Quantification of NOx Reductions for Local Use of Diesel Cetane Additives

David Korotney
Office of Transportation and Air Quality

Mobile Source Technical Review Subcommittee

December 3, 2003

Interest in Cetane Additives

- EPA Technical Report:
- Cetane additive benefits listed as a "verified technology"
- Several areas have expressed interest in cetane additive programs
- Quantification of NOx reductions not necessarily as simple as might be expected

nited States svironmental Protection geory

Vir and Radiation

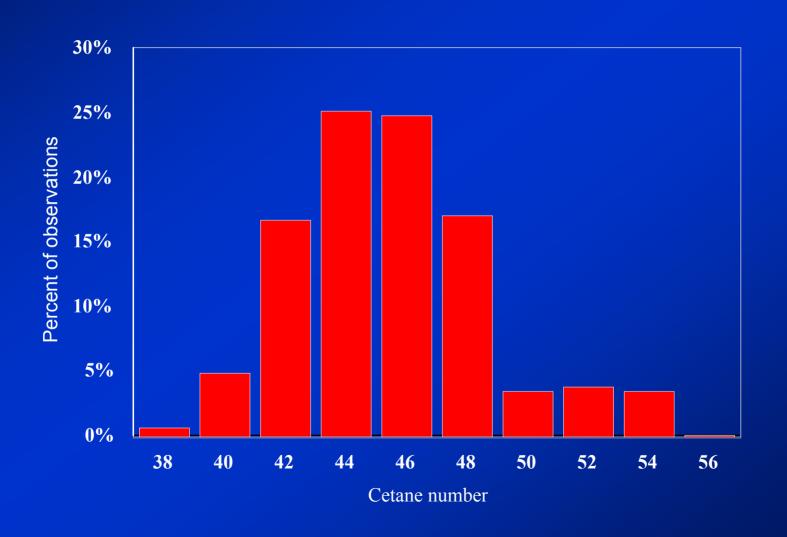
EPA420-R-03-0 February 2003

≎FPA

The Effect of Cetane Number Increase Due to Additives on NOx Emissions from Heavy-Duty Highway Engines

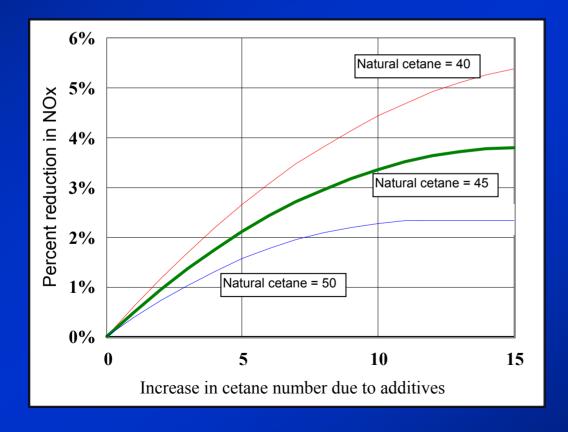
Final Technical Report

Printed on Recycled Pap


Proposals for Quantification

Clean Air Action Corporation Infineum USA

What Is Cetane?


- Measure of diesel fuel ignition quality
 - Scale of autoignitability
- Can be changed "naturally" or via additives
 - Most common additives are 2-ethylhexyl nitrate and ditertiary butyl peroxide
- Primary test method is ASTM D613

In-Use Cetane Numbers

EPA Technical Report

```
% change in NOx = \{ \exp[ -0.015151 \times (additized cetane) + 0.000169 \times (additized cetane)^2 + 0.000223 \times (additized cetane) \times (natural cetane) ] - 1 \} \times 100\%
```


A "typical" cetane increase of 5 numbers will produce a 2.1% reduction in NOx

Program Purpose and Design Impacts NOx Ton Calculations

- Voluntary versus mandatory programs
- SIP credit versus trading programs

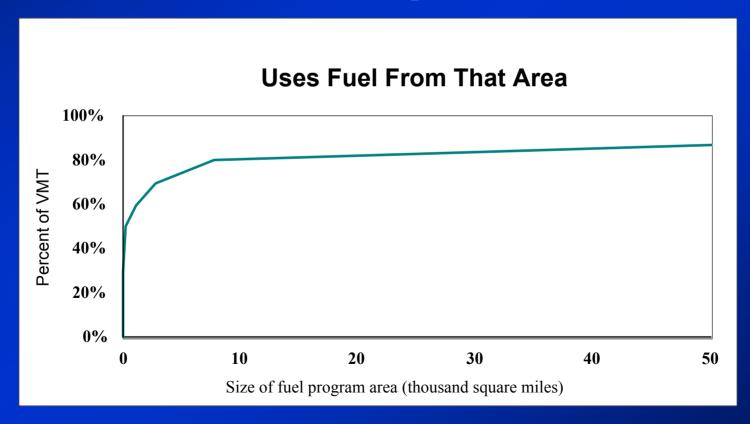
Quantification Issues

- Applicable engine technologies and applications
- Proxy properties
- Price aversion
- Vehicle migration
- Volume tracking

Applicable Engine Technologies and Applications

- Cetane-insensitive engines
 - Short of more/better data, 2003+ MY highway engines are assumed to get no NOx benefit
 - By 2007, only 65% of NOx benefits can be verified
- 2-Stroke engines
 - Negligible fraction of in-use fleet, but
 - No NOx benefit, so specific fleets must be scrutinized
- Nonroad engines
 - No cetane data on nonroad
 - A portion of nonroad fuel ends up in heaters

Proxy Properties


- "Proper" method is to measure cetane number using ASTM D613
- Cetane index may be a valid alternative, but there is a verifiable bias
 - Only relevant for base cetane measurements
- Measuring additive concentration may also be valid, but one must have cetane response function and verify the absence of bias
 - Additive concentration must be measured for actual additized fuel, not a laboratory blend

Price Aversion

- Vehicle owners may avoid higher-priced fuel
- Concept seems reasonable, but quantification is difficult
 - Verifiable but small shift from premium gasoline to regular when prices go up
- Prior work on California diesel fuel showed no obvious impact on consumption rates when their clean diesel regs went into effect
- Attempts to correlate jumps in state fuel taxes with consumption in those states were unsuccessful

Vehicle Migration

 Many diesel trucks travel long distances, so that the NOx benefits of cetane additives may not occur in or near the area where the additized fuel was dispensed

Volume Tracking

- Need to verify that the additized fuel is delivered to the area that needs the NOx benefits
 - More difficult in a voluntary program than in a mandatory program
- Location of cetane improver additive injection equipment is a factor in determining whether the additized fuel is being dispensed where the NOx benefits are needed

Tons Calculations

- States generate inventories by vehicle type/class for specific areas
- Tons of NOx reduced can be calculated by applying the % reduction in NOx to these inventories
 - Need to account for volume fraction of the fuel that is additized for the area in question

Thank you

Questions or comments?