Overview of U.S. DOE EERE Fuel Cell Program

William M. Swift Argonne National Laboratory

FACA Meeting
Oct. 16
Detroit, MI

Presentation Outline

- New EERE Organization: The Hydrogen, Fuel Cells, and Infrastructure Program
- FreedomCAR
- Fuel Cell and Hydrogen R&D Activities
- Hydrogen Vision/Roadmap
- Fuel Cell Report to Congress

Hydrogen and Fuel Cells are a High Priority within EERE

National Energy Policy:

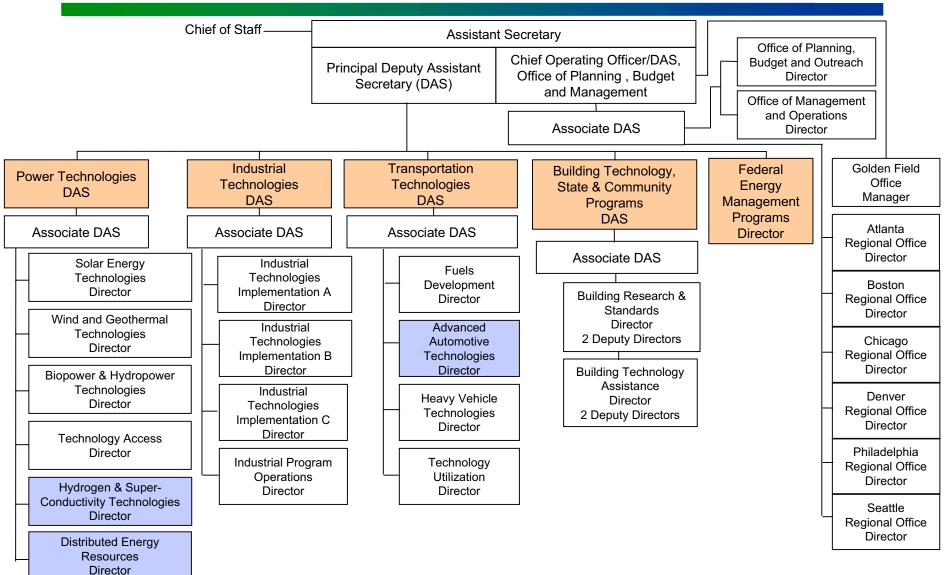
Directs the Secretary Of Energy "to develop next generation technology including hydrogen...

"Focus research and development efforts on integrating current programs regarding hydrogen, fuel cells, and distribution...

"The President's Plan directs us to explore the possibility of a hydrogen economy...."

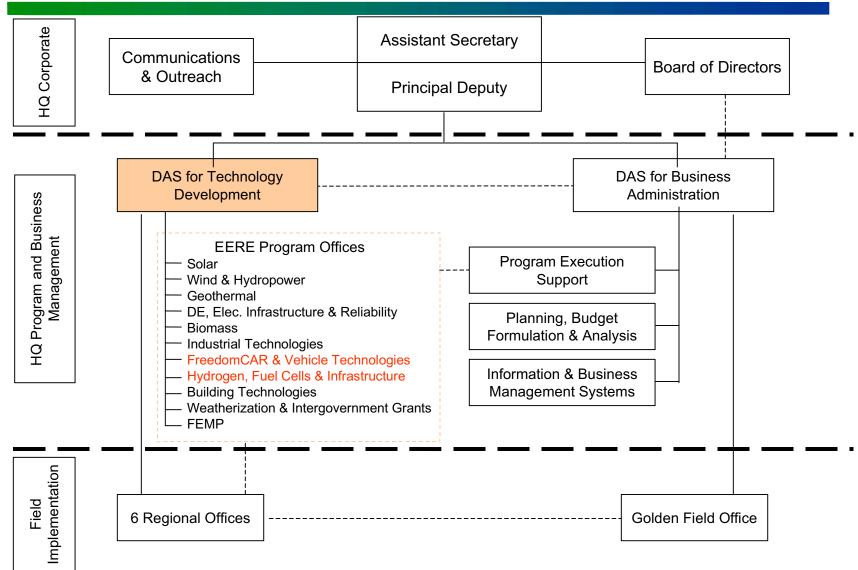
Spencer Abraham, Secretary of Energy

Hydrogen and Fuel Cells Program R&D Priorities


- Hydrogen Storage
- Hydrogen Production
- Fuel Cell Cost Reduction

Safety & Codes/Standards, Education, and Vehicle/Infrastructure Testing and Validation will be areas which receive much greater attention

EERE Reorganization


The Previous "Market Sector" Model

EERE Reorganization

A New Integrated and Focused Model

Hydrogen, Fuel Cells and Infrastructure Technologies Program

Steve Chalk, Program Manager Tia Alexander, Administrative Support

Technology Validation Manager - Sigmund Gronich

Education and Outreach - *Christy Cooper

Safety and Codes/Standards - Neil Rossmeissl

Hydrogen Production

Chris Bordeaux
Roxanne Danz
Peter Devlin
Matt Kauffman
*Arlene Anderson
*Mark Paster

Hydrogen Storage

JoAnn Milliken
1-2 Potential
Vacancies

Fuel Cells

Patrick Davis
Donna Ho
*Valri Lightner
*John Garbak
*Kathi Epping
*Nancy Garland

White House Vehicle Technology Event February 25, 2002

"We happen to believe that fuel cells ... offer incredible opportunity. Now, there's a lot of obstacles that must be overcome in order to make fuel cells economically viable. And, therefore, we're promoting more research and development. In January, Secretary Abraham announced a \$150 million FreedomCAR plan, focused on development of fuel cell technologies that run on hydrogen, whose only emission is water vapor."

President Bush

Fuel Cells for Transportation

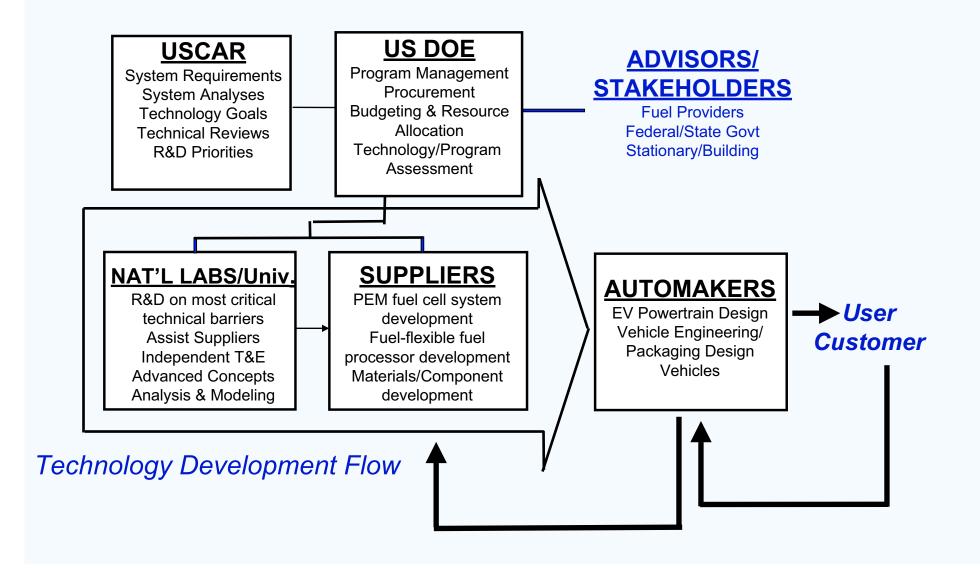
Our goal is to develop highly efficient, low- or zero-emission costcompetitive automotive fuel cell power system technologies that operate on conventional and alternative fuels

The FreedomCAR Partnership

January 9, 2002
Secretary Abraham
Announces the
FreedomCAR Partnership

The CAR in FreedomCAR is Cooperative Automotive Research

The Partners are:


- U.S. Department of Energy
- U.S. Council for Automotive Research

- Develop technologies to enable mass production of affordable hydrogen-powered fuel cell vehicles and assure the hydrogen infrastructure to support them.
- Continue support for hybrid technologies and advanced materials that can dramatically reduce oil consumption and environmental impacts in the nearer term.
- Develop technologies applicable across a wide range of passenger vehicles.

Program Implementation (FreedomCAR Partnership)

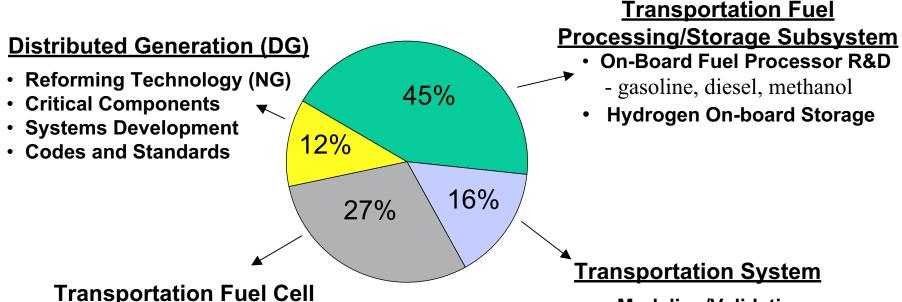
Fuel Cells and Hydrogen -The Critical Challenges

Fuel Cells:

- Cost
- Durability
- Fuel Processing
- Air/Thermal/Water Management
- Codes & Standards

Hydrogen:

- Storage
- Fuel Infrastructure
- Hydrogen Fuel Cost
- Codes & Standards



FY02 EERE Fuel Cell Activities

(Activities Focus on Removing High Risk Technical Barriers)

- **Stack Subsystem**
- Catalyst Loading Reduction
- MEA/Bipolar Plate Manufacturing
- **Durability Studies**

Modeling/Validation

- Cost Analyses
- Ancillary Components (Compressors, Sensors)

R&D is carried out by industry suppliers, national labs and universities.

Fossil Energy Fuel Cell Budget 2002

- SECA \$27.1 MM
- Vision 21 Hybrids \$13.5 MM
- Fuel Cell Systems \$13.5 MM
- Advanced Research \$4.0 MM
- DOD Climate Change \$3.5 MM

FY 2002 EERE Hydrogen Activities

50%

35%

15%

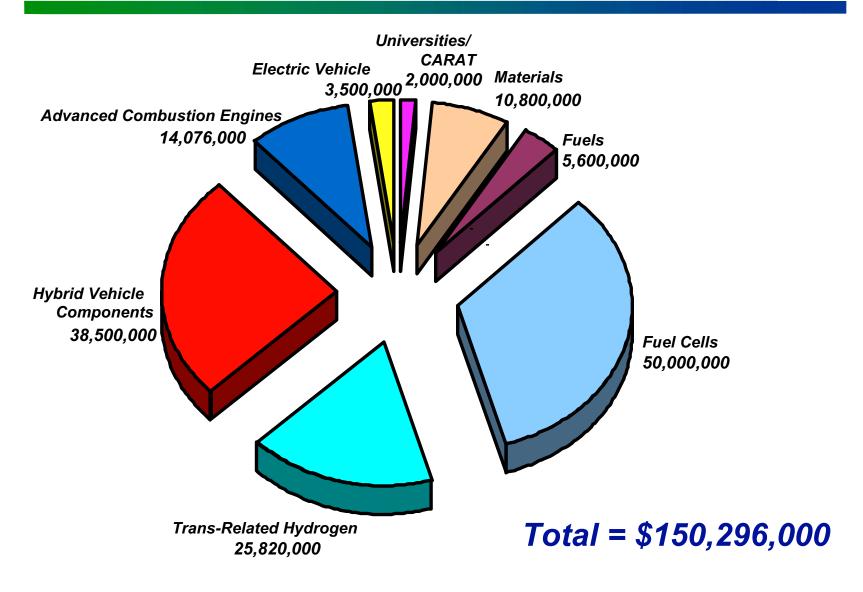
Power Conditione

Analysis and Outreach

- Codes and Standards
- Educational Training
- Tank Standards

Core R&D

- Storage technology
- Hydrogen generation

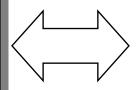

Technology Validation

- Hydrogen refueling station demonstration
- Development of Power Parks concept

FreedomCAR FY 2003 Budget

(Request Reflects Fuel Cell and Hydrogen Priorities)

EERE Fuel Cell and Hydrogen Funding (\$K)


Interior Appropriations										
TRANSPORTATION FUEL CELL R&D	FY 2001	FY 2002	FY 2003 R	eq. Inc	rease					
Systems (8)	7,405	7,600	7,600	0	(0%)					
Components (28)	12,052	12,825	14,900	2,075	(+16%)					
Fuel Processing & Storage (26)	20,806	21,300	24,100	2,800	(+13%)					
Field Evaluations	0	0	3,000	3,000	(New)					
Technical Support Services (5)	400	200	400	200	(+100%)					
TOTAL	40,663	41,925	50,000	8,075	(+19%)					
DISTRIBUTED GENERATION TECH.										
TOTAL, Stationary Fuel Cells	5,440	5,500	7,500	2,000	(+36%)					
Energy & Water Appropriations										
HYDROGEN RESEARCH										
Core Research and Development	14,438	14,426	19,331	4,905	(+34%)					
Technology Validation	9,009	10,320	15,000	4,680	(+45%)					
Analysis and Outreach	3,147	4,437	5,550	1,113	(+25%)					
TOTAL	26,594	29,183	39,881	10,698	(+37%)					

 $(#) = \sim No.$ of Projects in FY 2002

DOE Fuel Cell Related Programs

Office of
Energy Efficiency
and Renewable Energy
(EERE)

Office of Fossil Energy (FE)

Emphasis on low temperature fuel cells

- Transportation Applications
- Distributed Generation (Building Applications)
- Hydrogen Technologies

Emphasis on high temperature fuel cells

- Large Stationary Applications
- Distributed Generation (Grid)

FY 2003 Planned Programmatic Highlights

Transportation:

Continuation of R&D through 30 new cost-shared industry contracts and national laboratories to address key barriers

Field Evaluations - Initiate activity to perform field evaluations of fuel cell vehicles in fleets

Distributed Generation:

Major Procurement to be released in late FY02, awards mid-FY03

Program will continue to focus on critical component and systems development

Hydrogen Program:

Increased efforts in hydrogen storage and infrastructure in support of the FreedomCAR program

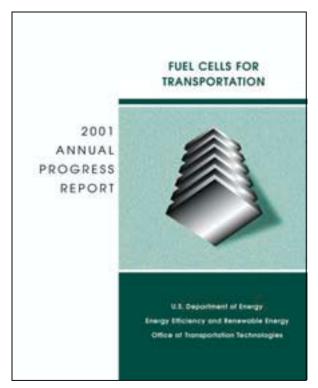
Support for Power Parks and Uninterruptible Power Sources

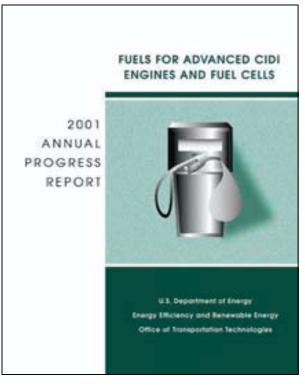
<u>'04 Transportation</u>:

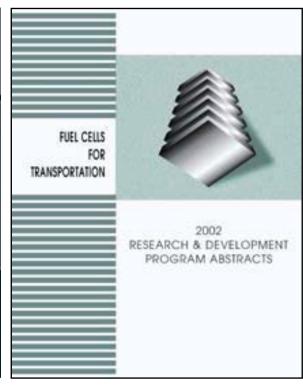
Fuel processing Go/No Go decision

Financial Assistance Solicitation for R&D for Fuel Cells

- Covers both Stationary & Transportation Applications
- Federal Register / Vol. 67, No. 184 / Monday 09/23/02
- Solicitation will be available ~mid-October at: http://e-center.doe.gov
- Applicants must register in DOE's "IIPS" prior to submitting an application
- Applications will be due no later than November 27, 2002 (or ~60 days after solicitation posted)

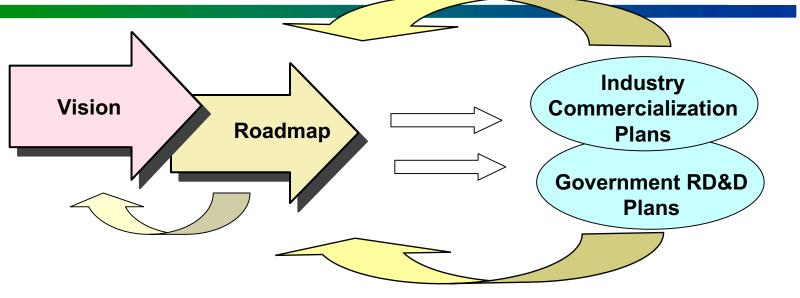

Financial Assistance Solicitation for R&D for Fuel Cells


- Topic areas include, but are not be limited to:
 - development of a stationary PEM fuel cell system for buildings
 - development of a back-up fuel cell system
 - PEM stack durability
 - high-temperature membrane
 - fuel processing
 - fuel cell demonstration
 - platinum recycling
 - development of non-precious metal catalysts
 - fuel cell economic analysis



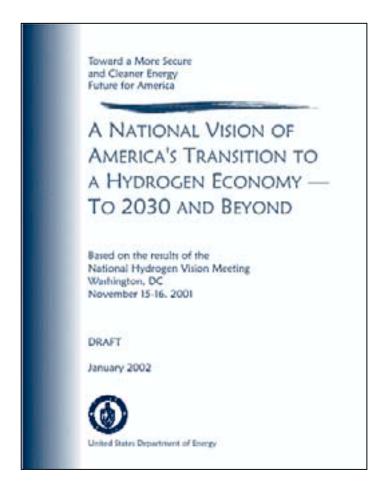
2001 Annual Progress Reports & Program Abstracts

Available at www.cartech.doe.gov



The 2002 Lab Review Presentations of both the Hydrogen Program and the Transportation Fuel Cell Program: www.eren.doe.gov/hydrogen

Complementary DOE Activity: Hydrogen Vision & Roadmap



H ₂ Vision Meeting	▲ November 2001
Roadmap Strategy	▲ December 2001
Circulate Draft H ₂ Vision for Review	▲ Alanuary 2002
Publish Final H ₂ Vision	▲ February 2002
H ₂ Roadmap Meeting	April 2002
Circulate Draft H ₂ Roadmap for Review	May 2002
Publish National H ₂ Roadmap	June 2002

"Hydrogen is America's clean energy choice.

Hydrogen is flexible, affordable, safe, domestically produced, used in all sectors of the economy, and in all regions of the country."

Available at: www.eren.doe.gov/hydrogen/

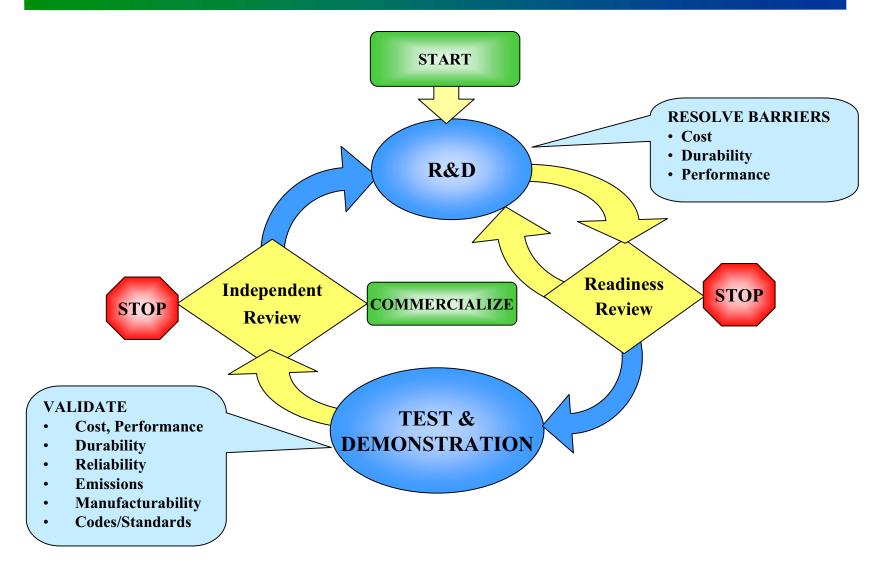
Fuel Cell Report to Congress (FY 2002 Interior Appropriations Bill)

Full Report: "Report... within twelve months... on the technical and economic barriers to the use of fuel cells...recommendations on program adjustments...needed for the commercial use of fuel cells ... by 2012."

Interim Report: "Within <u>six months</u>...an interim assessment that describes the need for public and private cooperative programs to demonstrate the use of fuel cells."

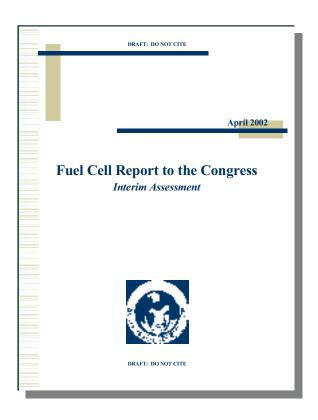
PUBLIC/PRIVATE PARTNERSHIPS ARE NEEDED DUE TO THE MAGNITUDE OF THE TECHNOLOGY CHALLENGES:

- Fundamental R&D hurdles remain, government needs to share risks in realizing the substantial public benefits.
- Test & demonstration of technology is important to validate technology progress and "readiness" for commercialization.
- The government can coordinate transition to a hydrogen infrastructure.
- Government inherently plays an important role in the education and regulatory aspects of fuel cells and hydrogen.


Potential Vehicle & Infrastructure Partnership Demonstration Timeline

2000 2004 2008 2012

	Technical Demon	se 1 Phase 2 Feasibility Controlled Fleet stration Demonstrations		Phase 3 Commercial Readiness Demonstrations		Commercialization Phase		
Vehicles Objective Sites	Test FC vehicle performance and feasibility 1(CaFCP)		Demonstrate use of FC vehicles under real-world conditions		Demonstrate commercial viability of FC Fleet vehicles 2-3 states (networked sites)		Investment to establish manufacturing plants and sales/service	
Number of Vehicles	< 50		1-3 sites (varying climates) ~ 500		~ 5000			
Infrastructure Objective Hydrogen Source	Demonstrate H₂ fueling station Analyze fuel options Primarily trucked in liquid		Onsite generation from multiple feedstocks Renewables and fossil fuels		Sufficient stations to provide consumer convenience Most Cost Effective sources by region		Investment for 25-50% of all stations H ₂ capable	
Number of Stations	~	·3	5-	10	20-30			
Go/No Go Decision Points		Decision Cri	teria:	Decision	Criteria:	Decisio	n Criteria:	
2001 Laboratory Status Fuel Cell Cost = \$325/kW at high volume (on-board reformer), \$200/kW at high volume (hydrogen system), Durability = 1000 hrs, Hydrogen Cost = \$4.50/gallon gasoline equivalent (untaxed)		Phase 1 vehicles achieve 1000 hrs durability, \$200/kW cost (projection based on 500,000 units production). R&D results project 2500 hrs durability, \$125/kW, \$3.00/gallon gasoline equivalent (untaxed), and 145 g/mi greenhouse gases		2500 hrs of \$125/kW of based on a production at \$3.00/g R&D resul hrs durabi \$1.50-\$2.7 gasoline e (untaxed),	Phase 2 vehicles achieve 2500 hrs durability, \$125/kW cost (projection based on 500,000 units production) and hydrogen at \$3.00/gallon. R&D results project 5000 hrs durability, \$45/kW, \$1.50-\$2.10/gallon gasoline equivalent (untaxed), and 120 g/mi greenhouse gases		Based on capability to achieve 5000 hrs durability, \$45/kW cost, \$1.50/gallon gasoline equivalent (untaxed), And 120 g/mi greenhouse gases and other market factors, the decision to enter a commercialization phase will be made by industry.	
R&D Continues	Concurrentl	y to Addres	s Key Cost	and Perfo	rmance barrie	rs		


The R&D - Demonstration Cycle

Fuel Cell Report to Congress Interim Report Highlights

Draft *Interim Report* available at: www.sentech.org under "2002 Fuel Cell Workshop"

- Fuel cell technology offers dramatic reduction in energy use and emissions in transportation and stationary applications.
- Hydrogen opens a clear path to increase use of renewable energy sources.
- Additional R&D is required for fuel cell cost reduction and durability.
- For transportation applications, a new hydrogen infrastructure is required. Hydrogen storage and production are high R&D priorities.
- A cooperative approach is required for addressing regulatory, codes & standards issues.

For Further Information

DOE Hydrogen, Fuel Cells & Infrastructure Program:

JoAnn Milliken: 202-586-2480, JoAnn.Milliken@ee.doe.gov

Pat Davis: 202-586-8061, Patrick.Davis@ee.doe.gov

Nancy Garland: 202-586-5673, Nancy.Garland@ee.doe.gov

Donna Ho: 202-586-8000, Donna.Ho@ee.doe.gov

Peter Devlin, 202-586-4905, Peter.Devlin@ee.doe.gov

Argonne National Laboratory Fuel Cells Technical Support:

James Miller: 630-252-4537, millerj@cmt.anl.gov

Walter Podolski: 630-252-7558, podolski@cmt.anl.gov

William Swift: 630-252-5964, swift@cmt.anl.gov

Robert Sutton: 630-252-4321, sutton@cmt.anl.gov

Thomas Benjamin: 630-252-1632, benjamin@cmt.anl.gov