P2 Assessment of Polymers

A Discussion of Physical-Chemical Properties, Environmental Fate, Aquatic Toxicity, and Non-Cancer Human Health Effects of Polymers

Vince Nabholz, U.S. EPA
P2 Assessment of Polymers

• Definition of polymer for P2 assessment purposes
 - A polymer is a chemical made up of covalently linked repeating units, generally with MWn >1,000
 - < 25% < 1000
 - < 10% < 500

• (Q)SAR assessment of polymers may not be possible with some Sustainable Futures models and methods due to:
 - Limited data sets
 - Large molecular weight (>1,000)
 - The presence of multiple species (mixtures)
P2 Assessment of Polymers

• Polymer assessment based on combination of
 ▪ QSAR prediction
 ▪ SAR - Read-across methods
 ▪ Professional judgment

• Primary reference (PDF Version included in hand outs)
Polymer Assessment Goals

- **Screening Level Assessment**
 - Qualitative and/or Quantitative

- **Looking for a snapshot of how the polymer will act** (fate and toxicity)
 - Important to distinguishing between low concern, and NOT low concern
Properties Affecting Polymer Assessment

• To assess polymer, you need to know:
 ▪ MW$_n$ and % of Low Molecular Weight (LMW) components (%<1000, %<500)
 • LMW components may need to be assessed separately
 ▪ Polymer Composition (Monomers)
 ▪ Polymer Charge
 • Neutral, Anionic, Cationic, Amphoteric
 ▪ Structural Features
 • Reactive Functional Groups (RFGs)
 • Particle Size and Inhalability
Molecular Weight (MW) and Low Molecular Weight (LMW) Components

Three Categories of Polymers Identified

- **Category 1:** $\text{MW}_n < 1,000$
 - May be assessed as a “discrete” chemical (with representative structure)
- **Category 2:** $\text{MW}_n > 1,000$; $\geq 25\%$ with MW $< 1,000$ and $\geq 10\%$ with MW < 500
 - Assess polymer and LMW materials (SAR modeling with representative structure)
- **Category 3:** $\text{MW}_n > 1,000$; $< 25\%$ with MW $< 1,000$ and $< 10\%$ with MW < 500
 - Assess polymer using nearest analog approach or by estimation

* Human health concerns for polymers of $\text{MW}_n > 10,000$ are discussed in the human health section
Polymer Charge

• Nonionic, Anionic, Cationic, Amphoteric
 ▪ Charge affects many aspects of the assessment
 • Physical properties
 • Fate
 • Ecotoxicity
 • Human toxicity
Cationic Polymers

- Carbon-based polymer backbone
- Silicone-based backbone
- Natural-based backbone: chitin (glucosamine), tannin, starch
Anionic Polymers

- Poly(aromatic acids):
 bisphenolsulfones, cresols, phenol, biphenylsulfones, biphenylethers, naphthalene, benzene

- Poly(aliphatic acids)
Example: Dividing up Dyes

- **Nonionic**
- **Cationic**
 - delocalized charge, localized charge +1, +2, +3, +4, etc; then, triphenylmethanes, acridines, phenothiazines, thiazoliums, azo, anthraquinones, phthalocyanines
- **Anionic:**
 - number of acids 1,2,3,4, etc; then, aminoanilines, anthraquinone, anilines, phenols, benzothiazoles, FWAs, chelated: Cu, Cr, Co, Fe.
- **Amphoteric**
Example: Dividing up Surfactants via Hydrophile

- **Nonionic**
 - ethoxylates; polyalcohols; alpha,omega-dialkyl-ethoxylates; TWEENs

- **Cationic**
 - N, P, S, number of dominant alkyls, ETHOMEENs, N-ethoxylates, quanidines

- **Anionic**
 - type of acid, ethoxylated

- **Amphoteric**
Structural Features

• Reactive Functional Groups (RFGs)
 ▪ Examples include, but are not limited to: acrylates/methacrylates, epoxides, phenols, sulphonates, Isocyanates, etc.

• Physical Features
 ▪ Inhalability/particle size
 ▪ Swellability
 ▪ Fibrous properties

• Primarily affects mammalian toxicity
Physical Properties Assessment

• Based primarily on size of polymer
• Charge and structural features also play a role
• Most polymers will fit a general trend
 ▪ See Interpretive Assistance Document for Polymers provided in hand-out material
Physical Properties (cont.)

- Vapor pressure – generally very low (<10^-8 mm Hg)
- Henry’s Law constant – generally very low (<10^-8 mm Hg)
- Water solubility
 - Neutral – usually insoluble
 - Ionic – may be dispersible
Physical Properties (cont.)

- Soluble
- Dispersible
- Micro emulsions / Macro emulsions
- Dispersed solid particles
- Gels
- Micro micelles / Macro micelles
 - Surfactants
Environmental Fate

• Environmental Fate Assessment
 ▪ based on size, charge, and polymer make up (monomers and end groups)

• The goal is to establish how the chemical will behave in the environment
 ▪ Partitioning – where it will go?
 ▪ Persistence – how long it will last?

• Screening Level Assessment
Environmental Fate - Partitioning

• POTW Removal
 ▪ POTW removal is based on MW_n and charge
 ▪ Cationic, Amphoteric, Nonionic, and Insoluble and Non-dispersible Anionic
 • Ranges from 50% at MW_n of <500 – 90% at MW_n of $>1,000$
 ▪ Soluble or Dispersible Anionic
 • Ranges from 0% at MW_n of $<5,000$ – 90% at MW_n of $>50,000$
Guidance for the Assessment of Polymers

Environmental Fate - Partitioning

• Soil Mobility
 ▪ Polymers tend to have poor mobility in soil

• Volatilization from water
 ▪ Polymers tend to be insoluble in water, but do not volatilize from water

• Bioconcentration Factor (BCF)
 ▪ MWn <1,000, use EPI Suite
 ▪ MWn >1,000, Low BCF Concern (100 can be used for modeling purposes)
Environmental Fate - Partitioning

- **Overall Partitioning Picture**
 - Generally polymers will partition to
 - Soil, suspended particles, sediments, and sludge
 - Soluble and/or dispersible polymers may remain partially in water
 - Partitioning to air only as particulate (dust), not usually significant
Environmental Fate - Degradation

• Hydrolysis
 ▪ Hydrolysis of susceptible groups
 ▪ Solubility dependant
 ▪ Not usually a major removal route

• Air oxidation
 ▪ Poor partitioning to air
 ▪ Presence of polymer as particle in air
 ▪ Reduces potential removal rate
 ▪ Not a major route of removal
Environmental Fate - Degradation

- Spontaneous Degradation
 - This will be polymer specific
 - In most cases it will be a known property
- Polymerization
- Biodegradation
 - In most cases polymers will be resistant to biodegradation
 - Due to size and hydrophobicity
 - Exceptions are usually polymers designed for rapid biodegradation
Environmental Fate - Overall Picture

• General Trends
 ▪ Polymers will tend to partition to
 • Soil, suspended particles, sediments, and sludge
 ▪ High persistence concern
 ▪ Low concern for bioconcentration (BCF)

• Exceptions will exist
 ▪ High solubility
 ▪ Polymers designed for degradation
 ▪ Polymers with low MWₙ
 ▪ Insoluble polymers in a solvent

Guidance for the Assessment of Polymers
Aquatic Toxicity

- Assessment method varies
 - Main grouping is based on polymer charge (Neutral, Anionic, Cationic, and Amphoteric)

- Insoluble or non-dispersible polymers generally have low aquatic toxicity hazard concern (regardless of charge)
 - Not soluble or bioavailable
 - Exceptions may include finely divided particles

- For polymer with MW_n of <1,000 (category 1) or those with significant amounts of LMW components (category 2), ECOSAR may be used
Aquatic Toxicity - Neutral Polymers

• Nonionic polymers tend toward low hazard concern

• Exception is neutral polymers that are blocked for use as a surfactant or dispersant, these may exhibit toxicity
 ▪ Use nearest analog approach
 ▪ Or SAR
Aquatic Toxicity - Anionic Polymers

- Polyanionic polymers that are soluble or dispersible may exhibit ecotoxicity
- Two main classes
 - Poly(armomatic acids)
 - Poly(aliphatic acids)
- Nearest analog approach
 - Tables with many analogs are collected in the “Environmental Assessment of Polymers under the U.S. Toxic Substances Control Act” chapter
Guidance for the Assessment of Polymers

Polypionic Polymers
Poly (Carboxylic Acids)
Structure and Green Algal 96-h EC50 (mg/L)

Guidance for the Assessment of Polymers
Polyanionic Polymers

Poly (Carboxylic Acids)

Structure and Green Algal 96-h EC50 (mg/L)

Guidance for the Assessment of Polymers
Polyanionic Polymers
Poly (Aromatic Sulfonates)

Guidance for the Assessment of Polymers
Guidance for the Assessment of Polymers

SAR POLYMERS

Polyanionic Polymers
Poly (Aromatic Sulfonates)

Guidance for the Assessment of Polymers
SAR POLYMERS

Polyanionic Polymers
Poly (Aromatic Sulfonates)

Guidance for the Assessment of Polymers
Polyanionic Polymers
Poly (Aliphatic Sulfonates)

* \[\text{C} \begin{array}{c} \text{C} \\ \text{[C]}_{<y>} \\ \text{SO}_3^- \end{array} \] _x^* \]

3,000 / 30 / 10
F96 > 500. mg/L
D48 = 800.
GA96 = 800.

Guidance for the Assessment of Polymers
Aquatic Toxicity - Cationic and Amphoteric Polymers

- Cationic polymers that have a net positive charge or that may become positive may pose a hazard concern for ecotoxicity
 - Cationic atoms of concern include (but are not limited to): Nitrogen, phosphorus, and sulfur
 - Nitrogen is the cationic group in 99% of cases
 - Nitrogens in or on an aromatic ring, amides, nitriles, nitro groups, and carbo diimides are not considered
Aquatic Toxicity - Cationic and Amphoteric Polymers (cont.)

• Factors in ecotoxicity estimation
 ▪ Percentage of amine nitrogen (%A-N) or other cation by weight
 • Nitrogens in or on an aromatic ring, amides, nitriles, nitro groups, and carbo diimides are not considered
 ▪ Amphoteric polymers
 • %A-N is adjusted based on cation-to-anion ratio (CAR)
 ▪ Backbone
 • SARs available for carbon based, silicon based, and naturally occurring polymer backbones
Aquatic Toxicity - Cationic and Amphoteric Polymers (cont.)

- Toxicity may be mitigated by water hardness
 - Mitigation Factor (MF) equations included, also based on %A-N
- Toxicity is estimated by:
 - Choosing correct SAR for backbone
 - Calculating %A-N
 - Calculating base toxicity
 - Calculating MF
 - Adjusting toxicity based on MF to give final endpoint
Polycationic Polymers
Polyamine Polymers

Aquatic toxicity
- TOC < 2 mg/L
- 100% active ingredients
- Nominal concentrations
- Static or static-renewal

Fish acute toxicity (mg/L)

Charge density (% amine-N)

Guidance for the Assessment of Polymers
Applying Mitigation Factors

- Cationic and Amphoteric Polymers: Mitigation of Toxicity
 - Standard aquatic hazard testing media (OECD) usually has a low total organic content (TOC) which may result in artificially high toxicity of polycationic and amphoteric polymers in those media.
Mitigation Factors

• To correct for TOC in actual surface water a mitigation factor (MF) has been calculated, based on testing in standard media

• The MF is dependent on the overall charge density (%A-N) for the polymer

• Several conditions and/or structural features have been shown to affect the mitigation factor

• See page 8 of Interpretive Assistance Document for Polymers which provides further details
Non-Cancer Human Health Concerns

- Traditional U.S. EPA Human Health Effects Assessment based on:
 - Nearest analog approach
 - OncoLogic
 - U.S. EPA Chemical Categories Report
 http://www.epa.gov/oppt/newchems/pubs/chemcat.htm
 - Structural Features
Non-Cancer Human Health Concerns

- Traditional Health Assessment approach is relevant for polymers
 - Chemical Categories
 - Nearest analog approach
 - LMW components and residual monomer(s) may need to be considered

- Special considerations for polymers
 - Large inhalable polymers
 - OncoLogic is run differently
Non-Cancer Human Health Concerns

• Large Inhalable Polymers
 ▪ Polymers with MW_n of $>10,000$ are generally of concern only for lung effects

• There are three further distinctions
 • Soluble – Not generally a concern
 • Insoluble – Concern may exist
 • Swellable – Concern may exist
Non-Cancer Human Health Concerns

• Cationic/Amphoteric Binding to Lungs
 ▪ Binding to Lung Membrane
 • Charge
 • Reaction
 • Alkoxysilanes

• Waterproofing of lung membranes
 ▪ Anti-stain aerosols
 ▪ Anti-stain polymers
 • Polysilicones
SARs, QSAR Models, and Assessment Methods for Polymers Continually Updated as New Information is Available
References

 - Included on Sustainable Futures Workshop CD

- Interpretive Assistance Document for Polymers
 - Available on the EPA website:
 http://www.epa.gov/oppt/sf/meetings/train.htm#materials