Executive Summary
The models and methods described in this manual are screening-level methods that were developed by the U.S. Environmental Protection Agency’s Office of Pollution Prevention and Toxics (OPPT) to predict risk-related properties of industrial chemicals submitted under the Toxic Substances Control Act (TSCA). Industrial chemicals are those that are not drugs, cosmetics, pesticides, or food additives. TSCA requires that anyone wishing to commercialize an industrial chemical must submit it to OPPT for review, but does not require that additional testing be conducted and submitted. As a result most of the chemicals submitted under TSCA are not submitted with enough data to allow a thorough evaluation of risk.

OPPT developed computer-based methods that derive important risk assessment information based on chemical structure, conservative defaults, standard scenarios, and other factors. These methods provide information on physical / chemical properties, environmental fate, and potential carcinogenicity, toxicity to aquatic organisms, worker and general population exposures, among other data. OPPT routinely uses these methods to highlight chemicals of concern, to identify safer substitutes, and to reduce or eliminate risks.

These screening methods were combined into the Pollution Prevention Framework (“P2 Framework”) and presented to stakeholders in an effort to help them generate risk-related information early in the chemical development process. The successes of the P2 Framework lead to the development of P2 Framework-based Eastman Kodak and PPG Project XLs. EPA's Project XL (eXcellence in Leadership, available at www.epa.gov/projectxl) encouraged innovation in environmental and public health protection. When EPA decided to scale-up several XL Projects and offer the advantages of innovation nation-wide, the P2 Framework-based projects were selected. OPPT developed the Sustainable Futures Pilot Project as the programmatic structure to scale-up the successful XL Projects. OPPT published a Federal Register notice announcing Sustainable Futures on December 11, 2002 (available at www.epa.gov/fedrgstr/EPA-TOX/2002/December/Day-11/t31243.pdf). Through Sustainable Futures OPPT is offering the P2 Framework models, hands-on training in the use of the models, and qualified participants can become eligible for regulatory flexibility in the review of their prescreened PMNs.

The regulatory flexibility will allow submitters of qualifying PMNs to begin manufacture in 45 days, rather than have to wait until the customary 90-day review period ends. This is a powerful incentive for many companies. In addition to getting to market sooner and reducing product development and manufacturing costs, regulatory uncertainty is greatly reduced because the P2 Framework helps anticipate, and engineer away from, chemicals of concern. This is pollution prevention in its purest form.

About this Document
This document has been reviewed and approved for publication by the Risk Assessment Division of the Office of Pollution Prevention and Toxics, U.S. Environmental Protection Agency (EPA/OPPT). Approval
This manual explains the models and methods developed and used by OPPT to identify potential hazards, exposures and risks posed by new chemical notices under the Toxic Substances Control Act (TSCA). These models have been combined into the Pollution Prevention (P2) Framework and are offered to stakeholders through the Sustainable Futures Initiative at http://www.epa.gov/oppt/sf.

How the Methods are Presented in This Manual

Each model gives screening-level information that is integrated into an assessment of potential risk to humans and the environment. As a reminder the Risk Assessment Paradigm (*National Research Council, 1983) which is described in Chapter 2 of this document and shown in the graphic here, says Hazard information combined with Exposure information equals Risk. For example, if a chemical kills fish at 1 mg/L (the hazard or toxicity) but the concentration in surface water (the exposure) will only be 0.02 mg/L then the risk should be low.

The models and methods in the manual are presented in the order in which you would use them to do a comprehensive risk assessment. Hazard-related information is presented first followed by Exposure information. Finally information on how to combining Hazard and Exposure information is presented to help the reader estimate Risk. Often the model outputs are used as inputs for subsequent models. Brief overviews of each model are provided which give enough information to successfully run each model. More detailed information on each model is provided in the User’s Guide or supplemental documentation for that model.

Sustainable Futures Summary Assessment Worksheet and SF PMN

These models and methods were developed to screen new chemicals submitted under TSCA as Premanufacture Notices (PMNs). This document walks the reader through screening a chemical (isodecyl acrylate CAS RN 1330-61-6) using the models. Readers are instructed on how to interpret and enter the results into a summary assessment worksheet developed for Sustainable Futures training. After readers are instructed in how to use the models and methods to screen a sample chemical (isodecyl acrylate) the reader is presented with an example Sustainable Futures PMN developed using the same chemical. As of April 6, 2011 all new TSCA section 5 PMNs must be submitted electronically and must use e-PMN software which can be downloaded at http://www.epa.gov/opptintr/newchems/epmn/epmn-index.htm.

Additional Information

Additional information that we think will be useful is provided in Appendices, including: Useful Terms; Acronyms; Data Sources; Chemicals known to cause local & systemic effects; Information on Assessing
Unique Chemical Classes; a SMILES Notations tutorial; a case study using ChemSTEER; and a blank Sustainable Futures Summary Assessment Worksheet, and the 1-page SF reporting format.

Sustainable Futures Contacts

We believe the information in this manual will be useful to readers, however if you still have questions after you read this material, technical assistance is available from OPPT contacts to answer those questions.

Sustainable Futures Contacts*

<table>
<thead>
<tr>
<th>Contact Name</th>
<th>Phone Number</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>For policy related questions:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bill Waugh, RAD</td>
<td>202-564-7657</td>
<td>Waugh.Bill@epa.gov</td>
</tr>
<tr>
<td>Kelly Mayo-Bean, RAD</td>
<td>202-564-7662</td>
<td>Mayo.Kelly@epa.gov</td>
</tr>
<tr>
<td>For questions or comments about this manual or the SF web site:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maggie Johnson, RAD</td>
<td>202-564-8924</td>
<td>Johnson.Maggie@epa.gov</td>
</tr>
</tbody>
</table>

P2 Framework Models / Methods Contacts*

<table>
<thead>
<tr>
<th>Contact Name</th>
<th>Phone Number</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPISuite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bob Boethling, EETD</td>
<td>202-564-8533</td>
<td>Boethling.Bob@epa.gov</td>
</tr>
<tr>
<td>Cathy Fehrenbacher, EETD</td>
<td>202-564-8551</td>
<td>Fehrenbacher.Cathy@epa.gov</td>
</tr>
<tr>
<td>Chief, Exposure Assessment Branch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-FAST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conrad (Skip) Flessner, EETD</td>
<td>202-564-8541</td>
<td>Flessner.Conrad@epa.gov</td>
</tr>
<tr>
<td>ChemSTEER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sharon Austin, EETD</td>
<td>202-564-8523</td>
<td>Austin.Sharon@epa.gov</td>
</tr>
<tr>
<td>Scott Prothero, EETD</td>
<td>202-564-8514</td>
<td>Prothero.Scott@epa.gov</td>
</tr>
<tr>
<td>ECOSAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kelly Mayo-Bean, RAD</td>
<td>202-564-7662</td>
<td>Mayo.Kelly@epa.gov</td>
</tr>
<tr>
<td>Maggie Johnson, RAD</td>
<td>202-564-8924</td>
<td>Johnson.Maggie@epa.gov</td>
</tr>
<tr>
<td>OncoLogic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yintak Woo, RAD</td>
<td>202-564-</td>
<td></td>
</tr>
<tr>
<td>Kelly Mayo-Bean, RAD</td>
<td>202-564-7662</td>
<td>Mayo.Kelly@epa.gov</td>
</tr>
<tr>
<td>PBT Profiler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kelly Mayo-Bean, RAD</td>
<td>202-564-7662</td>
<td>Mayo.Kelly@epa.gov</td>
</tr>
<tr>
<td>Maggie Johnson, RAD</td>
<td>202-564-8924</td>
<td>Johnson.Maggie@epa.gov</td>
</tr>
<tr>
<td>Analog Identification Methodology (AIM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kelly Mayo-Bean, RAD</td>
<td>202-564-7662</td>
<td>Mayo.Kelly@epa.gov</td>
</tr>
<tr>
<td>Maggie Johnson, RAD</td>
<td>202-564-8924</td>
<td>Johnson.Maggie@epa.gov</td>
</tr>
</tbody>
</table>
Disclosures

The models and methods described in this manual are screening-level methods that were developed by the Office of Pollution Prevention and Toxics (OPPT) to predict risk-related properties of chemicals lacking data. Screening methods are developed with conservative default values and have an inherent degree of uncertainty. They should never be used in place of measured data from properly-conducted laboratory studies. OPPT scientists use these methods to identify chemicals that require more detailed evaluation so that resources can be focused on those chemicals.

These models and methods are not the only methods available to screen chemicals in the absence of data. Readers are strongly encouraged to evaluate other methods as well.

The URLs of certain Internet sites are listed in this document to provide information to readers. Readers are cautioned that due to the dynamic nature of the Internet, these URLs may have been changed from the time of the writing of this document. In case a URL is no longer correct, the user is advised to use any of the publicly available Internet search engines to locate the correct URL.

This document has not been formally released by the U. S. Environmental Protection Agency (USEPA) and should not be construed to represent Agency policy. It has not been subject to internal U.S. EPA review and external technical peer review.

Mention of trade names or commercial products, or services does not convey, and should not be interpreted as conveying official USEPA approval, endorsement, or recommendation.
Table of Contents

INTRODUCTION
1. The New Chemical Review Process under TSCA1-1
 1.1 Types of New Chemical Notices ... 1-1
 1.2 Information Required in PMN Submissions ... 1-2
 1.3 The P2 Framework & Sustainable Futures Promotes Prescreening 1-3
 1.4 The EPA New Chemical Review Process .. 1-4
 1.5 Possible Regulatory Outcomes .. 1-6

2 Pollution Prevention, Risk Assessment and Sustainable Futures 2-1
 2.1 Pollution Prevention and the Risk Assessment Process 2-1
 2.1.1 What Is Pollution Prevention (P2)? .. 2-1
 2.1.2 The Risk Assessment Process ... 2-2
 2.2 The Pollution Prevention (P2) Framework .. 2-2
 2.2.1 The P2 Framework Methods Provide Information in Four Areas 2-2
 2.2.2 A “Road Map” to the P2 Framework Methods 2-3
 2.3 How EPA Uses These Models and Methods ... 2-4
 2.4 Sustainable Futures ... 2-4
 2.4.1 What is Sustainable Futures? ... 2-4
 2.4.2 How Companies Can Graduate from SF and Qualify for Regulatory Relief 2-6
 2.5 Sustainable Futures Frequent Questions ... 2-10
 2.5.1 Training & Graduation ... 2-10
 2.5.2 SF Submissions ... 2-11
 2.5.3 Submissions from Companies That Have Graduated 2-12
 2.5.4 PBT Profiler .. 2-14
 2.6 Sustainable Futures Training Materials ... 2-14
 2.6.1 Sustainable Futures Case Study Screening Isodecyl Acrylate 2-15
 2.6.2 SF Summary Assessment Worksheet Completed for Isodecyl Acrylate 2-19

FINDING DATA
3 Getting Started by Identifying Existing Data ... 3-1
 3.1 Initial Data Search .. 3-1
 3.1.1 EPA New Chemical Categories Report ... 3-1
 3.1.2 Chemicals Known to Cause Local and Systemic Effects 3-3
 3.1.3 Search for Publicly Available Measured Data 3-7
 3.2 Estimated Data are Not Subject to TSCA Sec. 8(e) Reporting 3-8
 3.3 Analog Searching Techniques .. 3-8
 3.3.1 What Makes a Good Analog? ... 3-8
 3.3.2 Publicly Available Databases that Allow Substructure Searching 3-9
 3.4 Searching for Measured Data on the Sample Chemical, Isodecyl Acrylate 3-10

v
4 Filling Data Gaps: Introduction to Predictive Models ... 4-1
 4.1 SARs and QSARs .. 4-1
 4.1.1 Developing Predictive Models ... 4-1
 4.1.2 Mathematical Algorithms ... 4-1
 4.2 Fragment-based Approaches .. 4-3
 4.3 Expert System Models .. 4-4
 4.4 Combination Models ... 4-5
 4.5 Potential Structural Entry Formats for Predictive Models .. 4-6

PHYSICAL / CHEMICAL AND ENVIRONMENTAL FATE PROPERTIES
5 Estimating Physical / Chemical and Environmental Fate Properties with EPI Suite™ 5-1
 5.1 How this Chapter is Organized .. 5-1
 5.2 Introduction to EPI Suite™ .. 5-1
 5.2.1 What is EPI Suite™? ... 5-1
 5.2.2 How Does EPI Suite™ Work? ... 5-2
 5.2.3 Evaluations of and Case Studies using EPI Suite™ .. 5-3
 5.2.4 Running the Sample Chemical, Isodecyl Acrylate, in EPI Suite™ 5-4
 5.3 Physical / Chemical Properties ... 5-6
 5.3.1 Melting Point (MP), Boiling Point (BP), Vapor Pressure (VP) 5-7
 5.3.2 Water Solubility (WSol or WS) .. 5-9
 5.3.3 Octanol / Water Partition Coefficient (log Kow or log P) .. 5-11
 5.4 Environmental Fate Properties .. 5-12
 5.4.1 Properties Relating to Environmental Transport – HLC, Koc, BCF 5-12
 – Henry’s Law Constant (HLC) ... 5-12
 – Soil Adsorption Coefficient (Koc) ... 5-13
 – Bioconcentration Factor (BCF) .. 5-14
 5.4.2 Properties Relating to Environmental Persistence ... 5-15
 – Biodegradation .. 5-15
 – Atmospheric Oxidation Half-life ... 5-16
 – Hydrolysis Half-life .. 5-17
 – Volatilization Half-life from Surface Waters ... 5-18
 – Removal in Sewage Treatment Plant ... 5-19
 5.5 Entering Predictions into SF Worksheet ... 5-20
 5.6 Obtaining Additional Training Materials on EPI Suite™ .. 5-21

HAZARD / TOXICITY ESTIMATIONS
6 Estimating Aquatic Toxicity Using ECOSAR ... 6-1
 6.1 How Does ECOSAR Predict Aquatic Toxicity? .. 6-1
 6.1.1 Understanding ECOSAR Classes .. 6-2
 – Chemicals That Can Be Evaluated With ECOSAR ... 6-2
 – ECOSAR Classes .. 6-3
 – Documentation on ECOSAR Classes ... 6-3
 6.1.2 Developing QSAR Equations Using Measured Data .. 6-4
 6.1.3 Use of Acute-to-Chronic Ratios (ACRs) .. 6-4
 6.2 Evaluation and Validation Studies of ECOSAR ... 6-5
 6.2.1 External Evaluations of ECOSAR ... 6-5
 6.2.2 External Reviews of ECOSAR ... 6-5
 6.2.3 Peer-Reviewed Publications on ECOSAR (Listed at End of Chapter) 6-6
7.7 Running the Sample Chemical in the PBT Profiler ... 7-6

7.7.1 Evaluating Isodecyl Acrylate (CAS 1330-61-6) with the PBT Profiler 7-7

7.5.2 Chemicals That Should Not be Profiled .. 7-4

7.6.2 Case Studies Using the PBT Profiler .. 7-6

7.6 Evaluation / Validation Studies of the PBT Profiler ... 7-6

6.6 Peer-Reviewed Publications Relating to Validation, Verification, and Performance 6-13

6.7 Selecting the Most Appropriate Chemical Class when Multiple Classes are Identified....... 6-14

6.8 Obtaining Additional Training Materials on the PBT Profiler ... 7-10

6.4 Interpreting ECOSAR Results.. 6-10

6.4.1 ECOSAR v1.1 Results for the Sample Chemical Isodecyl Acrylate 6-10

6.4.2 Interpreting ECOSAR Results for Isodecyl Acrylate... 6-11

6.3 Running ECOSAR.. 6-6

6.3.1 Model Inputs and Outputs... 6-6

6.3.2 Using the Mol Wt [Special Use Only] Function in ECOSAR .. 6-8

6.3.3 Important Notes on the Proper Use of ECOSAR.. 6-9

6.4 Interpreting ECOSAR Results.. 6-10

6.4.1 ECOSAR v1.1 Results for the Sample Chemical Isodecyl Acrylate 6-10

6.4.2 Interpreting ECOSAR Results for Isodecyl Acrylate... 6-11

6.5 Entering ECOSAR Predictions into SF Worksheet... 6-12

7 Estimating Persistence, Bioaccumulation, and Toxicity using the PBT Profiler 7-1

7.1 What are PBTs?... 7-1

7.2 What Does the PBT Profiler Do?... 7-1

7.3 How Does the PBT Profiler Work?... 7-2

7.3.1 Predictive Methods Incorporated into the PBT Profiler ... 7-2

7.3.2 PBT Criteria... 7-3

7.4 Interpreting PBT Profiler Predictions... 7-3

7.4.1 Three Levels of Predictions .. 7-3

7.5 Cautions Regarding Use of the PBT Profiler.. 7-4

7.5.1 Screening Level Caveats... 7-4

7.5.2 Chemicals That Should not be Profiled... 7-4

7.5.3 If the Profiler Identifies a Chemical as a Possible PBT... 7-5

7.6 Evaluation / Validation Studies of the PBT Profiler .. 7-6

7.6.1 Beta Test and Peer Review ... 7-6

7.6.2 Case Studies Using the PBT Profiler ... 7-6

7.7 Running the Sample Chemical in the PBT Profiler.. 7-6

7.7.1 Evaluating Isodecyl Acrylate (CAS 1330-61-6) with the PBT Profiler 7-7

7.7.2 Interpreting PBT Profiler Results for the Sample Chemical... 7-9

7.7.3 Entering Results into the SF Worksheet... 7-10

7.8 Obtaining Additional Training Materials on the PBT Profiler ... 7-10

8 Non-Cancer Human Health Hazard Screening Protocol ... 8-1

8.1 Non-Cancer Health Hazard Endpoints.. 8-1

8.1.1 Endpoints Generally Used to Assign Hazard Concern... 8-1

8.1.2 Other Important “Non-quantitative” Endpoints .. 8-2

8.2 Five Steps in Conducting a Non-Cancer Hazard Screen.. 8-2

8.2.1 Step 1: Search for Toxicity Data on the Chemical of Interest.. 8-2

8.2.2 Step 2: Determining if a Chemical Belongs to a Category of Concern............................... 8-5

8.2.3 Step 3: Does the Chemical Belong to a Class Causing Local or Systemic Effects............... 8-6

Systemic Effects... 8-6

8.2.4 Step 4: Identify Appropriate Analog(s) with Measured Data... 8-6

8.2.5 Step 5: Assign a Hazard Concern Level.. 8-7

8.3 Search for Toxicity Data on Isodecyl Acrylate ... 8-8

8.4 Entering Data in the Sustainable Futures Worksheet.. 8-9