gradually established and completed about 8000

years ago, and most of the area limited by the dashed line (D) changed to prairies or deserts

Andersen and Borns, 1994. The Ice Age World

Melting all the ice now in Greenland would raise sea level by about 7 meters. Melting all the ice in Antarctica would produce about 100m rise.

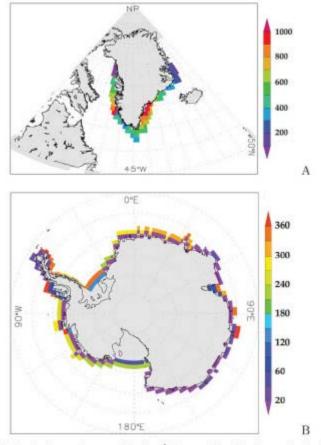


Figure 1. Surface freshwater flux anomalies (in m³/s) per model grid point associated with loss of polar ice sheets and added to the NECEP/NCAR net freshwater forcing after divisio surface area of each grid cell for (a) the Greenland run and (b) the Antarctic run,

Stammer, JGR, 2008

Figure 2. (two left columns) December-mean salt anomalies at 160 m and 610 m depth from the model years 1, 3, and 6 of the Greenland run, (right) December-mean salt anomalies at 610 m depth are shown from the years 10, 20, 30, and 40.

salt anomaly

It takes decades and longer for the ocean to fully equilibrate with fresh water addition or removal.

Satellite altimeters have become the de facto standard. But the measurements are only useful after 1992. The problem thus divides into the period before and after 1992 and the inferential problems are very different.

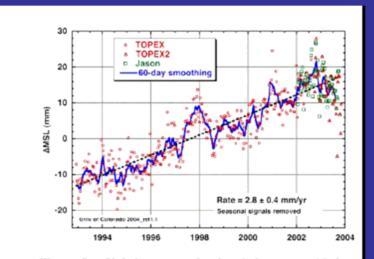


Figure 5. Global mean sea level variations every 10 days from T/P (red circles, red triangles after T/P was moved to new ground track) and Jason (green squares) and after smoothing with a 60-day boxcar filter (blue line) [*Leuliette et al.*, 2004]. No inverted barometer correction was applied to the altimeter data, and seasonal variations have been removed.

Cazenave and Nerem, Revs. Geophys. 2004

70°15'W

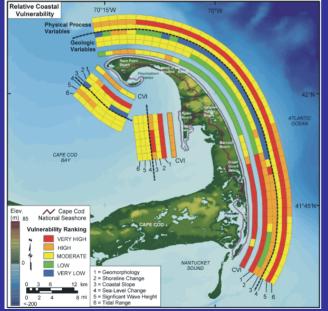
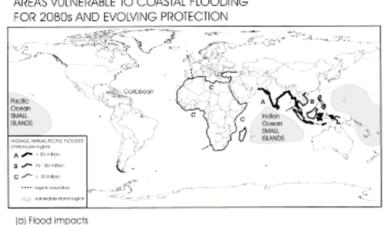



Fig.]4. Regional implications of sea-level rise -- the regions most affected by Bood impacts given the MadCM2 (mean) scenario for the 2000s.

R.J. Nichola et el. | Global Emironenesial Change 9 (1999) 355-517

51)

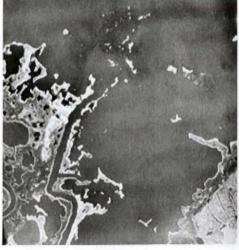
AREAS VULNERABLE TO COASTAL FLOODING

Katrina-like storm surges,....

USGS, WHOI

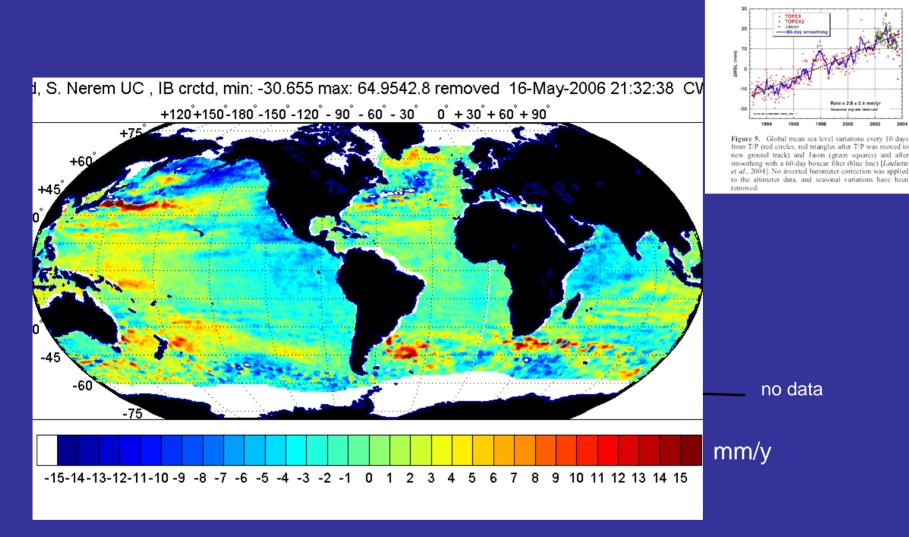
Fig. 17. Engional implications of sea-level rise — the regions where we land longer may exceed 65% due to the Had CM2 (mean) scenario by the 2000s.

From Douglas et al., 2001



1938

1957



1972

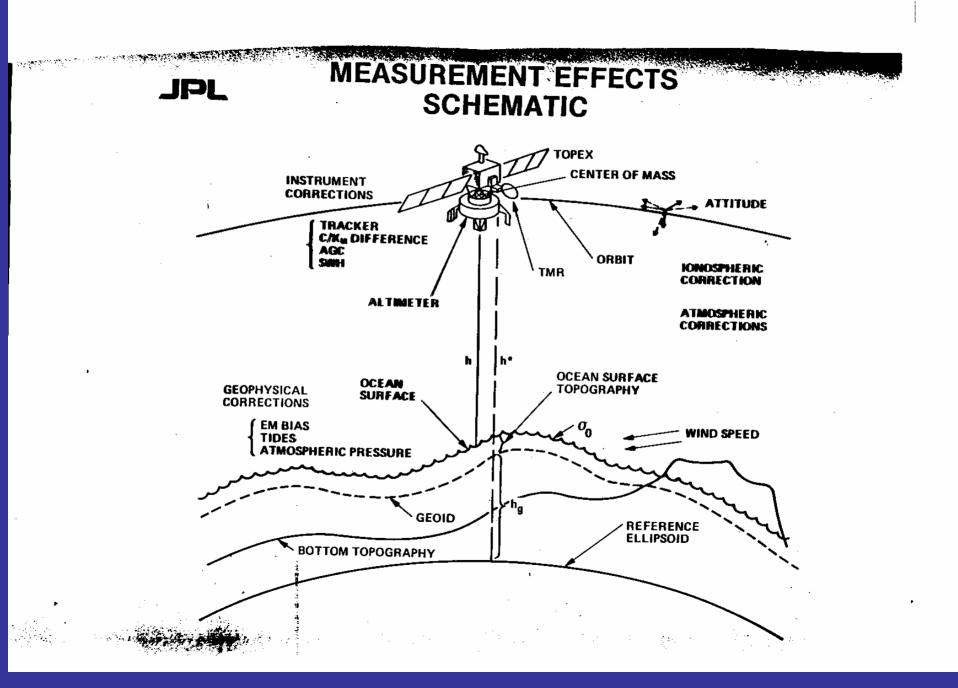

1988

Figure 8.21 Progressive drowning and loss of coastal marshes in Blackwater National Wildlife Refuge near Cambridge, Maryland, in response to a high relative sea level rise.

Directly measured by a satellite. Note how complicated the pattern is. The global mean value is estimated as about 2.8mm/y +/-0.3mm/y (optimistic error bar).

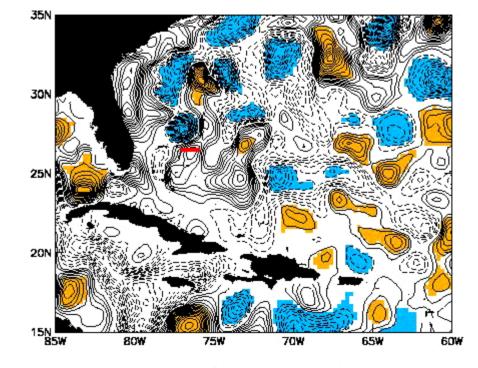
According to Peltier (1991) should add another 0.33mm/y for postglacial rebound (ocean volume increase).

Corrections applied include:

atmospheric water vapor ionospheric electron content atmospheric pressure loading wave height biases of several types orbits tides rotation wobble aliasing of high frequencies inverted barometer

Trends in any of these will produce apparent trends in sea level. Each must be corrected at a very high level of accuracy. (The original global estimate (1995) was later halved when a single-line coding error was found.)

One new worry is the suggestion that the center of mass of the earth may have position trends (e.g., owing to post glacial rebound, ice transfer, etc.)


The system is very noisy!

animated altimetry (that is, *sea level*) using an eddy identification code

2cm height change is approximately 14 Sv of transport if barotropic.

From Dudley Chelton, 2008

Contour Interval = 2 cm (Zero Contour Omitted)

(An animation)

What can change the apparent "mean" sea level at a point?

Addition/removal of water from melting land ice
Addition/removal of water from land (rivers, percolation through the continental margin). Dam/reservoir construction. Changes in land use, evaporation/precipitation over the continents.
Local vertical movement of the land relative to the global average.
Change in total ocean volume (postglacial rebound).
Change in local gravity (removal of glaciers, postglacial rebound, change in earth rotation rate and rotation pole position)
Warming/cooling of the water column.
Redistribution of fluid by the ocean circulation.

....?

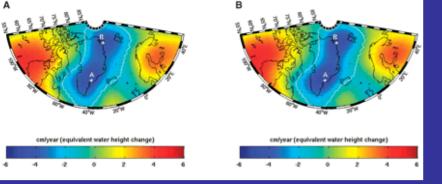
What can change global mean sea level?:

Net temperature change (heat exchange with the atmosphere)
Addition or subtraction of fresh water (exchange with atmosphere, land, ice)

•Change in geometric volume of the ocean

Strategies:

Measure it directly
Measure the inputs/outputs (freshwater and heating) and calculate the volume changes


Inputs/Outputs:

One possibility is to determine the net heating and fresh water input from meteorological forcing.

But meteorological analyses prove too inaccurate.

Are the Greenland and Antarctic ice sheets expanding or contracting? Is sea ice melting (doesn't change sea level, but does change oceanic salinity)? Is it possible to calculate the oceanic freshening and temperature change over decades using measurements, with an accuracy we would care about?

Everything appears to be open to question! The economic and political stakes are immense.

Chen, Wilson, Tapley, Science, 2006 Satellite Gravity Measurements Confirm Accelerated Melting of Greenland Ice Sheet (note only 3 years of data)

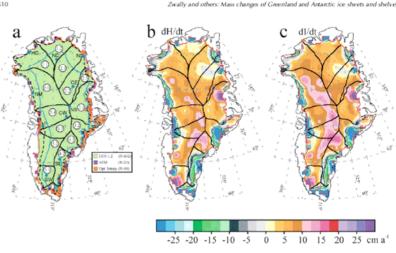


Fig. 1. Greenland. (a) Distribution of surface elevation change data by source, derived from ERS-1 and -2 radar altimetry, ATM (closestneighbor interpolation from airborne surveys), and obtained by optimal interpolation: ice terminus of coterminous ice sheet (red), equilibrium line (black dashes), 2000 m elevation contour (blue), drainage divides (black), drainage system designation (number in circles), and location of *H*/B series depicted in Figure 3a (labeled blue full circles), (b) Distribution of elevation change (d*H*/d*t*). (c) Distribution of icethickness change (d*H*/d*t*).

Zwally et al., J. Glaciology 2005. "The Greenland ice sheet ...[has] a small overall mass gain, +11+/-3 Gt/a."

Rignot and Kanagaratnam, 2006 in IPCC 4, 2007

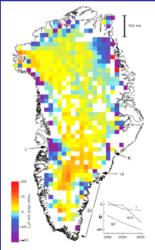
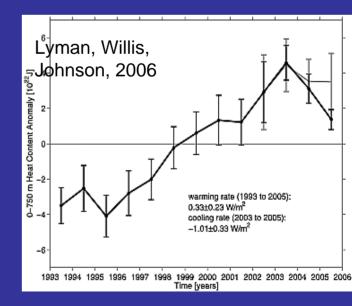


Figure 4.17. Rate of surface eviden cauge (d) (d) derived from more admeter measurement of more than (3.000 locations on the domenon loc Sheef where KESA and to more Solvering annual survey in 1986/1986) using method decidently Thomas et al., 2006. Locations of rapidly himming adder gamen at Jacobrane (J. Arconfiguring A), enter (A and ange) to activate config are shown to sphere with a more showing their editors taxing as the of the 2006.

Are the ice sheets growing or shrinking?

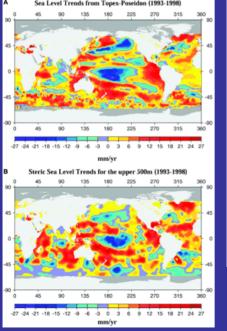
No accurate altimetry prior to 1992.

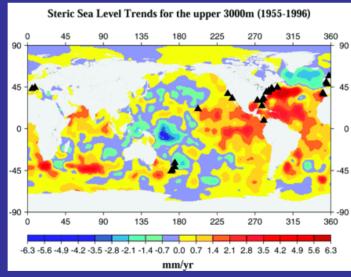
There exist a number of published attempts at determining the global average prior to the altimeter measurements based on (1) tide gauge records; (2) temperature and salinity changes.


These have been the subject of considerable dispute, as the calculations prove very difficult.

Issues pertain to:

The spatial distribution of the measurements


The interpretation of density changes


Calibration (or lack of it) in the various measurements

Sea Level Rise During Past 40 Years Determined from Satellite and in Situ Observations Cecile Cabanes, Anny Cazenave, Christian Le Provost (2001)

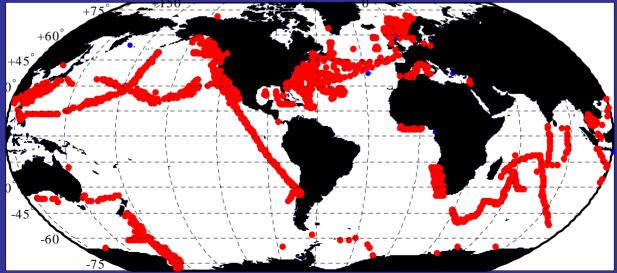
"The 3.2 ± 0.2 millimeter per year global mean sea level rise observed by the Topex/Poseidon satellite over 1993-98 is fully explained by thermal expansion of the oceans. For the period 1955-96, sea level rise derived from tide gauge data agrees well with thermal expansion computed at the same locations. However, we find that subsampling the thermosteric sea level at usual tide gauge positions leads to a thermosteric sea level rise twice as large as the "true" global mean. As a possible consequence, the 20th century sea level rise estimated from tide gauge records may have been overestimated."

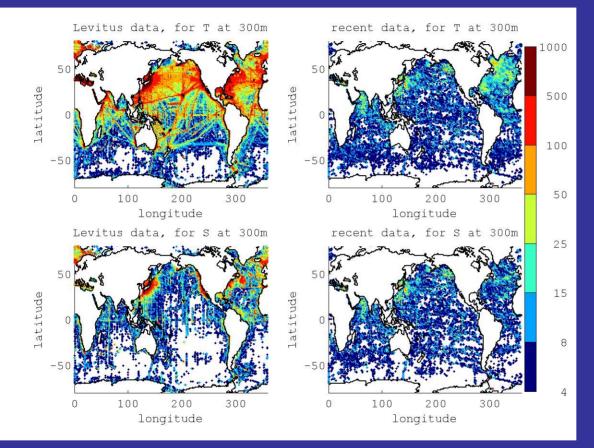


Gauges disproportionately located in regions of excess warming

But, Miller and Douglas, Nature, 2004, show the apparent bias is due to smoothing in the Levitus et al., hydrography

sampling in 1960 WOA

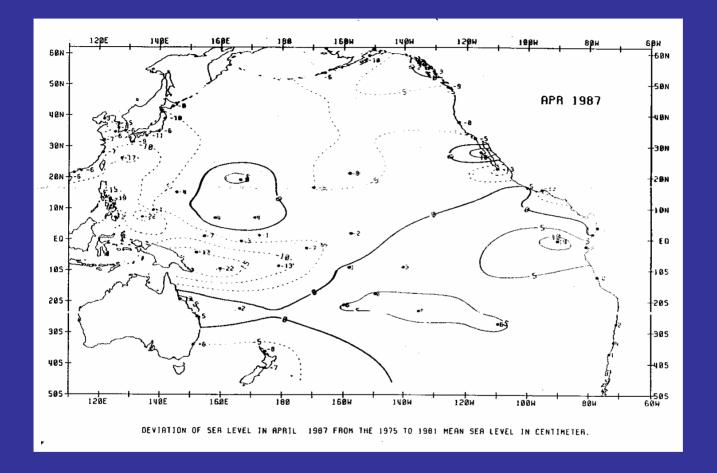

+120+150-180-150-120-90-60-30 +30+60+90

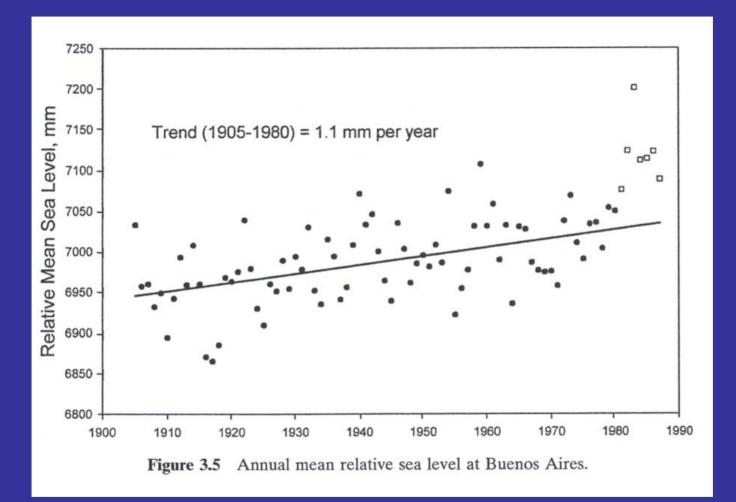


mainly MBTs

sampling in 2002

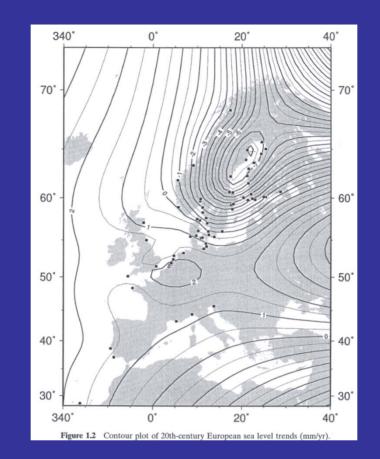
 120° 180° -150° -120° -90° -60° -30° $+30^{\circ}$ $+60^{\circ}$ $+90^{\circ}$

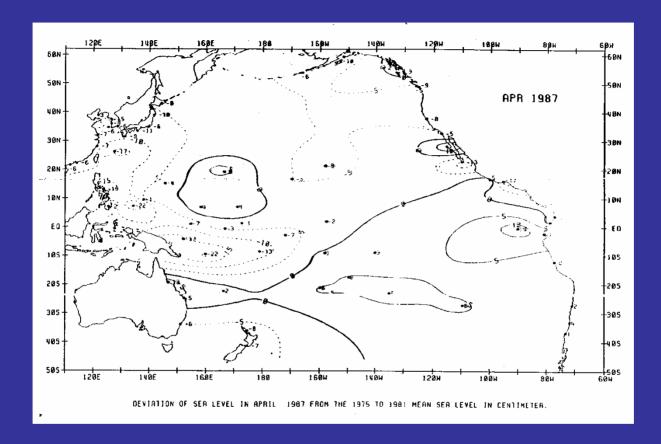



G. Forget

More than 4 measurements in a 1 degree square in 50 years. "Recent" means about 1990 & later.

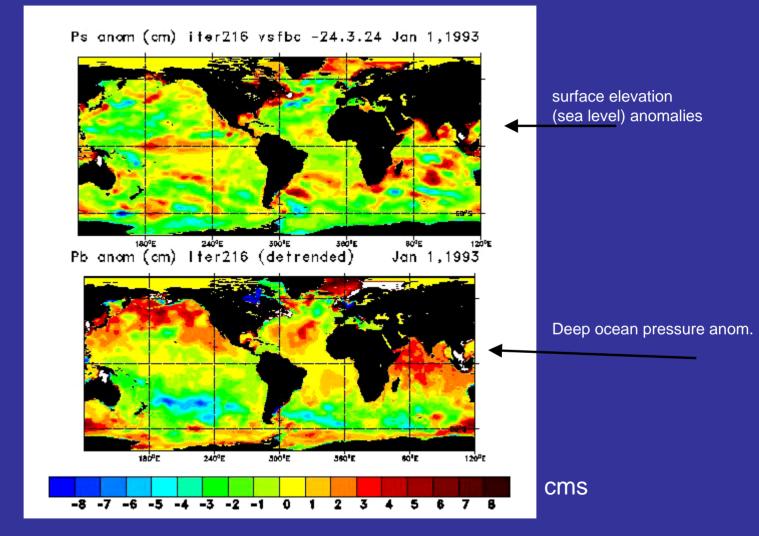
Can one really compute global averages from these that have the necessary accuracy?

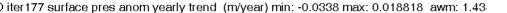


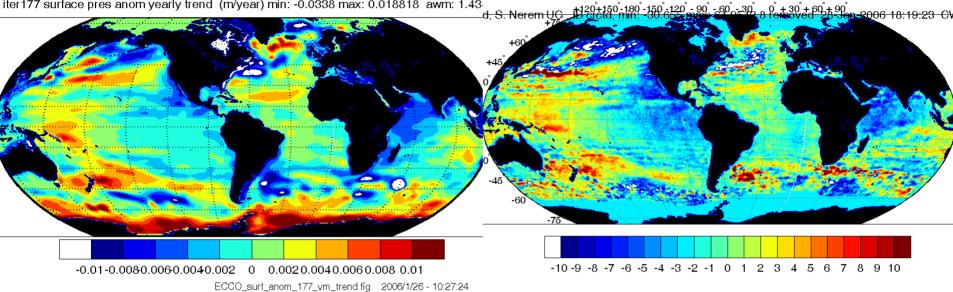

From Douglas et al. 2001

From Douglas et. al. 2001.

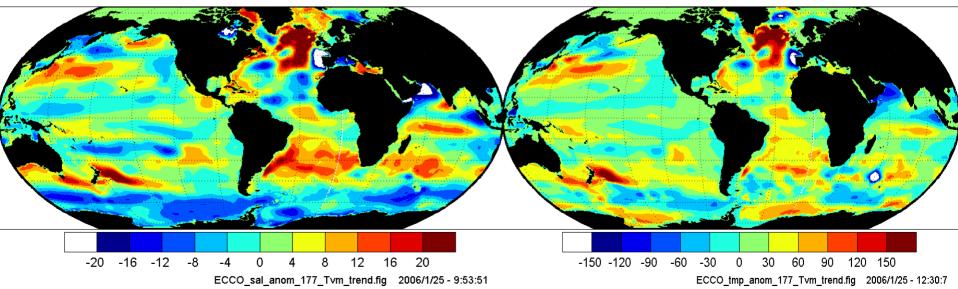
Note that sea level appears to be falling around Scandinavia. This is a result of post-glacial rebound. So-called tectonic and postglacial rebound corrections are very important for tide gauges.

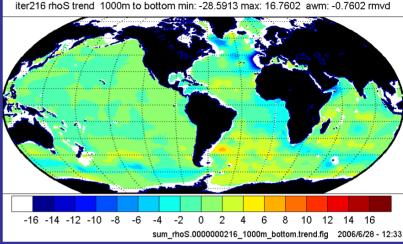


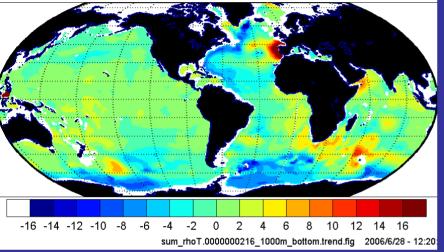

Oceanographers have developed numerical models that solve the fluid-dynamical and thermodynamical equations in realistic, rotating spherical, geometries. Can combine them with the


observations so that use all the data we have.

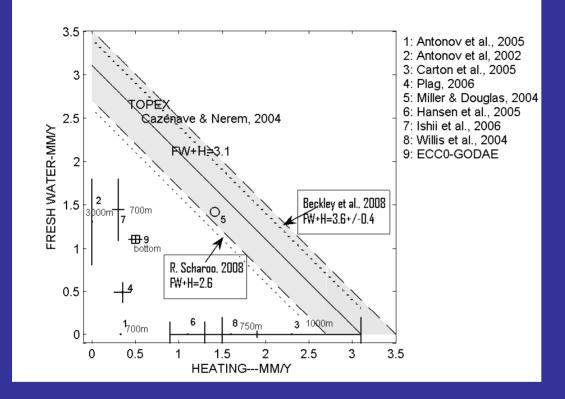
(An animation)


Dynamically, kinematically, and statistically, the Southern Ocean is different from all other ocean regions. It is almost unsampled.

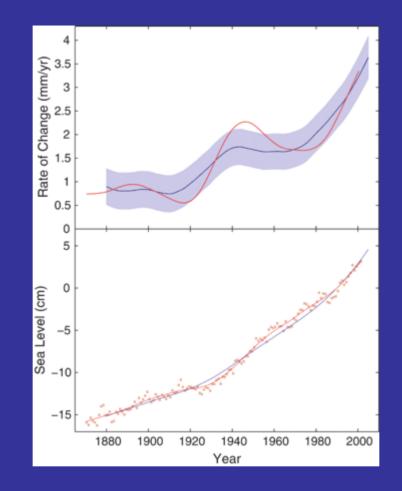



Global mean removed from the sl results

ECCO iter177 Total salinity anom yearly trend min: -56.4988 max: 42.5558 awm: 1.4351 ECCO iter177 Total temp anom yearly trend min: -287.2029 max: 296.9896 awm: 16.5629



iter216 rhoT trend 1000m to bottom min: -16.8817 max: 28.8088 awm: 0.41877 rmvd


1000m to bottom temperature contribution to density trend mm/y

1000m to bottom salinity contribution to density trend mm/y

TOPEX value includes 0.3mm/y from R. Peltier estimate of ocean volume change (PGR). o from Miller & Douglas is pure tide gauge value.

Everything is positive! --- at least.

Comparison of putative global mean sea level and global mean temperature.

Fig. 3. (**Top**) Rate of sea-level rise obtained from tide gauge observations (red line, smoothed as described in the Fig. 2 legend) and computed from global mean temperature from Eq. 1 (dark blue line). The light blue band indicates the statistical error (one SD) of the simple linear prediction (*15*). (**Bottom**) Sea level relative to 1990 obtained from observations (red line, smoothed as described in the Fig. 2 legend) and computed from global mean temperature from Eq. 2 (blue line). The red squares mark the unsmoothed, annual sea-level data.

Rahmstorf, Science, 2007. Can one reconstruct sea level back to 1875? Can one do it for global mean temperature? Or is this science fiction?

What of the future?

By definition, there are no data. Are dependent upon (1) emission scenarios, (2) extremely complicated models.

Climate models are not simpler than econometric ones. One expects to discover they are not particularly skillful (e.g., as in 2008 financial meltdown). They do not usually show abrupt changes.

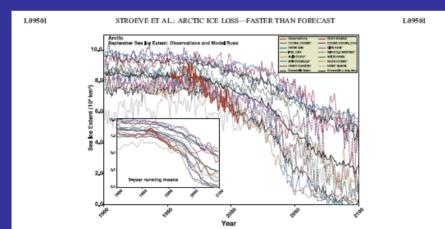
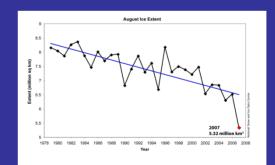
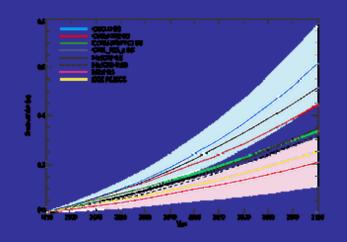



Figure 1. Arctic September sea ice extent ($\times 10^6 \text{ km}^3$) from observations (fhick red line) and 13 IPCC AR4 climate models, together with file multi-model ensemble mean (solid black line) and standard deviation (dotted black line). Models with more than one ensemble member are indicated with an asterisk. Inset shows 9-year running means.



National Snow & Ice Data Center

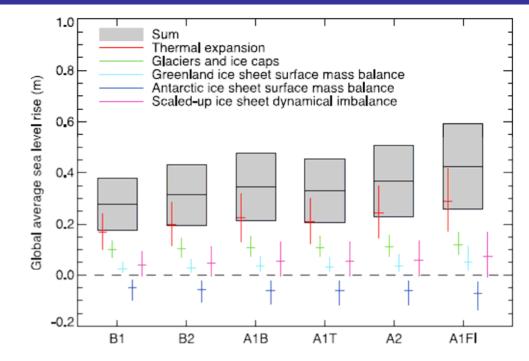
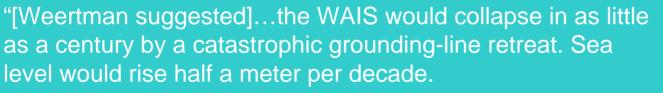
Climate models are extremely complicated, approaching 1 million lines of code. Probably no one fully understands any one of them. They diverge.

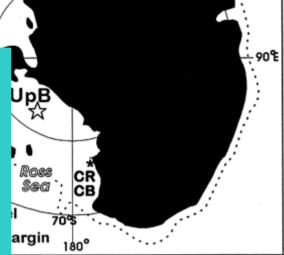
Nonetheless, some things are quite robust---including the global net warming under CO2 rise, amplification at the poles, melting ice. The threat is real, credible, and will be extremely expensive to deal with.

Surges, ground water contamination, loss of ecosystems, general loss of land areas.

From Church et al. (2001)

Figure 11.1: Global average sea level changes from thermal expansion simulated in AOGCM experiments with historical concentrations of greenhouse gases in the 20th century, then following the IS92a scenario for the 21st century, including the direct effect of sulphate aerosols. See <u>Tables 8.1</u> and <u>9.1</u> for further details of models and experiments update?


Figure 10.33. Projections and uncertainties (5 to 95% ranges) of global average sea level rise and its components in 2090 to 2099 (relative to 1980 to 1999) for the six SRES marker scenarios. The projected sea level rise assumes that the part of the present-day ice sheet mass imbalance that is due to recent ice flow acceleration will persist unchanged. It does not include the contribution shown from scaled-up ice sheet discharge, which is an alternative possibility. It is also possible that the present imbalance might be transient, in which case the projected sea level rise is reduced by 0.02 m. It must be emphasized that we cannot assess the likelihood of any of these three alternatives, which are presented as illustrative. The state of understanding prevents a best estimate from being made.

IPCC (2007, Ch. 10. Declined to give scenarios. Surprises are likely. West Antarctic ice sheet?

Thus, I believe that a rapid rise in sea level in the next century or two from a West Antarctic cause could only occur if a natural (not induced) collapse of the WAIS is imminent, the chances of which, based on the concept of a randomly timed collapse on the average of once every 100,000 years, are on the order of 0.1%. "

C. R. Bentley, Science, 1997

ding ice sheet mechanics to predict the probability

of WAIS collapse within the coming centuries, but geologic evidence of past collapse and observations of rapid ongoing changes in the WAIS (1, 24) underscore the need for continued study." R. P. Scherer et al., Science, 1998

Partial Summary:

Global mean sea level is almost surely rising. Historical data are not adequate to compute accurate global averages. No mathematical trick compensates for missing data. Present multidecadal estimates of global averages have an element of fantasy about them. (Among other issues, an unsubstantiated blind faith in models.)

Altimetry represents the only realistic technology for quantitatively determining present and future changes, but much more needs to be understood of errors present in the system.

Modelling present and future global and regional changes lies at the very edge of computational knowledge and capability.

The chief issue is to make sure that some future generation *will* have adequate data.

