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Abstract 

We examine the incidence, form, and research consequences of measurement error in 
measures of fatal injury risk in U.S. workplaces using both BLS and NIOSH data. These 
data are commonly used in hedonic wage studies.  Despite the fact that each of our 
measures of job risk purport to measure the same thing – the risk of a fatality while on the 
job – the various measures of job risk are not highly correlated, with the maximum 
correlation being 0.53. Indeed, many of the estimated value of statistical life estimates 
are negative. We find that the National Institute of Safety and Health’s industry risk 
measure produces implicit value of life estimates most in line with both economic theory 
and the mode result for the existing literature than other risk measures examined. Because 
we find non-classical measurement error that differs across risk measures and is not 
independent of other regressors, innovative statistical procedures need be applied to 
obtain statistically improved estimates of wage-fatality risk tradeoffs. 
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1. Introduction 

At least since Adam Smith’s Wealth of Nations, economists have acknowledged that 

workers require compensation to accept the risk of fatal or non-fatal injuries at work. A 

compensating wage premium provides employers with incentives to reduce the risk on 

the job, and the calculus of the marketplace allows workers and employers to trade the 

costs of reducing workplace risk against the benefits associated with the risk reduction. 

When large numbers of workers reveal wage-risk tradeoffs a researcher can calculate the 

implied value of a statistical life, or the wage reduction associated with reducing by one 

worker the expected number of deaths. Because the value represents the amount of total 

wages that workers are willing to forgo to reduce risk the value of a statistical life appears 

to be a useful tool for evaluating individuals’ willingness to pay for reductions in risk in 

other situations and provides policymakers with valuable information for the benefit side 

of programs to improve health and safety (Office of Management and Budget 2003). We 

examine here the amount of heterogeneity in estimated compensating wage differentials 

for fatal injury risk in the United States across alternative risk measures, whether wage 

differential differences across risk measures can be reconciled statistically, and discuss 

the policy and future research consequences of differences in compensating wage 

differentials across risk measures. 

When basing policy on estimates of the price of risk the precision and accuracy of 

the estimates can be important. Yet, Viscusi (1993) and Viscusi and Aldy (2002), in 

reviewing labor market studies of the value of life, report that the majority of the 

estimates are in the $4 to $9.5 million range (excluding the studies that authors 

considered flawed). Although there is over a 133 percent variation in the point estimates 

from the most well done studies, Viscusi correctly notes that much variation should be 
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expected, because the studies used different methods and data. Of course, the precision of 

implicit value of life estimates depends on how accurately job fatality risk is measured. It 

is well known that random measurement error generally results in estimates of 

coefficients that are biased toward zero or attenuated (See Griliches (1986) for an 

excellent review of the early literature and Bound, Brown, and Mathiowetz (2001) for a 

review of the more recent literature). Here we document that most measures of job risk 

commonly used in the estimation of hedonic labor market equilibrium models seem to 

measure poorly the job risk that workers face and examine the statistical issues involved 

when dealing with the non-random measurement errors in fatality risks for U.S. jobs. 

In particular, we match the Outgoing Rotation Groups of the Current Population 

Survey (ORG-CPS) to multiple measures of job risk: the Bureau of Labor Statistics 

estimates from their Survey of Working Conditions and the National Institute of 

Occupational Safety and Health estimates from their National Traumatic Occupational 

Fatality survey. Because we have multiple measures of job risk, as well as aggregate 

measures of job risk by demographic groups, we may compare the various measures of 

job risk to infer the reliability of our job risk measures. The results are not heartening. We 

find strong evidence that the job risk measures contain noteworthy measurement error. 

Despite the fact that each of our measures of job risk purport to measure the same thing – 

the risk of a fatality while on the job – the various measures of job risk are not highly 

correlated, with the maximum correlation being 0.53.i Regression coefficient estimates 

that do not account for substantial measurement error may be highly attenuated, which 

Hausman, Newey, and Powell (1991) term the iron law of econometrics. Attenuation bias 

suggests that existing estimates of the value of a statistical life are severely 

underestimated. 
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However, the situation concerning estimated compensated wage differentials is 

more complex. We find evidence that the measurement error in job risk measures is non-

classical. That is, we find that the measurement error is correlated with the covariates that 

are usually in earnings or wage equations. When the measurement error in fatality risk is 

correlated with other variables in the wage equation, there may be other biases offsetting 

the attenuation that usually occurs with purely random measurement error. We conclude 

by noting that the NIOSH industry based risk measure produces price of risk estimates 

that are most in line with economic theory and past evidence. 

2. Measuring the Price of Risk 

The starting point for our analysis is a wage equation of the form: 

ln( w ) = X + *γ ε  (1)β r +i i i i 

where i ri
*ln( w ) is the natural logarithm of the ith worker’s wage,  is the measure of risk 

(possibly a vector), Xi β γ are coefficients to be estimated, is a vector of covariates, ( , )

and ε i is the error term of the regression. As a point of departure we consider the 

convenient case that occupies the bulk of the interest in the measurement error literature 

*where Cov( X , ε ) = 0 and Cov( r , ε ) = 0 , so that the risk measures and other covariates i i i i 

are exogenous. The wage equation (1) with exogenous regressors is what Viscusi (1993) 

calls the basic approach in the literature and yields a natural interpretation for γ as the 

implicit price of risk. Accurate estimates of the implicit price of risk and other non-wage 

job characteristics have taken on increased importance because they are a focal part of 

attempts to uncover the underlying utility and cost functions (Kniesner and Leeth 1995), 

which is a subject of renewed interest by econometricians (Ekeland, Heckman, and 

Nesheim 2002). 
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2.1 Data On Fatality Rates 

Our data on wages and worker characteristics are from Outgoing Rotation Groups 

of the Current Population Survey (ORG-CPS). We match the ORG-CPS to measures of 

job risk. There are two major sources of government-reported job risk: (1) the Bureau of 

Labor Statistics (BLS) estimates from their Survey of Working Conditions and (2) the 

National Institute of Occupational Safety and Health (NIOSH) estimates from their 

National Traumatic Occupational Fatality Survey. The NIOSH data provide one-digit 

occupation or industry mortality rates by state, while the BLS data contain counts of 

deaths by three-digit occupation or industry codes but do not provide any regional 

variation. The risk measures have their own distinct costs and benefits for researchers. 

The BLS data, available annually from 1995 to 2000, contain very detailed 

measures of the annual number of deaths, but the data suppression procedure requires at 

least 5 deaths in a cell before the number of deaths is reported. Thus, there are a 

substantial number of missing values in the BLS data. The use of annual data may be 

subject to a great deal of sampling error associated with the annual fluctuation in the 

number of deaths. Moreover, the BLS data only provide the counts of the number of 

deaths in each industry or occupation. To create a fatality rate, it is necessary for 

researchers to estimate the number of workers in an industry or occupation. To estimate 

the numbers of workers in industries and occupations, we use the ORG-CPS data, which 

in turn generates additional measurement errors in our risk (fatality rate) measures. 

Finally, by their construction the BLS data mask geographic variation in job risk. 

The NIOSH data provide fatality rates by one-digit industry or occupation codes 

by state. It reports 5-year averages: 1981–1985, 1986–1990, and 1991–1995. NIOSH 

data, then, do not require the researcher to estimate the number of workers in an industry 

or occupation cell, allow job risks measure to vary by state, and smooth much of the 
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sampling variation by using a 5-year average. The use of the 5-year average and the 

coarser one-digit industry or occupation codes by state reduces, but does not eliminate, 

the problem of missing values because of data suppression. On the other hand, the 

NIOSH data treat police officers and dental assistants as having the same job risk as both 

are in the same one-digit (service worker) occupation. The use of 5-year averages, while 

smoothing the sampling variation, may miss important time-series variation although 

having less so-called assignment error as one-digit industry and occupation more 

accurately reported than the corresponding three-digit industry and occupation (Bound, 

Brown, and Mathiowetz 2001). 

Although we ultimately use both industry-based and occupation-based risk 

measures, we would be remiss if we did not comment on the relative merits of the two 

risk measures. At first glance, the use of the industry measure seems inappropriate. 

Specifically, the industry risk measure assigns the same job risk to a secretary in the coal 

mining industry as to the coal miner, clearly overstating the secretary’s level of job risk 

and understating the coal miner’s job risk. In contrast, the use of occupational risk would 

combine the job risk of a secretary in the coal mining industry with a secretary in the 

insurance industry, presumably a pair with a much more homogeneous job risk. 

However, a worker’s industry is measured more accurately than a worker’s occupation 

(Bound, Brown, and Mathiowetz 2001). The employer and employee agree on industry 

classification 84–92 percent of the time but agree on occupation classification only 58–81 

percent of the time with greater agreement the broader the classification (Mellow and 

Sider 1983). As an indication of the importance of assignment error to the problem at 

hand, for data in which both the firm and worker agree on the three-digit  industry code 

the estimated price of injury risk is 50 percent higher than in the typical data set with 

assignment error (Mellow and Sider 1983). 
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The quality of estimates is necessarily limited by the quality of measurement. No 

matter how sophisticated the theoretical and econometric models, data of poor quality 

may still provide estimates of poor quality. In the next section, we suggest why the data 

from the BLS and NIOSH, while providing extremely accurate measures of the aggregate 

job risk in the United States, may not provide accurate estimates of the job risk of 

workers in a representative sample. 

2.2 Summary of Measurement Error Problems 

There are essentially three problems in measuring of job fatality risk. First, 

because we divide workers into industries or occupations – some of which are quite small 

– we may have considerable sampling variation within industry and occupation cells. 

Although both the BLS and NIOSH data recognize the problem of industry or occupation 

cells with few fatalities and suppress data when the number of fatalities is too low, the 

inherent sampling variation still creates measurement error. Second, within occupations, 

there may be a great deal of heterogeneity in the actual job risk, and the assignment of job 

risk may be extremely non-random. For instance, employers may assign male and older 

clerks at convenience stores evening and late night hours when the risk of holdup – and 

injury during the robbery – are particularly high and assign female and younger clerks 

daytime hours. Because we only measure the aggregate job risk of convenience stores 

clerks, we in turn overestimate the job risk of young and female clerks and underestimate 

the job risk of older and male clerks. Finally, because we need to assign workers to an 

industry or occupation the quality of our measurement is limited to the quality of the data 

on industry and occupation assignment, and we have noted that industry and occupation 

(especially at the three-digit level) are not measured accurately. 
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3. Econometric Background 

If the researcher could measure ( X  ,ri
* )  perfectly, Ordinary Least Squares (OLS) i

estimation of equation (1) would provide consistent and efficient estimates of the 

parameters ( , )  if the functional form of the conditional mean function were properly β γ

specified and the covariates i
*( X ,ri )  orthogonal to the error term. There are numerous 

reasons to suggest that the measure of job risk ( ri
* ) is mismeasured and perhaps 

mismeasured badly. 

First, government fatality reports are inherently an estimate of job risk: they are 

realizations of a random variable. For instance, suppose there are Nk  workers in the kth 

industry (or occupation) category, and each worker is subjected to a risk, rk
* . 

Unfortunately for the researcher, the government’s tally of deaths in the kth category is 

*not exactly equal to the expected number of deaths, r Nk . The government’s tally is k

equal to the random variable Dk . Using the random variable Dk , the researcher 

constructs an estimate of rk
* as rk = D  / N  k . Although E( r ) k = r* , it is almost certain that k k 

r ≠ r* so that r = r* +η , where η  is the measurement error associated with the k k k k k k

variable rk . 

Even when workers correctly identify their industry and occupation (and as we 

will emphasize, there is much measurement error in the industry and occupation 

measures in the CPS), it is likely that the measurement of job risk is in error. Past studies 

have indicated that job risk differs by firm size, region, and worker characteristics. Thus, 

when we make the further substitution for the ith worker’s risk (who is in the kth 
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industry/occupation class) that ri
* = rk , we are undoubtedly introducing measurement 

error, or 

r = r* +ν (2)k i  ik  

where ν ik represents the measurement error associated with using rk  as a proxy for ri
* . 

The basic form of measurement error in (2) undoubtedly attenuates the estimates of the 

coefficient of interest in the hedonic wage equation (1), γ . From an empirical standpoint 

the relevant issue is the severity of attenuation bias that results from the measurement 

error ν ik . 

3.1 Determining the Extent of Measurement Error 

We have up to four reports on the level of job risk that we may use to determine 

the extent of the measurement error. To see how multiple measures can be helpful 

consider two measures of job risk: 

r1i = ri 
* +ν1i and (3) 

r = r* +ν , (4)2i i 2i 

where ri
* is the true measure job risk, ν ji  is the measurement error associated with the 

jth  measure of  job risk, and rji is the jth  observed measure of job risk. The covariance 

of the two measures is simply 

* * *( ,  r ) = Var r ) + Cov ν , r ) + Cov ( , r ) + Cov ( ,Cov r ( ( ν  ν ν  ) , (5)1i 2i i 1i i 2i i 1i 2i 

and the variances of the two measure are 

( )  = Var r ( *) + 2Cov(ν , r *) +Var(ν ) and (6)Var r 1i i 1i i 1i 

( )  Var r * ν r * ( 2Var r 2i = ( i ) + 2Cov ( 2i , i ) +Var ν i ) , (7) 
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which provides us with six unknown parameters and three equations and demonstrates 

why it is impossible to make much progress on the problem in the form described in (3)– 

(7): the system is underidentified. 

Suppose we follow Griliches (1986) and assume for the time being that our 

measurement error is classical. If Cov( ,  r *) = Cov( , r *) = Cov ν ν  ) 0ν ν ( ,  =  our three-1i i 2i i 1i 2i 

equation system reduces to 

( ,  r ) = Var r *)Cov r ( , (8)1i 2i i 

Var r ( )  = Var r ( *) +Var(ν ) , and (9)1i i 1i 

Var r  ( )  = Var r  ( *) +Var  (ν ) . (10)2i i 2i 

With additional covariates one needs to make the additional assumptions that 

( ,  X ) 0  and Cov( ,ν X )Cov ν = = 0  so that the measurement errors are uncorrelated 1i i 2i i 

with covariates in our basic example case. Because we have up to four measures of job 

risk, the classic errors-in-variables model has empirical content: the covariance of any 

two measures of risk should have precisely the same covariance as any other two 

measures. When the measurement error is classical and there are multiple measures of a 

variable, one may use Instrumental Variables (IV) to obtain a consistent estimate of the 

price of risk (Griliches 1986).ii 

It is useful now to present a convenient decomposition for OLS regressions. Yule 

(1907) has shown that the estimation of the hedonic wage equation (1) with OLS is 

equivalent to the results using three simpler regressions. First, one estimates 

ln( wi ) = X b  + ε ′ (11)i i 

and recovers the residuals, which we denote ln(wi )′ . Second, one estimates 

r = X δ + u′ (12)i i i 

http:1986).ii
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and recovers the residuals, which we denote ri ′ . Finally, one then estimate the equation 

ln( wi )′ = ri ′γ +ε i ′′  . (13) 

Because both the dependent variable and independent variables have been purged of their 

covariation with X, estimation of equation (13) will yield precisely the same estimate of 

γ  as the OLS of γ  from the multiple regression (1) (Goldberger 1991). 

Exploiting Yule’s decomposition and continuing with the convenient case where 

the measurement error is classical, our three equations system of covariances would 

simply become 

( ,  r | X ) = ( * | X )Cov r Var r , (14)1i 2i i i i 

Var r * ( Var r * (Var r ( | X ) = ( | X ) +Var ν | X ) = ( | X ) +Var ν ) , and (15)1i i i 1i i 1i 

( |2i X i ) = ( i 
* | Xi ) +Var( 2i | Xi ) = ( i 

* | Xi ) +Var (ν 2i ,Var r Var r ν Var r ) (16) 

where Var( |  X ) = Var( ) and Var ν | X ) =Var(ν ν ( ν )  by the assumptions 1i 1i 2i i 2i 

that Cov( ,ν X ) 0  and Cov ν X ) = 0 . As Var r * ≥ ( * | X ) , the addition of= ( ,  ( )  Var r 1i i 2i i i i 

covariates must always reduce the signal-to-noise ratio 

* *[Var r ( |  X ) /  ( |  X ) ((Var r i +Var v )) ]. In general, the addition of covariates shouldi  ji  

increase the attenuation bias associated with the measurement error. 

4. Empirical Results 

In Table 1 we present the correlation and Yulized residual correlations for the various job 

risk measures. We use data from the 1995 ORG-CPS. The raw correlation before 

conditioning on any covariates ranges from 0.53 to 0.30. Because the correlation differs 

by a magnitude of over 75 percent we have at least some evidence that the measurement 

error is non-classical. When we condition on the full set of covariates the correlations 
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range from 0.41 to 0.02. Including both state controls and industry and occupation 

controls reduces the correlation among the various measures. In absence of measurement 

error the correlations should be 1.0. A quick review of equations (8)–(10) and (14)–(16) 

reveals another testable implication of the classic errors-in-variable model: the correlation 

among all four risk measures should be identical. We clearly reject the hypothesis of no 

measurement error and reject the hypothesis that the measurement error is classical. 

4.1 Attenuation 

In Table 2, we produce the full range of Yulized residual covariances, which in 

turn may be used to construct any coefficient estimate desired. The OLS estimates of the 

price of risk are simply the ratio of the risk measure covariance with the wage measure, 

divided by the variance of the risk measure; one may form any IV estimate desired by 

dividing the covariance of risk and wage measures by the covariance of two risk 

measures. The ratio of the variance of the risk measure to its covariance with another risk 

measure in turn meters the magnitude of the attenuation bias resulting from measurement 

error in job risk. The ratios of the variance-to-covariance are large, particularly for the 

BLS occupation measure, which suggests that OLS estimates of the hedonic wage 

equation (1) would be substantially attenuated. 

For instance, if we focus on last column of Panel C for men, we could construct 

the OLS estimate using the NIOSH industry measure as 

cov(ln , ) / var( NIOSH Ind ) = 0.01/13.75 ≈ 0.000073wage NIOSH Ind . 

We may also then use the BLS occupation measure as an instrument, which results in the 

IV estimates of job risk as 

cov(ln wage BLS Occ , ) / cov( , ) = 0.06 / 2.02 ≈ 0.0297 .NIOSH Ind BLS Occ 

http:0.01/13.75
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so that the IV estimate is over 40 times the magnitude of the OLS estimate.  Relying on 

the last column makes the degree of attenuation bias particularly severe because the 

industry and occupation controls remove much of the variation that is common across 

both measures.  The raw correlation between the BLS occupation and NIOSH industry 

measures is 0.30, but once we condition on industry and occupation, the correlation is 

reduced to just 0.05. 

Negative measures of job risk compensation are substantially attenuated as well. 

Notice that the covariances of the logarithm of wages and the various job risk measures 

are quite different and often of the opposite sign, which reinforces the emerging 

implication that measurement error is non-classical. The negative covariances between 

wages and job risks suggest that our measures of job risk may be correlated with the 

regression error.iii  Indeed, because job safety is a normal good (Viscusi and Aldy 2002), 

economic theory suggests that  factors increasing the wages and hence the wealth of the 

workers should reduce job risk. There would appear to be a clear theoretical reason 

suggesting that unobservables that increase wages should be negatively correlated with 

job risk. 

4.2 A Deeper Look at Risk Measures 

It may be informative to invert our research focus and consider not whether there 

is a wide variation of estimates for the price of risk but instead whether there is a 

discernable pattern to the price of risk coefficients such that certain ones are similar to the 

estimates highlighted in Viscusi and Aldy (2002). In particular, does one of the risk 

measures or covariate lists stand out in terms of producing estimated price of risk and 

implicit value of life estimates that are similar to results that lie in or around the range of 

$4 million to $9.5 million? 
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In Tables 3 and 4 we present regression results for OLS estimates of the price of 

risk and value of life for the four basic risk measures: BLS industry and occupation and 

NIOSH industry and occupation. To avoid the problems of aggregation mentioned earlier 

we estimate separate regressions for white men and white women. For positive values of 

the risk coefficient, we also produce values of the statistical life in millions of dollars. 

Two main results emerge from Tables 3 and 4.  First, the regressions estimated with 

NIOSH industry risk measures, particularly for white men, are most like the results 

highlighted in Viscusi and Aldy (2002) as being the preferred estimates for applications 

of economic policy. Our result that the NIOSH industry based risk measure produces 

price of risk estimates that are most in line with economic theory and past evidence is 

consistent with Moore and Viscusi (1988) who first identified the relative merits of the 

NIOSH risk measure in hedonic wage equation research.  Second, numerous estimates of 

the risk coefficient are negative, contrary to theory.  For men, 7 of the 16 estimated 

coefficients are negative, and for women, 9 of the 16 estimated coefficients are negative. 

For the NIOSH industry measure, however, 7 of the 8 coefficients are positive and the 

negative coefficient is not statistically different from zero at the five-percent level. 

5. Discussion 

Existing estimates of the price of risk have generally ignored any measurement problem 

in the measures of job risk. We assemble compelling evidence of non-ignorable 

measurement error in the various measures of job-related fatal injury risk. Because we 

have multiple measures of job risk, we may look at the correlation among the various 

measures of job risk. The correlation is seldom above 0.5 and the inclusion of richer sets 

of covariates lowers the correlations among pairs of risk measures. 
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The form of the measurement error is also econometrically troublesome. We find 

measurement error in the fatality rate (ν) that is correlated with the covariates (X) 

typically included in wage or earnings equations. The correlation between ν and X means 

that typical errors-in-variables models will not reveal unbiased parameter estimates of the 

price of risk. Given that we find convincing evidence that the measurement error is 

correlated with observable factors that affect wages (the covariates), we expect that the 

measurement error will also be correlated with unobservable factors affecting wages (the 

regression error). Complex correlations among the fatality risk regressor, other regression 

covariates, and the overall regression error in the hedonic wage equation (1) make 

obtaining consistent estimates of the price of risk in a hedonic wage equation 

econometrically challenging. 

Our IV estimates illustrate the potential attenuation that may plague the OLS 

estimates. Coefficient estimates may also be biased away from zero if there is a negative 

covariance between the measurement error and the true value of job risk (Black, Berger, 

and Scott 2000; Kane, Rouse, and Staiger 1999). Not accounting for heterogeneity in 

workers’ skills in avoiding work-related accidents may cause us to overestimate the price 

of risk (Shogren and Stamland 2002). Although the presence of measurement error that 

we have documented suggests that current estimates of the price of risk are severely 

attenuated, other biases such as aggregation may cause us to overestimate the price of 

risk (Kniesner and Leeth 1991; Lalive forthcoming). 

The problems are formidable in obtaining statistically consistent point estimates 

for γ in (1). The existing measurement error literature provides little guidance in how to 

correct for non-classical measurement error problems of the type we have found. Because 

job accidents are random variables with a very low incidence the coefficient of variation 

is quite volatile and some inter-temporal smoothing techniques might be applied 
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fruitfully to the time-series of risks for the large majority of workers with jobs in the low 

range of r (McClellan and Staiger 1999). Job risk undoubtedly varies by the 

characteristics of the workers and firms in ways in which economists do not yet fully 

understand but may be handled with specialized IV techniques that explicitly consider the 

stochastic characteristics of multiple samples (Dickens and Ross 1984). 

We conclude by reiterating that existing estimates of the price of fatal injury risk 

may suffer from substantial attenuation bias to the extent that they have not controlled for 

measurement error in job risk. However, because of the evidence of non-classical 

measurement errors in risk that seems widespread we believe that the conventional IV 

point estimates in Section 4 are most likely not statistically consistent estimates of γ̂  in 

(1). If crucial for policy, point estimates should ideally use the NIOSH based industry 

risk measure with estimators that take account of the particular type of measurement 

errors labor economists confront in micro data sets on workers. In many policy 

applications, though, bounding the estimate of the price of risk will be sufficient for 

informed decision making (Kniesner and Viscusi 2003) so that researchers can make 

increased use of recent developments in the econometrics of error bounds on parameters 

(Black, Berger, and Scott 2000; Bound, Brown, and Mathiowetz 2001). 
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6. Notes 
i The correlation we find across risk measures is at the middle of the correlations for 

multiple measures of labor market variables such as transfer payments and education 

reported in Bound, Brown, and Mathiowetz (2001). 

ii When the measurement error is non-classical IV estimates may produce inconsistent 

estimates (Black, Berger, and Scott 2001; Frazis and Loewenstein 2002; Kane, Rouse, 

and Staiger 1999). 

iii Black, Sanders, and Taylor (2002) argue that the measurement error in schooling in the 

1990 Census is negatively correlated with the regression error, suggesting that less able 

people are more likely to make reporting mistakes and more likely to receive lower 

wages. 
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Table 1. Correlations and OLS Residual Correlations for Male Workers 
1995 CPS Outgoing Rotations Data, BLS Risk Data, and NIOSH Risk 

Data 

Basic Controls no yes yes yes Yes 
Marital Status no no yes yes Yes 
State no no no yes Yes 
Industry/Occupation no no no no Yes 

Correlations 
NIOSH Ind / NIOSH Occ 0.53 0.43 0.43 0.32 0.28 
NIOSH Ind / BLS Ind 0.48 0.46 0.45 0.45 0.06 
NIOSH Ind / BLS Occ 0.30 0.27 0.27 0.26 0.05 
NIOSH Occ / BLS Ind 0.37 0.33 0.33 0.31 0.07 
NIOSH Occ / BLS Occ 0.40 0.38 0.38 0.38 0.09 
BLS Ind / BLS Occ 0.43 0.40 0.40 0.39 0.22 

Note: The residual correlations are based on the OLS regression of the risk variable on a set of independent 
variables. The basic controls are dummy variables for age, age quartic, education, race, ethnicity, and union 
coverage. After estimating the residuals for each regression, we estimated the residual correlations for each set of 
regressions. The number of observations for the 1995 CPS Outgoing Rotations data is 51,140. 
Source: Authors’ calculations. 
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Table 2. Covariances and Variances of Residual Estimates for Male
 
Workers
 

1995 CPS Outgoing Rotation Data, NIOSH Risk Data, and BLS Risk
 
Data
 

Panel 1. NIOSH Industry / NIOSH Occupation 

Basic Marital State Ind/Occ 
Controls Status 

VAR (Lnwage) 0.25 0.24 0.23 0.21 
VAR (NIOSH Ind) 40.02 39.92 33.91 14.80 
VAR (NIOSH Occ) 45.75 45.71 38.57 17.09 
COV (NIOSH Ind, NIOSH Occ) 18.50 18.43 11.56 4.51 
COV (Lnwage, NIOSH Ind) 0.07 0.06 0.15 0.01 
COV (Lnwage, NIOSH Occ) 
R2 Lnwage on X 
R2 NIOSH Ind on X 

−0.22 
0.26 
0.03 

−0.23 
0.27 
0.03 

−0.13 
0.29 
0.21 

0.02 
0.37 
0.64 

R2 NIOSH Occ on X 0.09 0.09 0.24 0.66 

Panel 2. NIOSH Industry / BLS Industry 

Basic Marital State Ind/Occ 
Controls Status 

VAR (Lnwage) 0.25 0.25 0.24 0.21 
VAR (NIOSH Ind) 47.80 47.67 39.58 18.20 
VAR (BLS Ind) 59.46 59.36 58.09 35.65 
COV (NIOSH Ind, BLS Ind) 24.56 24.45 21.72 1.53 
COV (Lnwage, NIOSH Ind) 0.11 0.09 0.18 0.02 
COV (Lnwage, BLS Ind) 
R2 Lnwage on X 
R2 NIOSH Ind on X 

−0.06 
0.25 
0.04 

−0.08 
0.26 
0.04 

−0.04 
0.28 
0.21 

−0.06 
0.36 
0.63 

R2 BLS Ind on X 0.06 0.06 0.08 0.43 
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Table 2 cont. Covariances and Variances of Residual Estimates for Male
 
Workers 1995 CPS Outgoing Rotation Data, NIOSH Risk Data, and BLS
 

Risk Data 

Panel 3. NIOSH Industry / BLS Occupation 

Basic 
Controls 

Marital 
Status 

State Ind/Occ 

VAR (Lnwage) 
VAR (NIOSH Ind) 
VAR (BLS Occ) 
COV (NIOSH Ind, BLS Occ) 
COV (Lnwage, NIOSH Ind) 
COV (Lnwage, BLS Occ) 
R2 Lnwage on X 
R2 NIOSH Ind on X 
R2 BLS Occ on X 

0.25 
39.69 

154.54 
21.66 

0.06 
−0.22 

0.29 
0.03 
0.04 

0.24 
39.59 

154.35 
21.58 

0.04 
−0.23 

0.30 
0.03 
0.04 

0.24 
32.60 

152.86 
18.90 

0.13 
−0.18 

0.32 
0.20 
0.05 

0.21 
13.75 

115.10 
2.02 
0.01 
0.06 
0.41 
0.66 
0.29 

Panel 4. NIOSH Occupation / BLS Industry 

Basic 
Controls 

Marital 
Status 

State Ind/Occ 

VAR (Lnwage) 
VAR (NIOSH Occ) 
VAR (BLS Ind) 
COV (NIOSH Occ, BLS Ind) 
COV (Lnwage, NIOSH Occ) 
COV (Lnwage, BLS Ind) 
R2 Lnwage on X 
R2 NIOSH Occ on X 
R2 BLS Ind on X 

0.25 
50.20 
59.16 
18.39 
−0.22 
−0.06 

0.25 
0.09 
0.06 

0.25 
50.14 
59.06 
18.31 
−0.23 
−0.07 

0.26 
0.09 
0.06 

0.24 
42.08 
57.83 
15.62 
−0.14 
−0.03 

0.28 
0.24 
0.08 

0.21 
19.02 
35.39 

1.99 
0.02 

−0.06 
0.36 
0.65 
0.43 
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Table 2 cont. Covariances and Variances of Residual Estimates for Male
 
Workers 1995 CPS Outgoing Rotation Data, NIOSH Risk Data, and BLS
 

Risk Data
 

Panel 5. NIOSH Occupation / BLS Occupation 

Basic Marital State Ind/Occ 
Controls Status 

VAR (Lnwage) 0.25 0.25 0.24 0.21
 
VAR (NIOSH Occ) 59.99 59.95 51.18 23.63
 
VAR (BLS Occ) 175.79 175.53 173.78 131.13
 
COV (NIOSH Occ, BLS Occ) 39.80 39.72 36.50 5.11
 
COV (Lnwage, NIOSH Occ) −0.22 −0.23 −0.14 0.02
 
COV (Lnwage, BLS Occ) −0.20 −0.21 0.16 0.05
 
R2 Lnwage on X 0.25 0.26 0.28 0.36
 
R2 NIOSH Occ on X 0.09 0.09 0.24 0.65
 
R2 BLS Occ on X 0.04 0.05 0.06 0.29
 

Panel 6. BLS Industry / BLS Occupation 

Basic Marital State Ind/Occ 
Controls Status 

VAR (Lnwage) 0.25 0.25 0.24 0.2 
VAR (BLS Ind) 67.88 67.78 66.45 42.19 
VAR (BLS Occ) 175.28 175.02 173.33 130.92 
COV (BLS Ind, BLS Occ) 44.03 43.91 42.56 16.43 
COV (Lnwage, BLS Ind) −0.06 −0.08 −0.04 −0.06 
COV (Lnwage, BLS Occ) −0.20 −0.21 −0.16 0.0 
R2 Lnwage on X 0.25 0.26 0.28 0.3 
R2 BLS Ind on X 0.06 0.06 0.08 0.4 
R2 BLS Occ on X 0.04 0.05 0.05 0.2 

Source: Authors’ calculations. 
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Table 3. Estimated Price of Risk for White Male Workers 

Panel 1. ORG and NIOSH Industry Risk: 1995* 

Basic Controls  yes 
State no 
Non-fatal risk rate (3-digit) no 
Industry/Occupation  no 

Risk/100,000  118 
(3.28) 

VSL in $1,000,000  4.1 
*There are 24,567 observations in the regressions. 

yes 
yes 
no 
no 

379 
(7.68) 
13.3 

yes 
yes 
yes 
no 

573 
(11.68) 

20.1 

yes 
yes 
yes 
yes 

123 
(1.90) 

4.3 

Panel 2.  ORG and NIOSH Occupation Risk:1995* 

Basic Controls  yes 
State no 
Non-fatal risk rate (3-digit) no 
Industry/Occupation  no 

Risk/100,000  -515 
(-14.62) 

VSL in $1,000,000  ----
*There are 24,586 observations in the regressions. 

yes 
yes 
no 
no 

-438 
   (-8.13) 

----

yes 
yes 
yes 
no 

205 
   (3.57) 

7.2 

yes 
yes 
yes 
yes 

181 
(2.21) 

6.3 

Panel 3. ORG and BLS Industry Risk: 1995* 

Basic Controls  yes 
State no 
Non-fatal risk rate (3-digit no 
Industry/Occupation  no 

Risk/100,000  -135 
(-4.32) 

VSL in $1,000,000  ----
*There are 20.920 observations in the regressions. 

yes 
yes 
no 
no 

-53.3 
   (-1.34) 

----

yes 
yes 
yes 
no 

189 
  (4.03) 

6.6 

yes 
yes 
yes 
yes 

-178 
(-3.20) 

----

Panel 4. ORG and BLS Occupation Risk: 1995* 

Basic Controls  yes 
State no 
Non-fatal risk rate (3-digit no 
Industry/Occupation no 

Risk/100,000  -147 
 (-7.13) 

VSL in $1,000,000  ----
*There are 17,836 observations in the regressions. 

yes 
yes 
no 
no 

-122 
(-4.84) 

----

yes 
yes 
yes 
no 

167 
(5.07) 

5.8 

yes 
yes 
yes 
yes 

76.7 
(2.16) 

2.7 

Note: The dependent variable is the natural log of the worker’s real wage.  For the basic regression, the 
independent variables include a quartic in the worker’s age, a vector of dummy variables that control 
for the worker’s education, a vector of dummy variables for marital status, a vector of dummy variables 
indicating whether the worker is Hispanic, Asian, African American, or other race, and a dummy 
variable indicating whether the worker is under a union contract or not, and dummy variables for the 
worker’s marital status.  Workers are aged 25 to 60 inclusive.  T-statistics are given in parentheses. The 
data set is for 1995.  In this table, we merged the non-fatel risk rates by 3-digit occupation codes. 
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Table 4. Estimated Price of Risk for White Female Workers 

Panel 1. ORG and NIOSH Industry Risk: 1995* 

Basic Controls  yes 
State no 
Non-fatal risk rate (3-digit) no 
Industry/Occupation  no 

Risk/100,000 110 
  (2.32) 

VSL in $1,000,000  3.9 
*There are 25,343 observations in the regressions. 

yes 
yes 
no 
no 

268 
   (4.54) 

9.4 

yes 
yes 
yes 
no 

220 
  (3.74) 

7.7 

yes 
yes 
yes 
yes 

-77 
(-1.09) 

----

Panel 2.  ORG and NIOSH Occupation Risk:1995* 

Basic Controls  yes 
State no 
Non-fatal risk rate (3-digit) no 
Industry/Occupation  no 

Risk/100,000  -437 
  (-9.79) 

VSL in $1,000,000  ----
*There are 24,960 observations in the regressions. 

yes 
yes 
no 
no 

-92 
   (-1.12) 

----

yes 
yes 
yes 
no 

294 
   (3.52) 

10.3 

yes 
yes 
yes 
yes 

115 
(1.13) 

4.0 

Panel 3. ORG and BLS Industry Risk: 1995* 

Basic Controls  yes 
State no 
Non-fatal risk rate (3-digit) no 
Industry/Occupation  no 

Risk/100,000  -121 
(-2.16) 

VSL in $1,000,000 ----
*There are 21,853 observations in the regressions. 

yes 
yes 
no 
no 

-31.5 
   (-0.44) 

----

yes 
yes 
yes 
no 

-50.4 
   (-0.63) 

  ----

yes 
yes 
yes 
yes 

-393 
(-3.80) 

----

Panel 4. ORG and BLS Occupation Risk: 1995* 

Basic Controls  yes 
State no 
Non-fatal risk rate (3-digit) no 
Industry/Occupation  no 

Risk/100,000  -202 
 (-2.91) 

VSL in $1,000,000  ----
*There are 15,764 observations in the regressions. 

yes 
yes 
no 
no 

-192 
(-2.18) 

----

yes 
yes 
yes 
no 

151 
(1.51) 

5.3 

yes 
yes 
yes 
yes 

137 
(1.25) 

4.8 

Note: The dependent variable is the natural log of the worker’s real wage.  For the basic regression, the 
independent variables include a quartic in the worker’s age, a vector of dummy variables that control 
for the worker’s education, a vector of dummy variables for marital status, a vector of dummy variables 
indicating whether the worker is Hispanic, Asian, African American, or other race, and a dummy 
variable indicating whether the worker is under a union contract or not, and dummy variables for the 
worker’s marital status.  Workers are aged 25 to 60 inclusive.  T-statistics are given in parentheses. The 
data set is for 1995.  In this table, we merged the non-fatel risk rates by 3-digit occupation codes. 
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Appendix Table 1: Selective Means 

Variable Men Women 

logarithm of real wage 2.19 
(0.573) 

1.90 
(0.558) 

age 39.7 
(9.39) 

40.1 
(9.33) 

Education
 less than junior high 0.004 0.002
 junior high 0.010 0.007

   some high school 0.056 0.044
   some college 0.181 0.207
 associate degree 0.085 0.111
 bachelor’s degree 0.234 0.199

   master’s degree 0.082 0.063
 professional degree 0.023 0.012
 Ph.D. 0.019 0.008 

union coverage 0.021 0.022 
Marital status
 widowed 0.005 0.022
 divorced 0.106 0.174

   never married 0.177 0.135 
non-fatal injury risk 1.68 

(2.099) 
1.17 

(1.538) 
NIOSH industry fatal injury rate 5.00 

(6.997) 
2.91 

(5.431) 
NIOSH occupation fatal injury rate 
(men n = 24,586) (women n = 24,960) 

5.23 
(6.737) 

2.33 
(4.035) 

BLS industry fatal injury rate 
(men n = 20,920) (women n =21,853) 

5.91 
(7.640) 

2.56 
(4.159) 

BLS occupation fatal injury rate 
(men n = 17,836) (women n = 15,764) 

6.86 
(12.036) 

2.08 
(4.025) 

Notes:  Authors’ calculations.  Except where noted, there are 24,567 observations for men and 25,343 
observations for women, with the samples corresponding to Panel 1 of Tables 3 and 4. Standard deviations 
are given in parentheses. 
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