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The distribution of environmental outcomes complements efficiency considerations in policy
 

evaluation. Policy makers have long considered environmental justice (EJ), a particular type of 

distributional analysis, an important consideration in policy evaluation. However, while tools for 

conducting benefit-cost analysis are well established, those for quantitatively examining equity or 

distributional effects are less so. 

This paper develops analytical tools for ranking policy alternatives from the perspective 

of how they affect distributions of environmental outcomes. It draws primarily from the rich 

theoretical literature on measuring income inequality. We show how the emerging practice of 

simply substituting environmental harm for income in an inequality index implies a ranking based 

on inconsistent social preferences. This result is particularly problematic since the inequality 

index specifications themselves were derived for the purpose of ranking distributions in a manner 

consistent with a plausible set of social preferences. 

To address this issue, we propose a modification of the standard Atkinson income inequality 

index that allows a cardinal normative ranking of adverse outcomes. We also show how the 

seldom-used Kolm-Pollak inequality index and its associated social evaluation function can easily 

accommodate bad outcomes. We illustrate how these methods can be applied towards ranking 

environmental policy outcomes from an EJ perspective in the context of recent legislation to reduce 

formaldehyde emissions from composite wood products. 

The relevance of this line of inquiry is not merely academic. Benefit-cost analysis of major 

new environmental regulations is widely applied throughout the Organization for Economic 

Cooperation and Development (OECD, 2002) and making inroads in many developing countries 

(Livermore and Revesz, 2013).1 The standard focus of such analysis has been to identify whether 

proposed policies represent an improvement in efficiency under the potential compensated Pareto 

criterion. Discussion of how benefits and costs are distributed across population groups, economic 

sectors, or regions is secondary and often qualitative in nature. 

In the U.S., however, Executive Order 12,898, Federal Actions to Address Environmental 
1In the U.S., Executive Orders 12,866 and 13,563 require benefit-cost analysis for new economically significant 

regulations. 
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Justice in Minority Populations and Low-Income Populations, requires federal agencies to
 

address “disproportionately high and adverse human health or environmental effects on minority 

populations and low-income populations.” The U.S. Environmental Protection Agency (EPA) has 

interpreted this to mean fair-treatment and the same degree of environmental protection for all. 

Implementation of this Executive Order has been slow and typically relies on the assumption 

that any regulation that improves environmental outcomes necessarily implies a lack of EJ 

concerns. Assertions that outcomes will improve for everyone often lack rigorous analytical 

support, however. Moreover, simply ensuring that a policy does not make anyone worse off does 

not mean that it necessarily addresses a pre-existing disproportionate impact. A hypothetical policy 

that eliminates an environmental threat for high income groups while leaving low income groups 

unaffected, for example, could exacerbate a disparity in outcomes. 

The tools developed here provide a framework for ranking distributions of adverse 

environmental and health outcomes under alternative policy scenarios. As such, our focus is on 

analyzing distributions of the benefits of environmental policy, rather than the costs. 

This emphasis is motivated in part by the text of E.O. 12,898, and the traditional prominence 

of health and environmental outcomes in both the EJ movement and academic literature. It is also 

partly motivated by the fact that the equity of the distribution of monetary income is typically 

beyond the purview of agencies charged with environmental protection. Finally, although fairly 

sophisticated models have been developed to predict the distribution of benefits, less information 

is currently available regarding the distribution of costs. Suppose a plant emitting air pollution 

were to close, for example. It is possible to model the geographic dispersion of the pollutants, 

and link that to local air quality and the demographic composition of affected communities. It is 

much more difficult to identify the geographic distribution of lost wages, profits, and consumer 

surplus since workers may have commuted from other parts of the region and the plant’s owners 

and consumers of its products may be spread across the globe. Nonetheless, we acknowledge that 

a complete analysis of the equity of environmental policy would examine distributions of both 

benefits and costs, and we conclude with a brief discussion of how tools developed here could be 
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adapted to incorporate cost data.
 

The basic social welfare criterion we employ is akin to the Rawlsian “veil of ignorance” 

question (Rawls, 1971). Suppose a risk averse individual knew the distribution of environmental 

outcomes for distinct demographic groups in a society and were forced to choose one to which 

to belong. If she were to be randomly assigned an outcome in her chosen group, which group 

would she prefer? By applying additional structure to preferences, this approach can be extended 

to explicitly quantify the differences between distributions in cardinal units. 

The rest of the paper is organized as follows. The next section discusses how two sets of tools 

developed for ranking income distributions, Lorenz curves and index numbers, can be adapted to 

the EJ context. We then discuss in greater detail the theoretical implications of using inequality 

indexes to analyze distributions of bad environmental outcomes focusing on the Atkinson and 

Kolm-Pollak indexes. Next, we analyze the distributional impacts of the 2010 Formaldehyde 

Standards for Composite Wood Products Act, and offer concluding comments. 

1 Ranking Distributions 

In the context of regulatory impacts, distributional analysis provides policy makers and the 

public with information regarding the degree to which options under consideration ameliorate 

or worsen previous disparities in environmental outcomes for vulnerable communities, or create 

new disparities where none existed. As such, it is important to analyze changes in distributions 

of environmental outcomes between baseline and various policy options, rather than just the 

distribution of changes (since an unequal distribution of environmental changes may actually help 

alleviate existing disparities).2 

Maguire and Sheriff (2011) recommend three fundamental questions to address in a regulatory 

EJ analysis: 

∙ What is the baseline distribution of the environmental outcome? 
2This perspective also has normative welfare meaning since the arguments of a standard utility function are the 

outcomes, not the change in outcomes. 
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∙ What is the distribution of the environmental outcome for each regulatory option?
 

∙	 How do the policy options being considered improve or worsen the distribution of the 

environmental outcome with respect to vulnerable subgroups? 

To develop a tool that could address these questions we draw on the economic development 

and public finance literature exploring how to compare income distributions. We focus on two 

commonly used approaches, Lorenz curves and inequality index numbers. Both tools are summary 

measures of outcomes for all individuals in a population. They allow analysts to rank alternatives 

in a way that can provide concise, yet useful, information to the decision-maker. Lorenz curves 

have the advantage of requiring minimal assumptions on social preferences to generate a ranking. 

Their primary disadvantage is that they are unable to rank two or more alternative distributions if 

the curves cross. Inequality index numbers were developed in part to overcome this problem. They 

provide a complete ordering, but at the cost of imposing more restrictions on admissible social 

preferences. 

Throughout the text we adopt the following notational conventions. N denotes the size of the 

total population. The vector x ∈ RN is the distribution of an outcome (e.g., cancer risk) across 

the population, with xn denoting the allocation of the outcome to individual n. For any given 

distribution, the elements of x are ordered such that x1 ≤ x2 ≤ ... ≤ xn ≤ ... ≤ xN , the average 

allocation of the outcome is x̄, the cumulative population proportion is p = n/N, and 1 is an N 

dimensional vector (1, ...,1) ′. Preferences are defined by a continuous social evaluation function 

of x,W : RN ↦→ R, such that W (x) > W (x̃) if and only if x is preferred to x̃. We normalize x such 

that a positive value of xn indicates the quantity of a desirable outcome, while a negative value 

indicates an undesirable outcome. 

2 Lorenz Curves 

Lorenz curves are a tool for visually comparing different distributions of an outcome variable. 

They display a curve for each distribution being analyzed. The analyst can infer the relative 
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equity of a given allocation based on its distance from a line corresponding to a perfectly equal
 

distribution. One can unambiguously conclude that an allocation Lorenz dominates another only 

if their curves do not cross. We follow the taxonomy of Moyes (1987) and describe three classes 

of Lorenz curves: Relative Lorenz (RL) curves, Generalized Lorenz (GL) curves, and Absolute 

Lorenz (AL) curves. These three curves share the characteristic that the support lies between zero 

and one, representing the cumulative proportion of the population, p (ordered as described above 

from n = 1 to N). They differ in how cumulative allocations are represented on the vertical axis. 

Here we provide a brief discussion of the three classes of Lorenz curves, and under what conditions 

one can use Lorenz dominance to infer that one distribution is preferable to another. 

2.1 Relative Lorenz Curve 

The original curve developed by Lorenz (1905) compared cumulative fractions of total income 

received by cumulative fractions of the population. The RL curve can be defined as 

n xn(1) RL(x, p) = ∑ n = 1,2, ...,N
Nx̄i=1 

with RL(x,0) = 0 and line segments connecting adjacent points. The height of this curve is 

the cumulative percent of the total outcome variable allotted to a given population fraction. For 

example, Panel (a) of Figure 1 displays the RL curve for formaldehyde-induced cancer risk for the 

entire population. The curve is anchored at zero for p = 0 and one hundred for p = 1. A perfectly 

equal distribution would be represented by a straight line connecting these two points. 

RL curves express individual allocations of the outcome relative to the total. They facilitate 

comparisons of distributions independent of the mean. RL curves are unchanged by multiplying 

all outcomes by a positive constant (scale invariant), and therefore convenient for comparisons with 

different units of measurement (e.g., income distributions denominated in different currencies). 

RL dominance has no normative implications for distributions with different means unless 

one is willing to discard the Pareto principle.3 Nonetheless, relative Lorenz dominance conveys 
3Satisfaction of the Pareto principle requires that social welfare not increase if at least one individual is made 
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potentially useful information regarding the equity of various options. For distributions sharing the 

same positive mean outcome, RL dominance has the following normative interpretation: 

(2) W (x) ≥ W (x ′ ) ⇐⇒ 

⎧ ⎪⎨ ⎪⎩
 

RL(x, p) ≥ RL(x̃, p) x̄ > 0
 

RL(x, p) ≤ RL(x̃, p) x̄ < 0,
 

for all p. Care must be taken when using relative Lorenz analysis for bad outcomes. If the mean 

outcome is negative, then the relative Lorenz curves lie above the line of perfect equality, and the 

dominance criterion is reversed. 

Moreover, simply redefining a bad outcome in terms of a complementary good outcome can 

affect the ranking of distributions. For example, converting a probability of contracting cancer (a 

bad) to a probability of not contracting cancer (a good) by adding one to each negative outcome 

does not necessarily preserve the RL dominance relationship for two distributions. This sensitivity 

in ranking is due to the fact that RL dominance is not translation invariant, i.e., the ranking may 

change if a constant value (in this case one) is added to each element of x. 

Figure 1: Population Lorenz curves for cancer risk in cases per million 
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Generalized Lorenz Curve
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(c)
Absolute Lorenz Curve

Cumulative population percentage, decreasing in exposure

2.2 Generalized Lorenz Curve 

Shorrocks (1983) introduced the GL curve as a tool for comparing distributions of cumulative 

monetary income received by a cumulative fraction of the population. Unlike RL dominance, GL 

worse off and no one is made better off. 
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dominance takes both the average outcome and equality of outcomes into account when ranking
 

distributions. The GL curve can be defined
 

n 
(3)	 GL(x, p) = ∑ 

x
N

n n = 1,2, ...,N 
i=1 

with GL(x,0) = 0 and line segments connecting adjacent points. 

The height of the GL curve is the cumulative value of the outcome variable in a given percentile, 

normalized by the size of the total population (see Figure 1, Panel (b)). This normalization 

facilitates comparisons of distributions for different size populations.4 The GL curve is anchored 

at zero for p = 0 and x̄ for p = 1. A perfectly equal distribution is represented by a straight line 

connecting these two points. A distribution GL dominates another if its curve lies somewhere above 

and nowhere below the other. 

A normative interpretation of GL dominance requires two key assumptions regarding social 

preferences: (i) the social welfare function satisfies the Pareto property, and (ii) the social welfare 

function is Schur concave, i.e., a mean-preserving regressive reallocation does not increase social 

welfare.5 The first assumption expresses a preference for Pareto efficiency and the second expresses 

a preference for equity. 

Given these assumptions, distribution W (x) ≥ W (x̃) ⇐⇒ GL(x, p) ≥ GL(x̃, p), for all p. GL 

dominance accounts for both the per capita outcome and the distribution across individuals.6 

Thus, for example, a population with a very unequal distribution of income can dominate a 

population with a more egalitarian distribution if each percentile of the former population is 

wealthier than the corresponding percentile of the latter. In addition to being scale invariant, 

GL ranking is unaffected by adding a constant amount to all outcomes (translation invariant): 

W (x) ≥ W (x̃) ⇐⇒ GL(β x, p) ≥ GL(β x̃, p), for all β > 0 and p, and W (x) ≥ W (x̃) ⇐⇒ 

4For example, a super-population generated by duplicating a distribution x has the same value for GL as the 
original population. 

5Let Q be a square matrix composed of non-negative real numbers whose rows and columns each sum to 1. A 
function F(x) is Schur concave if Qx is not a permutation of x and F(Qx) ≥ F(Qx). All symmetric quasiconcave 
functions are Schur concave, although the converse is not true. 

6Thistle (1989) shows that GL dominance is equivalent to second order stochastic domination. 
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GL(x + γ1, p) ≥ GL(x̃+ γ1, p), for all γ and p.
 

The GL curve highlights the importance of correctly specifying bad outcomes. If one were to 

simply define bad outcomes with increasing positive values of x, the normative implications of the 

standard GL curve break down since the Pareto principle would be violated: A GL could lie above 

another because it has a more equal distribution (a good thing), or more bad outcomes per capita 

(a bad thing). This problem does not arise if bad outcomes are specified as decreasing in x. 

2.3 Absolute Lorenz Curve 

Moyes (1987) introduced the concept of the AL curve to compare cumulative differences from 

the mean income received from cumulative fractions of the population. It can be defined 

n xn − x̄
(4) AL(x, p) = ∑ n = 1,2, ...,N

Ni=1 

with AL(x,0) = 0 and line segments connecting adjacent points. 

The height of the AL curve is the cumulative gap between the mean allocation of the outcome 

variable and the amount allotted to a given fraction of the population, normalized by the total 

population (see Figure 1, Panel (c)). Note that this gap is measured in absolute terms, not as a 

percent of the total outcome. This curve is anchored at zero both for p = 0 and p = 1. A perfectly 

equal distribution is represented by a straight line along the horizontal axis connecting these two 

points. A distribution dominates another in an AL sense if its curve lies somewhere above and 

nowhere below the other. 

Like RL analysis, for social evaluation functions satisfying the Pareto principle, AL dominance 

has normative meaning only if distributions share the same mean.7 In this case, W (x) ≥ W (x̃) ⇐⇒ 

AL(x, p) ≤ AL(x̃, p), for all p. 

The AL curve is not scale invariant, therefore its ranking of two distributions may be affected 

by purely nominal transformations such as changing units of measurement. Since the height 

of the AL curve represents the difference from the mean it is translation invariant. As such, it 
7These two approaches yield identical rankings for distributions with the same mean. 
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easily accommodates negative values for the outcome variable without redefining the dominance
 

criterion. 

2.4 Inter-group Inequality 

Applying Lorenz curve analysis to compare alternate distributions of outcomes for individuals 

within a sub-population (based on income or race, for example) is straightforward. One need only 

calculate the curve using the relevant elements of x, and respecify n and N accordingly. Such 

intra-group analysis is of limited use in the context of EJ, where one may be interested in disparities 

across groups. 

Conducting Lorenz analysis across such groups is more problematic. One might proceed 

by assigning the same representative value of the outcome variable to all individuals within 

each group, re-order the elements of x such that they are non-decreasing in outcomes, and use 

these values to construct a Lorenz curve. The key question then arises as to what constitutes a 

“representative” value. 

A natural choice might seem to be a group’s mean outcome. A ranking based on such a choice, 

however, implicitly assumes that social welfare is unaffected by distributions of outcomes within 

groups. This approach leads to the inconsistent result that for a given distribution x the inter-group 

Lorenz curve necessarily (weakly) dominates the whole-population Lorenz curve for the same 

distribution. That is, under these implied preferences, for an identical distribution of outcomes, 

society can be made better off simply by classifying individuals into fewer and fewer groups.8 In 

addition, such an approach would violate the Schur-concavity assumption of the underlying social 

welfare function since one could improve social welfare with a regressive reallocation from an 

individual with a low outcome who belongs to a high-mean group to an individual with a high 

outcome in a low-mean group. 

An alternative approach would be to adjust group means such that, all else equal, groups with a 

less equal intra-group distribution would have a lower representative outcome. This representative 

8At the extreme, perfect equality can be achieved by simply placing all individuals into one group. 
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outcome could answer the question “What allocation, if given to everyone in the group, would
 

generate the same social welfare as the actual distribution of allocations?” This adjusted mean is 

commonly referred to as the Equally Distributed Equivalent (EDE) outcome. 

The EDE approach clearly imposes stronger assumptions on social preferences than Schur 

concavity and the Pareto property. It lays the foundation, however, for a method of ranking 

distributions in terms of inter-group inequality in a manner that is consistent with rankings for the 

population as a whole. In addition, it allows the analyst to rank distributions in cases where Lorenz 

curves intersect. In the next section, we discuss how the EDE can be used in EJ analysis to generate 

complete and consistent rankings for entire populations as well as within and between subgroups. 

We also discuss tradeoffs in terms of restrictions on permissible social welfare functions. 

3 Equally distributed equivalent outcomes and inequality indexes 

The inability of Lorenz curve analysis to provide a complete ordering of outcomes combined 

with its inappropriateness for analyzing distributions across population subgroups limit its 

usefulness for EJ analysis. Here we describe an alternative approach based on the EDE and the 

related concept of an inequality index. The EDE provides a complete, consistent, and transparent 

system for ranking distributions taking into consideration average outcomes as well as within 

group, across group, and total inequality. The EDEs discussed here impose the same restrictions 

on preferences as the GL ranking (the Pareto property and Schur concavity) as well as additional 

restrictions discussed below. Thus, if one distribution GL dominates another, it will also dominate 

the other using a ranking method based on the EDE, but the reverse is not generally true. At the 

cost of imposing additional structure on social preferences, the EDE approach allows the analyst 

to rank distributions for which the GL framework is unable to provide a ranking (e.g., if GL curves 

intersect). 

Let Ξ(x) denote the EDE of distribution x ∈ RN , such that 

(5) W (x) = W (Ξ(x)1). 
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Note that although social welfare functions are ordinal, Ξ(x) provides a cardinal measure of social
 

preferences. The EDE for a given distribution is the amount of the outcome variable which, if 

given equally to every individual in the population, would leave society just as well off as the 

actual distribution. It thus embodies a set of social and individual preferences and is a measure 

of social welfare. Like the GL curve, the EDE takes into account both the equity of a distribution 

and the total amount of the outcome variable. The EDE is therefore able to provide a consistent 

ordering of alternative distributions with different means. 

First let us consider distributions that share the same mean outcome. Ideally an index I(x) 

would enable normative comparisons of any such distributions x and x̃ along the lines of W (x) ≥ 

W (x̃) ⇐⇒ I(x) ≤ I(x̃). The literature commonly considers two general classes of inequality 

indexes defined on the basis of how common changes to the distributions affect the index values.9 

Analogous to their counterparts in Lorenz curve analysis, a relative index, RI, is scale invariant, 

(6) RI(x) = RI(β x), β ∈ R++, 

and an absolute index, AI, is translation invariant,10 

(7) AI(x) = AI(x + γ1), γ ∈ R. 

For x ∈ RN 
+, Blackorby and Donaldson (1978) show that if a continuous, increasing, 

Schur-concave social evaluation function is also homothetic then it has a unique relative inequality 

index of the general Atkinson-Kolm-Sen (AKS) form 

Ξ(x)
(8) RI(x) = 1 − . 

x̄

Moreover, under these assumptions, RI has an associated family of ordinally equivalent homothetic 

9The value of an inequality index increases as the distribution becomes less equal, with a value of zero indicating 
a perfectly equal distribution. 

10These are not the only categories of indexes; for more examples, see Kolm (1976a). 
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social evaluation functions. These results establish the normative implication that for distributions 

of goods with a common mean, W (x) ≥ W (x̃) ⇐⇒ RI(x) ≤ RI(x̃). 

RI lies between zero and one, with zero indicating perfect equality. It has the interpretation 

as the maximum percent of the outcome society would be willing to give up if the remainder 

were distributed equally. Note that for x ∈ RN x < 0,−, the normative implication of RI reverses; if ¯

Ξ(x)/x̄ > 1 and RI would be negative and decreasing in inequality. Consequently, for distributions 

with the same negative mean, social welfare would be increasing in RI. 

We therefore propose the following transformation of RI for x ∈ RN 
−: 

Ξ(x)
(9) RI−(x) = − 1. 

x̄

This transformation preserves the intuitive interpretation of the index for bads. It represents the 

maximum percent increase (in absolute value) of the bad outcome society would be willing to 

accept if the resulting total amount were distributed equally. Consequently welfare is decreasing 

in RI−, as desired. 

Blackorby and Donaldson (1980) show that if a continuous, increasing, Schur-concave social 

evaluation function is also translatable then it has a unique absolute inequality index of the general 

Kolm form11 

(10) AI(x) = x̄− Ξ(x). 

An index AI has an associated family of ordinally equivalent translatable social evaluation 

functions. These results establish the normative implication that for distributions with a common 

mean, W (x) ≥ W (x̃) ⇐⇒ AI(x) ≤ AI(x̃). This index has the interpretation of the maximum 

amount per capita of the outcome society would be willing to give up if the remainder were 

distributed equally. Note that, unlike RI, this index is well behaved for all x ∈ RN . 

11Blackorby and Donaldson (1980) define a function as translatable if it can be expressed as W (x) = φ(W̄ (x)) 
where φ( ·) is an increasing function and W (x + γ1) = W (x)+ γ for all x,x + γ1 ∈ RN . ¯ ¯
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An advantage of initially focusing on inequality indexes is that it allows one to systematically
 

develop a list of desirable axiomatic properties an index should possess in the relatively simple 

context of comparing distributions with equivalent means, and based on these properties exclude 

candidate mathematical representations of indexes from consideration. Eqs. (8) - (10) imply that 

for relative and absolute indexes it is then straightforward to derive the EDE, which in turn can be 

used to rank distributions with different means. 

In addition to being a relative or absolute measure, some commonly used axioms for a general 

inequality index are:12 

i.	 Transfer Principle. Index does not decrease with a mean-preserving regressive transfer. 

ii.	 Diminishing Transfer Principle. A transfer of a unit of a good between two individuals who 

have relatively low values of x affects the index value more than an identical transfer among 

two individuals who are the same distance apart, but with higher values of x. 

iii.	 Welfare Independence. Society’s willingness to trade an increase in one individual’s outcome 

for a decrease in another’s does not depend on the unchanged outcome level of a third 

individual. 

iv.	 Impartiality. No variable besides x affects the value of the index. 

The transfer principle is a fundamental requirement for an inequality index. It states that 

increasing the dispersion of the outcome across the population should increase the measure of 

inequality. The diminishing transfer principle is an extension that incorporates the normative belief 

that an inequality index should be more sensitive to changes in the allocations to people who are 

less well-off.13 This additional restriction on social preferences enables one to rank distributions 

whose Lorenz curves cross. 

The intuition behind welfare independence can be most easily understood in the case of a 

simple transfer that does not change the average outcome variable for a population. This property 
12Kolm (1976a,b), among others, provides a detailed treatment of axioms i-iv. 
13The Gini coefficient violates this property since changes in its value depend on the relative positions of the two 

individuals in the total population, rather than the magnitude of each xn (see, for example, Chakravarty, 1990). 
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implies that the change in the index number arising from a transfer between two individuals is not 

affected by the distribution of the outcome variables for the rest of the population.14 

Impartiality means that all individuals are treated symmetrically in calculating the inequality 

index, regardless of other attributes besides the outcome of interest. Note that this property does 

not preclude analysis of sub-populations differentiated by such attributes. For example, one could 

calculate an impartial inequality index for an entire population in which race does not affect the 

value, and one could calculate an index for various racial groups. 

For the rest of this discussion, we focus on inequality indexes that satisfy axioms i-iv.15 Kolm 

(1976a,b) shows that the Atkinson and Kolm-Pollak indexes are the only ones that do so for x ∈ RN 
+. 

Blackorby and Donaldson (1978) introduce an axiom that enables analysis of subgroups within 

a population: 

v.	 Consistency in Aggregation. An inequality index can be used to analyze subpopulations such 

that social evaluations made using the entire population arrive at the same result as those 

made applying the same preference structure to the collection of sub-populations. 

This axiom requires that the EDE calculated for the entire population yields the same result as 

the EDE calculated on the basis of the EDEs of each subgroup (Blackorby and Donaldson, 1978, 

1980). This property ensures that the same set of preferences are used to rank subpopulations 

as ranking an entire population. It also guarantees that total inequality for a population can be 

completely decomposed into within and between group inequalities. Satisfaction of this property 

is particularly useful in the EJ context. Blackorby and Donaldson (1978, 1980) show respectively 

that the Atkinson and Kolm-Pollak indexes satisfy consistency in aggregation.16 

Finally, we add the requirement that the inequality index be able to rank allocations of any 

real-valued outcomes: 
14Importantly from a technical perspective, this property is equivalent to requiring that there be a function of the 

index that can be expressed as a sum of functions of each xn (Kolm, 1976a). The Gini coefficient also violates this 
property. 

15For a discussion of other inequality indexes, see Chakravarty (1990). 
16The Gini coefficient fails to satisfy this property, making it particularly unsuitable for EJ analysis. 
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vi. Unlimited Domain. An inequality index can be used to evaluate any distribution x ∈ RN . 

This axiom has not received much emphasis in the context of studies of distributions of income or 

other goods, for which the domain has been restricted to RN . It is, however, of obvious importance +

for analysis of pollution, adverse health impacts, or other negative outcomes that are the subject 

of environmental regulations. Blackorby and Donaldson (1982) show that the Kolm-Pollak index 

satisfies this property, while the Atkinson index does not. 

Some authors (e.g., Levy, Wilson, and Zwack, 2007) have advocated presenting inequality 

indexes alongside average outcomes so as not to impose normative assumptions on the 

efficiency-equity tradeoff. This approach does not, however, avoid the imposition of normative 

assumptions. By using a given inequality index to rank distributions with the same mean, 

Blackorby and Donaldson (1978, 1980) show that one has already adopted a normative position 

that implies a specific ranking of distributions with different means. Put another way, if one 

is not comfortable with the ranking of distributions with different means implied by the social 

evaluation function associated with a given index, one should not be using that index as a measure 

of inequality in the first place. Kaplow (2005) goes so far as to argue that inequality indexes are 

not particularly useful for comparing distributions with different means; instead all comparisons 

should be based on the underlying EDE. 

Although the EDE may be sufficient for comparisons of given distributions, we believe 

inequality indexes can be useful for fine-tuning policy instruments. Knowing that a particular 

option results in large average gains with a regressive distribution, for example, may provide a 

signal to look for ways of modifying the policy to make it more equitable. Such information would 

be lost by focusing exclusively on the EDE. 

Similarly, with respect to EJ analysis, it can be informative to decompose an inequality index 

by population subgroups. The index allows the analyst to determine whether a welfare change for 

a subgroup is due to a change in average outcomes or or their distribution. The index may also be 

useful in identifying the potential for “hotspots” (concentration of adverse outcome in a small set 

of people) in a demographic group. Since it conflates information about average outcomes with 
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information regarding the distribution, the EDE alone would not allow such analysis.
 

In the next sections, we examine the Atkinson and Kolm-Pollak inequality indexes in greater 

detail, focusing on their suitability for EJ analysis. We also develop a transformation of the 

Atkinson index which is suitable for analyzing distributions of non-positive outcomes. Table 1 

summarizes the main differences between these indexes. 

3.1 Atkinson Index 

For x ∈ RN , the Atkinson index is defined as: + ⎧ ⎪⎨
 
 
  
 1 
  1−α 1−α1 

N ∑
N 
n=1

xn ,
 α ≥ 0,α
1 −
 ̸= 1x(11) IA(x) =  
  1⎪⎩
 1 − ∏N
n=1

xn N , α = 1.x

Atkinson (1970) derived this index based on the underlying assumption that individual preferences 

are consistent with a utility function for individual n that is increasing and concave in income and 

exhibits constant relative risk aversion, 

(12) UA(xn) = x1−α /[1 − α], α ≥ 0.n 

The (constant) elasticity of the marginal social value placed on increasing the outcome variable 

for any given individual is −α . IA takes a value between 0 and 1 (with the interpretation as the 

percent reduction in a good that society would be willing to give up in order to have a perfectly 

equal distribution of the rest) since the EDE, ΞA(x), is necessarily lower than the mean. 

It is important to stress that xn is a desirable outcome variable in the sense that the EDE of the 

Atkinson index, 

 
⎧ ⎪⎨
 
 
 1 

1−α1 1−α

N ∑
N
n=1 [xn] ,
 α ≥ 0,α ̸= 1 

(13) ΞA(x) = ⎪⎩

∏

N
n=1 [xn]N 

1 
, α = 1, 

is increasing in xn. 
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Table 1: Differences between measures of Equally Distributed Equivalent outcomes
 

Name Functional Form Domain Invariance ⎧ 1⎨ 1−α 1−α1 
N ∑

N
n=1 [xn] α ≥ 0,α ≠ 1Atkinson ΞA(x) = x ∈ RN Scale+⎩ 

∏
N N 

1 

n=1 [xn] α = 1
 
Transformed 1 1+α 1+

1 
α x ∈ RN
ΞA−(x) = − N ∑

N
n=1 [−xn] ScaleAtkinson − 

− 
κ 
1 ln N 

1 
∑n

N 
=1 e−κxn κ > 0Kolm-Pollak ΞK (x) = x ∈ RN Translation 

x̄ κ = 0 

The parameter α is commonly referred to as the inequality aversion parameter. It allows the 

analyst to specify the amount society is willing to trade a reduction in the outcome variable for one 

individual for an increase for another. Note that this formulation nests the extremes of Benthamite 

utilitarian and Rawlsian maximin preferences. Setting α = 0 implies that ΞA = x̄; society is 

indifferent between mean-preserving transfers among any two individuals so that IA(x) = 0 for any 

x. As α increases, society places greater weight on transfers to individuals with lower outcomes. 

At the limit, as α → ∞ then ΞA = minn{xn} so that IA(x) = 1 − minn{xn}/x̄ and a reallocation 

that does not benefit the worst off does not increase social welfare (Chakravarty, 1990). Since the 

choice of α reflects a normative judgment, it is common to calculate IA for several values in order 

to determine how sensitive rankings are to the choice.17 

A natural question arises as to how to extend the Atkinson index to distributional analysis of 

bad outcomes such as pollution or adverse health impacts. IA is not defined for negative numbers 

for all α > 0, thus precluding a simple redefinition of bads in this way.18 Moreover, Blackorby 

and Donaldson (1982) show that even when well-defined IA generates the perverse result that 

a progressive redistribution among individuals with negative outcomes reduces social welfare. 

Figure 2 depicts social indifference curves for the Atkinson social welfare function for α = 2. 

Here it is clear that in the negative orthant, the social welfare function is Schur convex. Thus, a 

mean-preserving progressive redistribution reduces social welfare. In this case, the IA also violates 

17In its publications for example, the U.S. Census Bureau often reports Atkinson indexes calculated with α equal 
to 0.25, 0.5, and 0.75 (e.g., DeNavas-Walt, Proctor, and Smith, 2012). 

18Nor could one simply subtract this negative value from an arbitrarily high benchmark value. Since the Atkinson 
index is not translation invariant, the index value and hence the ranking may be different for different benchmarks. 
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Figure 2: Social indifference curves associated with IA(x) 

xi

xj

0

19the diminishing transfer principle for x ∈ RN 
−. 

A second approach could be simply to use the absolute value of x in the Atkinson formula 

when x ∈ RN 20 This approach has similar drawbacks as using the negative values themselves. −. 

The implied social welfare function does not satisfy both the Pareto principle and Schur concavity. 

Referring to the positive orthant of Figure 2, either welfare decreases with increases in x (satisfying 

the Pareto principle) and a progressive redistribution of the bad outcome reduces social welfare 

(violating Schur concavity), or a progressive redistribution increases welfare, but so does an 

increase in the vector of bad outcomes. The index calculated with this approach would also violate 

the diminishing transfer principle since it implies a social welfare function that is more sensitive 

to transfers among the well off (those with low absolute values of the bad outcome). 

A third alternative seen in the literature (e.g., Levy et al., 2009) is to transform a bad outcome 

into a good outcome by replacing it with its reciprocal. By substituting x−1 for xn in Eq. (12), it is n 

clear that the associated social evaluation function satisfies the Pareto property (is decreasing in x), 

but is not Schur concave for α < 2. In such cases, a progressive redistribution of x reduces social 

19Kolm (1976b) shows that the diminishing transfer principle is satisfied for the Atkinson index if and only if 
(1 − α)x−α and (α + α3)x−(α+2) have the same sign. 

20See, for example, Levy, Chemerynski, and Tuchmann (2006); Levy, Wilson, and Zwack (2007); Levy et al. 
(2009); Fann et al. (2011); Post, Belova, and Huang (2011). 
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Figure 3: Social indifference curves associated with IA−(x) 

xi

xj

0

welfare, and the index violates the diminishing transfer principle.
 

Here, we propose a simple transformation of the Atkinson index that allows a sensible ranking 

of distributions of bads, while preserving its interpretation as a cardinal relative index. This method 

does not satisfy the unrestricted domain property, but defines a relative index satisfying axioms 

i-vi for allocations consisting only of bads. For x ∈ RN 
−, we respecify the individual utility function 

in Eq. (12) with UA−(xn) = −[−xn]
1+α /(1 + α). Social welfare is decreasing in the bad outcome, 

ensuring satisfaction of the Pareto principle. Changing the sign of α in the utility function generates 

social indifference curves that are bowed outwards from the origin as in Figure 3, ensuring that 

the social welfare function is Schur-concave and that the index satisfies the diminishing marginal 

transfer principle. 

The EDE for the social welfare function based on UA− is 

� � 1 

1 1+αN 
1+α(14) ΞA−(x) = − ∑ [−xn] .

N n=1 

In contrast to the case with good outcomes, note that ΞA− ≥ x̄. To preserve the property that an 

inequality index is increasing in inequality, we use the modified definition of a relative index in 
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�   �
Eq. (9) so that the transformed Atkinson index is
 

 
  
 1 
1+αN 1+αΞA−(x) 

=
 
1
 xn

∑
(15) IA−(x) = − 1 + − 1.
 
x̄ N
 x
n=1 

Its cardinal interpretation is the percent increase in the average bad outcome that, if equally 

distributed, would result in the same social welfare as the actual distribution x. 

3.2	 Kolm-Pollak index 

For x ∈ RN the Kolm-Pollak index is defined as: 

(16)	 IK(x) = 

⎧ ⎪⎨ ⎪⎩
 

1 κ[x−xn]
κ ln N 

1 
∑

N
n=1 e , κ > 0 

0	 κ = 0.
 

As shown by Blackorby and Donaldson (1980), using this index to rank outcomes is equivalent to 

assuming an additively separable social welfare function composed of individual utility functions 

of the form developed by Pollak (1971), U(x) = −e−κx. Figure 4 illustrates social indifference 

curves associated with Kolm-Pollak social preferences. Unlike the Atkinson preferences discussed 

above, these satisfy Schur concavity and the Pareto property for all real-valued x. 

The EDE for the Kolm-Pollak index is: 

(17)	 ΞK(x) = 

⎧ ⎪⎨ ⎪⎩
 

−
κ 
1 ln N 

1 
∑

N
n=1 e−κxn , κ > 0 

x̄	 κ = 0.
 

Analogous to α , κ can be interpreted as an inequality aversion parameter. For Kolm-Pollack social 

preferences, the elasticity of marginal social welfare with respect to a change in an individual’s 

allocation is −κxn. As with IA, social preferences vary from Benthamite to Rawlsian as κ takes 

values from zero to infinity (Chakravarty, 1990). 

Unlike the case with the social evaluation functions associated with IA or IA−, this elasticity 

varies with an individual’s allocation of the outcome variable. Consequently, the inequality 
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Figure 4: Social indifference curves associated with IK(x) 
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aversion parameter needs to be appropriately normalized to maintain comparability across different 

units of measurement. To change units, one can simply divide κ by the conversion factor. If one 

had used κ = 0.5 to calculate IK for an outcome measured in pounds, for example, and wished 

to convert to kilograms, it would be necessary to divide x and multiply κ by 2.2. This conversion 

ensures that the elasticity of marginal utility remain unchanged for each individual, and the values 

of IK and ΞK would be 2.2 times larger, as desired.21 

Less straightforward is the problem comparing welfare rankings obtained using ΞA− (or ΞA 

in the case of desirable outcomes) and ΞK for “similar” levels of social inequality aversion. In a 

sense, such a comparison is impossible since the implied elasticity of marginal utility is constant in 

one case and varies in the other. Nonetheless, the analyst may be interested in how sensitive results 

are to using a relative versus absolute inequality index. If one takes as a starting point the values of 

α typically used in the income inequality literature, the question becomes one of what value of κ 

generates a set of elasticities of marginal utility defined by the Pollak utility function that is closest 

to that generated by the Atkinson utility function for a given value of α . 

To that end, we propose choosing κ to minimize the sum of squared differences between 

21Changing units of x without modifying κ can cause the social ranking of two distributions to reverse depending 
on the unit of measurement (see, for example Zheng, 2007). 
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individual elasticities and α:
 

  
(18) κ = argmin [κ̂x − α1] ′ [κ̂x − α1]

κ̂

α ∑N 
n=1 xn 

= . 
∑

N
n=1 x2 

n 

It is important that this calibration of κ be undertaken only once for each outcome under 

consideration (cancer risk, mortality risk, etc.), not separately for each alternative distribution of 

that outcome.22 When comparing J allocation vectors of the same outcome (e.g., the distribution 

of cancer risk under different policy options) we replace x in Eq. (18) with the NJ dimensional 

vector x̂ = (x1
′ ,x ′ 2, ...,xJ

′ ) ′ . 

3.3 Inter-group analysis 

The methods described thus far allow analysis of inequality within an entire population or 

within distinct sub-populations. To characterize inter-group inequality, it is necessary to introduce 

further notation. Let x be partitioned into M distinct groups indexed m = 1,2, ...,M, with Nm 

denoting the number of individuals in group m. A group’s outcome vector is xm with mean x̄m. 

The index numbers and EDEs for each group are indicated by a superscript m. The only difference 

between their formulas and the whole population formulas are that Nm and x̄m replace N and x̄. 

For x ∈ RN , Blackorby, Donaldson, and Auersperg (1981) derive a measure of inter-group +

inequality for IA, 

ΞA(x)(19) IA
R(x) = 1 − .1 

N ∑
M 
m=1 NmΞm

A (xm) 

Its can be interpreted as follows. Suppose that instead of x, the good was distributed such that 

for each group m every individual in that group received Ξm
A (xm). This second distribution has no 

intra-group inequality. Since IA satisfies axiom vi, the aggregate EDE of this second distribution 

22IK would not be translation invariant if κ̂ were recalculated for each distribution of a given outcome. 
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is equal to ΞA(x), which by definition equals the EDE of the vector ΞA(x)1. The inter-group 

inequality index IA
R measures society’s willingness to pay to move from the distribution with no 

intra-group inequality to a distribution in which every individual receives ΞA(x). This willingness 

to pay is expressed as a percent of the total amount of the good in the distribution with no 

intra-group inequality. 

It is straightforward to show that the corresponding inter-group inequality index for IA− is 

ΞA−(x)(20)	 IA
R 
−(x) = 1 − 1. 

N ∑
M (xm)m=1 NmΞm

A−

For IK , Blackorby, Donaldson, and Auersperg (1981) similarly show that inter-group inequality 

can be expressed as 

M 
IR 1 

NmΞ
m(21) K =	 ∑ K (xm) − ΞK(x).N m=1 

Its interpretation is society’s per capita willingness to pay (in units of x) to move from a distribution 

in which there is no intra-group inequality to one in which the remainder of the total outcome is 

divided equally among all individuals. 

4 Illustrative application 

Despite being the subject of several theoretical papers, IK has seldom been used in empirical 

income distribution studies (exceptions include Blackorby, Donaldson, and Auersperg, 1981; 

Atkinson and Brandolini, 2010). To our knowledge, neither it nor IA− have been used to evaluate 

distributions of adverse environmental outcomes. Here we provide an illustrative application to 

regulation of indoor air pollution. 

Resins commonly used in pressed wood products can off-gas significant amounts of 

formaldehyde. This chemical has been linked to numerous adverse health outcomes including 

nasopharyngeal cancer and eye irritation. Partly in response to concerns over high levels of 

formaldehyde in temporary trailers used by the Federal Emergency Management Agency (FEMA) 
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to house people dislocated in the wake of Hurricane Katrina, Congress enacted the 2010
 

Formaldehyde Standards for Composite Wood Products Act. This legislation amended the Toxic 

Substances Control Act to set national emissions standards for pressed wood components common 

in home construction and furniture. 

In its economic analysis of the act, the EPA uses a three-stage model to evaluate benefits of 

the standards. The first stage generates models of nine housing types in various climate zones, 

and stocks them with a representative selection of pressed wood products. These engineering 

models simulate indoor air concentrations of formaldehyde at baseline and under alternative policy 

scenarios. The second stage introduces epidemiological concentration-response functions to model 

the impact of formaldehyde concentrations on the probability of incurring eye irritation and cancer 

(fatal and non-fatal). Concentrations vary by age of home (due to a decay in off-gassing over time) 

and responses vary by age of the individual.23 The economic model uses data from the American 

Community Survey and American Housing Survey to populate the model homes and simulate 

health benefits for the various demographic groups. In the final stage, the EPA uses results from 

willingness-to-pay studies to monetize health outcomes. For details on the modeling approach used 

in the benefit-cost analysis see EPA (2013).24 

The EPA’s analysis includes several emissions levels, here we focus on three: the baseline that 

would have occurred in the absence of the legislation (Base), the level that was assumed would 

prevail under the EPA’s proposed implementation of the legislated standards (Act), and a level that 

corresponded to a hypothetical stricter standard that would require manufacturers to use resins with 

no added formaldehyde (NAF). 

The standards introduced by the Act raise some interesting questions in the context of EJ. 

Formaldehyde off-gases at an exponentially decaying rate over time. Concentrations tend to be 

23In principle, the concentration-response function could vary by race or income, but the EPA’s analysis assumes it 
does not. 

24In this example we use a seven percent discount rate and conservative concentration-response function estimates. 
These functions correspond to the EPA’s low estimate for cancer risk and the EPA’s high estimate for eye irritation. For 
eye irritation, the concentration response function for the high estimate is more conservative than for the low estimate. 
To obtain a low estimate for the change in cases, the EPA assumed a relatively high response to formaldehyde at very 
low concentrations to ensure that reducing exposure at these concentrations would not generate any benefits. 
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highest in new or newly remodeled homes with new furniture. Although the legislation was
 

motivated by adverse outcomes experienced by poor and minority individuals using FEMA trailers, 

these groups may not be the main beneficiaries if they are less likely to live in homes with high 

formaldehyde levels. 

With respect to the three EJ questions identified in the introduction, the goals of this analysis 

are to develop an understanding of the degree to which there is expected to be a disparity in 

formaldehyde-induced health outcomes in the absence of the standards, the way the two policy 

options affect the distribution, and how the various distributions can be ranked. To this end, we use 

information available in the rulemaking docket to generate GL, RL, and AL curves, and calculate 

IA− and IK for each policy scenario and demographic group.25 Demographic groups are defined by 

self-reported race, ethnicity and income in the American Community Survey.26 

4.1 Lorenz curve analysis 

Figure 5 presents generalized Lorenz (GL) curves for formaldehyde average daily 

concentrations for the three policy scenarios by population group. It is immediately apparent that 

the NAF scenario GL dominates the Act which dominates Base for each group. The GL curves for 

the various groups are remarkably similar, with Native Americans having the lowest curves and 

Black and Hispanic having the highest. Thus from the perspective of formaldehyde concentrations 

it seems that some minorities stand to have high benefits from the standards relative to whites. 

Poverty status, in contrast does not seem to be correlated with reductions in concentrations. 

Figure 6 presents relative Lorenz (RL) curves for concentrations. In a relative sense, the Act 

does not seem to affect the distribution of concentrations. Concentrations are reduced by roughly 

the same proportion within each population group. The NAF scenario, however, largely eliminates 

any relative inequality. 

The absolute Lorenz (AL) curves in Figure 7 present a slightly different perspective. Hispanics 

25The rule’s Docket ID is EPA-HQ-OPPT-2012-0018. 
26The Hispanic category included individuals of any race, such that Black, White, Native American, and Other 

are properly interpreted as non-Hispanic Black, etc. The Below poverty category consists of individuals belonging to 
households below the U.S. Census Bureau poverty threshold. For more details, see EPA (2013). 
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and Blacks clearly have the greatest intra-group inequality at baseline, and Native Americans the 

least. Although both policies improve the equity of the distribution, only the NAF scenario results 

in similar intra-group inequality for all racial groups. The distribution of concentrations for people 

below poverty is slightly worse than that for people above poverty at baseline and under the Act, 

but this situation reverses for the NAF scenario. 

Although these results shed some light on the extent to which the emissions standards 

affect the distribution of formaldehyde exposure, average daily concentrations are not of direct 

welfare significance. At best they are a proxy for health outcomes that affect utility. Since 

concentration-response functions can be highly nonlinear, the distribution of formaldehyde can be 

a misleading indicator for the distribution of health outcomes. Figures 8-10 present the distribution 

of the modeled probability of eye irritation cases. As was the case with concentrations, Figure 

8 shows that there is no tradeoff between increased stringency in the standard and equity; NAF 

clearly outperforms the Act, which outperforms the baseline for all groups. Compared with Figure 

5, in Figure 8 the Native American and White groups are better off than Black and Hispanic 

groups based on eye irritation risk. Income, however, does not appear to play a major role in 

the distribution of eye irritation. 

Comparison of Figures 6 and 9 clearly shows the effect of the nonlinear concentration response 

function. While Figure 6 suggests that the Act results in a roughly equiproportionate reduction in 

formaldehyde levels for the entire population, Figure 9 shows that the people with the highest 

probability of irritation received proportionately higher benefits. This effect is due to the fact that 

the marginal probability of irritation is increasing in concentration levels. Comparing Figures 7 

and 10 shows that although there were similar improvements in equity within groups for the 

two outcomes, the distribution of above-average (in absolute value) outcomes is more highly 

concentrated for irritation. 

With respect to cancer risk, we use an EPA estimate that assumes formaldehyde exposure in a 

given year affects lifetime risk through a linear unit-risk function. Since current formaldehyde 

exposure cannot affect past cancer risk, the EPA adjusts lifetime risk by an individual’s age. 
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Figure 5: Generalized Lorenz curves for formaldehyde average daily concentrations in 𝜇g/m3 
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Figure 6: Relative Lorenz curves for formaldehyde average daily concentrations
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Figure 7: Absolute Lorenz curves for formaldehyde average daily concentrations in 𝜇g/m3 
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Figure 8: Generalized Lorenz curves for formaldehyde-induced eye irritation risk in cases/103 
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Figure 9: Relative Lorenz curves for formaldehyde-induced eye irritation risk
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Figure 10: Absolute Lorenz curves for formaldehyde-induced eye irritation risk in cases/103 
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Figure 11: Generalized Lorenz curves for formaldehyde-induced cancer risk in cases/106 
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Figure 12: Relative Lorenz curves for formaldehyde-induced cancer risk
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Figure 13: Absolute Lorenz curves for formaldehyde-induced cancer risk in cases/106 
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Figure 14: Generalized Lorenz curves for monetized health impact from formaldehyde in dollars
 

−1.5

−1

−.5

0

0 20 40 60 80 100

Black
−1.5

−1

−.5

0

0 20 40 60 80 100

Hispanic
−1.5

−1

−.5

0

0 20 40 60 80 100

Native American
−1.5

−1

−.5

0

0 20 40 60 80 100

White

−1.5

−1

−.5

0

0 20 40 60 80 100

Above Poverty
−1.5

−1

−.5

0

0 20 40 60 80 100

Below Poverty
−1.5

−1

−.5

0

0 20 40 60 80 100

Total

C
um

ul
at

iv
e 

 p
er

 c
ap

ita

Cumulative population percentage, decreasing in exposure

Baseline Act NAF

31
 



Figure 15: Relative Lorenz curves for monetized health impact from formaldehyde
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Figure 16: Absolute Lorenz curves for monetized health impact from formaldehyde in dollars
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That is, current formaldehyde exposure is assumed to affect the distribution of future cancer risk
 

conditional on an individual’s current age. This analysis of cancer risk does not make a distinction 

between fatal and non-fatal cancers nor expected date of diagnosis. 

Figure 11 shows that the Act causes an unambiguous improvement in cancer risk for each 

population group relative to baseline and that the NAF scenario represents further improvement. 

Unlike the case with irritation, the distribution for the White population group clearly dominates 

that of the other racial groups. Similarly, the Above Poverty income group dominates the Below 

Poverty group for cancer risk. Little discernible gain regarding the relative distribution of cancer 

risk is apparent from Figure 12, however. In contrast, Figure 13 shows that all race and income 

groups experience a drop in absolute inequality. Interestingly, the AL curves for the White 

population group intersect those of the other racial groups, precluding a ranking of intra-group 

inequality by AL curve dominance. The AL curves for the two income groups similarly intersect. 

Finally, we analyze the distribution of monetized damages. For each health outcome (irritation, 

nonfatal cancer, and fatal cancer) the EPA calculates a willingness to pay to reduce risk. The 

present value of monetized risk of future cancer cases is calculated using a 7 percent discount rate. 

These monetized values can be thought of as a means of weighting the various health outcomes 

to generate an aggregate index. As a welfare measure, they impose the strong assumption that 

marginal willingness to pay is constant for each outcome regardless of the magnitude of the risk, 

and thus that the marginal rate of substitution across outcomes is also constant (i.e., all outcomes 

are perfect substitutes).27 

Given the differences in health outcomes, the GL curves for monetized damages are remarkably 

similar across racial groups. Interestingly, in spite of having a worse distribution for both irritation 

and cancer risk, the Below Poverty income group dominates Above Poverty for monetized 

damages. Such a reversal is possible due to differences in age distribution between the two groups 

and the effects of discounting and the timing of future cancer cases. 

While Lorenz curves require relatively few restrictions on social preferences, it is difficult to 

27Since such assumptions are commonly used in benefit-cost analysis, however, we comment no further upon them 
here. 
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draw definitive conclusions from this purely graphical information. We now examine inequality
 

index analysis as an alternative. 

4.2 Inequality index analysis 

Tables 2 and 3 present results for the IA− and IK evaluated at α = 0.25, a value commonly used 

in the income inequality literature, and κ calculated using Eq. (18).28 Similar to the Lorenz curve 

analysis, we present results for formaldehyde concentrations, health outcomes, and monetized 

benefits across demographic groups. By construction, rankings generated by the EDEs of these 

measures are equivalent, and consistent with GL dominance, if GL curves do not intersect. 

Similarly, IA− generates the same ranking of pure inequality as RL dominance, and IK generates 

the same ranking as AL dominance for cases in which those curves do not cross. In addition to 

the advantage of facilitating a complete, rather than a partial ordering of distributions, presenting 

distributional information in tables such as these is much more compact than the Lorenz figures. 

By glancing at the first three columns in Tables 2 and 3, the reader can immediately determine 

the average outcome for each group and determine how this changes across policy scenarios, 

demographic groups, and outcomes. This information is also present in the GL curves, the average 

outcome is the height of the GL curve at the 100th percentile, but is more difficult to discern and 

compare. In addition, the change in mean monetized benefits between policy scenarios for the Total 

demographic group correspond to the gross per capita monetized benefits used in a conventional 

benefit-cost analysis.29 

The second three columns present the EDEs for IA− and IK , which can be interpreted as 

adjusting the average outcomes in the first three columns for the social welfare loss caused by any 

inequality in the distributions. The rankings implicit in several pages of GL curves is condensed 

to these columns. The change in monetized EDE values across policy scenarios for the Total 

demographic group has the interpretation of equity adjusted gross benefits. 

28The appendix presents tables for α=0.1 and 0.5. 
29Our results are not equal to the monetized benefits presented in the Economic Analysis of the EPA’s proposed 

rule since we constructed a different monetized estimate as detailed in footnote 24. 
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Table 2: Formaldehyde outcome distributions, IA−, α = 0.25 

Mean EDE Index 

Base Act NAF Base Act NAF Base Act NAF 

Home formaldehyde concentration in 𝜇g/m3 

Black -10.90 -10.58 -9.62 -11.13 -10.76 -9.68 0.02 0.02 0.01 
Hispanic -10.96 -10.63 -9.66 -11.21 -10.84 -9.74 0.02 0.02 0.01 
Native American -10.54 -10.27 -9.49 -10.72 -10.40 -9.55 0.02 0.01 0.01 
White -10.73 -10.45 -9.62 -10.93 -10.61 -9.68 0.02 0.02 0.01 
Other -10.96 -10.64 -9.65 -11.19 -10.82 -9.71 0.02 0.02 0.01 
Between race 0.0254 0.0210 0.0090 
Above Poverty -10.81 -10.52 -9.65 -11.03 -10.69 -9.72 0.02 0.02 0.01 
Below Poverty -10.72 -10.40 -9.48 -10.95 -10.58 -9.53 0.02 0.02 0.01 
Income unknown -10.07 -9.79 -9.00 -10.24 -9.92 -9.03 0.02 0.01 0.00 
Between income 0.0000 0.0000 0.0000 
Total -10.80 -10.50 -9.63 -11.01 -10.68 -9.69 0.02 0.02 0.01 

Eye irritation in cases per 1000 individuals 
Black -5.59 -4.85 -3.16 -7.21 -6.08 -3.59 0.29 0.25 0.14 
Hispanic -5.96 -5.21 -3.42 -7.93 -6.79 -4.18 0.33 0.30 0.22 
Native American -4.87 -4.31 -3.07 -6.19 -5.34 -3.55 0.27 0.24 0.16 
White -5.25 -4.66 -3.26 -6.82 -5.94 -3.89 0.30 0.27 0.19 
Other -5.67 -4.93 -3.17 -7.25 -6.13 -3.57 0.28 0.24 0.12 
Between race 0.3506 0.3165 0.2059 
Above Poverty -5.39 -4.77 -3.28 -7.02 -6.09 -3.92 0.30 0.28 0.19 
Below Poverty -5.65 -4.87 -3.15 -7.40 -6.18 -3.62 0.31 0.27 0.15 
Income unknown -4.71 -4.09 -2.73 -5.80 -4.85 -2.85 0.23 0.19 0.04 
Between income 0.0001 0.0000 0.0001 
Total -5.42 -4.78 -3.26 -7.06 -6.10 -3.88 0.30 0.28 0.19 

Cancer risk in cases per 1,000,000 individuals 
Black -1.32 -1.28 -1.16 -1.38 -1.33 -1.19 0.04 0.04 0.03 
Hispanic -1.43 -1.38 -1.26 -1.48 -1.43 -1.28 0.04 0.03 0.02 
Native American -1.26 -1.23 -1.14 -1.31 -1.28 -1.17 0.04 0.04 0.03 
White -1.14 -1.11 -1.02 -1.20 -1.17 -1.06 0.06 0.05 0.04 
Other -1.34 -1.30 -1.18 -1.40 -1.35 -1.21 0.04 0.04 0.03 
Between race 0.0825 0.0780 0.0654 
Above Poverty -1.19 -1.16 -1.06 -1.26 -1.22 -1.10 0.05 0.05 0.04 
Below Poverty -1.35 -1.31 -1.19 -1.41 -1.36 -1.23 0.04 0.04 0.03 
Income unknown -1.59 -1.55 -1.42 -1.62 -1.57 -1.43 0.02 0.01 0.00 
Between income 0.0002 0.0002 0.0002 
Total -1.22 -1.18 -1.08 -1.28 -1.24 -1.12 0.05 0.05 0.04 

Monetized damages in dollars per person 
Black -1.50 -1.45 -1.28 -1.60 -1.53 -1.34 0.06 0.06 0.04 
Hispanic -1.49 -1.43 -1.27 -1.61 -1.53 -1.34 0.08 0.07 0.05 
Native American -1.45 -1.40 -1.27 -1.54 -1.48 -1.33 0.06 0.05 0.04 
White -1.47 -1.42 -1.28 -1.57 -1.51 -1.34 0.07 0.06 0.05 
Other -1.52 -1.46 -1.29 -1.62 -1.55 -1.35 0.07 0.06 0.04 
Between race 0.0944 0.0878 0.0704 
Above Poverty -1.50 -1.45 -1.30 -1.60 -1.54 -1.36 0.07 0.06 0.05 
Below Poverty -1.36 -1.30 -1.15 -1.46 -1.39 -1.21 0.07 0.07 0.05 
Income unknown -0.64 -0.61 -0.53 -0.67 -0.63 -0.54 0.05 0.04 0.01 
Between income 0.0003 0.0003 0.0004 
Total -1.48 -1.43 -1.28 -1.58 -1.52 -1.34 0.07 0.06 0.05 
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Table 3: Formaldehyde outcome distributions, IK , α = 0.25 

Mean EDE Index 

Base Act NAF Base Act NAF Base Act NAF 

Home formaldehyde concentration in 𝜇g/m3 

Black -10.90 -10.58 -9.62 -11.24 -10.84 -9.70 0.34 0.26 0.08 
Hispanic -10.96 -10.63 -9.66 -11.37 -10.96 -9.80 0.41 0.32 0.13 
Native American -10.54 -10.27 -9.49 -10.81 -10.47 -9.58 0.27 0.21 0.08 
White -10.73 -10.45 -9.62 -11.05 -10.70 -9.73 0.32 0.26 0.11 
Other -10.96 -10.64 -9.65 -11.31 -10.90 -9.73 0.34 0.26 0.08 
Between race 0.0002 0.0001 0.0000 
Above Poverty -10.81 -10.52 -9.65 -11.15 -10.79 -9.76 0.34 0.27 0.11 
Below Poverty -10.72 -10.40 -9.48 -11.07 -10.66 -9.56 0.35 0.26 0.09 
Income unknown -10.07 -9.79 -9.00 -10.29 -9.94 -9.03 0.22 0.16 0.03 
Between income 0.0000 0.0000 0.0001 
Total -10.80 -10.50 -9.63 -11.14 -10.77 -9.73 0.34 0.27 0.11 

Eye irritation in cases per 1000 individuals 
Black -5.59 -4.85 -3.16 -6.55 -5.49 -3.40 0.96 0.64 0.24 
Hispanic -5.96 -5.21 -3.42 -7.36 -6.23 -3.92 1.40 1.02 0.50 
Native American -4.87 -4.31 -3.07 -5.68 -4.89 -3.37 0.82 0.58 0.30 
White -5.25 -4.66 -3.26 -6.30 -5.45 -3.67 1.05 0.79 0.41 
Other -5.67 -4.93 -3.17 -6.55 -5.52 -3.38 0.88 0.58 0.20 
Between race 0.0004 0.0002 0.0001 
Above Poverty -5.39 -4.77 -3.28 -6.47 -5.58 -3.69 1.08 0.81 0.41 
Below Poverty -5.65 -4.87 -3.15 -6.77 -5.58 -3.43 1.12 0.72 0.28 
Income unknown -4.71 -4.09 -2.73 -5.08 -4.29 -2.74 0.37 0.20 0.01 
Between income 0.0000 0.0000 0.0000 
Total -5.42 -4.78 -3.26 -6.50 -5.58 -3.65 1.08 0.79 0.39 

Cancer risk in cases per 1,000,000 individuals 
Black -1.32 -1.28 -1.16 -1.38 -1.33 -1.18 0.06 0.05 0.02 
Hispanic -1.43 -1.38 -1.26 -1.50 -1.44 -1.28 0.07 0.06 0.03 
Native American -1.26 -1.23 -1.14 -1.32 -1.27 -1.16 0.05 0.04 0.02 
White -1.14 -1.11 -1.02 -1.20 -1.16 -1.05 0.06 0.05 0.03 
Other -1.34 -1.30 -1.18 -1.40 -1.35 -1.20 0.06 0.05 0.02 
Between race 0.0011 0.0010 0.0007 
Above Poverty -1.19 -1.16 -1.06 -1.26 -1.21 -1.09 0.06 0.05 0.03 
Below Poverty -1.35 -1.31 -1.19 -1.42 -1.37 -1.22 0.07 0.05 0.03 
Income unknown -1.59 -1.55 -1.42 -1.64 -1.58 -1.43 0.04 0.03 0.01 
Between income 0.0003 0.0002 0.0002 
Total -1.22 -1.18 -1.08 -1.28 -1.24 -1.11 0.06 0.05 0.03 

Monetized damages in dollars per person 
Black -1.50 -1.45 -1.28 -1.62 -1.54 -1.33 0.12 0.09 0.05 
Hispanic -1.49 -1.43 -1.27 -1.65 -1.57 -1.35 0.16 0.13 0.08 
Native American -1.45 -1.40 -1.27 -1.56 -1.49 -1.33 0.11 0.09 0.05 
White -1.47 -1.42 -1.28 -1.60 -1.53 -1.35 0.13 0.11 0.06 
Other -1.52 -1.46 -1.29 -1.64 -1.55 -1.34 0.12 0.09 0.05 
Between race 0.0000 0.0000 0.0000 
Above Poverty -1.50 -1.45 -1.30 -1.64 -1.56 -1.37 0.13 0.11 0.06 
Below Poverty -1.36 -1.30 -1.15 -1.48 -1.40 -1.20 0.12 0.09 0.05 
Income unknown -0.64 -0.61 -0.53 -0.65 -0.62 -0.53 0.01 0.01 0.00 
Between income 0.0003 0.0003 0.0003 
Total -1.48 -1.43 -1.28 -1.61 -1.54 -1.34 0.13 0.11 0.06 
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Consider the outcome of eye irritation risk for example. Using IA−, under the statutory 

standards, society would be willing to accept at most 6 additional cases per thousand to have 

a perfectly equal distribution across the population. The stricter NAF standard is even more 

equitable; society would only be willing to accept 4 more cases per thousand. Both options are 

more equitable than the baseline. Looking across race and income, we find similar results. Equity 

improves most for Black, Hispanic, and Below poverty. 

In addition, the last line in Table 3, for example, shows that a society that does not care about 

equity would be willing to pay 5 cents per capita to move from baseline to the standards required 

by the Act, and an additional 15 cents to achieve the NAF outcome. In contrast, a society with 

Kolm-Pollak preferences parameterized at α = 0.25 would be willing to charge each person at 

most 7 cents and an additional 20 cents, respectively to attain the Act and NAF standards.30 For 

IA−, the social willingness to pay is respectively 6 and 24 cents per person.31 

The final three columns allow one to analyze the equity of the distribution independent of the 

mean. This information is useful for cases in which RL or AL curves intersect. For example, it is 

not clear from Figure 13 whether the Hispanic or White group has a more equitable distribution of 

cancer risk using IK . Table 3 shows that the equity of the White distribution dominates the other 

racial groups for this outcome.32 Similarly, although the AL curves intersect in Figure 13 Above 

Poverty dominates Below Poverty using IK . For IK , using Eq. (10), the total willingness to pay, 

in units of the outcome variable, to move from one policy scenario to another for any population 

33group can easily be decomposed into ΔΞm = Δx̄m − ΔIK
m .K 

Inequality indexes allow one to gauge not only the relative inequality of a distribution of 

outcomes within each group, but also to use the Blackorby, Donaldson, and Auersperg (1981) 

approach to evaluate inequality across demographic groups. The Between Race and Between 

30The fact that IK does not change by adding a constant to each individual outcome allows this comparison. That 
is, ΞK (x − c1) = ΞK (x) − c. 

31For social preferences consistent with IA−, the finance mechanism that would not alter the current income 
distribution would be to charge everyone a fixed proportion of their income such that the average charge is equal 
to the per capita willingness to pay figures. 

32Appendix Tables A.3 and A.4 show that this result is not sensitive to α . 
33For IA−, this decomposition is less intuitive, the change in EDE from policy 1 to policy 2 is ΔΞm = Δx̄m +A− 

x̄m2Im − x̄m1Im 
2A− 1A−. 
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Income lines identify the remaining inequality for the total population if each member of each
 

population group were to receive that group’s EDE outcome rather than her actual outcome. For 

IK , we see that inter-group inequality has small declines as the standards become more stringent. 

For IA− the pattern is similar, with declines in inter-race inequality being more pronounced than 

the the declines in inter-income inequality. 

5 Conclusion 

Inequality indexes and their associated social evaluation functions are useful tools for 

characterizing distributions of adverse environmental or health outcomes. Grounded on an 

internally consistent set of social preferences that satisfy reasonable properties, they provide a 

transparent method for ranking outcomes of alternative policy options that takes entire distributions 

into account, not just means. They also facilitate easy comparisons of distributions of outcomes 

both within and across population groupings of EJ concern. 

Their ability to provide normatively meaningful rankings provides clear advantages over other 

statistics (variance, correlations, regression coefficients, etc.) for benefit-cost analysis. However, 

inequality indexes may also have value as descriptive statistics presented in other analytical 

contexts. Empirical studies (e.g., Banzhaf and Walsh, 2008; Gamper-Rabindran and Timmins, 

2011) have begun to examine the effects of environmental quality on residential sorting, for 

example. Presentation of EDEs and inter-group inequality measures over time for the analyzed 

outcomes (e.g., toxic releases, or proximity to Superfund sites) could provide the reader with more 

context as to the overall degree to which the distributions within and across groups changed during 

the period of study. 

Similarly, other econometric research (for a recent example, see Fowlie, Holland, and Mansur, 

2012) has examined the degree to which race or income is a predictor of increased exposure to 

pollution under alternative policy scenarios. In such studies, inclusion of EDEs could provide a 

sense of which population groups have the least desirable distributions under each policy before 

controlling for other factors. Inequality indexes for different demographic groups could also 
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provide clues as to the whether exposure becomes more concentrated under different policies.
 

It may be of little solace to community leaders to learn that their ethnicity was not a statistically 

significant predictor of changes in exposure from one policy to another, for example, if it were 

due to the fact that the second policy caused a regressive reallocation of exposure within the 

community. 

Caution should be exercised, however, when using inequality indexes designed for analyzing 

the distribution of income to examine environmental or health outcomes. In particular, the standard 

Atkinson index loses its desirable properties if used to analyze distributions of bads rather 

than goods. We have shown how to transform this index in a manner that permits analysis of 

distributions consisting only of bads. It is important to note that this transformation does not allow 

the analysis of outcome vectors that contain both goods and bads. Although the example considered 

here focused exclusively on bad outcomes, in principle one may want to analyze distributions 

of an outcome vector that could take positive or negative values (e.g., a money metric welfare 

indicator that subtracts environmental harm from monetary income). The Kolm-Pollak index, 

although rarely used even in the context of income distribution, would be particularly useful in 

such contexts as it easily accommodates all real-valued outcome vectors. 

As an illustrative example, we apply the inequality index approach, alongside Lorenz curve 

analysis, to evaluate the distributional consequences of recent legislation setting emission standards 

for formaldehyde released from composite wood products. This statute provides an interesting 

case study since it was partly motivated by concern for poor and minority communities exposed to 

formaldehyde in emergency trailers. Since indoor formaldehyde levels tend to be highest in new 

and newly remodeled homes, however, it may have been the case that less economically advantaged 

groups would not benefit from the standards. 

Using data generated from a hybrid engineering/epidemiological/valuation model developed by 

the EPA, we analyzed the baseline distribution of formaldehyde emissions, two health outcomes, 

and the monetized value of health outcomes under three policy scenarios. Results suggest that at 

baseline, individuals above poverty indeed had worse distributions of formaldehyde concentrations 
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and monetized health losses, but that people below poverty had worse distributions of undiscounted 

health outcomes (cases of eye irritation and cancer). In terms of race, Hispanics generally fared the 

worst for all outcomes, and Native Americans fared the best. 

We found no tradeoffs between gross benefits and equity; stricter standards resulted in 

more equal distributions for each outcome and demographic group. Moreover, stricter standards 

increased equity both within and between population groups. 

If one is willing to make the assumption (common in applied benefit-cost analysis) that 

marginal willingness-to-pay to avoid an adverse health outcome is constant, one can compare the 

change in EDE with the per capita change in cost to determine whether the incremental benefits 

of a policy alternative, adjusted for equity, are worth the incremental cost. Due to the increased 

equity of the distribution, the legislated standards pass a benefit-cost test if per-capita costs are 

less than 7 cents per person using Kolm-Pollak preferences with an inequality aversion parameter 

of 0.25 versus 5 cents using preferences that do not value equity (i.e., with an inequality aversion 

parameter of zero). 

EDE values depend upon the choice of inequality aversion parameter. As such it is standard 

practice in the income distribution literature to present results for a range of values. Since the 

parameter value can theoretically range from zero to infinity, a useful path for future research 

would be to undertake stated and revealed preference studies to better identify a reasonable range 

for this value in the context of social preferences over bads.34 

Finally, here we focused on the point estimate of the EDE. Another path for future research 

would be to develop a better understanding of the statistical properties of the Kolm-Pollak index 

and EDE to enable analysts to develop confidence intervals and hypothesis tests using modeled 

data.35 

34For experimental and survey evidence regarding inequality aversion parameter values for income see Amiel, 
Creedy, and Hurn (1999) and Pirtillä and Uusitalo (2010), among others. 

35See Cowell (1989) and Thistle (1990) for derivation of sampling variance for the Atkinson index. 
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Appendix 

Table A.1: Formaldehyde outcome distributions, IA−, α = 0.10 

Mean EDE Index 

Base Act NAF Base Act NAF Base Act NAF 

Home formaldehyde concentration in 𝜇g/m3 

Black -10.90 -10.58 -9.62 -10.99 -10.65 -9.64 0.01 0.01 0.00 
Hispanic -10.96 -10.63 -9.66 -11.05 -10.71 -9.69 0.01 0.01 0.00 
Native American -10.54 -10.27 -9.49 -10.61 -10.32 -9.51 0.01 0.01 0.00 
White -10.73 -10.45 -9.62 -10.81 -10.51 -9.64 0.01 0.01 0.00 
Other -10.96 -10.64 -9.65 -11.05 -10.71 -9.67 0.01 0.01 0.00 
Between race 0.0101 0.0083 0.0036 
Above Poverty -10.81 -10.52 -9.65 -10.90 -10.59 -9.68 0.01 0.01 0.00 
Below Poverty -10.72 -10.40 -9.48 -10.80 -10.47 -9.50 0.01 0.01 0.00 
Income unknown -10.07 -9.79 -9.00 -10.13 -9.84 -9.01 0.01 0.01 0.00 
Between income 0.0000 0.0000 0.0000 
Total -10.80 -10.50 -9.63 -10.88 -10.57 -9.65 0.01 0.01 0.00 

Eye irritation in cases per 1000 individuals 
Black -5.59 -4.85 -3.16 -6.16 -5.28 -3.30 0.10 0.09 0.04 
Hispanic -5.96 -5.21 -3.42 -6.65 -5.75 -3.67 0.12 0.10 0.07 
Native American -4.87 -4.31 -3.07 -5.32 -4.66 -3.22 0.09 0.08 0.05 
White -5.25 -4.66 -3.26 -5.79 -5.10 -3.46 0.10 0.09 0.06 
Other -5.67 -4.93 -3.17 -6.23 -5.35 -3.30 0.10 0.09 0.04 
Between race 0.1355 0.1218 0.0769 
Above Poverty -5.39 -4.77 -3.28 -5.95 -5.22 -3.49 0.10 0.09 0.06 
Below Poverty -5.65 -4.87 -3.15 -6.26 -5.32 -3.30 0.11 0.09 0.05 
Income unknown -4.71 -4.09 -2.73 -5.10 -4.36 -2.77 0.08 0.07 0.02 
Between income 0.0000 0.0000 0.0000 
Total -5.42 -4.78 -3.26 -5.99 -5.23 -3.46 0.10 0.09 0.06 

Cancer risk in cases per 1,000,000 individuals 
Black -1.32 -1.28 -1.16 -1.34 -1.30 -1.17 0.02 0.02 0.01 
Hispanic -1.43 -1.38 -1.26 -1.45 -1.40 -1.27 0.02 0.01 0.01 
Native American -1.26 -1.23 -1.14 -1.28 -1.25 -1.15 0.02 0.01 0.01 
White -1.14 -1.11 -1.02 -1.16 -1.13 -1.03 0.02 0.02 0.02 
Other -1.34 -1.30 -1.18 -1.36 -1.32 -1.19 0.02 0.02 0.01 
Between race 0.0322 0.0304 0.0255 
Above Poverty -1.19 -1.16 -1.06 -1.22 -1.19 -1.08 0.02 0.02 0.02 
Below Poverty -1.35 -1.31 -1.19 -1.38 -1.33 -1.21 0.02 0.02 0.01 
Income unknown -1.59 -1.55 -1.42 -1.60 -1.56 -1.43 0.01 0.01 0.00 
Between income 0.0001 0.0001 0.0001 
Total -1.22 -1.18 -1.08 -1.24 -1.21 -1.10 0.02 0.02 0.02 

Monetized damages in dollars per person 
Black -1.50 -1.45 -1.28 -1.54 -1.48 -1.30 0.03 0.02 0.02 
Hispanic -1.49 -1.43 -1.27 -1.54 -1.47 -1.30 0.03 0.03 0.02 
Native American -1.45 -1.40 -1.27 -1.48 -1.43 -1.29 0.02 0.02 0.02 
White -1.47 -1.42 -1.28 -1.51 -1.46 -1.31 0.03 0.02 0.02 
Other -1.52 -1.46 -1.29 -1.56 -1.49 -1.31 0.03 0.02 0.02 
Between race 0.0370 0.0344 0.0276 
Above Poverty -1.50 -1.45 -1.30 -1.54 -1.49 -1.33 0.03 0.02 0.02 
Below Poverty -1.36 -1.30 -1.15 -1.40 -1.33 -1.17 0.03 0.03 0.02 
Income unknown -0.64 -0.61 -0.53 -0.65 -0.61 -0.53 0.02 0.01 0.01 
Between income 0.0001 0.0001 0.0002 
Total -1.48 -1.43 -1.28 -1.52 -1.46 -1.30 0.03 0.02 0.02 
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Table A.2: Formaldehyde outcome distributions, IA−, α = 0.50 

Mean EDE Index 

Base Act NAF Base Act NAF Base Act NAF 

Home formaldehyde concentration in 𝜇g/m3 

Black -10.90 -10.58 -9.62 -11.40 -10.97 -9.75 0.05 0.04 0.01 
Hispanic -10.96 -10.63 -9.66 -11.52 -11.09 -9.85 0.05 0.04 0.02 
Native American -10.54 -10.27 -9.49 -10.93 -10.57 -9.61 0.04 0.03 0.01 
White -10.73 -10.45 -9.62 -11.18 -10.81 -9.77 0.04 0.03 0.02 
Other -10.96 -10.64 -9.65 -11.47 -11.04 -9.77 0.05 0.04 0.01 
Between race 0.0519 0.0430 0.0186 
Above Poverty -10.81 -10.52 -9.65 -11.29 -10.90 -9.81 0.04 0.04 0.02 
Below Poverty -10.72 -10.40 -9.48 -11.22 -10.79 -9.60 0.05 0.04 0.01 
Income unknown -10.07 -9.79 -9.00 -10.44 -10.07 -9.06 0.04 0.03 0.01 
Between income 0.0000 0.0000 0.0000 
Total -10.80 -10.50 -9.63 -11.27 -10.89 -9.78 0.04 0.04 0.02 

Eye irritation in cases per 1000 individuals 
Black -5.59 -4.85 -3.16 -9.54 -7.91 -4.42 0.71 0.63 0.40 
Hispanic -5.96 -5.21 -3.42 -10.78 -9.19 -5.60 0.81 0.76 0.64 
Native American -4.87 -4.31 -3.07 -8.22 -7.01 -4.51 0.69 0.63 0.47 
White -5.25 -4.66 -3.26 -9.20 -7.96 -5.12 0.75 0.71 0.57 
Other -5.67 -4.93 -3.17 -9.49 -7.88 -4.30 0.67 0.60 0.36 
Between race 0.7139 0.6577 0.4772 
Above Poverty -5.39 -4.77 -3.28 -9.44 -8.15 -5.14 0.75 0.71 0.57 
Below Poverty -5.65 -4.87 -3.15 -9.93 -8.15 -4.54 0.76 0.67 0.44 
Income unknown -4.71 -4.09 -2.73 -7.32 -5.91 -3.01 0.55 0.45 0.10 
Between income 0.0001 0.0001 0.0006 
Total -5.42 -4.78 -3.26 -9.50 -8.14 -5.06 0.75 0.70 0.55 

Cancer risk in cases per 1,000,000 individuals 
Black -1.32 -1.28 -1.16 -1.44 -1.38 -1.22 0.09 0.08 0.05 
Hispanic -1.43 -1.38 -1.26 -1.54 -1.48 -1.31 0.08 0.07 0.05 
Native American -1.26 -1.23 -1.14 -1.37 -1.32 -1.20 0.08 0.07 0.05 
White -1.14 -1.11 -1.02 -1.27 -1.22 -1.10 0.11 0.11 0.08 
Other -1.34 -1.30 -1.18 -1.46 -1.40 -1.24 0.09 0.08 0.05 
Between race 0.1753 0.1660 0.1397 
Above Poverty -1.19 -1.16 -1.06 -1.32 -1.28 -1.14 0.11 0.10 0.08 
Below Poverty -1.35 -1.31 -1.19 -1.47 -1.42 -1.26 0.09 0.08 0.05 
Income unknown -1.59 -1.55 -1.42 -1.65 -1.59 -1.44 0.04 0.03 0.01 
Between income 0.0004 0.0004 0.0003 
Total -1.22 -1.18 -1.08 -1.34 -1.30 -1.16 0.10 0.10 0.07 

Monetized damages in dollars per person 
Black -1.50 -1.45 -1.28 -1.71 -1.62 -1.39 0.14 0.12 0.09 
Hispanic -1.49 -1.43 -1.27 -1.74 -1.65 -1.41 0.16 0.15 0.11 
Native American -1.45 -1.40 -1.27 -1.63 -1.56 -1.38 0.13 0.11 0.09 
White -1.47 -1.42 -1.28 -1.68 -1.61 -1.41 0.14 0.13 0.10 
Other -1.52 -1.46 -1.29 -1.73 -1.64 -1.40 0.14 0.13 0.09 
Between race 0.1969 0.1834 0.1472 
Above Poverty -1.50 -1.45 -1.30 -1.72 -1.64 -1.43 0.14 0.13 0.10 
Below Poverty -1.36 -1.30 -1.15 -1.57 -1.49 -1.27 0.16 0.14 0.10 
Income unknown -0.64 -0.61 -0.53 -0.70 -0.66 -0.55 0.11 0.08 0.03 
Between income 0.0005 0.0006 0.0007 
Total -1.48 -1.43 -1.28 -1.70 -1.62 -1.41 0.14 0.13 0.10 
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Table A.3: Formaldehyde outcome distributions, IK , α = 0.10 

Mean EDE Index 

Base Act NAF Base Act NAF Base Act NAF 

Home formaldehyde concentration in 𝜇g/m3 

Black -10.90 -10.58 -9.62 -11.02 -10.67 -9.65 0.12 0.09 0.03 
Hispanic -10.96 -10.63 -9.66 -11.10 -10.75 -9.71 0.14 0.11 0.04 
Native American -10.54 -10.27 -9.49 -10.63 -10.34 -9.52 0.09 0.07 0.03 
White -10.73 -10.45 -9.62 -10.84 -10.54 -9.65 0.11 0.09 0.04 
Other -10.96 -10.64 -9.65 -11.09 -10.73 -9.68 0.12 0.09 0.03 
Between race 0.0001 0.0000 0.0000 
Above Poverty -10.81 -10.52 -9.65 -10.93 -10.61 -9.69 0.12 0.09 0.04 
Below Poverty -10.72 -10.40 -9.48 -10.84 -10.49 -9.51 0.12 0.09 0.03 
Income unknown -10.07 -9.79 -9.00 -10.15 -9.84 -9.01 0.08 0.06 0.01 
Between income 0.0000 0.0000 0.0000 
Total -10.80 -10.50 -9.63 -10.92 -10.60 -9.66 0.12 0.09 0.04 

Eye irritation in cases per 1000 individuals 
Black -5.59 -4.85 -3.16 -5.89 -5.06 -3.23 0.30 0.21 0.07 
Hispanic -5.96 -5.21 -3.42 -6.39 -5.53 -3.57 0.43 0.32 0.15 
Native American -4.87 -4.31 -3.07 -5.11 -4.49 -3.16 0.25 0.18 0.09 
White -5.25 -4.66 -3.26 -5.57 -4.91 -3.38 0.32 0.25 0.12 
Other -5.67 -4.93 -3.17 -5.95 -5.12 -3.24 0.28 0.19 0.06 
Between race 0.0001 0.0001 0.0000 
Above Poverty -5.39 -4.77 -3.28 -5.72 -5.02 -3.41 0.33 0.25 0.12 
Below Poverty -5.65 -4.87 -3.15 -6.00 -5.10 -3.24 0.35 0.23 0.08 
Income unknown -4.71 -4.09 -2.73 -4.84 -4.17 -2.73 0.13 0.08 0.01 
Between income 0.0000 0.0000 0.0000 
Total -5.42 -4.78 -3.26 -5.75 -5.03 -3.38 0.33 0.25 0.12 

Cancer risk in cases per 1,000,000 individuals 
Black -1.32 -1.28 -1.16 -1.34 -1.30 -1.17 0.02 0.02 0.01 
Hispanic -1.43 -1.38 -1.26 -1.45 -1.40 -1.27 0.03 0.02 0.01 
Native American -1.26 -1.23 -1.14 -1.28 -1.25 -1.15 0.02 0.02 0.01 
White -1.14 -1.11 -1.02 -1.16 -1.12 -1.03 0.02 0.02 0.01 
Other -1.34 -1.30 -1.18 -1.37 -1.32 -1.19 0.02 0.02 0.01 
Between race 0.0004 0.0004 0.0003 
Above Poverty -1.19 -1.16 -1.06 -1.22 -1.18 -1.07 0.02 0.02 0.01 
Below Poverty -1.35 -1.31 -1.19 -1.38 -1.33 -1.20 0.02 0.02 0.01 
Income unknown -1.59 -1.55 -1.42 -1.61 -1.56 -1.43 0.01 0.01 0.00 
Between income 0.0001 0.0001 0.0001 
Total -1.22 -1.18 -1.08 -1.24 -1.20 -1.09 0.02 0.02 0.01 

Monetized damages in dollars per person 
Black -1.50 -1.45 -1.28 -1.54 -1.48 -1.30 0.04 0.03 0.02 
Hispanic -1.49 -1.43 -1.27 -1.54 -1.48 -1.29 0.05 0.04 0.02 
Native American -1.45 -1.40 -1.27 -1.49 -1.43 -1.29 0.03 0.03 0.02 
White -1.47 -1.42 -1.28 -1.51 -1.46 -1.30 0.04 0.03 0.02 
Other -1.52 -1.46 -1.29 -1.56 -1.49 -1.31 0.04 0.03 0.02 
Between race 0.0000 0.0000 0.0000 
Above Poverty -1.50 -1.45 -1.30 -1.55 -1.49 -1.32 0.04 0.04 0.02 
Below Poverty -1.36 -1.30 -1.15 -1.40 -1.33 -1.17 0.04 0.03 0.02 
Income unknown -0.64 -0.61 -0.53 -0.64 -0.61 -0.53 0.01 0.00 0.00 
Between income 0.0001 0.0001 0.0001 
Total -1.48 -1.43 -1.28 -1.52 -1.46 -1.30 0.04 0.03 0.02 
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Table A.4: Formaldehyde outcome distributions, IK , α = 0.50 

Mean EDE Index 

Base Act NAF Base Act NAF Base Act NAF 

Home formaldehyde concentration in 𝜇g/m3 

Black -10.90 -10.58 -9.62 -11.77 -11.23 -9.84 0.86 0.65 0.22 
Hispanic -10.96 -10.63 -9.66 -12.04 -11.49 -10.05 1.08 0.86 0.38 
Native American -10.54 -10.27 -9.49 -11.24 -10.80 -9.73 0.70 0.54 0.24 
White -10.73 -10.45 -9.62 -11.58 -11.13 -9.93 0.85 0.68 0.32 
Other -10.96 -10.64 -9.65 -11.81 -11.28 -9.85 0.85 0.64 0.20 
Between race 0.0006 0.0004 0.0001 
Above Poverty -10.81 -10.52 -9.65 -11.70 -11.23 -9.97 0.88 0.71 0.32 
Below Poverty -10.72 -10.40 -9.48 -11.62 -11.07 -9.71 0.90 0.67 0.24 
Income unknown -10.07 -9.79 -9.00 -10.58 -10.14 -9.06 0.51 0.36 0.06 
Between income 0.0001 0.0001 0.0002 
Total -10.80 -10.50 -9.63 -11.68 -11.20 -9.93 0.89 0.70 0.31 

Eye irritation in cases per 1000 individuals 
Black -5.59 -4.85 -3.16 -9.18 -6.95 -3.99 3.59 2.10 0.83 
Hispanic -5.96 -5.21 -3.42 -11.63 -8.78 -5.12 5.67 3.58 1.70 
Native American -4.87 -4.31 -3.07 -8.01 -6.23 -4.10 3.14 1.92 1.03 
White -5.25 -4.66 -3.26 -9.35 -7.38 -4.66 4.10 2.72 1.41 
Other -5.67 -4.93 -3.17 -8.76 -6.80 -3.86 3.09 1.87 0.69 
Between race 0.0043 0.0019 0.0007 
Above Poverty -5.39 -4.77 -3.28 -9.59 -7.55 -4.68 4.20 2.77 1.40 
Below Poverty -5.65 -4.87 -3.15 -10.05 -7.25 -4.10 4.40 2.38 0.95 
Income unknown -4.71 -4.09 -2.73 -5.63 -4.56 -2.76 0.92 0.47 0.03 
Between income 0.0004 0.0002 0.0003 
Total -5.42 -4.78 -3.26 -9.63 -7.50 -4.60 4.21 2.72 1.33 

Cancer risk in cases per 1,000,000 individuals 
Black -1.32 -1.28 -1.16 -1.48 -1.40 -1.21 0.16 0.12 0.05 
Hispanic -1.43 -1.38 -1.26 -1.61 -1.53 -1.33 0.18 0.15 0.07 
Native American -1.26 -1.23 -1.14 -1.39 -1.33 -1.19 0.13 0.10 0.06 
White -1.14 -1.11 -1.02 -1.28 -1.23 -1.09 0.15 0.12 0.07 
Other -1.34 -1.30 -1.18 -1.49 -1.42 -1.23 0.15 0.12 0.05 
Between race 0.0025 0.0021 0.0013 
Above Poverty -1.19 -1.16 -1.06 -1.35 -1.29 -1.13 0.15 0.13 0.07 
Below Poverty -1.35 -1.31 -1.19 -1.52 -1.44 -1.25 0.17 0.13 0.06 
Income unknown -1.59 -1.55 -1.42 -1.69 -1.62 -1.44 0.10 0.07 0.01 
Between income 0.0006 0.0005 0.0003 
Total -1.22 -1.18 -1.08 -1.37 -1.31 -1.15 0.15 0.13 0.07 

Monetized damages in dollars per person 
Black -1.50 -1.45 -1.28 -1.89 -1.74 -1.44 0.39 0.30 0.15 
Hispanic -1.49 -1.43 -1.27 -2.08 -1.90 -1.54 0.59 0.47 0.27 
Native American -1.45 -1.40 -1.27 -1.82 -1.69 -1.46 0.37 0.29 0.18 
White -1.47 -1.42 -1.28 -1.92 -1.79 -1.50 0.45 0.36 0.22 
Other -1.52 -1.46 -1.29 -1.89 -1.74 -1.43 0.37 0.28 0.14 
Between race 0.0004 0.0003 0.0001 
Above Poverty -1.50 -1.45 -1.30 -1.97 -1.83 -1.53 0.46 0.38 0.22 
Below Poverty -1.36 -1.30 -1.15 -1.77 -1.61 -1.32 0.41 0.31 0.17 
Income unknown -0.64 -0.61 -0.53 -0.67 -0.63 -0.53 0.03 0.02 0.00 
Between income 0.0010 0.0010 0.0008 
Total -1.48 -1.43 -1.28 -1.94 -1.80 -1.50 0.46 0.37 0.22 
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