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ABSTRACT: 

Some recent research suggests that uncertainty about the response of the climate system to 

atmospheric greenhouse gas (GHG) concentrations can have a disproportionately large influence on 

benefits estimates for climate change policies, potentially even dominating the effect of the discount 

rate. In this paper we conduct a series of numerical simulation experiments to investigate the 

quantitative significance of climate response uncertainty for economic assessments of climate change. 

First we characterize climate uncertainty by constructing two probability density functions—a Bayesian 

model-averaged and a Bayesian updated version—based on a combination of uncertainty ranges for 

climate sensitivity reported in the scientific literature. Next we estimate the willingness to pay of a 

representative agent for a range of emissions reduction policies using two simplified economic models. 

Our results illustrate the potential for large risk premiums in benefits estimates as suggested by the 

recent theoretical work on climate response uncertainty, and they show that the size and even the sign 

of the risk premium may depend crucially on how the posterior distribution describing the overall 

climate sensitivity uncertainty is constructed and on the specific shape of the damage function. 
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1 Introduction 

Recent theoretical research on the influence of uncertainty and potential “catastrophes” 

associated with global climate change suggests that standard economic assessment models “may give a 

very misleading picture of the expected utility consequences of alternative GHG-mitigation policies” 

(Weitzman 2009). Weitzman illustrates this using a constant relative risk aversion (CRRA) utility 

function, a damage function that rises exponentially with the temperature change, and a fat-tailed 

probability distribution over the climate sensitivity parameter.1 With these ingredients, society’s 

willingness to pay to eliminate the risk of climate damages is unbounded. The model can be modified in 

a variety of ways to give a bounded willingness to pay, but Weitzman argues that the resulting benefit 

estimates still will be highly sensitive to the necessarily speculative shape of the damage function at very 

high (and heretofore unobserved) global average temperatures. 

In this paper we investigate some of the practical implications of climate response uncertainty 

for policy analysis. We begin with a highly stylized climate assessment model to explore the influence of 

several key economic parameters on the willingness to pay to reduce climate change risks when the 

climate response is uncertain. We then adopt a slightly more realistic model, partly based on the 

climate dynamics module of the Dynamic Integrated model of Climate and the Economy (DICE) 

(Nordhaus and Boyer 2000, Nordhaus 2008), to estimate the benefits of a recent legislative proposal 

that would impose a declining cap on aggregate U.S. GHG emissions, and a larger emissions reduction 

policy that assumes the global economy follows the optimal path of emissions as estimated by the most 

recent version of DICE. Both scenarios are run by first ignoring and then accounting for climate 

response uncertainty. This exercise provides a further check of the robustness of our stylized model and 

gives at least a preliminary indication of the quantitative significance of climate response uncertainty for 

the analysis of potential real-world policies. 

1 A pdf has a fat-tail if the probability of extreme outcomes—in this case the probability of very large temperature changes— 

approaches zero at a slower than exponential rate. More formally, the integral that defines the moment generating function 

does not converge. 
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This paper, motivated largely by the theoretical work of Weitzman (2009), makes five main
�

contributions to the literature on climate change uncertainty. First, we conduct an extensive set of
�

sensitivity analyses based on two simplified climate assessment models. These numerical experiments
�

are intended to put Weitzman’s theoretical results and conjectures through their paces—to test their
�

robustness and to assess their quantitative significance for practical policy analyses. Second, we show 

that a key requirement for large “risk premiums” to emerge from economic climate assessment models 

is that the posterior distribution describing climate sensitivity uncertainty must be constructed using a 

Bayesian model averaging approach rather than a Bayesian updating approach.2 This may provide a 

partial explanation for some of the divergent views—among economists as well as between economists 

and natural scientists—on the potential risks of catastrophic climate change. Third, we highlight the 

dual role of the coefficient of relative risk aversion in models of climate change with uncertainty. This 

parameter pulls the resulting benefit estimates in opposite directions—towards lower benefits due to 

the expected increases in consumption and the associated decreasing marginal value of consumption 

over time, but towards higher benefits due to the stronger aversion to potentially catastrophic 

outcomes (Heal 2008). We find that the second effect can rapidly dominate the first well within the 

range of plausible estimates for this parameter found in the economics literature. Fourth, we estimate 

benefits for two illustrative but realistic emission reduction policies accounting for climate response 

uncertainty. The models we use are relatively simple, but by isolating the influence of climate response 

uncertainty and other key economic parameters in a clean and transparent way our results can provide 

a useful benchmark for interpreting the benefit estimates that emerge from more complex models in 

2 In this paper we use the term “risk premium” to refer to the difference between our estimates of willingness to pay based on 

an expected utility framework that explicitly accounts for climate response uncertainty and our analogous estimates of 

willingness to pay based on an analogous deterministic model that effectively ignores the low-probability high-impact risks. 

This should not be confused with the “risk premium” in the finance literature that refers to the interest rate mark-up 

associated with risky investments. Also, by using the term “risk” rather than “uncertainty,” we are adopting (the common 

understanding of) Frank Knight’s distinction between these concepts (Runde 1998). According to this convention, “risk” 

describes a situation where a probability distribution over the potential consequences can be constructed, while “uncertainty” 

describes a situation where no such probability distribution can be specified. However, this convenient jargon should not 

disguise the fact that large elements of subjectivity may be embedded in the probability distribution describing climate 

response uncertainty; we are not necessarily working with purely frequentist pdfs. 

3
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future studies. Finally, we elaborate on a feature of the damage function that may be a contributing 

factor to the negative risk premium found by Nordhaus (2008) in an uncertainty analysis using the DICE 

model. Our simulations show that a negative risk premium is more likely to emerge the lower is the 

inflection point of the damage function. 

We should clarify at the outset how the approach used in this paper accounts for uncertainty 

and potential climate catastrophes where standard approaches may not. In most economic climate 

assessment models, central or “best-guess” point estimates are used for all input parameters. For 

example, a common assumption about climate sensitivity is that a doubling of the atmospheric carbon 

concentration will cause a 3oC increase in the average global surface temperature. However, the actual 

value could be smaller or much larger than this commonly cited point estimate (Hegerl et al. 2007, 

Andronova et al. 2007). Combining the probability distribution over the possible temperature change 

with a climate change damage function, which translates the actual temperature change into losses in 

GDP, we can define a “catastrophe” as any very high-impact very low-probability outcome associated 

with a temperature change above some threshold value. These outcomes are directly incorporated into 

the expected utility framework and the willingness-to-pay calculations of the models used in this paper, 

but they may be ignored completely in any standard climate assessment model that uses central 

parameter estimates alone. 

The usual rationale for excluding such high-impact low-probability outcomes seems to be that 

the associated scientific uncertainty surrounding such possibilities is too large to provide a solid basis for 

policy evaluations. For example, there still is only limited understanding of the likelihood and timing of 

potential catastrophic events such as thermohaline circulation collapse or de-glaciation of the Greenland 

and West Antarctic ice sheets (Keller et al. 2004, Vaughan and Arthern 2007, Ramanathan and Feng 

2008). However, this ad hoc rationale focuses exclusively on the “very low-probability” component of 

the definition. A key point implied by Weitzman (2009) is that the “very high-impact” component can 

4
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potentially offset or even overwhelm the low-probability component. In general, it is the product of the 

probability and the value of the impact that is important, rather than one or the other alone. 

Parameter uncertainty is typically analyzed in standard models—when it is not excluded 

altogether based on the “scientific uncertainty” rationale—through sensitivity analysis. The model is 

used to calculate willingness-to-pay multiple times, where each calculation uses different values for the 

uncertain parameters, and the range of results is reported. Sensitivity analysis is good modeling 

practice, but it is not a substitute for a model that explicitly incorporates uncertainty in an expected 

utility framework. A central goal of this paper is to assess, at least in a preliminary way, the quantitative 

significance of this distinction for the benefits estimates of GHG emissions reduction policies that 

emerge from economic climate assessment models. 

A few recent studies have used Monte Carlo methods to account for uncertainty in economic 

climate assessment models, but so far the results have been decidedly mixed. For example, Tol (2003) 

used the Climate Framework for Uncertainty, Negotiation, and Distribution (FUND) model, and found 

that when accounting for uncertainty “the net present marginal benefits of greenhouse gas emission 

reduction becomes very large” and in one case appeared to be unbounded. Ceronsky et al. (2005) also 

used FUND and found “that incorporating [potential climate catastrophes] can increase the social cost of 

carbon by a factor of 20.” In contrast, Pizer (1998) used a modified version of DICE and found that 

accounting for parameter uncertainty increased the estimated welfare gain from an optimal tax rate 

policy by a relatively modest 25% compared to its deterministic counterpart. And finally, Nordhaus 

(2008) used the latest version of DICE and found that “the best-guess policy is a good approximation to 

the expected-value policy.” In this paper we suggest that part of the explanation for these divergent 

results may lie in the (possibly subtle) differences between the way that each study characterized the 

climate response uncertainty and the potential economic damages from global average temperature 

changes. 

5
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The remainder of the paper is organized as follows. Section 2 presents some motivating 

calculations of expected marginal willingness to pay under climate uncertainty. In Section 3 we 

characterize the current state of scientific uncertainty surrounding the potential response of the climate 

system to anthropogenic GHG emissions. Section 4 applies our estimated climate sensitivity 

distributions to a highly stylized economic model. Section 5 applies the same distributions to a more 

realistic model, based partly on DICE, to investigate two hypothetical but plausible climate change 

policies. The paper concludes in Section 6 with a summary of our results and a discussion of policy 

implications. Before proceeding, we note two key features of the climate change economics problem 

that we do not address in this paper: the effect of learning on the policy response (see the recent special 

issue of Climatic Change, volume 89 issues 1-2, for several articles on this topic), and the costs of 

emissions reductions. These aspects clearly are vitally important, but, to keep our analysis focused and 

tractable, we sidestep these issues and focus exclusively on the benefits of emissions reductions, where 

the baseline rate of economic growth is treated as exogenous. 

2 Expected marginal willingness to pay 

As a preliminary exercise, consider the motivating example by Weitzman (2009). There are two 

periods. Consumption c in the first period is normalized to one, an uncertain temperature change ΔT 

will occur by the second period with probability p(ΔT ) , and the growth of consumption between the 

g− Δ t( γ T )
two periods is e , where t is the number of years between periods, g is the baseline growth rate, 

and γ is the reduction in the growth rate per unit of temperature change. Utility for the representative 

agent is of the “constant relative risk aversion” (CRRA) form, u(c) = c 
1−η ( −η , where η is the / 1 ) 

coefficient of relative risk aversion (or marginal utility of consumption). The expected marginal 

willingness-to-pay—“the amount of present consumption the agent would be willing to give up in the 

present period to obtain one extra sure unit of consumption in the future period” (Weitzman 2009)—is 

6
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− t 
∞ − (g γ T )ρ η − Δ t

E [wtp ] = e e p(ΔT )dΔT , where ρ is the pure rate of time preference. Weitzman showed ∫−∞ 

that if p(ΔT ) has a fat tail then E [wtp ] = ∞ . This strong analytical result is all the more striking in that it 

is completely independent of the values of ρ , t, η , g, and γ . However, note that if the appropriate 

upper limit of integration is less than ∞ , then E [wtp ] will be bounded and will depend on the values of 

the other parameters. For example, let ρ = 0.01, t = 100, η = 2, g = 0.015, E [ΔT ] = 3oC, and 

γ = − ln (0.975 / ) (E [ΔT ]t ) = 8.44 ×10 −5 
(i.e., if ΔT = 3 consumption will be reduced by 2.5% in period 2 

relative to what it would be if ΔT = 0). With these parameter values, the “deterministic” marginal 

−⎣⎡η(g−γ E[ΔT ])+ρ ⎤t 
willingness to pay is wtp = e ⎦ = 0.01956 , around 2% of current consumption. To this 

deterministic value, we can compare what we will call a “risk adjusted” E [wtp ] based on p(ΔT ) 

represented by three alternative probability density functions:3 1.) a gamma distribution (as in Pindyck 

2009), which does not have a fat tail, 2.) a lognormal distribution, which has a fat tail but just barely, and 

3.) a distribution based on Roe and Baker (2007), who derived a fat tailed pdf for the climate sensitivity 

parameter using the framework of feedback analysis. We calibrate all three distributions such that the 

50th and 95th percentiles are 3oC and 10oC, respectively. (These are ballpark numbers used for illustration 

only. In the next section we characterize climate uncertainty in a more systematic way.) 

First, we calculate E [wtp ] for all three distributions using an upper limit of integration ΔT max = 

10000oC (to approximate ∞ ). Using the gamma, lognormal, and Roe and Baker distributions gives 

E [wtp ] = 0.01959 , 8x1040, and 5x1064, respectively. The latter two estimates confirm Weitzman’s 

analytical result that E [wtp ] → ∞ under fat-tailed climate uncertainty. However, the first estimate 

3 In using the term “risk adjusted” rather than “uncertainty adjusted” to describe this willingness to pay measure, we are 

adopting (the common understanding of) Frank Knight’s distinction between risk and uncertainty (Runde 1998). According to 

this convention, “risk” describes a situation where a probability distribution over the potential consequences can be 

constructed, while “uncertainty” describes a situation where no such probability distribution can be specified. However, this 

convenient nomenclature should not disguise the fact that large elements of subjectivity may be embedded in the probability 

distribution describing climate response uncertainty; we are not working with purely frequentist pdfs. 
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based on the gamma distribution, which is very close to the deterministic wtp, illustrates just how 

crucial the fat tail is to this result. Next, we recalculate E [wtp ] for the fat-tailed lognormal and Roe and 

Baker distributions using an upper limit of integration ΔT max 
= 50oC. This is far shy of ∞ , but this value 

still is much larger than the range of possible temperature changes typically discussed in the climate 

science literature, so it would seem like a safe upper limit of integration for the purpose of numerical 

calculations. However, using this limit of integration gives E [wtp ] = 0.01964 and 0.01968 for the 

lognormal and Roe and Baker distributions. In fact, the upper limit of integration ΔT max 
must be 

increased to nearly 3000oC for the lognormal distribution and to nearly 450oC for the Roe and Baker 

distribution before the risk premium exceeds the deterministic marginal willingness to pay by more than 

20%. 

Of course these simple numerical calculations do not overturn Weitzman’s analytical results. 

However, since real-world policy analyses necessarily will have to commit to specific functional forms 

and parameter values, these examples suggest that a more detailed quantitative exploration of the risk 

premium may be useful for evaluating the practical implications of climate response uncertainty. This is 

our task for the remainder of the paper. 

3 Climate response uncertainty 

To investigate the influence of climate response uncertainty on benefits estimates, we first must 

quantify the uncertainty. To do this, we use results published in the climate science literature to 

construct a probability distribution over the “climate sensitivity parameter,” denoted here as λ . 

Specifically, λ is defined as the change in the equilibrium atmospheric temperature from a doubling of 

the equilibrium atmospheric CO2 concentration (Hegerl et al. 2007, Andronova et al. 2007). Climate 

sensitivity has come to be a key parameter used to summarize the influence of atmospheric GHG 

concentrations on the average global atmospheric temperature in many scientific studies of climate 

8
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change, and a wide variety of approaches have been used to estimate it. The overall average of the 

estimates in the literature tends to hover around a central value near 3oC, but the estimates remain 

quite variable.4 

To characterize the overall uncertainty about climate sensitivity, we must make some 

assumptions about the conditional independence of the information sets and models used in each 

study. We then can invoke Bayes’ rule to construct a posterior distribution summarizing our current 

knowledge about climate sensitivity. We can write Bayes’ rule for using observations (or simulations or 

other information) on temperature changes in a particular study i, ΔTi
, to update a prior distribution for 

climate sensitivity, p0 (λ ) , which describes the researcher’s prior knowledge about λ before the study 

was conducted, as follows: 

l (ΔTi |λ ) 
pi (λ|ΔTi ) = p0 (λ ) , (1) 

l (ΔT |λ ) p (λ )dλi∫ 0 

where pi (λ|ΔTi ) is the posterior probability distribution, which describes the researcher’s updated 

knowledge about λ in light of the results of the study, and l (ΔTi |λ ) is the likelihood of observing (or 

simulating or otherwise estimating) ΔTi if the true value of climate sensitivity is λ . To simplify matters, 

we will assume that each study used an “un-informative” prior for the climate sensitivity parameter 

(e.g., a uniform distribution with very wide support).5 This means that we are treating the final 

probability distributions reported in each study as identical to their likelihood functions, i.e., 

pi (λ|ΔTi ) = l (ΔTi |λ ) ∀i = 1,2,..., N . We then can consider two alternative views of the information on 

climate sensitivity in the climate change science literature. First, if we assume that each study used the 

4 In light of this persistent variability, some recent work attempts to explain why climate sensitivity has been—and may remain 

—so hard to pin down (Roe and Baker 2007). 
5 “Un-informative” is placed in quotes because, for example, a uniform prior with wide support over the climate sensitivity 

λ−1parameter is not equivalent to a uniform prior with wide support over the so-called “climate feedback parameter,” f ∝ 1 − 

(Frame et al. 2005). Thus, an “un-formative” prior applied to the climate sensitivity parameter would imply some prior 

information about the value of the feedback parameter, and vice versa. 

9
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same dataset, ΔT1 , but used a different model—a different set of assumptions about the “data 

generating process”— mi , to estimate λ , then the posterior distribution would be pN (λ|ΔT1 ) = 

N
l (ΔT1 λ ,mi ) ( m |Δ| p T ) . (This is based on a standard Bayesian model-averaging approach; e.g., ∑ i=1 i 1 

see Hoeting et al. 1999). Under these assumptions the posterior probability distribution for climate 

sensitivity should be constructed by taking a weighted average of the individual probability distributions, 

where the weights represent the probability that each model mi accurately describes the “true” data 

generating process (and where the weights sum to one, assuming one of the models is the true model). 

If we have no reason to believe any one model is a better representation of reality than the others a 

priori, then we would use equal weights and take a simple average of the individual pdfs. Note that this 

represents a relatively pessimistic view of the climate science literature since it effectively assumes that 

no study uses any new information and each study uses a different model to draw inferences from the 

single, common information set. 

Alternatively, if we assume that each study used essentially the same model but an independent 

dataset of temperature changes, ΔT , then the posterior distribution would be p λ|ΔT ,..., ΔT = i N ( 1 N ) 

Ψ 
N

l (ΔT |λ ) , where Ψ is a normalizing constant equal to 1/ 
N

l (ΔTi |λ )dλ . Under these ∏ i=1 i ∫∏ i =1 

assumptions the posterior distribution for climate sensitivity should be constructed by multiplying 

(rather than adding) the individual probability distribution functions together and then re-normalizing so 

the final distribution integrates to one. Note that this Bayesian updating approach represents a much 

more optimistic view of the climate science literature since it assumes that each study used a 

completely independent information set to estimate λ and that the structure of the climate system is 

well-understood. Combining the individual pdfs under these assumptions would result in a much tighter 

posterior pdf for climate sensitivity. 
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We suspect that the truth lies somewhere between these alternative views—not all studies on 

climate sensitivity used uninformative priors, not all studies used the exact same or completely 

independent datasets, and scientific understanding of the nature of climate feedbacks is improving but 

still is far from complete. For this paper, we construct combined pdfs for climate sensitivity to 

summarize the uncertainty bounds reported in the available studies, and we use both the Bayesian 

model-averaging and Bayesian updating assumptions to create two alternative posterior pdfs. 

Specifically, we gather 28 climate sensitivity ranges from 21 studies that estimated 5th and 95th (or other) 

percentiles of a probability distribution for the climate sensitivity parameter. Next we solve for the 

parameters of a climate sensitivity distribution based on Roe and Baker (2007) with the associated 

percentiles for each study.6 Then we form a Bayesian model-averaged combined pdf by taking the 

average of these kernel pdfs, and we form a Bayesian updated combined pdf by taking their product 

(and in both cases we re-normalize so the combined pdfs integrate to one). This gives two alternative 

posterior distributions, which we label pA (λ ) (averaged) and pU (λ ) (updated), that we use to 

summarize the uncertainty about the climate sensitivity parameter. The studies we use are shown in 

Table 1, and the constructed kernel density functions from each study and the resulting posterior 

probability distributions are shown in Figure 1.7 

6 Roe and Baker (2007) derived a distribution for climate sensitivity based on the definition λ = λ0 / 1 ( − f ) , where λ0 is the no-

feedback climate sensitivity and f is the aggregate feedback parameter, assumed to be distributed normally with mean µ and 
2

⎡ 2 ⎤−1/2 −0.5 (1−µ λ 0 /λ )− /σ2 2 ⎣ ⎦standard deviation σ . This produces the following pdf for λ : p(λ ) = (2πσ ) (λ0 / λ )e . Other choices for the 

kernel pdf also may be reasonable and may produce different results, depending especially on the thickness of the tail of the 

distribution. See Annan and Hargreaves (2008) for an analysis based on an inverse Gaussian distribution and further discussion 

of the problem of combining multiple lines of evidence to construct probabilistic estimates of climate sensitivity. 

7 As mentioned above, we do not know where the closest approximation to reality lies relative to these alternatives, but it 

seems safe to say that a majority of climate scientists would endorse something much closer to the averaged than the updated 

pdf. The averaged pdf looks broadly similar to the summary provided in the most recent IPCC report (Hegerl et al. 2007), and 

the closest analog in the literature to the updated version has a 95th percentile around 4.5OC (Annan and Hargreaves 2006). For 

this reason, and because the wtp estimates based on the updated pdf behave virtually the same as the deterministic wtp 

estimates, in the remainder of the paper we place much more emphasis on the model-averaged pdf. 
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4 A stylized model of climate change impacts
�

We begin with a stylized model, based on Heal and Kristrom (2002) and Weitzman (personal 

communication), that strips away all but several key features of the problem. While the model is highly 

simplified, it has the practical advantages of isolating the benefits side of the analysis and of being 

transparent, conceptually straightforward, and easy to experiment with. 

4.1 Model description 

As in our motivating examples in Section 2, the model is based on a standard constant relative 

1−η
risk aversion (CRRA) utility function: ut ( −η . = ct / 1 ) This is a commonly used utility function in 

economic climate assessment models such as DICE (Nordhaus 2008) and FUND (Tol 2006). Future 

utilities are discounted at a pure rate of time preference ρ . Consumption grows at a constant rate g 

until time K. During this initial period the earth’s climate does not change, but at time K there is a shock 

to the system caused by an abrupt one-time temperature change such that a fraction of consumption L 

is lost. Consumption then grows again at the same constant rate g forever after. This amounts to 

consumption being reduced by the fraction L at every point in time after time K relative to what it would 

have been with no climate change damage.8 

The climate change damage L depends directly on the change in global average surface 

temperatures ΔT . We will consider two damage functions: the first is what we will refer to as an 

algebraic damage function, L = 1 −1/ ⎡⎣1 +α (ΔT )
β ⎤
⎦ , and the second is an exponential damage function, 

L = 1 − exp ⎡⎣−α (ΔT )
β ⎤
⎦ . Both give S-shaped curves, where the steepness of the curve and the inflection 

point are determined by the parameters α and β . See Figure 2. Finally, we assume that the 

equilibrium atmospheric GHG concentration will be exactly doubled at time K, so uncertainty about the 

8 Note that this model ignores the gradual temperature changes that are expected over the coming decades and centuries, and 

therefore might be thought of as focusing exclusively on the possibility of exceeding a “tipping point” in the climate system. 

The slightly more realistic model used in the following section exhibits gradual temperature changes. 
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corresponding temperature change under baseline conditions can be described directly by the posterior 

pdfs constructed in Section 3, pA (λ ) or pU (λ ) . 

Now we can ask the following question: What is the maximum fractional reduction in 

consumption, now and forever, that society would be willing to sacrifice to reduce the probability of 

future temperature changes—from the baseline p0 (ΔT ) to (some presumably tighter distribution with 

a lower mean) p1 (ΔT ) 9—and the associated climate damages? The answer is given implicitly by the 

following equation: 

K ΔT ∞ 
1−η ⎡ 1−η ⎤ 

gt −ρt gt −ρt 
e e dt + p (ΔT ) 1 − L(ΔT ) e e dt dΔT∫ ( ) ∫ 

max 

0 ⎢∫ (( ) ) ⎥ 
0 0 ⎣K ⎦ 

(2) 
ΔTK max ∞ 

1−η ⎡ 1−η ⎤ 
gt −ρt gt −ρt = ∫ ((1 −wtp )e ) e dt + ∫ p1 (ΔT ) ⎢∫ ((1 −wtp )(1 − L(ΔT ))e ) e dt ⎥ dΔT 

0 0 ⎣K ⎦ 

Shortly we will boil this equation down into a very simple expression for wtp, but we have written it in 

the expanded form above to explain each of its terms in turn. The first term on the left hand side is the 

discounted value of utility from the present to year K. We have normalized current consumption to one, 

and consumption grows at a constant rate g, so the term inside the parentheses is consumption in year 

t. Consumption raised to the power of 1-η is utility in year t, and utility in each year is discounted back 

to the present using the pure rate of time preference ρ . 

The second term on the left hand side is the expected discounted value of utility from time K to 

infinity under the baseline scenario. The term inside the square brackets is the discounted value 

conditional on a specific temperature change outcome, ΔT . Recall that a fraction L(ΔT ) of 

consumption is lost at time K, so at that time consumption starts at (1 − L(ΔT )) egK 
, rather than the level 

9 Our very general notation p0 (ΔT ) and p1 (ΔT ) is intended to accommodate any shift in the probability distribution of 

temperature changes. In most of the numerical experiments to follow, p1 (ΔT ) will effectively be a spike at ΔT = 0 , i.e., the 

risk is eliminated entirely. In our final exercise in this section we consider cases where p1 (ΔT ) is compressed to varying 

degrees, starting from the baseline distribution p0 (ΔT ) to the (near) complete elimination of risk, and in the next section we 

evaluate a “small” and “large” policy that result in partial compressions of the temperature change pdf. 
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that would prevail if there were no climate shock, e
gK . To calculate the expected utility from time K to 

infinity, we sum (integrate) the discounted value of utility conditional on each possible value of ΔT , 

from 0 to the largest possible temperature change ΔT max , weighted by the probability of occurrence of 

each ΔT under the baseline scenario, p0 (ΔT ) . 

The two terms on the right hand side are directly analogous to those on the left hand side, 

except for two changes: consumption is reduced by the fraction wtp (“willingness-to-pay”) in all years, 

and the probability distribution over the climate damages is changed from p0 (ΔT ) to p1 (ΔT ) . Thus, 

wtp is the fractional reduction in consumption under the policy scenario that would make society 

indifferent between the baseline and policy scenarios. This is the standard “compensating variation” 

measure of economic benefits, expressed as an annualized consumption equivalent. 

Rearranging Equation (2) gives the following formula for the risk-adjusted willingness to pay for 

a change in the probability distribution over the potential temperature change from p0 (ΔT ) to p1 (ΔT ) : 

1/ 1 ( −η )
⎛ E U 0[ ] ⎞ 

wtp = 1 − ⎜ ⎟ , (3) 
⎜ ⎟E U 

where E U [ 0 ] is the left hand side of (2), the expected present value of utility conditional on p (ΔT ) 

⎝ [ 1 ] ⎠ 

0

(the baseline scenario), and E U [ 1 ] is the right hand side of (2) with the (1-wtp) term removed, the 

expected present value of utility conditional on p1 (ΔT ) (the policy scenario). 

Equation (3) gives the basic recipe we use to calculate the risk-adjusted wtp in this paper. 

However, note that it is valid only if the numerator and denominator, both of which contain expressions 

ΔTmax 1−η 
of the form ∫ pi (ΔT )(1 − L(ΔT )) dΔT , are finite. As Weitzman (2009) pointed out, this integral 

0 

will not converge if ΔT = ∞ and pi (ΔT ) shrinks more slowly than (1 − L(ΔT ))
1−η 

grows with ΔT . To 
max 

guarantee a bounded wtp in our numerical experiments below, we adopt Weitzman’s suggestion for 
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closing the model by including a parameter akin to a “subsistence” or “lowest tolerable” level of 

1−η 1−η 
u ⎡ / 1 − ) D ( −ηconsumption in the utility function, D; specifically, = max c ( η , / 1 )⎤ . Therefore, all ⎣ ⎦ 

ΔT outcomes that would cause consumption to drop below D are treated as equally bad worst-case 

scenarios. By putting such a floor on utility, the integrals implicit in Equation (3) are guaranteed to 

converge and wtp becomes bounded. We also will investigate the effect of truncating the temperature 

change probability distribution with a sensitivity analysis over ΔT max 
(as in our motivating examples in 

Section 2). 

We want to compare this risk-adjusted estimate of benefits to what might be produced by a 

standard deterministic climate assessment model that does not account for climate response 

uncertainty. To do this, we calculate a deterministic willingness to pay by replacing the [ i ] terms in E U 

with U E ΔT terms, where E ΔT is the expected temperature change under scenario i (the baseline 

or policy scenario). This is analogous to any single run of a typical climate assessment model where the 

best available central estimate is used for the climate sensitivity parameter. 

( [ i ]) [ i ] 

4.2 Results 

The main results from this stylized climate assessment model are shown in Table 2 and Figure 3. 

Table 2 lists the default parameter values and the associated risk-adjusted and deterministic estimates 

of willingness to pay. We do not claim that our default parameter values are definitive, but we do 

intend them to be plausible considering the ranges typically estimated or assumed in the literature. 

However, the default values we use to calibrate the damage functions deserve special mention. The 

estimate we use for L3
, the economic damages from a 3oC temperature increase, is 2.5% of GDP. This is 

comfortably within the range of previous estimates from climate assessment models, including DICE. On 

the other hand, the estimate we use for L10
, the economic damages from a 10oC temperature increase, 
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is 50% of GDP, which is purely speculative. It strikes us as reasonable in light of the potentially severe 

impacts discussed in the climate science literature, but unfortunately, since such a large temperature 

change is well outside of our historical experience and even well outside the range typically considered 

by climate assessment models, “reasonable speculation” is the best we can claim. Thus, a key task for 

our numerical exercises is to assess the sensitivity of the results to a wide range of values for L10
. 

Using these default parameter values and the model-averaged pdf, the risk-adjusted wtp is 

substantially larger than the deterministic wtp for both damage functions—by a factor of nearly 20 for 

the algebraic damage function and nearly 15 for the exponential damage function. The updated pdf 

gives deterministic wtp estimates that are substantially lower than those based on the model-averaged 

pdf because the mean of the updated distribution is lower. Also, the difference between the 

deterministic and risk-adjusted wtp estimates shows up only at the second or third significant digit 

because the variance of the distribution is much smaller. So our initial impression is that, if the Bayesian 

model-averaged pdf is more realistic than the Bayesian updated pdf, then explicitly accounting for 

climate response uncertainty in an expected utility framework can increase benefits estimates 

substantially. If something closer to the updated pdf is more realistic, on the other hand, then the risk 

premium that emerges may be negligible and safe to ignore in practice. 

How robust is this initial impression to variations in the model parameters? The wtp estimates 

based on the updated pdf respond to changes in the parameters exactly as we would expect based on 

the standard deterministic formulation. However, the story is not so simple for the Bayesian model-

averaged pdf. Figure 3 shows a series of sensitivity analyses where each parameter was varied over a 

wide range while holding the remaining parameters at their baseline values. In some cases, the 

response of the model to these ceteris paribus changes in the parameters produce the expected 

directional changes in wtp. In particular, the top left and right panels in Figure 3 need virtually no 
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explanation: ∂wtp / ∂ρ and ∂wtp / ∂g are both negative, as we would expect from the standard 

deterministic case. 

The effect of η is more striking. In the deterministic case, increasing η always decreases wtp 

(when g > 0), as shown by the lower curves in the middle left panel of Figure 3. This also is true in the 

case with uncertainty for low values of η , but eventually there is a turning point where increasing η 

increases the risk-adjusted wtp. This is counter to the standard intuition from the deterministic model, 

which has figured so prominently in recent discussions of the Stern Review (Stern 2006) in the literature 

(e.g., Dasgupta 2007, Nordhaus 2007, Stern and Taylor 2007, Sterner and Persson 2007, Weitzman 

2007). 

The economic intuition behind this result is as follows. Recall that in the deterministic case if g > 

0 future generations will be wealthier than the present generation and larger η leads to a lower net 

present value of climate change damages. This is because the larger is η the more rapidly does 

marginal utility diminish with consumption and so the lower is the value of incremental losses in 

consumption for wealthier generations. Conversely, if g < 0 future generations will be poorer than the 

present generation and larger η leads to a higher net present value of climate change damages. In the 

case with uncertainty, however, even if future generations are expected to be wealthier than the 

present generation, there may be some chance—if climate change impacts are much more severe than 

we expect—that they will in fact be poorer. If the chance of this occurring is large enough, then a larger 

η (greater aversion to risk) again can lead to a higher willingness to sacrifice current consumption to 

prevent potential future climate change damages. 

This feature of the model with uncertainty is highly relevant for the discussion in the literature 

on the Stern Review. Some who have commented on the Stern Review have implied that the Review’s 

“high” estimates of climate change damages result in part from the “low” value used for η . Stern used 

a log utility function, which is equivalent to a CRRA utility function with η = 1. A number of economists 
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have recommended using η values in the range of 2 to 4 instead. Our simulations imply that, insofar as 

the analysis explicitly accounts for uncertainty, using larger η values could increase rather than 

decrease the estimated benefits of GHG emissions reductions. 

Now coming back to the results in Figure 3, note the effect of truncating the temperature 

change probability distribution by cutting it off at some maximum value ΔT max 
in the middle right panel. 

In this case ΔT max 
needs to be very large— greater than 80oC or so for the algebraic damage function 

and greater than 30oC or so for the exponential model—to produce an accurate estimate of the risk-

adjusted wtp. The bottom left panel in Figure 3 shows the effect of the subsistence level of 

consumption on wtp. We have used the same vertical axis range for all panels in the figure to allow 

direct comparison of the influence of each parameter. What cannot be seen in this panel is that using 

the algebraic damage function wtp approaches 0.28 as D diminishes, and using the exponential damage 

function wtp approaches 1, reaching 0.99 around D = 10-7 . The influence of these two parameters taken 

together— ΔT max 
and D—illustrate two key points emphasized by Weitzman (2009). First, willingness to 

pay is unbounded if the pdf has a fat tail and damages rise exponentially with the temperature change. 

And second, even if wtp is bounded, either by a subsistence level of consumption in the utility function 

or by a (possibly ad hoc) truncation of the climate sensitivity probability distribution, wtp still may be 

highly sensitive to assumptions about damages that are impossible to verify. Weitzman argues that on 

a priori grounds the exponential damage function should be preferred to the algebraic function, but 

these examples still demonstrate that the choice of the form for the damage function can have a large 

influence on the results, even when the alternatives diverge only at high (and therefore highly unlikely) 

temperature changes. 

Finally, the bottom right panel in Figure 3 shows the effect on wtp of shifting the ΔT probability 

distribution. For this sensitivity analysis, rather than calculating the willingness to pay to entirely 

eliminate the risk of climate damages, the post-policy probability distribution is constructed using 
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p ( T ) = (1 −φ ) p0 Δ ) > 0 and 1 0 = 1 − ∫ 
Δ

+ 

Tmax 

p (ΔT1 Δ ( T for ΔT p ( ) 1 )dΔT . The parameter φ has the effect 
0 

of compressing the baseline pdf along the y-axis towards zero for all ΔT > 0 and simultaneously adding 

probability mass at ΔT = 0 (thereby allowing us to hold constant the upper limit of integration ΔT max 
). 

If φ = 0 there is no reduction in the risk; as φ approaches 1, all of the probability mass is shifted to ΔT 

= 0 and the risk is completely eliminated. This experiment is intended to address the question of 

whether climate response uncertainty and the possibility of “catastrophic” damages associated with the 

very high but very unlikely temperature changes far out on the tail of the distribution have practical 

consequences for “marginal” GHG reductions (φ approaching 0) or only for very large (and likely 

unrealistic) GHG reductions (φ approaching 1)? The curves in the bottom right panel of Figure 3 

provide an answer. Moving from right to left as φ shrinks from 1 to 0, the panel shows that the risk 

premium, in the form of the ratio of the risk-adjusted to the deterministic wtp, diminishes but does not 

approach zero. Even for marginal changes in the risk, where φ is close to zero, the risk-adjusted wtps 

are around five times greater than their deterministic counterparts for both damage functions. 

5 A slightly more realistic model 

The stylized model analyzed above is useful for building intuition and conducting simple 

numerical experiments, but more realistic models will be needed for quantitative policy analysis. 

Specifically, one of the more unrealistic simplifications in our stylized model is the assumption of a one-

time temperature shock at some known future date that moves the economy immediately from its 

initial equilibrium growth path to a new lower equilibrium path, but where the consumption growth 

rates along both paths are the same. In reality, the average global temperature will change gradually, as 

it is determined by globally interacting bio-geo-chemical systems with various positive and negative 

feedbacks that play out over long time periods, and we would expect any changes in economic output 

and consumption to respond gradually as well—though perhaps non-linearly, as certain threshold 
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temperature changes or “tipping points” are crossed and progressively more severe damages occur. In 

this section we make a first step towards a more realistic model that incorporates uncertainty about the 

climate response to GHG emissions by using the climate dynamics module from DICE. 

5.1 Model description 

DICE uses a system of first-order difference equations to represent global carbon dynamics and 

atmospheric temperatures, calibrated to (approximately) reproduce the aggregate outputs from the 

simple climate model MAGICC (Wigley 1994). Nordhaus (2008) describes DICE in detail, so we give only 

an abbreviated account here to indicate how the climate sensitivity parameter λ fits into the model. 

Figure 4 shows a schematic representation of the “three-box” model of global carbon flows used in 

DICE, which takes human GHG emissions (E) as an input and tracks the resulting concentrations of 

carbon in the atmosphere ( CA ), the upper ocean ( CU ), and the lower ocean ( CL ) . The atmospheric 

temperature ( TA ) depends on the radiative forcing ( F ), which gives the net effect of heat input from the 

sun and the trapping of heat partly due to atmospheric greenhouse gasses. Therefore, F depends in part 

on the atmospheric carbon concentration. This is modeled in DICE as F (t ) = FEX (t ) + 

θ ln C (t ) /CA (0)⎤⎦ /ln2 . The forcing increases with the log of the atmospheric carbon concentration, ⎡ A⎣ 

and θ is the increase in forcing from a doubling of CA 
. ( FEX

is “exogenous forcing,” not related to 

human emissions of greenhouse gasses.) The atmospheric temperature evolves in response to changes 

in the radiative forcing and the difference between the atmospheric and oceanic temperatures: 

TA (t ) = TA (t −1) + υ ⎡⎣F (t ) − (θ λ / )TA (t −1) −τ (TA (t −1) −TL (t −1))⎤ . Combining these two equations ⎦ 

and setting all differences equal to zero gives the equilibrium relationship between atmospheric 

eq eq eq = λ θ ) F /C /ln2 temperature and carbon concentration: TA ( / EX + λ ln ⎣⎡CA A (0)⎦⎤ . Thus, λ is the change 

in the equilibrium atmospheric temperature from a doubling of the atmospheric carbon concentration, 
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the same “climate sensitivity parameter” whose uncertainty we summarized in Section 3 above. (Of 

course this is only one of many structural parameters in DICE, so the uncertainty analysis we conduct 

here is not comprehensive.) 

We retain all other features of the stylized model from above, namely the CRRA utility function, 

exogenous consumption growth (net of climate damages), subsistence consumption D, and the same 

two alternative forms for the damage function. We also use the same default parameter values. In this 

way, we isolate the effect of switching from the one-time-climate-shock to the more realistic climate 

dynamics of the DICE model. As before, we begin by calculating results for the default parameters and 

then conduct sensitivity analyses by varying several key parameters in turn while holding all other 

parameters at their default values. 

Now the risk-adjusted willingness to pay is defined implicitly by 

max λ ⎡∞ 
1−η ⎤

−ρt

∫ p(λ ) ⎢∫ (ct (ΔTt (E0t ,λ ))) e dt ⎥dλ =
 
⎣ 0 ⎦
 

λ , (4) 
max ∞⎡ 1−η ⎤

−ρt 
p(λ ) ⎢ ((1 −wtp )c (ΔT (E ,λ ))) e dt ⎥ dλt 1 

0 ⎣ 0 ⎦ 
∫ ∫ t t 

where ct (ΔTt (Eit ,λ )) is consumption in year t under emissions scenario i. Consumption in each year is 

a function of the temperature difference, ΔTt , which in turn is a function of the path of emissions up to 

time t under that scenario, Eit , and the value of λ . As before, the risk-adjusted wtp is calculated using 

Equation (3), and the deterministic wtp is calculated by replacing the expected net present values of all 

future utilities integrated over the uncertainty in λ with the net present values conditional on the 

expected value of λ , under both the baseline and policy scenarios. 

Note that the function ct (i) captures only the climate change damages, it does not include the 

costs of changing the emissions path from E0 to E1 . So as before we are focusing solely on the benefits 

side of the equation, which means that the interpretation of wtp here is directly analogous to that in our 

stylized model above: it is the willingness to pay (express as an annualized consumption equivalent) for 
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the reduction in climate damages from a change in the emissions path from E0 to E1 . These benefits 

would then be compared to the expected costs of making such a change in the emissions path to 

determine whether the policy would pass a benefit-cost test. 

We analyze two hypothetical changes from the baseline emissions path, i.e., two hypothetical 

E1 ’s. The first represents a “large” policy, based directly on the optimal emissions path as estimated by 

the latest version of DICE when run in its deterministic mode (Nordhaus 2008). (Note that this policy 

would not necessarily be optimal in a model that accounts for uncertainty.) The second represents a 

“small” policy, based loosely on the Climate Stewardship and Innovation Act (S.280) introduced by 

Senators Lieberman and McCain. This proposal involves a cap on U.S. GHG emissions that is tightened in 

a step-wise fashion over time (USEPA 2007). To simulate this policy, we start with the baseline global 

emissions path from DICE. We then use baseline projections from the MiniCAM model (Smith and 

Wigley 2006) for 1990-2095 to calculate the U.S. proportion of global emissions (in total CO2-

equivalents). The proportion of total emissions contributed by the U.S. declines approximately 

exponentially in the MiniCAM simulation, so we fit an exponential decay to the U.S. proportion of total 

emissions to extrapolate beyond 2095 to the end of the DICE time horizon in 2405. This defines the 

baseline U.S. GHG emissions path. To construct the policy emissions path, we make proportional 

reductions in the baseline U.S. emissions according to the Lieberman-McCain caps over time, which are 

as follows: 2015 emissions = 2005 emissions, 2025 emissions = 1990 emissions, 2035 emissions = 18% 

lower than 1990 emissions, 2045 emissions = 18% lower than 1990 emissions, and 2055 [and beyond] 

emissions = 60% lower than 1990 emissions. We then add the reduced U.S. emissions and the rest of 

world’s baseline emissions to get total policy emissions.10 Thus, we are analyzing a scenario where the 

U.S. follows the proposed Lieberman-McCain path and the rest of the world adopts no additional 

measures to reduce emissions, which amounts to a relatively small change in global GHG emissions. 

10 Also, around the year 2250 fossil fuels are exhausted—or become uneconomical—in DICE and the backstop technology is 

adopted. When this occurs baseline emissions drop dramatically, so after this date we set the policy emissions equal to the 

baseline emissions. 
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Figure 5 shows the predicted paths of atmospheric temperature differences conditional on λ = E [λ] 

(top panel), and the probability distributions for the temperature difference 100 years hence for the 

baseline scenario and both hypothetical policy scenarios (bottom panel). 

Before discussing the results, it should be clear that the main purpose of using the DICE optimal 

path and the simulated Lieberman-McCain path, as described above, is to compare hypothetical but 

plausible “large” and “small” policies, where “large” and “small” refer to the magnitudes of the 

emissions reductions relative to the baseline emissions path at the global scale. Due to the many 

simplifying assumptions of our model, we have much more confidence in the relative sizes of the risk-

adjusted and deterministic wtps for these two hypothetical policies than in the absolute estimates of 

benefits for either of them alone. In particular, a rigorous and detailed analysis of the Lieberman-

McCain proposal would require a more realistic integrated assessment model and is beyond the scope 

of this paper. 

5.2 Results 

Since we use an exogenous growth function, we cannot solve for the optimal path of emissions 

reductions—the path that maximizes the net present value of consumption net of abatement costs—as 

in a complete optimal growth model such as DICE. Nevertheless, the deterministic version of our model 

using the DICE damage function and setting λ = 3 produces an estimate of the net present value of 

benefits for the DICE optimal path that is very close to the estimate produced by DICE itself. Specifically, 

the net benefit for the optimal emissions path from DICE is 0.17% of the net present value of total future 

income (Nordhaus 2008 p 84), and the benefit-cost ratio for the optimal policy is 2.36 (p 82). Together 

these give benefits equal to 0.276% of the net present value of total future income. Our simplified 

model gives wtp equal to 0.280% of consumption for the DICE optimal emissions path. This close 

correspondence to the DICE results is reassuring, and suggests that the differences we see in the risk-

adjusted and deterministic wtp estimates from this model are produced mainly by the same influences 
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that led to the differences in our stylized model above—namely, the risk premium that emerges from 

the nonlinear damage and utility functions and the uncertainty about the climate response—rather than 

our simplifying assumptions about economic growth. 

The wtp estimates using our default parameter values are shown in Table 3. As in the previous 

section, the risk premium using the exponential damage function is large. Using the Bayesian model-

averaged pdf, the risk-adjusted wtps are approximately 5 and 7.5 times the deterministic wtps for the 

DICE optimal path and the simulated Lieberman-McCain path, respectively. In stark contrast, however, 

the risk premiums using the algebraic damage function are negligible for all practical purposes. 

Furthermore, the risk “premium” is actually negative for the simulated Lieberman-McCain path using 

the algebraic damage function. (We will explore this result in more detail below, when we look at the 

sensitivity of the outputs to the shape of the damage function.) 

As before, the updated pdf produces results that behave virtually the same as the deterministic 

model, so next we check the sensitivity of the risk-adjusted wtp using the model-averaged pdf to η , D, 

and L10
. These are the key parameters that determine the severity of the worst-case scenarios (i.e., how 

“catastrophic” the climate change outcomes can possibly be) and how risk-averse the representative 

agent is to these outcomes. The results of these sensitivity analyses are shown in Figure 6. The graphs 

on the left apply to the DICE optimal emissions path, and those on the right apply to the simulated 

Lieberman-McCain emissions path.11 

The risk-adjusted wtp estimates decline monotonically with η using the algebraic damage 

function, but using the exponential damage function they initially decrease then increase rapidly with η 

11 We can make a very rough comparison between these benefits estimates and estimates of costs for the Lieberman-McCain 

proposal as follows. An analysis by the U.S. EPA (http://www.epa.gov/climatechange/downloads/ s280fullbrief.pdf) estimated 

that the Lieberman-McCain proposal would reduce the average annual growth rate of consumption in the U.S. by 

approximately 0.04 percentage points. We can convert this to an annualized willingness to pay figure analogous to our benefits 

((1−η )( g−Δ − ρ t − 1 η )g − )t 1/ 1 ) ) 1 η (( − ρ ( −η )
estimates using ∫0 

∞ 
e dt = ∫0 

∞

(1 −wtp ) e dt , which gives wtp = 1 − ⎣⎡(g (1 −η ) − ρ ) / ((g − Δ )( 1 −η ) − ρ )⎦⎤ . 

Using Δ = 0.0004 and our default parameter values from Table 2 in this formula gives a cost estimate of 0.016, or 1.6% of 

consumption, which is larger than any of the benefits estimates for the simulated Lieberman-McCain emissions path reported 

in Table 3. However, as seen in Figure 6, risk-adjusted benefits estimates substantially larger than this could emerge using 

other reasonable values of η , D, or L10
. 
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as in the stylized model above. This gives another illustration of the sensitivity of the risk-adjusted wtp 

to the specific functional form of the damage function, even when the alternative forms have the same 

general shape and are “calibrated” to give the same damages at low to intermediate temperature 

changes. The next two graphs show the influence of D on the wtp estimates. Using the exponential 

damage function, as D approaches zero the risk-adjusted wtps approach approximately 0.15 and 0.12 

for the DICE optimal and simulated Lieberman-McCain emissions paths, respectively. Thus, the risk 

adjusted wtp is seen to increase substantially as D approaches zero, but D = 0 is not a sufficient 

condition for wtp to approach 1 (in particular, λ max may need to reach very high values as well). The 

final two graphs show the effect on the wtp estimates of changing L10
, the loss in per capita 

consumption if ΔT = 10oC. Adjusting L10
shifts the entire damage function, but its main effect is to 

change the rate at which the damage function approaches 1 as ΔT increases to very high levels. Recall 

that our default value for L10
was 0.5. The risk-adjusted wtp rises rapidly after this point for the optimal 

DICE emissions path using the exponential damage function. This suggests that the precise rate at which 

the severity of the damages increases with the equilibrium temperature difference in the “globally 

catastrophic” range of outcomes can have a disproportionate influence on the benefits estimates of 

climate change policies. But of course these are consequences about which we can only speculate, 

precisely because they are so far outside our past experience and even most climate change simulation 

models. 

Now we come back to the negative risk premium seen in Table 3 for the simulated Lieberman-

McCain path using the model-averaged pdf and the algebraic damage function. Note that the low end 

of the L10
range in the bottom left panel of Figure 6 is where we find the damage function used in the 

DICE model by Nordhaus (2008), which is of the algebraic form with L3 = 0.024913 and L10 = 0.22111 . 
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Using these damage function parameters, the deterministic wtp is around 15 percent larger than the 

risk-adjusted wtp for both damage functional forms and for both hypothetical emissions paths. 

This is consistent with Nordhaus’ result based on sensitivity analysis using a Monte Carlo 

approach (Nordhaus 2008 Ch 7). Nordhaus ran the DICE model 100 times with different randomly-

drawn values for a number of key input parameters, including the climate sensitivity parameter. In each 

case the “social cost of carbon” (SCC) was calculated and then averaged and compared to the SCC from 

the baseline version where all parameters were fixed at their expected values. The surprising result was 

that the average SCC from the Monte Carlo analysis was $26.85 per ton of carbon, approximately 5% 

lower than the deterministic estimate of $28.10. Nordhaus explained this result by calculating the 

correlation between the predicted temperature difference and the level of consumption 100 years in 

the future. These turn out to be positively correlated, which means that states of the world with high 

climate damages tend also to be states with high consumption. This naturally leads to a negative risk 

premium. 

However, because multiple parameters were varied in Nordhaus’ Monte Carlo analysis, it is 

difficult to trace the specific source(s) of the negative risk premium. For example, one of the uncertain 

parameters was the growth rate of total factor productivity. It is easy to see how this parameter 

contributes to the negative risk premium. When total factor productivity is varied, a positive correlation 

between consumption and temperature naturally will emerge because high total factor productivity will 

lead to high production (which allows for higher consumption) and therefore high emissions (which 

causes higher temperatures). However, this particular feature is absent from our model. We assume 

that the consumption growth rate net of climate damages is exogenous and fixed, which means that 

high temperature outcomes are not positively correlated with high consumption outcomes. We must 

look elsewhere for the explanation of our negative risk premium. 

In our case we are able to trace the source of the negative risk premium directly to the less 

severe damage function used in DICE. To see this, consider a simplified scenario with only two possible 
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climate change outcomes: with probability p the temperature difference will be ΔT1 and with 

probability 1-p it will be ΔT2 (> Δ T ) . The expected damage is E ⎡D (ΔT )⎤ = pD (ΔT ) + (1 − p D ) (ΔT ) . 1 ⎣ ⎦ 1 2 

Now consider a small mean-preserving spread of this two point distribution, i.e., increasing ΔT2 by a 

small amount dΔT2 and simultaneously decreasing ΔT1 by a corresponding amount 

T = − p ( − ) Δ 2 . dE D [ ] / d T =dΔ 1 / 1 p d T Taking the total derivative of the expected damage gives Δ 2 

(1 − p)[∂D / ∂Δ T − ∂D / ∂Δ T ] , which shows that the expected damages will increase (decrease) if the 2 2 1 1 

slope of the damage function at ΔT2 is greater (less) than the slope at ΔT1 . Therefore, simple intuition 

based on Jensen’s inequality alone does not suffice here since the damage function is not everywhere 

convex in ΔT —it is convex for low ΔT but concave for high ΔT . Over a wide range, increasing the 

variance of the distribution—i.e., shifting some of the mass of the pdf towards higher ΔT values where 

marginal damages are decreasing—makes the risk premium more negative. And the negative risk 

premium is more likely to emerge the lower is the inflection point of the damage function, all else equal. 

This may help to explain both the negative risk premium seen in Table 3 for the simulated Lieberman-

McCain emissions path and the negative risk premiums estimated for both damage functional forms and 

both hypothetical emissions paths using the DICE damage function parameters. It also may be part of 

explanation for the negative risk premium found by Nordhaus (2008). 

6 Discussion and Conclusions 

The main common thread running through most of our results is that, due to the non-linearities 

in the utility function and the damage function, the greater the level of uncertainty the more the 

representative agent is willing to pay to reduce the risks of climate change. However, the magnitude of 

this risk premium appears to be very sensitive to several key parameters. In particular, seemingly subtle 

changes in the upper bound on the possible temperature change and the shape of the damage function 
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in this extreme territory can produce a very wide range of benefits estimates, from a negative risk 

premium all the way to a willingness to pay approaching the full value of global economic output. These 

results are especially striking considering that these crucial assumptions about the damage function and 

temperature differences are confined to the extreme tail of the (Bayesian model-averaged) climate 

sensitivity probability distribution. However, as we saw in Section 5, even the qualitative conclusion 

that “increasing climate response uncertainty generates larger wtp” is not universal. If the inflection 

point of the damage function is low enough relative to the pdf of climate sensitivity, then increasing the 

uncertainty can decrease the benefits. 

Our results also suggest that developing a more realistic posterior probability distribution for 

climate sensitivity should be a high priority for further research. The approaches we used in Section 2 to 

construct our posterior pdfs for the climate sensitivity parameter are admittedly simplistic and intended 

mainly to illustrate the relevance of this issue for benefits estimation. As noted earlier, while the 

updated pdf is clearly overly optimistic, some nontrivial tightening of the posterior distribution may be 

possible by combining multiple (at least partially) independent lines of evidence that have thus far been 

analyzed separately. Developing a more accurate characterization of climate response uncertainty in 

the short run will require a careful sorting-out of the common features and differences among the 

various models and datasets that have been used to date to estimate climate sensitivity. (To our 

knowledge, the most detailed attempts to do this so far are those of Annan and Hargreaves 2006, 2008.) 

In the longer run, more climate model testing and additional lines of empirical evidence relevant for 

estimating climate sensitivity will be required to further narrow the posterior distribution. 

However, there may be a limit to the rate at which we can narrow this uncertainty over time 

(Weitzman 2009, Roe and Baker 2007). Therefore, another key direction for further research is to 

investigate the potential for learning about the true value of climate sensitivity, how rapidly such 

learning can occur, and how the policy response may be influenced by learning (e.g., Hammitt et al. 

1992, Kolstad 1996, Webster 2008). On this score at least, the fundamental dynamics of the system may 
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work in our favor. If climate sensitivity is high, learning should occur rapidly since in this case it would 

be possible to distinguish the long-run temperature rise from the background natural climate variability 

relatively quickly. If climate sensitivity is low, learning will occur more slowly since it would take longer 

to identify the signal through the noise. In this case, however, the social costs of this slow pace of 

learning also would be lower since the eventual climate damages would be less severe. 

A third task for future work is to conduct additional uncertainty analyses using more 

sophisticated climate assessment models. In the meantime, by isolating the influence of climate 

response uncertainty and other key economic parameters in a clean and transparent way our results can 

provide a useful benchmark for interpreting the benefit estimates that emerge from more complex 

models. However, an important consideration when conducting such analyses will be to properly 

represent the current information and expectations of the agent(s) in the model with respect to future 

climate changes. We skirted this issue in our numerical experiments by treating the consumption 

growth rate as exogenous. When using a fully-specified dynamic optimization model where savings 

(investment) and abatement are control variables, it will be important to avoid making the (implicit) 

assumption that all agents in the model know the true climate sensitivity. For example, this would be 

the effect of simply nesting a deterministic dynamic programming-based climate assessment model in a 

Monte Carlo analysis. Each iteration of the model would run a deterministic scenario, each with 

different values for the (assumed known) model parameters. A proper accounting of uncertainty in the 

context of a complete climate assessment model would require endogenizing the learning process. 

Markets would clear every period based on the current expectations about future climate changes, but 

those expectations may evolve over time as new information about climate sensitivity accumulates. 

In the meantime, where does this leave the economist who wishes to use benefit-cost analysis 

to evaluate alternative climate change policies? There is an unavoidable tension between the 

usefulness of benefit-cost analysis as a means to dispassionately weigh the advantages and 

disadvantages of proposed environmental policies (Arrow et al. 1996) and the danger of overconfidence 
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and undue reliance on such exercises (e.g., DeCanio 2003 Ch 5). This inherent tension strikes us as even 

more salient in light of our numerical experiments. Our initial intuition was that the risk-adjusted wtp 

estimates should be fairly robust and “well-behaved” in the relevant space of the key parameters. We 

expected that the risk premium generally would be positive and possibly non-negligible, but would 

reach extremely large values only as D diminished and ΔT max increased to values possibly far outside the 

plausible ranges for these parameters. Some of our results were consistent with these expectations— 

e.g., the risk-adjusted marginal willingness to pay calculated in Section 2 is very large only if ΔT max is 

orders of magnitude larger than the highest values typically discussed in the climate science literature. 

But overall we found the risk-adjusted wtp to be more fragile than we initially expected well within the 

range of typical values discussed in the economics literature for several key parameters, including the 

coefficient of relative risk aversion. We do not believe this invalidates the use of climate assessment 

models for benefit-cost analysis, but we are persuaded that analyses intended to inform real-world 

climate policy decisions should account for climate response uncertainty in a rigorous way. Simplified 

analyses that ignore the effects of uncertainty may be useful for illustrative or screening purposes, but 

strictly deterministic models should be viewed as provisional only and given proportionately less weight 

in policy deliberations. Thus, our view is that these results increase both the importance of 

dispassionately weighing the advantages and disadvantages of alternative climate policies and the 

potential dangers of misplaced confidence in the economic models currently available for conducting 

this task. 

To sum up, in this paper we have conducted a series of numerical simulation experiments to 

assess the influence of climate response uncertainty on economic benefits estimates of GHG emissions 

reductions. The risk-adjusted estimates of wtp in Sections 4 and 5 using the model-averaged pdf 

constructed in Section 3 are often many times larger than their deterministic counterparts, and they are 

highly sensitive to seemingly subtle differences in assumptions about the damage function at very high 
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(and necessarily speculative) damage levels. The results of our sensitivity analyses easily span the range 

of results found in previous economic studies of climate change uncertainty, from the very large risk 

premiums seen in some results by Tol (2003) to the small negative risk premium seen in the results by 

Nordhaus (2008). In this respect, our results based on the model-averaged pdf reinforce and further 

illustrate the theoretical model of Weitzman (2009). However, our results also indicate that the very 

large risk premiums seen in some of our results could be reduced if at least some of the existing 

estimates of climate sensitivity are in fact based on substantially independent lines of evidence, in which 

case a tighter posterior distribution for climate sensitivity may be appropriate. 
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Tables and Figures 

TABLE 1. Studies used to construct the combined pdfs for the climate sensitivity parameter. 

Authors (year) 5th 95th Notes 

NAS (1979) -0.6 6.5 Established the original range of 1.5-4.5OC for the 25th and 

75th percentile later cited in all IPCC assessment reports. 

(Our analysis uses the 25th and 75th percentiles in 

constructing the kernel pdf for this study.) 

Hoffert and Covey 1.4 3.2 Derived global climate sensitivity from paleoclimate 

(1992) reconstructions using last glacial maximum (LGM) approach. 

Morgan and Keith -0.8 5.8 Expert elicitation of 16 climate researchers. (To construct a 

(1995) log normal distribution for this study, we substitute the 

lowest positive 5th percentile from the remaining studies in 

this table for authors’ own negative estimate.) 

Tol and de Vos (1998) 1.6 8.9 Time series analysis of historical estimates of atmospheric 

temperatures and CO2 concentrations. Bayesian approach. 

Andronova and 1.0 9.3 Used observed global mean and hemispheric difference in 

Schlesinger (2001) surface air temperature 1856-1997. Monte Carlo analysis 

using an energy balance model (EBM). 

Forest et al. (2002) 1.4 7.7 Used non-uniform expert prior distribution of equilibrium 

climate sensitivities (ECS). 

Knutti et al. (2002) 2.2 9.1 Used global mean ocean heat uptake and global mean 

surface air temperature increase. Directly include the 

indirect forcing effect. 

Gregory et al. (2002) 1.1 ∞ Used surface air temperature space and time patterns, and 

an atmospheric-ocean GCM. (To construct a probability 
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distribution for this study, we substitute the highest 95th 

percentile from the remaining studies in this table for the 

authors’ own estimate of ∞ .) 

Harvey and Kaufmann 1.0 3.0 Separated forcing from aerosols and GHGs to remove some 

(2002) uncertainties using inverse method. 

Forest et al. (2004) 1.4 7.8 Monte Carlo analysis of economic and earth system 

parameters using an integrated global systems model. 

Kerr (2004) 2.4 5.4 Applied “perturbed physics” approach to global climate 

model. 

Murphy et al. (2004) 1.8 5.2	� Used a “perturbed physics ensemble method” (PPEM) with 

all model versions assumed equally likely. 

2.4	� 5.2 Used PPEM with reliability-based weighting of model 

versions according a climate Prediction Index. 

Frame et al. (2005) 1.2 11.8 Applied global change in surface temperature to EBM. Used 

a uniform prior distribution that extends beyond 10°C 

sensitivity. 

Stainforth et al. (2005) 1.5 11.5 Used PPEM method for six model parameters. 

Wigley et al. (2005) 1.3 6.3	� Estimated effect of climate sensitivity on the response to 

volcanic forcings using individual volcanoes. Agung volcano. 

0.3 7.7	� El Chichon volcano. 

1.8 5.2	� Mt. Pinatubo volcano. 

Piani et al. (2005) 2.2 6.8 Used PPEM via distributed computing project. 

Annan and Hargreaves 1.7 4.5 Used Bayesian method to sharpen the posterior distribution 

(2006) of ECS. 

Forest et al. (2006) 2.1 8.9 Used approach similar to Forest et al. (2002), including both 
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natural and anthropogenic forcings. 

1.4 7.7 Without natural forcing. 

1.4 4.1 Using expert priors. 

1.4 7.7 Using uniform priors. 

Forster and Gregory 1.2 14.2 Used Earth Radiation Budget Experiment (ERBE) combined 

(2006) with surface temperature observations based on a regression 

approach. 

Hegerl et al. (2006) 1.2 8.6	� Used multiple palaeoclimatic reconstructions of Northern 

Hemisphere mean temperatures over the last 700 years. 

1.5 6.2 With non-uniform prior distributions. 

Schneider von Deimling 1.2 4.3 Used PPEM with varied atmospheric and ocean parameters 

et al. (2006) in simulation of the LGM. 

39
�



            

                

             

  

      

   

     

  

     

    

          

          

 

  

 

  

  

      

  

TABLE 2. Default parameter values and the resulting deterministic and risk-adjusted estimates of 

willingness to pay to prevent climate change damages as a fraction of GDP using the climate sensitivity 

probability distributions constructed in Section 2 and the stylized IAM described in Section 3. 

Default parameter values: 
ρ , pure rate of time preference 0.01 

g, consumption growth rate 0.015 
η , elasticity of marginal utility 2 

D, “subsistence” consumption 0.01 

K, year when climate shock hits 100 

max ΔT , maximum possible temperature change 100 

3L , fraction of GDP lost if ΔT = 3 deg C 0.03 

10L , fraction of GDP lost if ΔT = 10 deg C 0.5 

Baseline results 

Algebraic Exponential 

Bayesian model-averaged pdf: 

Deterministic wtp 0.00315 0.00304 

Risk-adjusted wtp 0.06099 0.04469 

Bayesian updated pdf: 

Deterministic wtp 0.00086 0.00093 

Risk-adjusted wtp 0.00087 0.00094 



             

                 

       

  

  

  

      

 

  

     

 

  

  

      

 

  

      

 

  

TABLE 3. Deterministic and risk-adjusted estimates of willingness to pay to prevent climate change 

damages as a fraction of GDP using the default parameter values from Table 2 in the slightly more 

realistic climate assessment model described in Section 4. 

Algebraic Exponential 

Bayesian model-averaged pdf: 

DICE optimal path: 

Deterministic wtp 0.00610 0.00542 

Risk-adjusted wtp 0.00610 0.02701 

Simulated Lieberman-McCain path: 

Deterministic wtp 0.00112 0.00100 

Risk-adjusted wtp 0.00109 0.00770 

Bayesian updated pdf: 

DICE optimal path: 

Deterministic wtp 0.00256 0.00241 

Risk-adjusted wtp 0.00256 0.00242 

Simulated Lieberman-McCain path: 

Deterministic wtp 0.00048 0.00045 

Risk-adjusted wtp 0.00048 0.00045 
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FIGURE 1. Roe and Baker (2007) probability distributions constructed from the 5th and 95th percentiles 

for the climate sensitivity parameter from each study shown in Table 1 (light dotted lines), the Bayesian 

model-averaged pdf based on the average of the distributions using equal weights (heavy solid line), and 

the Bayesian updated pdf based on the product of the distributions (heavy dotted line).  The mean of 

the model-averaged pdf is 3.42OC and the 5th, 50th, and 95th percentiles are 1.23OC, 2.49OC, and 7.45OC. 

The mean of the updated pdf is 2.24OC and the 5th, 50th, and 95th percentiles are 2.04OC, 2.22OC, and 

2.43OC. 
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FIGURE 2. Two damage functions used for the stylized climate assessment model in Section 3. 
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FIGURE 3. Sensitivity analyses using the stylized climate assessment model and the Bayesian model-

averaged pdf, varying each parameter in turn while holding all other parameters at their default values, 

which are ρ = 0.01, g = 0.015, η = 2, ΔT max = 100, D = 0.01, and φ = 1. 
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FIGURE 4. Schematic representation of the “three-box” model of global carbon flows in DICE. The bi,j 

parameters indicate the fraction of the carbon in box i that flows to box j during each time step. 
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FIGURE 5. Predicted paths of atmospheric temperature differences using the DICE climate module, 

conditional on the climate sensitivity parameter being equal to its expected value (top graph), and the 

probability distributions over the temperature difference 100 years from now based on the Bayesian 

model-averaged pdf (bottom graph), for the DICE baseline emissions path, the DICE optimal emissions 

path, and the simulated Lieberman-McCain emissions path. 
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FIGURE 6. Sensitivity analyses using the slightly more realistic climate assessment model and the 

Bayesian model-averaged pdf, varying η , D, and L10 in turn while holding all other parameters at their 

default values, for the DICE optimal path (left) and the simulated Lieberman-McCain path (right). 
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