Educational Workshops for the Camp Minden Site

- Air Sampling and Monitoring for Baseline Characterization
 - April 16, 2015
- Preparedness
 - April 23, 2015
- Data
 - Date to be determined
- Ideas for additional workshops
 - Please make suggestions on the response cards provided or
 - email us at: R6_Camp_Minden@epa.gov

Air Sampling & Monitoring for Baseline Characterization

Educational Workshop

16 April 2015 Site: Camp Minden Minden, Webster Parish, Louisiana

Presenters: EPA: Adam Adams EPA START Contractor: Steve Mauch

Agenda

- Introductions / Welcome
- What is a Baseline Characterization?
- Outline
 - Why is this Baseline Characterization important?
 - Air Sampling and Monitoring Methods, Equipment and Analyses
 - Sampling Methods, Equipment, and Analyses
 - Monitoring Methods, Equipment, and Analyses
 - Draft Sampling Plan
 - Equipment
 - Location Requirements
 - Proposed Locations
 - Questions and Answers

Why is this Baseline Characterization important?

Last week, EPA posted a Draft Quality Assurance Sampling Plan (QASP) to the EPA Camp Minden website www.epa.gov/region6

04/20/15 – Deadline for feedback.

 Summary of Proposed Sampling Plan:

- 6 Sample locations off Camp.
- 2 Sample locations on Camp.
- Air Sampling and monitoring conducted simultaneously.
- Baseline sampling will begin in about 3 weeks.
- Please comment:
 - R6_Camp_Minden@epa.gov

Air Sampling and Monitoring (Methods, Equipment, and Analyses)

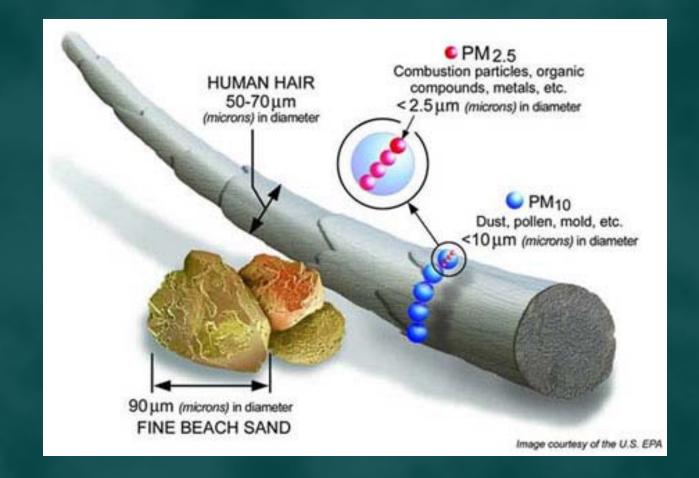
Objectives

 Provide descriptions of following elements of a baseline air surveillance program:

- Ambient air samplers
- Ambient air monitors
- Sampling & analytical methods
- Meteorological monitoring

Key Terms

- Ambient Air Outdoor air, outside of industrial facilities. Generally low concentrations of pollutants.
- Sampling Collecting pollutants onto/into sampling media (filters, canisters) over set time periods. Samples are sent to lab for analysis. Data are averages over period sampled (e.g., 24 hrs)
- Monitoring Measuring pollutants continuously in real time using pollutantspecific analyzers. Data show variations of pollutants over periods of an hour or less.


Key Terms

- SVOC Semi-volatile organic compounds. Boiling point higher than water, and may vaporize when exposed to temperatures above room temperature. Can be present in air as both solid and gas.
- VOC Volatile organic compounds. Composition makes it possible for them to evaporate under normal indoor atmospheric conditions of temperature and pressure. Present in air as a gas.

Key Terms

- *PM*_{2.5} Particles less than 2.5 microns aerodynamic diameter. Primarily associated with combustion (power plants, diesel engines, etc.). Can travel deeper into lungs.
- *PM*₁₀ Particles less than 10 microns aerodynamic diameter. Primarily associated with suspended soil-derived dust (roads, erosion, etc.), or fugitive emissions from industrial materials handling. Mainly affects the upper respiratory system. Also includes PM_{2.5}

Perspective on Particle Size

Next Section: Air Sampling Methods, Equipment, and Analyses

Any questions on Key Terms?

Sampling Methods

Particulates (PM_{2.5}, PM₁₀)

- Pump draws in air, collects specific-sized particles onto filters
- Sampling rate = 16.7 Liters/minute
- Sampling time = 24 hours

Semi volatile Organic Compounds (SVOC)

- Can be particle, gas, mixture
- Vacuum motor draws air through filter (particles) and adsorbing media (gases)
- Sampling rate = 225 Liters/minute
- Sampling time = 24 or 48 hours

Sampling EquipmentGMW PS-1BGI PQ-200

PQ 200

SVOC

Particulates

Sampling Equipment

Example of PQ-200 and other air monitors

Sampling Equipment PS-1 Sampling Module

Sampling Methods

Volatile Organic Compounds (VOC)

- Specially polished stainless steel canisters, start evacuated, use internal vacuum to pull in whole-air sample
- Sampling rate = 3.5 Milliliters/minute
- Sampling Time = 24 hours

Sampling Equipment Canister Sampler

Sample Analysis Methods

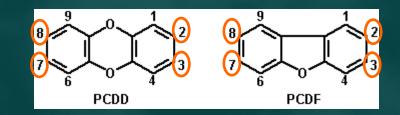
- Laboratory measures mass of pollutant(s) collected
 - Typically micrograms (µg)
 - Microgram = 1 / 1,000,000 of a gram
 - > Sand grain (0.2 mm dia) has mass $\sim 10 \,\mu g$

Air volume is calculated

- Sampling rate * time (L/min * min)
- Convert to cubic meters (m³)

> 1,000 L = 1 m³

Concentration is mass over volume
 – Micrograms per cubic meter (µg / m³)


Sample Analysis Methods

PM_{2.5} & PM₁₀ Microbalance for total mass Sensitivity: 1 µg / sample Volume: 24 m³

Sample Analysis Methods SVOC (TO-13A) Particles and/or vapors Two-stage sample media Filter > Polyurethane foam (PUF) plug Analyzed by combination of ➢ Gas chromatography (GC) Mass Spectroscopy (MS) – PAH, DNT, DBP, and DPA - Sensitivity: $1 - 20 \mu g$ (varies by compound) – Volume: 324 m³

Sample Analysis Methods Dioxins/Furans (TO-9A) Analyzed by combination of Gas chromatography > Mass Spectroscopy - High resolution > 2,3,7,8-substituted compounds Sensitivity: 10 – 100 pg > 1 picogram = 1 pg = 1 / 1,000,000 μ g – Volume: 648 m³ (48-hour)

Dioxin & Furan Molecules: Chlorine at all four 2,3,7,8 locations are toxic

Sample Analysis Methods VOCs (TO-15) Analyzed by combination of > Gas chromatography > Mass Spectroscopy - VOCs condensed out of air sample – Sensitivity: 0.5 – 5 ppb \rightarrow 1 ppb = 1 part per billion volume > 1 m³ compound / 1,000,000,000 m³ air \rightarrow µg/m³ calculated from molecular weight - Volume: 5 L (0.005 m³)

Next Section: Air Monitoring

Any questions on Air Sampling Methods, Equipment, or Analyses?

- Criteria Pollutants
 - National Ambient Air Quality Standards (NAAQS)
- Gases
 - Nitrogen Dioxide (NO₂)
 - Sulfur Dioxide (SO₂)
 - Carbon Monoxide (CO)
- Particles
 - PM₁₀ (sampling)
 - PM_{2.5} (sampling + monitoring)

Focus on combustion-related pollutants

- Common to various thermal treatment options
- PM_{2.5} focus, rather than PM₁₀
 Monitor for PM_{2.5} indirectly for time variation
 Sample for PM_{2.5} directly for standards
- Carbon Dioxide (CO₂) as complement
 Fingerprint of combustion in general
 No NAAQS

- Analyzers selected
 - NO₂: Thermo Model 42i
 - SO₂: Thermo Model 43i
 - CO: Thermo Model 48i
 - CO₂ :
 - > Thermo Model 410i
 - Feledyne Model 360E
 - PM_{2.5} : Met One BAM-1020

- CO₂ analyzers are equivalent
 - Same technique
 - Models differ due to availability
- All analyzers are EPA designated as Reference or Equivalent methods
 - Applies to criteria pollutants (not CO₂)
 - Methods used by regulatory agencies
 - Reference methods developed to have high accuracy and reliability
 - Equivalent methods may use different technology, but must be as accurate

Monitoring Methods – NO₂

- Thermo Model 42i
- Uses chemiluminescence
 - Nitrogen oxide (NO) reacts with ozone, emits tiny amount of infrared light
 - Detector collects light, processed to concentration
- Analyzer converts NO₂ to NO
 - Reacts incoming air (some NO, some NO_2)
 - Reacts after converting all NO₂ to NO
 - Difference is NO₂

Monitoring Methods – SO₂

- Thermo Model 43i
- Uses pulsed fluorescence
 - Pulse of ultraviolet (UV) light at one wavelength energizes electrons in SO₂ molecules
 - When the electrons return to lower energy state, small amount of UV light is emitted at a different wavelength
 - Detector collects the emitted UV light, converts to concentration

Monitoring Methods – CO, CO₂

Analyzers

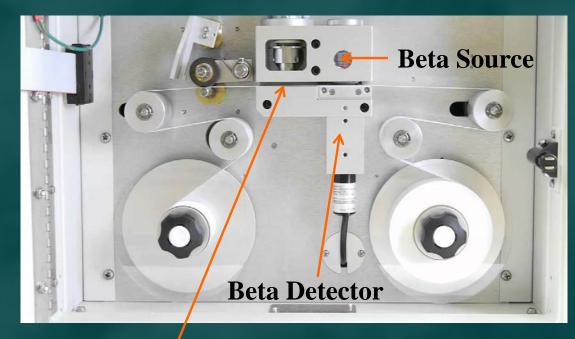
- Thermo Model 48i (CO)
- Thermo Model 410i (CO₂)
- Teledyne Model 360E (CO₂)

Use optical filter correlation

- Gases absorb infrared light beam in instrument
- Rotating wheel alternates cells of clean (zero) and reference gas (CO or CO₂) into beam path to detector
- Variations in light strength as cells alternate are used to get concentration

Monitoring Methods – Gas Analyzers

- Mount on rack in trailer
- Air pulled into a glass manifold from outside
- Each analyzer pulls from manifold


Monitoring Methods – PM_{2.5}

- Met One BAM-1020
- Beta Attenuation Monitor
 - PM_{2.5} particles collected on filter tape
 - Particles absorb weak beta particle beam in instrument
 - Particles absorbed proportional to particle loading
 - Filter tape moves to clean spot periodically
 - Longer counting periods provide more sensitivity
 - > Units make one measurement per hour

Monitoring Methods – PM_{2.5} Met One BAM-1020

Interior View

Particles Collected

Next Section: Monitoring Methods for Meteorology

Any questions on Air Monitoring Methods, Equipment, or Analyses?

Monitoring Methods – Meteorology

- Wind crucial to understand relationship of data to possible sources
 - Direction + Speed = transport
 - Turbulence = dilution
- Temperature & barometric pressure needed for sampling
 - Density of air changes
 - Cubic meter contains more/less air
 - Affects flows
 - Correct volumes to standard conditions
- Precipitation affects dust

Monitoring Methods – Wind

- R.M. Young Wind Sonic
- Sonic anemometer
 - No moving parts
- Uses travel time of sound pulses
 - Compensates for temperature
 - Measures N-S and E-W components
 - Vector calculations of speed, direction, turbulence
 - Samples 40 times per second
 - Signal out is 1-second average

Monitoring Methods – T & RH

 Campbell Scientific CS-215 Air Temperature / Relative Humidity

 Electronic chip measuring both temperature (T) and relative humidity (RH)

Housed in shield to prevent solar heating

Monitoring Methods – Rainfall

Tipping bucket rain gauge

- Pair of calibrated see-saw buckets tip when one fills with 0.01" of rain
- Tipping causes a magnetic switch to create an electric pulse

Example of Sonic Anemometer & Solar Radiation Shield

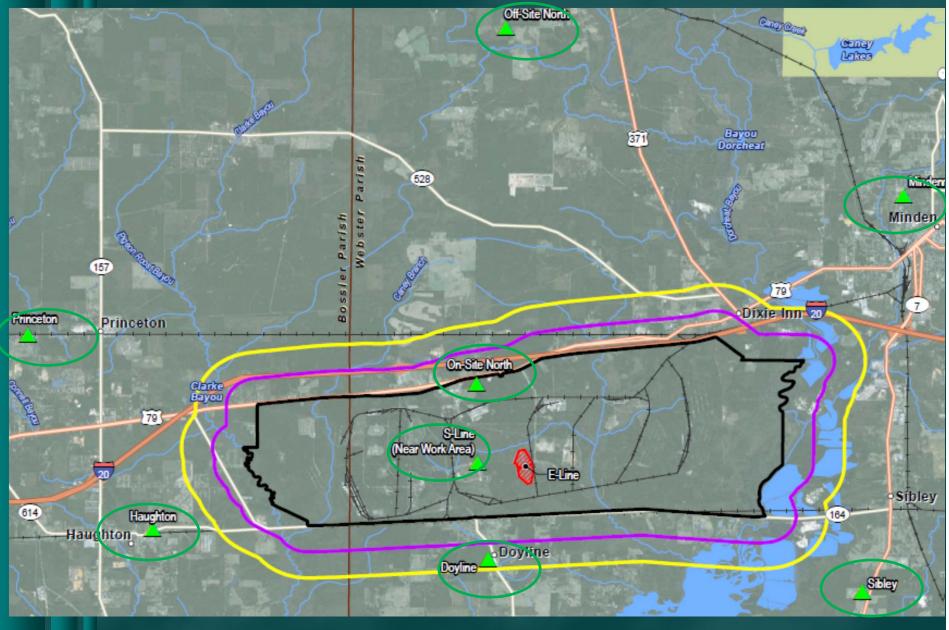
Example of Tripod Weather Station

Next Section: Draft Sampling Plan

Any questions on Monitoring Methods for Meteorology?

Draft Sampling Plan

- Equipment (for 1 location):
 - 1 Monitoring trailer (5 monitors)
 - 5 Samplers
- Location requirements
 - Space
 - Electrical
 - Security / Access
 - Population


*Air Monitoring Trailer*Example of a monitoring trailer

When and Where will this happen?

- When? In about three weeks after finalizing the Draft Sampling Plan.
- How long? About three days at each location.
- Where? (Proposed locations)
 - Six locations around Camp Minden
 - Two locations on Camp Minden

Where are the proposed locations?

Summary of Proposed Air Sampling and Monitoring Baseline Characterization

SVOC - (PS-1 PUF Sampler)

- Dioxin/Furans
 - (PS-1 PUF Sampler)
- PM2.5
 - (BGI PQ200)
- PM10
 - (BGI PQ200)
- VOC
 - (Summa Canister)

Monitoring

- PM2.5 MotOpe BAM
 - MetOne BAM1020
- NO2
 - Thermo 42i
- **SO2**
 - Thermo 43i
- CO
 - Thermo 48iTLE
- **CO2**
 - Teledyne-API Model 360E

Questions R6_Camp_Minden@epa.gov

Additional questions?

We need your feedback on:

 1) Proposed Draft Sampling Plan (by 04/20/15)
 2) Future Workshop Topics

 Email: R6_Camp_Minden@epa.gov

Info: www.epa.gov/region6 (click on Camp Minden) or www2.epa.gov/la/camp-minden

Thank you again.