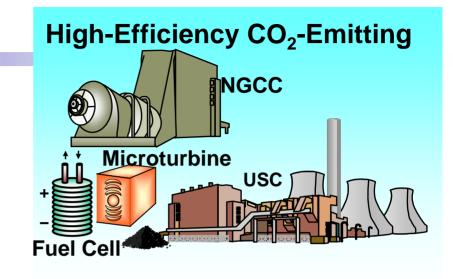
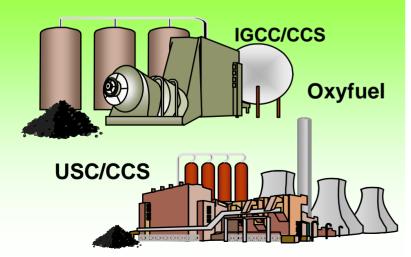
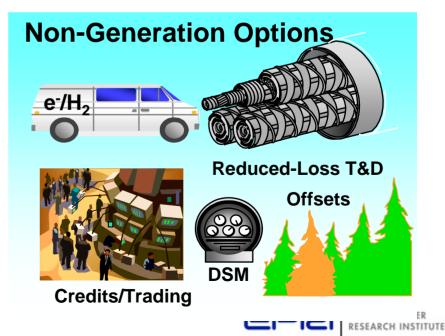


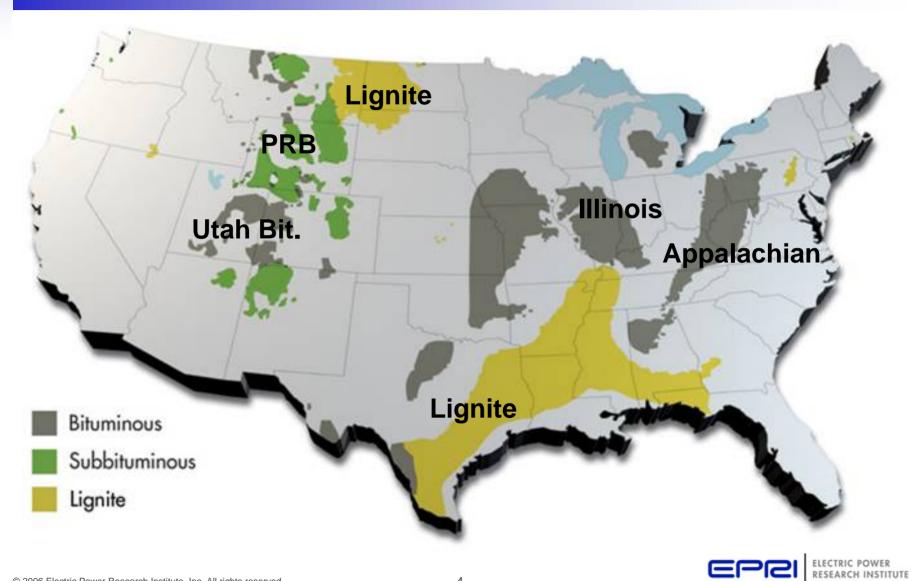
IGCC + CO₂ Capture


Ultrasupercritical + CO2 Capture

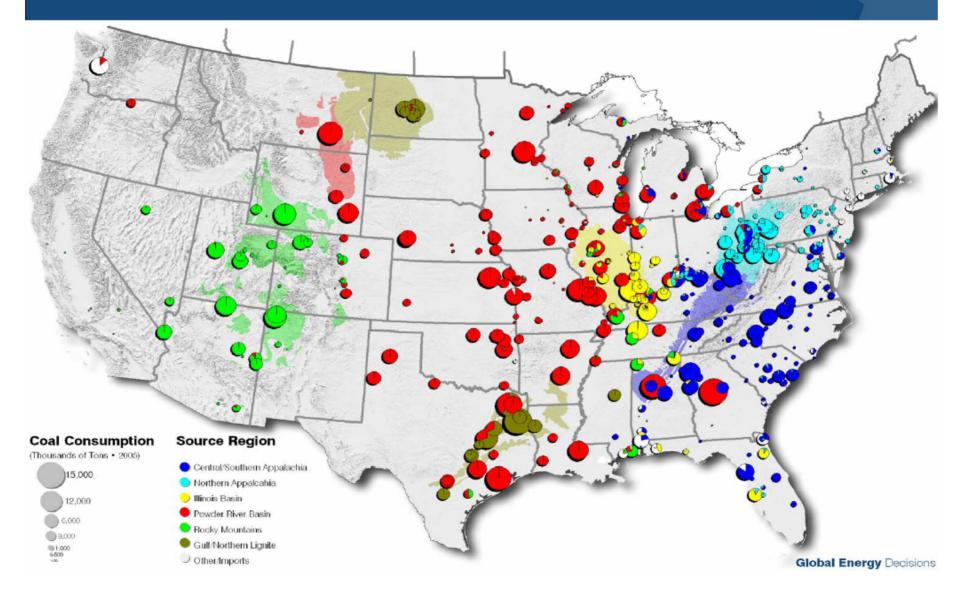
Overview of Advanced Coal Technology for Electric Power Generation


Stu Dalton Director, Generation John Novak Executive Director of Federal Industry Activities EPA Advanced Coal Technology Work Group Washington DC January 8, 2007


Power Company Carbon Management Options


CO₂- with Capture Technology

U.S. Coal Types and Basins



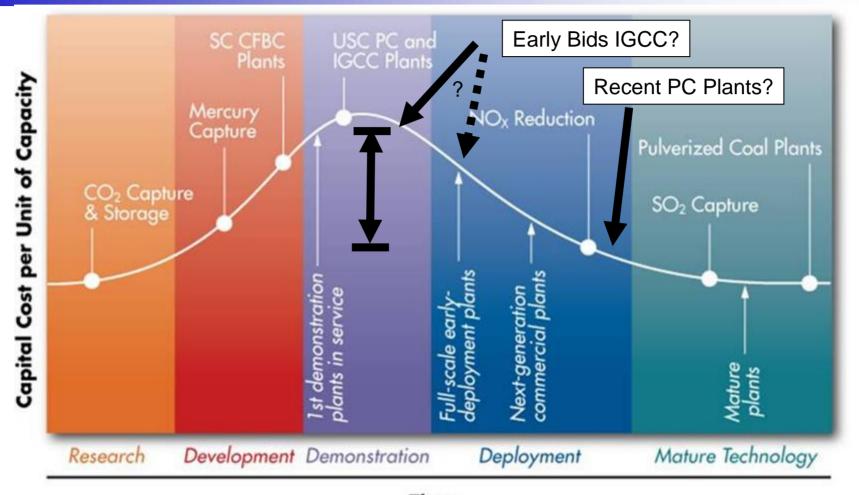
Typical U.S. Coal Analyses (Coal Properties Differ Markedly)

	Pittsburgh	Illinois	Wyoming	Texas
	#8	#6	PRB	Lignite
Ultimate Analysis				
Moisture	5.2	12.2	30.24	33.03
Carbon	73.8	61.0	48.18	35.04
Hydrogen	4.9	4.25	3.31	2.68
Nitrogen	1.4	1.25	0.70	0.77
Chlorine	0.07	0.07	0.01	0.09
Sulfur	2.13	3.28	0.37	1.16
Oxygen	5.4	6.95	11.87	11.31
Ash	7.1	11.0	5.32	15.92
Higher Heating Value				
as received (Btu/lb)	13,260	10,982	8,340	6,010

Coal Consumption Patterns - 2005

Technology Costs and Emissions

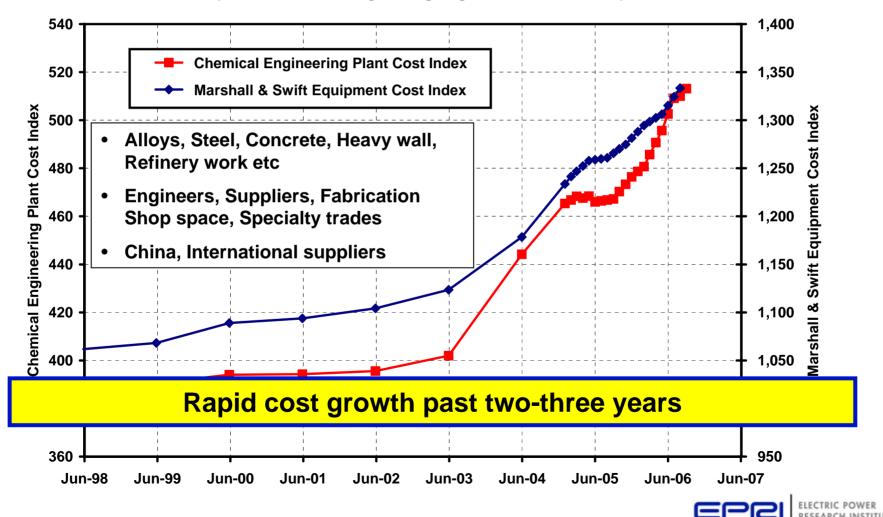
- Technology Costs
 - Maturity and cost for FOAK plants
 - Construction Indices
 - Reported Costs show cost significant growth


Costs are up – especially for IGCC

- Emissions (NOx & SOx)
 - Existing and Planned IGCC & PC

All coal plants are reducing emissions in permits – all very low

Costs of First of a Kind Technology vs. More Mature Technology?


Time

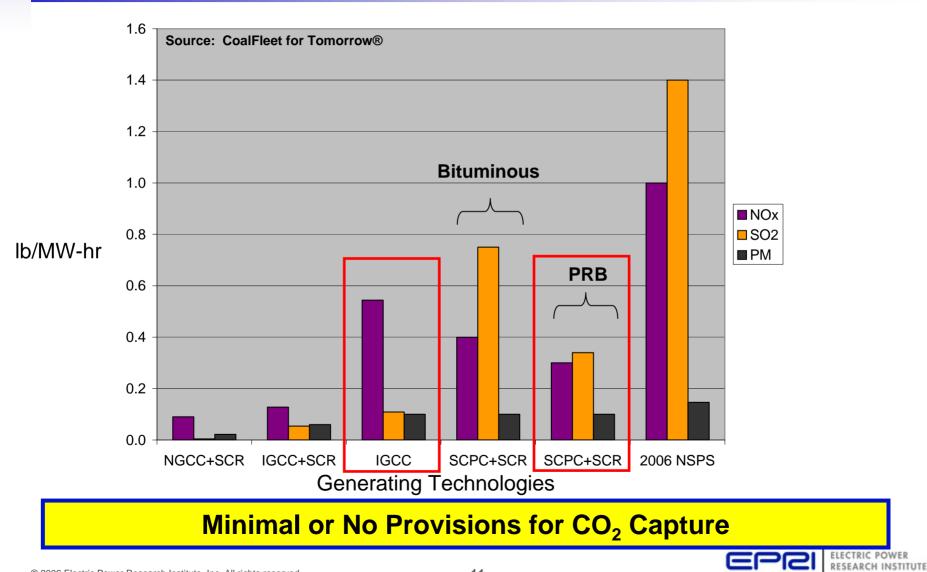
Anecdotal IGCC costs not as low as expected >20% gap

Plant Construction Costs Escalating

Construction Cost Indices

(Source: Chemical Engineering Magazine, November 2006)

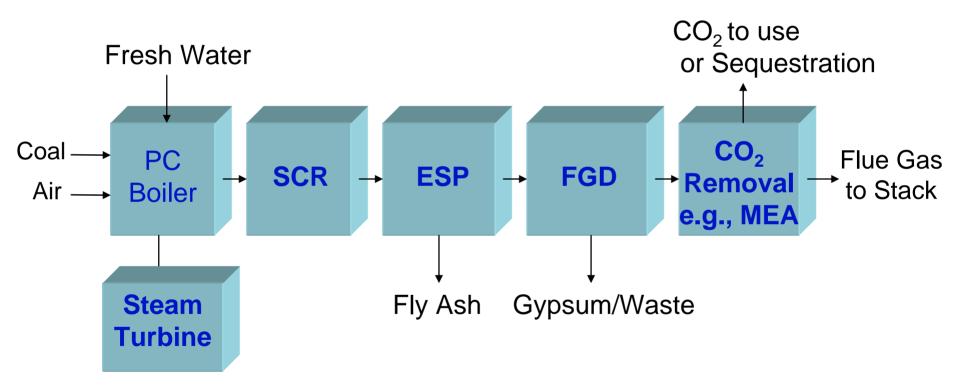
Recently Reported Costs


Owner	Plant Name /location	Net MW	Technology/Coal	Reported Capital \$ Million	Reported Capital \$/kW
AEP SWEPCO	Hempstead, AR	600	USC PC/PRB	1300	2167
AEP PSO/OGE	Sooner, OK	950	USC PC/PRB	1800	1895
AEP	Meigs County, OH	630	GE RQ IGCC/ Bituminous	1300	2063
Duke Energy	Edwardsport, IN	630	GE RQ IGCC/ Bituminous	1300-1600	2063-2540
Duke Energy	Cliffside, NC	2 x 800	USC PC/ Bituminous	3000	1875
NRG	Huntley, NY Montvale, CT Indian river, DE	620	Shell IGCC/ Bituminous, Pet Coke and PRB	1466	2365
Otter Tail/GRE	Big Stone, SD	620	USC PC/PRB	1500	2414

Source: CoalFleet for Tomorrow® EPRI Report 1012224

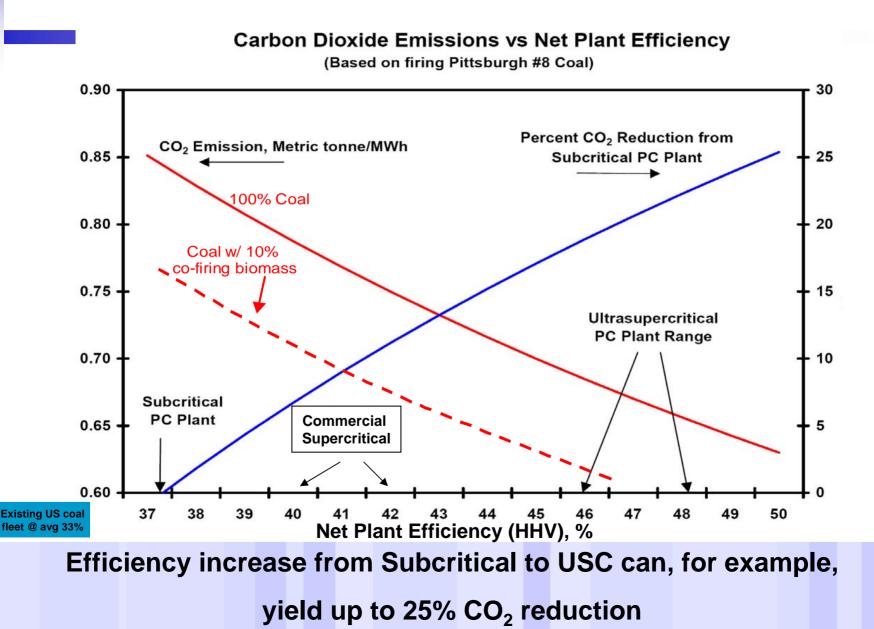
Costs Up Even with Minimal or No Provisions for CO₂ Capture

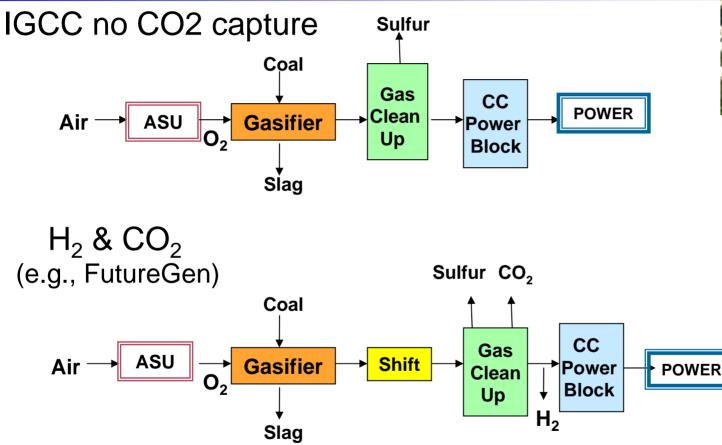
Emissions Comparison – Technology Capability


CO₂ Capture - Technology Options, Status, Costs, Issues

- Gasification and CO₂ removal are both offered commercially but not integrated or mature
 - Big issues <u>IGCC Cost</u>, Integration, H₂ Turbines and CO₂ Storage
- Advanced PC and CO₂ post combustion are each offered commercially but CO₂ not at scale or integrated
 - Big Issues <u>CO₂ Capture Cost</u>, Integration and CO₂ Storage
- Oxyfuel Combustion is not as advanced
- Many promising options are under development (DOE, EPRI, others)

Gasification and Combustion Needed With CO₂ Options


Pulverized Coal (PC) with CO₂ Removal


CO₂ Capture = \$, Space, Ultra Low SO₂, and Lots of Energy

ELECTRIC POWER RESEARCH INSTITUTE

Effects of Efficiency on CO₂ (Alstom Slide)

IGCC with and without CO₂ Removal

ELECTRIC POWER RESEARCH INSTITUTE

 CO_2 Capture = \$, Space, Shift, H_2 Firing, CO_2 Removal, Energy

Combustion vs Gasification

Combustion

- SO₂ & SO₃ is scrubbed out of stack gas – reacted with lime to form gypsum
- NOx controlled with low NOx burners and catalytic conversion (SCR)

- Large volume of flyash & sludge
- Hg can be removed by contacting flue gas with activated carbon

Gasification

- H₂S & COS are easily removed from syngas and converted to solid sulfur or sulfuric acid
- NH₃ washes out of gas with water, thermal NOx controlled by diluent injection in GT

- Ash is converted to glassy slag which is inert and usable
- >90% of Hg removed by passing high pressure syngas thru activated carbon bed

What can you do with coal gasification?

• Produce Electricity

- In a Gas Turbine-based Combined Cycle power plant
- Emissions approaching that of a natural gas fired power plant

Make Fuels

- Sasol has been making gasoline from coal since the 1950s in Republic of South Africa
- Dakota Gasification has been making "synthetic" natural gas from lignite since the 1980s

Make Chemicals

- Eastman Chemicals has been doing this since 1980s

Make Fertilizer

 Coffeyville Resources in Kansas makes ammonia-based fertilizer from petroleum coke

Make Hydrogen

- FutureGen project will set the stage for production of H_2 from coal

CO₂ Capture from Gasification-based coal power plants - US

- No coal gasification-based <u>power plant</u> (IGCC) currently recovers CO₂ from the process
- Three non-power facilities in the US recover CO₂
- The recovered CO₂ from the Great Plains plant is used for enhanced oil recovery 2.7 MTY~ 300 MWe if it were an IGCC

The Great Plains Synfuels Plant http://www.dakotagas.com/Companyinfo/index.html

Weyburn pipeline http://www.ptrc.ca/access/DesktopDefault.aspx

LECTRIC POWER ESEARCH INSTITUTE

CO₂ Capture from "Conventional" Pulverized Coal Power Plants

- Three US small plants in operation today on coal – MEA based
- The CO₂ is sold as a product or used
- CO₂ recovered is 300 metric tons/day ~15 MWe power plant equivalent at largest plant

AES Cumberland ~ 10 MW

- Many pilots planned over the next few years
 - e.g., 5 MW Chilled Ammonia Pilot at We Energies EPRI/Alstom with testing

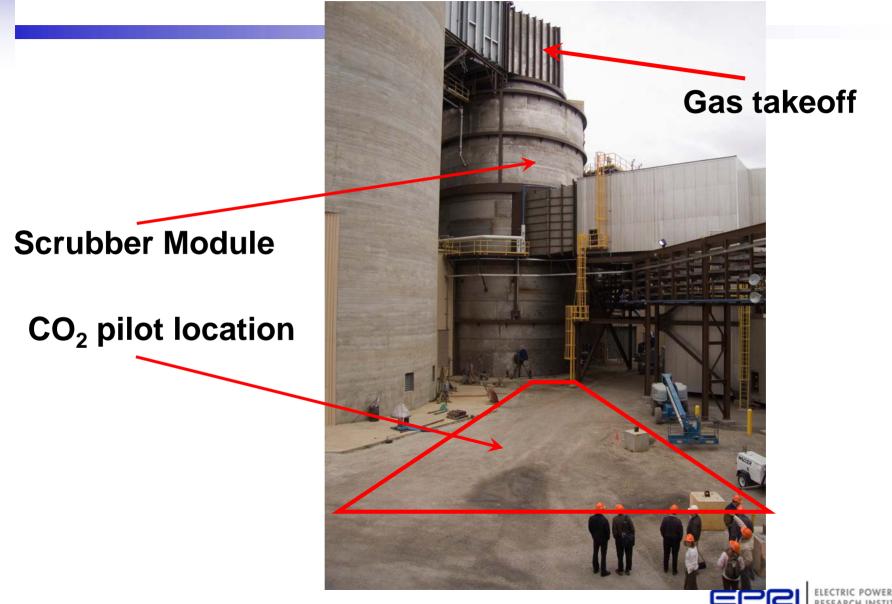
5 MW Chilled Ammonia CO₂ Capture Pilot

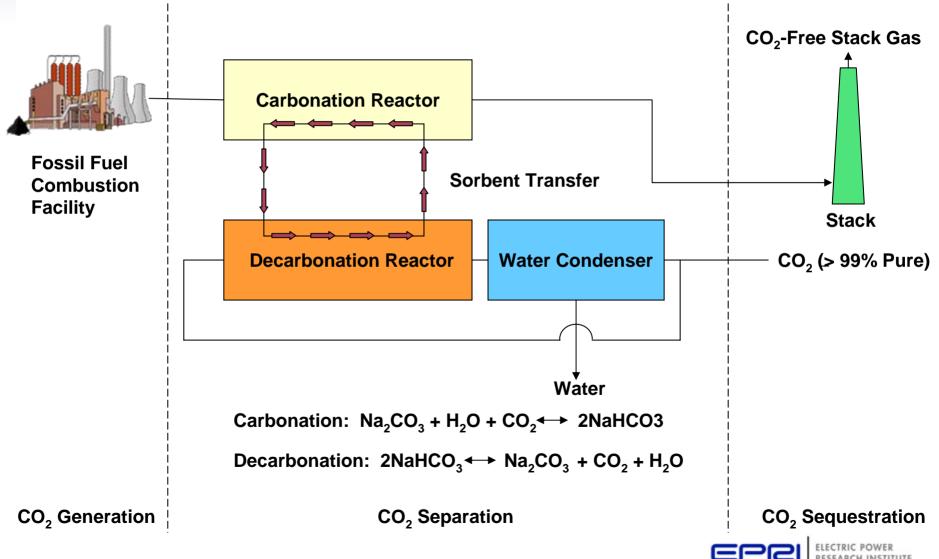
- Alstom and EPRI have agreed to jointly fund a 5 MW pilot
- Site Selection Complete

- WE Energies Pleasant Prairie Power Pla
- \$11 million for construction, operation for one year, data collection and evaluation
 - Alstom will design, construct and operate
 - EPRI will collect data and provide evaluation
- 24 firms have agreed to fund EPRI testing with more being added
- Operations beginning in the 3rd Quarter of 2007

5 MW Chilled Ammonia CO₂ Capture Pilot Participants

AEP Ameren CPS Energy Dairyland DTE Energy Dynegy E.ON U.S. Exelon First Energy Great River Energy Hoosier KCPL MidAmerican NPPD Oglethorpe PacifiCorp PNM Sierra Pacific


SRP Southern Co Tri-State TXU TVA We Energies



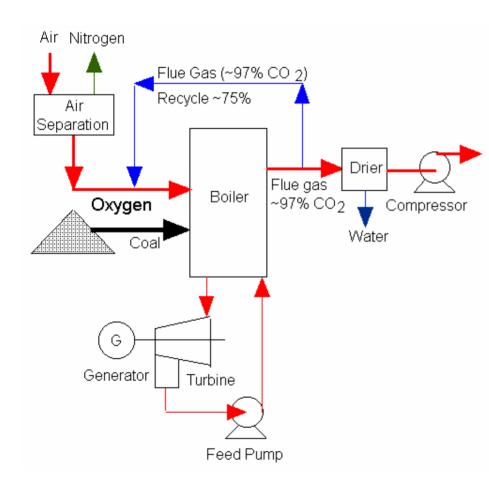
Red = New Participants

5 MW Chilled Ammonia CO₂ Pilot Capture Pilot

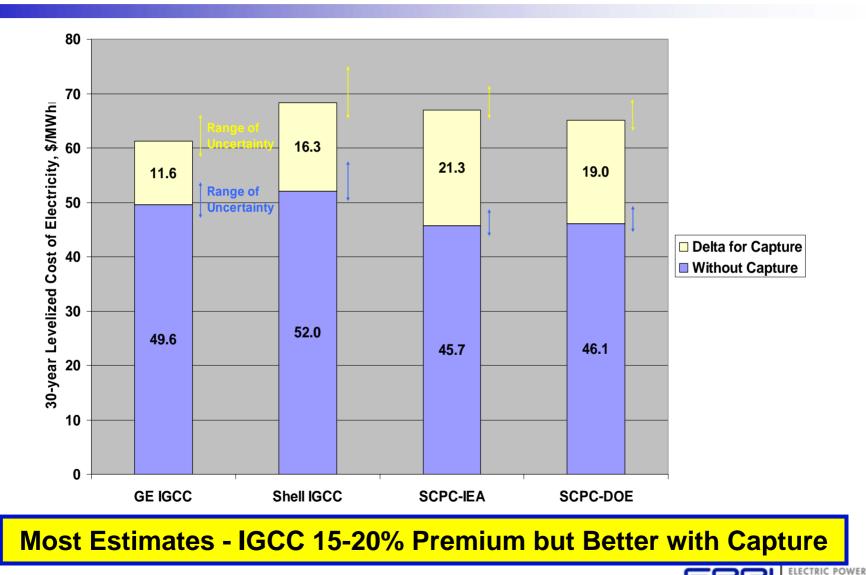
RTI's Post-Combustion CO₂ Capture Thermal-Swing Process using Dry, Regenerable Sorbents

ECO_2^{TM} Process for CO2

- POWERSPAN® developed the ECO[™] process for SOx, NOx and Hg capture
- They have a variation planned for a CO2 capture called ECO₂[™] using ammonia scrubbing at a higher pH


50 MW ECO pilot

http://www.powerspan.com/technology/eco_overview.shtml



CO₂ Capture by O₂/CO₂ Combustion (Oxyfuel)

- Small test facilities at Canmet, B&W, Alstom big Canada Demo planned
- Reuse existing boiler equipment?
 - » Pulverizers, air heaters, etc.
 - » Potential "retrofit kit"
- CO₂ recycled for temp. control
- SO₂ removed from purge stream
 » If higher purity CO₂ reqd.
- Large auxiliary power requirement
 - » Large net output reduction
- Issues
 - Cost
 - 3x Oxygen of IGCC
 - Oxygen and moisture?
 - Dual firing designs?

Cost of Electricity w/ and w/o CO₂ Capture IEA & US DOE bituminous coal adjusted to standard EPRI economic inputs: \$2/MMBtu coal, 85% capacity factor, 2005 USD,

© 2006 Electric Power Research Institute, Inc. All rights reserved

RESEARCH INSTITUTE

Low Rank Coal Study IGCC & PC w and w/o Capture 2006 EPRI study (1014510) Texas location and <u>municipal utility financing</u>

70 60 -evelized Cost of Electricity (\$/MWhr) 50 40 Delta for Capture ■ Without CO2 Capture 30 20 10 0 IGCC+PRB IGCC+Pet coke&PRB SCPC+PRB

PRB Estimate Shows Even with Capture PC May be an Option

ELECTRIC POWER RESEARCH INSTITUTE

Cost and Performance Summary - New Public CPS Report on PRB (EPRI report 1014510)

 <u>Notes:</u> All analysis at 73 °F. 50%/50% PRB-Petcoke blend by weight 	IGCC 100% PRB	IGCC 50%/50% PRB/ Pet C	SCPC 100% PRB	IGCC 100% PRB CO ₂ Capt	SCPC 100% PRB CO ₂ Capt
Gas Turbine Output (MW)	450	453		427	
Steam Turbine Output (MW)	260	258	615	203	521
Gross Plant Output (MW)	710	711	615	630	521
Auxiliary Load (MW)	157	158	65	217	132
Net Plant Output (MW)	553	553	550	413	390
Net Heat Rate, HHV (Btu/kWh)	9,220	9,070	9,150	12,800	12,911
EPC (Overnight) (\$/kW)	2,390	2,330	1,950	3,630	3,440
20-yr LCOE (\$/MWh) (Constant 2006\$) municipal Financing	45.0	40.9	39.2	65.4	62.0
Cost of CO ₂ Avoided (\$/tonne CO ₂)				26.3	29.6

IGCC for Western Coal?

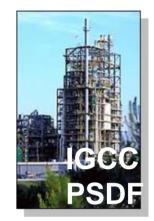
CPS Environmental Performance Summary Source EPRI Report 1014510

<u>Notes:</u> 1. All analysis at 73 ºF.	IGCC 100% PRB No SCR	IGCC 50%/50% PRB/Pet C	SCPC 100% PRB SCR	IGCC 100% PRB CO ₂ Capt	SCPC 100% PRB CO ₂ Capt
NO _x , lb/mmBtu, (HHV)	0.063	0.062	0.050	0.061	0.045
lb/MWh (Net)	0.581	0.562	0.458	0.781	0.581
ppmvd @ 15% O ₂	15	15	N/A	15	N/A
SO ₂ , lb/mmBtu, (HHV)	0.019	0.023	0.060	0.004	0.0003
lb/MWh (net)	0.173	0.210	0.549	0.051	0.003
CO ₂ , lb/mmBtu, (HHV)	215	213	215	22	22
lb/MWh (net)	1,985	1,934	1,967	276	278
Total Makeup Water (acre-ft/yr) (85% CF)	6,830	7,170	7,950	8,430	10,640

Surprisingly low SO₂ and NO_x from PC with CCS

Conclusions

- EPRI believes All the generation options (Coal Natural Gas, Nuclear, Renewables) will be needed in a Carbon Constrained World
- Costs for new coal plants are up (first of a kind IGCC plant costs up even more?)
- Emissions for all new coal plants are down approaching "near zero" without CO₂ capture
- CO₂ Capture is costly for both IGCC and PC plants and probably feasible but integration and costs are still uncertain
- EPRI believes PC and IGCC will compete in the future even with capture for some coals and conditions
- CO₂ Storage demonstrations needed soon at large scale



Questions?

Post Combustion

CO2 Capture

