<EPA

United States Office of Environmental EPA/240/R-02/005
Environmental Protection Information December 2002
Agency Washington, DC 20460

Guidance on Choosing a
Sampling Design for Environmental

Data Collection

for Use in Developing a Quality
Assurance Project Plan

EPA QA/G-5S






FOREWORD

This document, Guidance for Choosing a Sampling Design for Environmental Data
Collection (EPA QA/G-5S), will provide assistance in developing an effective QA Project Plan as
described in Guidance for QA Project Plans (EPA QA/G-5) (EPA 1998b). QA Project Plans are
one component of EPA’s Quality System. This guidance is different from most guidance in that it is not
meant to be read in a linear or continuous fashion, but to be used as a resource or reference document.
This guidance is a “tool-box” of statistical designs that can be examined for possible use as the QA
Project Plan is being developed.

EPA works every day to produce quality information products. The information used in these
products are based on Agency processes to produce quality data, such as the quality system described
in this document. Therefore, implementation of the activities described in this document is consistent
with EPA’s Information Quality Guidelines and promotes the dissemination of quality technical,
scientific, and policy information and decisions.

This document provides guidance to EPA program managers, analysts, and planning teams on
statistically based sampling schemes. It does not impose legally binding requirements and the methods
described may not apply to a particular situation based on the circumstances. The Agency retains the
discretion to adopt approaches on a case-by-case basis that may differ from the techniques described
in this guidance. EPA may periodically revise this guidance without public notice. It is the intent of the
Quality Staff to revise the document to include: new techniques, corrections, and suggestions for
alternative techniques. Future versions of this document will include examples in depth that illustrate the
strengths of each statistical design.

This document is one of the U.S. Environmental Protection Agency Quality System Series
documents. These documents describe the EPA policies and procedures for planning, implementing,
and assessing the effectiveness of a Quality System. Questions regarding this document or other
Quality System Series documents should be directed to the Quality Staff:

U.S. Environmental Protection Agency
Quality Staff (2811R)

1200 Pennsylvania Ave., NW
Washington, D.C. 20460

Phone: (202) 564-6830

Fax: (202) 565-2441

E-mail: quality@epa.gov

Copies of EPA Quality System Series documents may be obtained from the Quality Staff or by
downloading them from epa.gov/quality/index.html.
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CHAPTER 1
INTRODUCTION

This document provides guidance on how to create sampling designs to collect environmental
measurement data. This guidance describes several relevant basic and innovative sampling designs, and
describes the process for deciding which design is right for a particular application.

1.1 WHY IS SELECTING AN APPROPRIATE SAMPLING DESIGN IMPORTANT?

The sampling design is a fundamental part of data collection for scientifically based decision
making. A well-developed sampling design plays a critical role in ensuring that data are sufficient to
draw the conclusions needed.! A sound, science-based decision is based on accurate information. To
generating accurate information about the level of contamination in the environment, you should
consider the following:

the appropriateness and accuracy of the sample collection and handling method,
the effect of measurement error,

the quality and appropriateness of the laboratory analysis, and

the representativeness of the data with respect to the objective of the study.

OO OO O O

Of these issues, representativeness is addressed through the sampling design.
Representativeness may be considered as the measure of the degree to which data accurately and
precisely represent a characteristic of a population, parameter variations at a sampling point, a process
condition, or an environmental condition [ American National Standards Institute/American Society for
Quality Control (ANSI/ASQC) 1994]. Developing a sampling design is a crucial step in collecting
appropriate and defensible data that accurately represent the problem being investigated.

For illustration, consider Figure 1-1, a site map for a dry lagoon formerly fed by a pipe.
Assuming that good field and laboratory practices are exercised and adequate quality control is
implemented, the analytical results of soil samples drawn from randomly located sites A, B, and C may
be representative if the objective is to address whether the pipe has released a particular contaminant.
However, these data are not representative if the objective is to estimate the average concentration
level of the entire old lagoon. For that estimation, random sampling locations should be generated from

'Note: Sampling design is not the only important component. The methods used in sample handling and extraction
are equally important to the quality of the data. The United States Environmental Protection Agency produces
extensive guidance on sampling methods and field sampling techniques for different regulations, regions, and
programs that are not addressed in this document. In addition, measurement error affects the ability to draw
conclusions from the data. Guidance on Data Quality Indicators (QA/G-5i) (EPA, 2001) contains information on
this issue.
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the entire site of the old lagoon (for example, perhaps

including samples at D, E, and F). If a sampling

design results in the collection of nonrepresentative

data, even the highest quality laboratory analysis

cannot compensate for the lack of representative data.
The selection of the appropriate sampling design is
necessary in order to have data that are representative

of the problem being investigated.?

This document provides technical guidance on
specific sampling designs that can be used to improve
the quality of environmental data collected. Based in

Location of Pipe

l A c| \
N J \
\ \
Areawhere \ |
outfall from
pipe was
expected to
accumulate o //
' /
S~ — _—

Old Lagoon (now dry)

Figure 1-1. Site Map for Old Lagoon

statistical theory, each chapter explains the benefits and drawbacks of each design and describes
relevant examples of environmental measurement applications. To choose a sampling design that
adequately addresses the estimation or decision at hand, it is important to understand what relevant
factors should be considered and how these factors affect the choice of an appropriate sampling design.

1.2 WHAT TYPES OF QUESTIONS WILL THIS GUIDANCE ADDRESS?

Often it is difficult in practice to know how to answer questions regarding how many samples to
take and where they should be taken. The development of a sampling design will answer these
questions after considering relevant issues, such as variability. Box 1-1 outlines the questions that are

relevant to choosing a sampling design.

Box 1-1. Questions that this Document Will Help to Address

. What aspects of the problem should be considered for creating a sampling design?

. What are the types of designs that are commonly used in environmental sampling?

. What are some innovative designs that may improve the quality of the data?

. Which designs suit my problem?

. How should I design my sampling to provide the right information for my problem given a
limited budget for sampling?

. How do I determine how much data are needed to make a good decision?

2Note: The problem of what constitutes “representativeness” is complex and further discussion may be
found in Guidance on Data Quality Indicators Peer Review Draft (QA/G-5i) (EPA, 2001).
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1.3 WHO CAN BENEFIT FROM THIS DOCUMENT?

This document will be useful to anyone planning data collection from any type of environmental
media including soil, sediment, dust, surface water, groundwater, air, vegetation, and sampling in indoor
environments. The document contains information that will help those who are not extremely familiar
with statistical concepts as well as those who are more comfortable with statistics. To this end, varying
degrees of detail are provided on the various sampling designs, which should be used according to
ability. The potential benefits for different types of users are shown in Table 1-1. This document is
meant to apply to all environmental media; examples in this document provides information on
innovative designs not discussed in earlier EPA documents.

The guidance document is designed for users who are not necessarily well versed in statistics.
The document is written in plain language, and is designed to minimize technical jargon and provide
useful explanations for those who might not already be familiar with the concepts described. In some
chapters, more advanced material and more advanced references have been provided for statisticians -
these have been marked as “more advanced.”

Table 1-1. Potential Benefits for Users

Potential User

Benefit to the User

Environmental Scientist
or Environmental
Engineer who is planning
the sampling or Project
Manager planning the
investigation and reviewing
the sampling plan

An understanding of various sampling designs and the conditions
under which these designs are appropriate

An understanding of how sampling design affects the quality of the
data and the ability to draw conclusions from the data

An understanding of the appropriate uses of professional judgment
The information needed to choose designs that may increase the
quality of the data at the same cost as compared to typical
sampling approaches (for example, Ranked Set Sampling)

Risk Assessor or Data
Analyst who will be using
the data

An understanding of the advantages and limitations of data
collected using various sampling designs

The ability to draw scientifically based conclusions from data based
on different types of designs

The ability to match assessment tools to the sampling design used

Statistician assisting with
the development and
review of the sampling plan

Tables, figures, and text that will help communicate important
information about choosing a sampling design to colleagues
working on the design who are not well versed in statistics
Advanced references to support more complex design

development

EPA QA/G-5S
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1.4 HOW DOES THIS DOCUMENT FIT INTO THE EPA QUALITY SYSTEM?

Analysts should use systematic planning in order to collect data that will allow them to draw
scientifically based conclusions. There are many cases in which data have been collected, but when the
decision maker examines the data to draw conclusions, he or she finds that the data do not match the
needs of the decision. Such problems can be avoided by using a systematic planning process to design
the data collection. This process accounts for user’s needs before the data are collected.

When data are being used in direct support of a decision. the Agency’s recommended
systematic plnning tool is the Data Quality Objectives (DQO) Process as described in EPA 2000b.
For systematic planning of environmental data collection, EPA prefers the Data Quality Objectives
(DQO) process described in the data quality objectives guidance (EPA, 2000b). A sampling design is
chosen in Step 7 of the DQO Process based on the parameters specified in the other steps in the DQO
Process. In this guidance, the activities of DQO Step 7 are explained in Chapter 3 (i.e., the process of
choosing a sampling design), and a full discussion of the factors that should be considered in Step 7 of
the DQO Process is given in Section 3.2.

Figure 1-2 illustrates the life-cycle of environmental data in the EPA Quality System. The
process begins with systematic planning. Developing a sampling design is the last step in systematic
planning, and is explained briefly in Step 7 of Guidance for the Data Quality Objectives Process
(QA/G-4) (EPA, 2000b). This guidance document on sampling design is intended to expand greatly on
the general details provided in that guidance. Information from the other steps in the systematic
planning process are used as input to developing the sampling design. This process is described in
detail in Chapter 3 of this guidance.

Systematic
Planning Conduct | Data Verification
Study/Experiment and Validation
Sampling Design
- Y
O
L,l’J Data Quality
@) Indicators
[0
o Y
oA gtinrgzrr]d Technical Data Quality
. — P 9 Assessments Assessment
Project Plan Procedures

PLANNING —® IMPLEMENTATION — ASSE?SMENT
]

Figure 1-2. Life-cycle of Data in the EPA Quality System
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Data Quality Indicators (DQIs) are specific calculations that measure performance as
reflected in the DQOs and performance and acceptance criteria. DQIs include precision, accuracy,
representativeness, completeness, consistency, and sensitivity, and are discussed at length in Guidance
on Data Quality Indicators (QA/G-5i) (EPA, 2001). The choice of sampling design will have an
impact on the DQIs. These indicators are addressed specifically for each project in the details of the
Quality Assurance (QA) Project Plan.

The development of a sampling design is followed by the development of a QA Project Plan.
A process for developing a QA Project Plan is described in Guidance for Quality Assurance Project
Plans (QA/G-5) (EPA, 1998b).

After the QA Project Plan is developed and approved, data are collected during the
study/experimental phase according to the plan. Quality is further assured by the use of standard
operating procedures and audits (technical assessment). Finally, verification, validation, and quality
assessment of the data complete the quality system data collection process.

1.5  WHAT SOFTWARE SUPPLEMENTS THIS GUIDANCE?

Visual Sampling Plan (VSP) is a software tool that contains some of the sampling plans
discussed in this guidance. VSP supports the implementation of the DQO Process by visually
displaying different sampling plans, linking them to the DQO Process, and determining the optimal
sampling specifications to protect against potential decision errors. This easy-to-use program is highly
visual, very graphic, and intended for use by non-statisticians. VSP may be obtained from
http://dqo.pnl.gov.vsp.

1.6 WHAT ARE THE LIMITATIONS OR CAVEATS TO THIS DOCUMENT?

The scope of this document is limited to environmental measurement data. It does not explicitly
address count data, survey (questionnaire) data, human exposure data, or experimental data collection,
although some of the concepts described here are applicable to these types of studies. This guidance
does not provide a complete catalogue of potential sampling designs used by EPA. These guidelines
do not supercede regulatory requirements for specific types of sampling design, nor regional, state, or
program guidance; rather, they are intended to supplement other guidance.

In addition, there are sampling designs that might be used in environmental data collection that
are not discussed in this document. For example, double sampling, sequential sampling, quota
sampling, and multi-stage sampling are all designs that are used for environmental data collection.
Information on these designs can be found in other resources on sampling designs.
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1.7 HOW IS THIS DOCUMENT ORGANIZED?

This document is designed to be used as a reference rather than be read from beginning to end.
First-time users will probably want to skim Chapter 2 and read Chapter 3 before continuing to other
chapters. Chapter 2 defines important concepts and terms, and introduces the types of sampling
designs covered in this document, along with information on what specific types of situations call for
which designs. Chapter 3 describes the process of developing a sampling design and discusses how
input from a systematic planning process affects the choice of a sampling design.

The remaining chapters contain specific information about different sampling designs or
protocols. Each chapter is formatted in a similar style to allow the reader to easily find information. A
synopsis of the benefits and limitations of the design can be found in each chapter, so that readers can
evaluate each design in light of their specific situation. Each chapter also contains at least one example
and descriptions of applications of this design, where possible. Finally, each chapter has an appendix
containing formulae and additional technical information.

Some designs are often used in conjunction with other designs; descriptions and examples of
these types of studies are included. At the end of the document, a glossary defines key terms and a list
of references contains citations for all referenced material and other materials used in developing this
document.

The level of detail provided in the chapters varies based on the complexity of the design. For
simpler designs, the chapter provides relatively complete information regarding how and when to
implement this approach. For more complex designs, a general discussion is provided, along with
references that can provide more information for the interested reader. It is assumed that a statistician
would need to be involved in the development process for the more complex designs.
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CHAPTER 2
OVERVIEW OF SAMPLING DESIGNS
2.1 OVERVIEW
What does a sampling design consist of?

A complete sampling design indicates the number of samples and identifies the particular
samples (for example, the geographic positions where these samples will be collected or the time points
when samples will be collected). Along with this information, a complete sampling design will also
include an explanation and justification for the number and the positions/timings of the samples. For a
soil sample, the samples may be designated by longitude and latitude, or by measurements relative to an
existing structure. For air or water measurements, the samples would be designated by longitude and
latitude as well as by time. For example, for the measurement of particulates in air, a specified length of
time would be set, such as 24 hours, in addition to the geographical location. The sampling design
would note what time the air sample collection would begin (for example, 12:00 midnight on February
10, 2001), and when it would end (for example, 12:00 midnight on February 11, 2001). The
measurement protocol would then specify when the sampler would be retrieved and how the sample
would be analyzed.

What is the purpose of a sampling design?

The goals of a sampling design can vary widely. Typical objectives of a sampling design for
environmental data collection are:

C To support a decision about whether contamination levels exceed a threshold of
unacceptable risk,
To determine whether certain characteristics of two populations differ by some amount,
To estimate the mean characteristics of a population or the proportion of a population
that has certain characteristics of interest,

C To identify the location of “hot spots™ (areas having high levels of contamination) or
plume delineation,
To characterize the nature and extent of contamination at a site, or
To monitor trends in environmental conditions or indicators of health.

A well-planned sampling design is intended to ensure that resulting data are adequately
representative of the target population and defensible for their intended use. Throughout the sampling
design process, the efficient use of time, money, and human resources are critical considerations. A
good design should meet the needs of the study with a minimum expenditure of resources. If resources
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are limited or these are multiple objectives, tradeoffs may need to be made in the design. More
information on how to go about doing this is contained in Chapter 3 on the sampling design process.

2.2 SAMPLING DESIGN CONCEPTS AND TERMS

Defining the population is an important step in developing a sampling plan. The target
population is the set of all units that comprise the items of interest in a scientific study, that is, the
population about which the decision maker wants to be able to draw conclusions. The sampled
population is that part of the target population that is accessible and available for sampling. For
example, the target population may be defined as surface soil in a residential yard, and the sampled
population may be areas of soil in that yard not covered by structures or vegetation. Ideally, the
sampled population and the target population are the same. If they are not, then professional judgment
is used to verify that data drawn from the sampled population is appropriate for drawing conclusions
about the target population.

A sampling unit is a member of the population that may be selected for sampling, such as
individual trees, or a specific volume of air or water. It is important for study planners to be very
specific when defining a sampling unit’s characteristics with respect to space and time. A sampling unit
should detail the specific components of a particular environmental media, for example, 10 cubic meters
(m?’) of air passing through a filter located in downtown Houston on July 15, 2000. Some
environmental studies have distinct sampling units such as trees, fish, or drums of waste material.
However, such distinct sampling units may not be available in environmental studies requiring samples of
soil, water, or other solid or liquid media. In this case, the sampling units are defined by the investigator
and need to be appropriate for selecting a representative sample of material from the medium of
interest. The physical definition of a sampling unit in terms of its “size, shape, and orientation” is
referred to as the sample support (Starks, 1986). The sampling frame is a list of all the possible
sampling units from which the sample can be selected. The sample is a collection of some of these
sampling units.

Sample support represents that portion of the sampling unit, such as an area, volume, mass, or
other quantity, that is extracted in the field and subjected to the measurement protocol (see definition
below). It is a characteristic of a sample describing its relationship to the entity from which it was
taken. It represents an area, mass, volume within the sampling unit. For example, if a sampling unit is a
single tree, the sample support could be a core from the base of the tree. Or, if a sample unit is 10
grams of soil from a particular x-y coordinate, the sample support might be 1 gram of this soil after
homogenization. Smaller sample support usually results in greater sampling variation (i.e., greater
variability between sampling units) [see Section 21.5.3 of Pitard (1993)]. For example, soil cores with
a 2-inch diameter and 6-inch depth usually have greater variability in contaminant concentrations than
cores with a 2-inch diameter and 5-foot depth, much like composite samples have less variability than
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individual specimens (see Chapter 9). Hence, the study objectives need to clearly define the sample
support in order for the results (for example, sample mean and variance) to be clearly interpretable.

Once a sampling unit is selected, a measurement protocol is applied; a measurement protocol
is a specific procedure for making observations or performing analyses to determine the characteristics
of interest for each sampling unit. The measurement protocol would include the procedures for
collecting a physical sample, handling and preparing the physical sample, applying an analytical method
(including the sample preparation steps) to obtain a result (that is, to obtain the data for the sample),
and protocol for resampling if necessary. If compositing of the samples is employed (so that
measurements are made on the composites), then the measurement protocol would also include a
composite sampling protocol, which indicates how many composites are to be formed, how many
samples comprise each composite, and which samples are used to form each composite; the
compositing protocol would also prescribe the compositing procedures (for example, for
homogenization, for taking aliquots). The sampling design specifies the number, type, and location
(spatial and/or temporal) of sampling units to be selected for measurement.

A water sampling example illustrates how these terms relate to one another. Consider a study
designed to measure E. coli and entercocci levels in a specific swimming area of a lake. The target
population is the water flowing through this area (delineated by buoys) from May 1 until September 15.
The sampled population will be the water in the swimming area at 7 a.m. and 2 p.m at approximately 6
inches below the surface. The sampling units chosen for the study consist of 1-liter volumes of water at
particular locations in the swimming area. In this case, the sample support is equal to the sampling unit,
1 liter of water. The measurement protocol calls for the use of a 2-liter beaker, held by a 6-inch
handle. The sampler needs a nonmotorized boat (for example, a rowboat) to collect the sample so as
to minimize the disturbance to the water. The sample is collected in the specified manner and poured
into a 2-liter sample jar, up to the 1-liter line. The rest of the water in the beaker is discarded back into
the lake. Each 1-liter container of water is taken to the lab for analysis within 6 hours and is analyzed
according to current state standards. The sampling design calls for obtaining a minimum of two samples
on each sampling day at 7 a.m. and 2 p.m or up to three times a day when there are indications of
increased potential for contamination (for example, heavy rainfall). Sampling days are defined in the
study and may be every day, every other day, or whatever frequency is appropriate for the particular
problem at hand. The sampling design also specifies the exact locations where the samples should be
drawn, which in this case were chosen at random.

Another important concept for sampling design is the conceptual model. At the outset of data
collection activities, it is critical to develop an accurate conceptual model of the potential hazard. A
conceptual model describes the expected source of the contaminant and the size and breadth of the
area of concern, identifies the relevant environmental media and the relevant fate and transport
pathways, and defines the potential exposure pathways. The model should also identify potential
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sources of variability in the data (for example, inherent variability among sampling units in the population
and variability associated with selecting and analyzing samples).

2.3  PROBABILISTIC AND JUDGMENTAL SAMPLING DESIGNS

There are two main categories of sampling designs: probability-based designs and judgmental
designs. Probability-based sampling designs apply sampling theory and involve random selection of
sampling units. An essential feature of a probability-based sample is that each member of the
population from which the sample was selected has a known probability of selection. When a
probability-based design is used, statistical inferences may be made about the sampled population from
the data obtained from the sampling units. That is, when using a probabilistic design, inferences can be
drawn about the sampled population, such as the concentration of fine particulate matter (PM, s) in
ambient air in downtown Houston on a summer day, even though not every single “piece” of the
downtown air is sampled. Judgmental sampling designs involve the selection of sampling units on
the basis of expert knowledge or professional judgment.

Table 2-1 summarizes the main features of each main type of sampling design. Section 2.3.1
introduces judgmental sampling, and Chapter 4 contains more information on the benefits and limitations
of this design. Sections 2.3.2 through 2.3.7 introduce the six probabilistic sampling designs, and
Chapters 5 through 10 describe these in more detail. Reviewing these chapters will provide more
details about the appropriate use of these designs.

Table 2-1. Probability-based versus Judgmental Sampling Designs

Probability-based Judgmental
* Provides ability to calculate uncertainty * Can be less expensive than probabilistic
a associated with estimates designs. Can be very efficient with
8 | » Provides reproducible results within knowledge of the site
§ uncertainty limits * Easy to implement
3 * Provides ability to make statistical inferences

* Can handle decision error criteria

» Random locations may be difficult to locate |« Depends upon expert knowledge
 An optimal design depends on an accurate | « Cannot reliably evaluate precision of

conceptual model estimates
« Depends on personal judgment to interpret

data relative to study objectives

Disadvantages

Figure 2-1 illustrates the data collection process for both judgmental sampling and probabilistic
sampling. Both processes start with defining the target population and the sampled population, and
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each ends with data collection
Objective: Estimate the average

and analy51s. The difference is concentration of pesticide chlorpyrifos in
seen when moving up the the apples grown on this apple orchard
diagram Wthh ShOWS hOW TARGET POPULATION: Fruit to

? be consumed from this orchard -
conclusions can be drawn about / V Professiond

Judgment

the sampled and target CONSIDER PRACTICAL CONSTRAINTS:

1 Professional ) Some apples may not be consumed for various
populatlons. Jzzgerizglna reasons, but because this is not predictable, all

frait growing in this orchard is eligible for sampling

When using probabilistic /
sampling, the data analyst can
draw quantitative conclusions
about the sampled population.
That is, in estimating a parameter
(for example., the mean), the
analyst can calculate a 95%

SAMPLED POF*ULATION:
All fruit growing in orchard that is
to be processed for consumption

Judgmental Sampling Probability Sampling
Determine where to take  Determine where to take
samples using{;ersonal opinion samples statistically

Select measurement Select measurement

confidence interval for the — =3 protocol protocol H il
parameter of interest. If j§ Anccdotalf cojiect sample Collect sample [j Statistical

: . | Report § units - t Report ]
comparing this to a threshold, the | I v “Q‘ts i—
analyst can state whether the data Measure units and Measure units and
o . generate data generate data
indicate that the concentration v ¥

Inspect data Analyze data

exceeds or is below the threshold
with a certain level of confidence.
Expert judgment is then used to
draw conclusions about the target
population based on the statistical
findings about the sampled population. Expert judgment can also be used in other aspects of
probabilistic sampling designs, such as defining strata in a stratified design. Such uses of expert
judgment will be discussed in more detail in relevant sampling design chapters.

Figure 2-1. Inferences Drawn from Judgmental versus
Probabilistic Sampling Designs

When using judgmental sampling, statistical analysis cannot be used to draw conclusions
about the target population. Conclusions can only be drawn on the basis of professional judgment. The
usefulness of judgmental sampling will depend on the study objectives, the study size and scope, and the
degree of professional judgment available. When judgmental sampling is used, quantitative statements
about the level of confidence in an estimate (such as confidence intervals) cannot be made.

24  TYPES OF SAMPLING DESIGNS
This guidance describes six sampling designs and one sampling protocol (i.e., composite

sampling). Most of these designs are commonly used in environmental data collection. Some are
designs that are not as commonly used but have great potential for improving the quality of
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environmental data. Table 2-2 identifies the sampling designs discussed in this document, and indicates
which chapter contains detailed information on each design. This section briefly describes each design,
providing some information about the type of applications for which each design is especially
appropriate and useful.

Table 2-2. Sampling Designs Presented in this Guidance

Sampling Design/Protocol Chapter Use
Judgmental 4 Common
Simple Random 5 Common
Stratified 6 Common
Systematic and Grid 7 Common
Ranked Set 8 Innovative
Adaptive Cluster 9 Innovative
Composite 10,11 Common

2.4.1 Judgmental Sampling

In judgmental sampling, the selection of sampling units (i.e., the number and location and/or
timing of collecting samples) is based on knowledge of the feature or condition under investigation and
on professional judgment. Judgmental sampling is distinguished from probability-based sampling in that
inferences are based on professional judgment, not statistical scientific theory. Therefore, conclusions
about the target population are limited and depend entirely on the validity and accuracy of professional
judgment; probabilistic statements about parameters are not possible. As described in subsequent
chapters, expert judgment may also be used in conjunction with other sampling designs to produce
effective sampling for defensible decisions.

2.4.2 Simple Random Sampling

In simple random sampling, particular sampling units (for example, locations and/or times) are
selected using random numbers, and all possible selections of a given number of units are equally likely.
For example, a simple random sample of a set of drums can be taken by
numbering all the drums and randomly selecting numbers from that list or by
sampling an area by using pairs of random coordinates. This method is easy
to understand, and the equations for determining sample size are relatively
straightforward. An example is shown in Figure 2-2. This figure illustrates a .
possible simple random sample for a square area of soil. Simple random .
sampling is most useful when the population of interest is relatively
homogeneous; i.e., no major patterns of contamination or “hot spots” are
expected. The main advantages of this design are:

Figure 2-2. Simple
Random Sampling

Final
EPA QA/G-5S 12 December 2002



(1) It provides statistically unbiased estimates of the mean, proportions, and variability.
2) It is easy to understand and easy to implement.
3) Sample size calculations and data analysis are very straightforward.

In some cases, implementation of a simple random sample can be more difficult than some other
types of designs (for example, grid samples) because of the difficulty of precisely identifying random
geographic locations. Additionally, simple random sampling can be more costly than other plans if
difficulties in obtaining samples due to location causes an expenditure of extra effort.

2.4.3 Stratified Sampling

In stratified sampling, the target population is separated into nonoverlapping strata, or
subpopulations that are known or thought to be more homogeneous (relative to the environmental
medium or the contaminant), so that there tends to be less variation among sampling units in the same
stratum than among sampling units in different strata. Strata may be chosen on the basis of spatial or
temporal proximity of the units, or on the basis of preexisting information or professional judgment
about the site or process. Figure 2-3 depicts a site that was stratified on the basis of information about
how the contaminant is present based
on wind patterns and soil type and on
the basis of surface soil texture. This
design is useful for estimating a
parameter when the target population is
heterogeneous and the area can be
subdivided based on expected
contamination levels. Advantages of
this sampling design are that it has
potential for achieving greater precision
in estimates of the mean and variance,
and that it allows computation of reliable
estimates for population subgroups of
special interest. Greater precision can
be obtained if the measurement of
interest is strongly correlated with the
variable used to make the strata. Figure 2-3. Stratified Sampling

Radius = 500 m

Direction of
Prevailing
Wind

Clayey Soil

£ Down
.|: Wind/
i Sandy

Down Wind/
Clayey Soil

2.4.4 Systematic and Grid Sampling

In systematic and grid sampling, samples are taken at regularly spaced intervals over space or
time. An initial location or time is chosen at random, and then the remaining sampling locations are
defined so that all locations are at regular intervals over an area (grid) or time (systematic). Examples
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of systematic grids include square, rectangular, triangular, or radial grids [Section 16.6.2 of Myers
(1997)].

In random systematic sampling, an initial sampling location (or time) is chosen at random and
the remaining sampling sites are specified so that they are located according to a regular pattern
(Cressie, 1993) for example, at the points identified by the intersection of each line in one of the grids
shown in Figure 2-4. Systematic and grid

sampling is used to search for hot spots and

to infer means, percentiles, or other P .

parameters and is also useful fqr estlmat‘mg > \} ;Avﬂ‘“v‘vﬂﬂ»
spatial patterns or trends over time. This { 7 @;Axgaaﬁg%\
design provides a practical and easy N VAL

method for designating sample locations Systematic Grid Sampling - Square Grid  Systematic Grid Sampling - Triangular Grids
and ensures uniform coverage of a site, unit,

Or process.

Figure 2-4. Systematic/Grid Sampling

2.4.5 Ranked Set Sampling

Ranked set sampling is an innovative design that can be highly useful and cost efficient in
obtaining better estimates of mean concentration levels in soil and other environmental media by
explicitly incorporating the professional judgment of a field investigator or a field screening measurement
method to pick specific sampling locations in the field. Ranked set sampling uses a two-phase sampling
design that identifies sets of field locations, utilizes inexpensive measurements to rank locations within
each set, and then selects one location from each set for sampling.

In ranked set sampling, m sets (each of size r) of field locations are identified using simple
random sampling. The locations are ranked independently within each set using professional judgment
or inexpensive, fast, or surrogate measurements. One sampling unit from each set is then selected
(based on the observed ranks) for subsequent measurement using a more accurate and reliable (hence,
more expensive) method for the contaminant of interest. Relative to simple random sampling, this
design results in more representative samples and so leads to more precise estimates of the population
parameters.

Ranked set sampling is useful when the cost of locating and ranking locations in the field is low
compared to laboratory measurements. It is also appropriate when an inexpensive auxiliary variable
(based on expert knowledge or measurement) is available to rank population units with respect to the
variable of interest. To use this design effectively, it is important that the ranking method and analytical
method are strongly correlated.
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2.4.6 Adaptive Cluster Sampling

In adaptive cluster sampling, #» samples are taken using simple random sampling, and additional
samples are taken at locations where measurements exceed some threshold value. Several additional
rounds of sampling and analysis may be needed. Adaptive cluster sampling tracks the selection
probabilities for later phases of sampling so that an unbiased estimate of the population mean can be
calculated despite oversampling of certain areas. An example application of adaptive cluster sampling
is delineating the borders of a plume of contamination.

Initial and final adaptive
sampling designs are shown in Figure RIXIRBR XOXR
oy XX X XA X X
2-5. Initial measurements are made X DRI [X X IR X
. X XXX X XXPXT X X
of randomly selected primary XIXIX[X X[Xlx]x
. . . . XXX XXX | X
sampling units using simple random X X[X]x
. . . X
sampling (designated by squares in
Figure 2-5). Whenever a sampling
unit is found to show a characteristic
of interest (for example, contaminant
. . Population Grid with Shaded Areas of Final Adaptive Cluster Sampling Results
concentration Of concern, eCOlOglcal Interest and Initial Simple Random Sample X = Sampling unit
effect as indicated by the shaded
areas in the figure), additional Figure 2-5. Adaptive Cluster Sampling

sampling units adjacent to the original
unit are selected, and measurements are made.

Adaptive sampling is useful for estimating or searching Inc vt sal 3art2loe

for rare characteristics in a population and is appropriate for eooe L &
Sarples

inexpensive, rapid measurements. It enables delineating the
boundaries of hot spots, while also using all data collected with
appropriate weighting to give unbiased estimates of the
population mean.

Composile

2.4.7 Composite Sampling @ 0] @

A ques o se arz yzad

In composite sampling (illustrated in Figure 2-6),
volumes of material from several of the selected sampling units
are physically combined and mixed in an effort to form a single
homogeneous sample, which is then analyzed. Compositing can be very cost effective because it
reduces the number of chemical analyses needed. It is most cost effective when analysis costs are large
relative to sampling costs; it demands, however, that there are no safety hazards or potential biases (for
example, loss of volatile organic components) associated with the compositing process.

Figure 2-6. Composite Sampling
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Compositing is often used in conjunction with other sampling designs when the goal is to
estimate the population mean and when information on spatial or temporal variability is not needed. It
can also be used to estimate the prevalence of a rare trait. If individual aliquots from samples
comprising a composite can be retested on a new portion, retesting schemes can be combined with
composite sampling protocols to identify individual units that have a certain trait or to determine those
particular units with the highest contaminant levels.
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CHAPTER 3
THE SAMPLING DESIGN PROCESS
3.1 OVERVIEW
What are the objectives of the sampling design process?

The sampling design process should match the needs of the project with the resources
available. The needs generally consist of the study objectives and the tolerable limits on uncertainty.
The resources may include personnel, time, and availability of financial resources. The goal of the
process is to use all of the information available so that the data collected meets the needs of the
decision maker.

Who is typically involved in the sampling design process?

The sampling design process typically includes a multi-disciplinary group (such as a DQO
development team) that is involved in systematic planning at the beginning and at key review points.
This team should include the decision maker or end user of the data. More rigorous technical activities
will likely be performed by statisticians or by environmental scientists or engineers who have training
and experience in environmental statistics.

3.2. INPUTS TO THE SAMPLING DESIGN PROCESS

What outputs from the systematic planning process are incorporated into the sampling design
process?

It is EPA policy (EPA, 2000c) that all EPA organizations use a systematic planning process to
develop acceptance or performance criteria for the collection, evaluation, or use of environmental data.
Systematic planning identifies the expected outcome of the project, the technical goals, the cost and
schedule, and the acceptance criteria for the final result. The Data Quality Objectives (DQO) Process
is the Agency’s recommended planning process when data are being used to select between two
opposing conditions, such as decision-making or determining compliance with a standard. The outputs
of this planning process (the data quality objectives themselves) define the performance criteria. The
DQO Process is a seven-step planning approach based on the scientific method that is used to prepare
for data collection activities such as environmental monitoring efforts and research. It provides the
criteria that a sampling design should satisfy, where to collect samples; tolerable decision error rates;
and the number of samples to collect.
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DQOs are qualitative and quantitative statements, developed in the first six steps of the
DQO Process (Figure 3-1), that define the purpose for the data collection effort, clarify the kind of data
needed, and specify the limits on decision errors needed for the study. These outputs are used in the
final DQO step to develop a sampling design that meets the performance criteria and other design
constraints. The DQO Process helps investigators ensure that the data collected are of the right type,
quantity, and quality needed to answer research questions or support environmental decisions, and
ensures that valuable resources are spent on collecting only those data necessary to support defensible
decisions.

The DQO Process is a systematic planning approach for data collection that is based on the
scientific method and uses a seven-step process. Although the DQO Process is typically described in
linear terms, it is really a flexible process that relies on iteration and modification as the planning team
works through each step, thus allowing early steps to be revised in light of information developed from
subsequent steps.

The Steps of the DQO Process

Step 1: State the Problem. This step Step 1. State the Problem
defines the problem clearly, identifies the primary Define the problemn: identify the planning team;
decision maker and planning team members, and ;
determines the available budget, personnel, and Step 2. Identify the Decision

schedule deadlines. State decision; identify study question; define
alternative actior;s.

Step 2: Identify the Decision. The key
Step 3. Identify the Inputs to the Decision

aCthltleS are tO deVelOp an appropnate deCISIOH Identify information needed for the decision (information
statement: ldentlfy the pI’lIlClpal Study question sources, basis for Action Level, sampling/analysis method).
. 9
define alternative actions that could result from *
resolving the pr1n61pa1 Stlldy question, link the Step 4. Define the Boundaries of the Study
. . . . . Specify sample characteristics; define
pI‘lIlClpal Study queStlon to pOSSlble aCtlonS, and spatial/temporal limits, units of decision making.
organize multiple decisions. *
Step 5. Develop a Decision Rule
Step 3- Identify the Inputs to the Define statistical parameter (mean, median); specify
: L i K . Action Level; develop logic for action.
Decision. These activities include identifying the *
type and sources of information needed to resolve

.. . i . . Step 6. Specify Tolerable Limits on Decision Error:
the deCISlon Statement, ldentlfymg meImauon Set acceptable limits for decision errors relative to

needed to establish the action level, and confirming M ==
that suitable methods exist.

Step 7. Optimize the Design for Obtaining Data

Select resource-effective sampling and analysis plan that

Step 4: Deﬁne the BOlllldal‘ieS Of the meets the performance criteria.
Study. This step specifies the characteristics that

Figure 3-1. The DQO Process
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define the population of interest, defines the spatial and temporal boundaries, defines the scale of
decision making, and identifies any practical constraints on data collection.

Step 5: Develop a Decision Rule. This step develops a decision rule, a statement that
allows the decision maker a logical basis for choosing among alternative actions, by determining the
parameter of interest, action level, scale of decision making, and outlining alternative actions.

Step 6: Specify Tolerable Limits on Decision Errors. This step determines the decision
maker’s tolerable limits on potential decision errors by identifying the decision errors and base-level
assumptions, specifying a range of possible parameter values where the consequences of decision
errors are relatively minor, and assigning probability values to the probability for the occurrence of
potential decision errors.

Step 7: Optimize the Design for Obtaining Data. This final step identifies a resource-
effective sampling design for data collection for generating data. This design is then expected to satisfy
the DQOs. Meeting or exceeding the DQOs is the goal of selection of sampling design.

By using the DQO Process, the planning team clarifies study objectives, defines the appropriate
types of data, and specifies tolerable levels of potential decision errors that will be used to establish the
quality and quantity of data needed to support decisions. Through this process, the planning team can
examine trade-offs between the uncertainty of results and cost of sampling and analysis in order to
develop designs that are acceptable to all parties involved. These are all important inputs to the
sampling design process.

What information will be needed to implement the sampling design process?

The information needed includes outputs from the systematic planning process (for example, the
outputs from Steps 1 through 6 of the DQO Process) and specific information about contributing
factors about the specific problem that could influence the choice of design. The categories of factors
that should be used in developing a sampling design are shown in Figure 3-2 and include:

Information About the Process or Area of Concern includes the conceptual model and any
additional information about the process or area (for example, any secondary data from the site that are
available, including results from any pilot studies).

Data Quality Information that is needed as input to the sampling design process is mainly from
the DQO Process and include:

C The purpose of the data collection—that is, hypothesis testing (evidence to reject or
support a finding that a specific parameter exceeds a threshold level, or evidence to
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Choice of Sampling
Design

Information About The
Process or Area of Concern

Data Quality Information

Constraints

Conceptual Model of the Potential
Environmental Hazard

» Size/Breadth of Area of Concern
» Media of concern

» Distributions of Contaminant

» Sources of Variability

» Chemical/Physical Properties of
Contaminant

Additional Information About the
Process or Area

Purpose of Data Collection

Spatial and Temporal Boundaries of Study
Preliminary Estimates of Variance
Statistical Parameter of Interest
Tolerance for Potential Decision Errors

Overall Precision Requirements (width of
the gray region)

Sample Support

Sampling/Analysis Constraints
Time/Schedule Constraints
Geographical Constraints
Budget Constraints

Compositing Constraints

Figure 3-2. Factors in Selecting a Sampling Design

reject or support a finding that the specified parameters of two populations differ), estimating a
parameter with a level of confidence, or detecting hot spots (DQO Step 5).

C The target population and spatial/temporal boundaries of the study (DQO Step 4).
C Preliminary estimation of variance (DQO Step 4).
C The statistical parameter of interest, such as mean, median, percentile, trend, slope, or

percentage (DQO Step 5).

C Limits on decision errors and precision, in the form of false acceptance and false
rejection error rates and the definition of the gray region (overall precision
specifications) (DQO Step 6).

Constraints are principally sampling design and budget.

For more details on the DQO Process see Guidance on the Data Quality Objectives Process

(0A/G-4) (EPA, 2000b).
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It is important to carefully consider early in the design phase the sample support of the data to
be collected and the proposed method of conducting the chemical analysis. The sample support is the
physical size, shape, and orientation of material that is extracted from the sampling unit and subjected to
the measurement protocol. In other words, the sample support comprises the portion of the sampling
unit that is actually available to be measured or observed, and therefore to represent the sampling unit.
Consequently, the sample support should be chosen so that the measurement protocol captures the
desired characteristics of the sampling unit, given the inherent qualities of and variability within the
sampling unit, and is consistent with the objectives of the study. The specification of sample support
also should be coordinated with the actual physical specifications of the chosen analytical method(s) to
ensure that a sufficient quantity of material is available to support the needed analyses. Usually, the
analytical method needs a much smaller amount of material than that needed for the sample support to
represent the sampling unit. In that case, the measurement protocol will specify how the sample
support will be processed and subsampled to yield the amount of material needed for analysis.

Some examples will help clarify how sample support relates to sampling units and analytical
methods. Consider a study that is designed to estimate average arsenic contamination in surface soil at
a site. The project team may decide to divide the site into square sampling units that are 3 meters on
each side and 10 centimeters deep. Given their knowledge of variability experienced at other sites, the
project team may decide that the sample support needed to properly characterize a sampling unit is the
area and volume of soil that can be obtained by taking 9 soil cores, each 15 cm in diameter and 10 cm
deep. Consider another example in which a study is designed to estimate average mercury
contamination in fish. The project team may decide that the sampling unit is an individual fish, and the
sample support is the type and mass of fish tissue extracted from each fish, which they might specify in a
table. In both of the above examples, an analytical chemist would confirm that the sample support
would provide a sufficient amount of soil or fish tissue to conduct the analytical procedures needed to
characterize the concentrations of arsenic in soil or mercury in fish. Sometimes the sample support is an
integral part of the analytical result. For example, when sampling water for the occurrence of
microbiological contaminants such as chryptosporidium, water is passed through filters and the filters
are then processed and examined to count the number of organisms. The volume of water filtered
constitutes the sample support and also is used directly in the calculation of the occurrence rate (i.e.,
number of organisims per volume of water). In all cases, the sample support is chosen to ensure that
the measurement protocol will reliably characterize the sampling unit in a way that is consistent with the
study objectives. The study objectives are defined during systematic planning, such as in DQO Steps 1
and 2. The definition of the sampling unit and selection of sampling support will depend strongly on the
study boundaries defined in DQO Step 4, and on the performance criteria developed in DQO Step 6.

Possible constraints on choosing a sampling design fall into four categories: sampling/analysis
limitations, time/schedule restrictions, geographic barriers, and budget amounts. Sampling/analysis
constraints could include measurement instrument performance (for example, sensitivity and selectivity
requirements for field or laboratory technologies), regulatory requirements that specify analytic or
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sample collection method, or weather constraints (for example, performance of field technologies at low
temperature, high humidity, or the ability to collect samples during certain seasons or types of weather).
Time/schedule constraints could include seasonal constraints such as the relationship of exposure to

season (for example, solvent volatility in warmer weather) and the availability of certified professionals.
Geographic constraints could include physical barriers that may preclude sampling (for example, rivers,

fences) and also any possible hindrance to the ability to accurately identify sample location. Budget

constraints should take into account the entire data collection process—from the collection of the
sample in the field, including transport and storage, to analysis of the samples and data entry and

validation. Compositing constraints could include the decision on representativeness of the physical

sample taken at a location or station, or the ability to physically mix samples both in the field and in the

laboratory.

In addition to these categories, sampling design development should also take into account

existing regulations and requirements (for example, state, municipal) if they apply. Finally, any possible
secondary uses of the data should be considered to the extent possible.

33 STEPS IN THE SAMPLING DESIGN PROCESS

Steps of the sampling design process are
represented in Figure 3-3 and described below.

Review the systematic planning outputs.
First, the sampling objectives need to be stated clearly.
Next, make sure the acceptance or performance criteria
are specified adequately (such as probability limits on
decision errors or estimation intervals). Then review the
constraints regarding schedule, funding, special
equipment and facilities, and human resources.

Develop general sampling design
alternatives. Decide whether the approach will involve
episodic sampling events (where a sampling design is
established and all data for that phase are collected
according to that design) or an adaptive strategy (where
a sampling protocol is established and sampling units are
selected in the field, in accordance with the protocol,
based on results from previous sampling for that phase).
Consider sampling designs that are compatible with the
sampling objectives. Evaluate advantages,

Review planning outputs

(]

Develop general design
alternatives

(]

Formulate mathematical
expressions for
performance and cost of
each design

(]

Determine sample size that
satisfies performance
criteria and constraints

i

Choose the most
resource-effective design

]

Document the design in the
QA Project Plan

Figure 3-3. The Sampling Design
Process

disadvantages, and trade-offs in the context of the
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specific conditions of the study including the anticipated costs for possible alternative sampling
strategies.

Formulate mathematical expressions for the performance and cost of each design
alternative. For each design, develop the necessary statistical model or mathematical formulae
needed to determine the performance of the design, in terms of the desired statistical power or width of
the confidence interval. This process usually involves developing a model of relevant components of
variance and estimating the total variance, plus key components as necessary. Also for each design,
develop a cost model that addresses fixed costs (such as mobilization and setup costs) and variable
costs (such as labor hours per sample and analytical costs per sample). Note that this step is not used
in judgmental sampling designs. Assistance from a statistician will be needed to develop these formulae
for more complex designs; formulae for the simpler designs are provided in the appendices to the
chapters in this guidance.

Determine the sample size that satisfies the performance criteria and constraints.
Calculate the optimal sample size (and sample allocation, for stratified designs or other more complex
designs). This guidance document provides formulae for estimating sample sizes needed for the
different designs. Trade-offs may be needed between less precise, less expensive measurement
protocols (that allow for more sampling units to be selected and measured) and more precise, more
expensive measurement protocols (that provide better characterization of each sampling unit at the
expense of allowing fewer sampling units to be selected and measured). Care has to be taken to ensure
that the trade-offs made do not change the inferences from the initially planned design. For example,
the use of compositing designs needs to agree with the initial concepts of exposure or goal of the study.

If none of the designs are feasible (i.e., performance specifications cannot be satisfied within all
constraints), then consider the following possible corrective actions listed below. Note that this step is
not used in judgmental sampling designs because performance criteria are not explicitly considered.

Consider other, more sophisticated, sampling designs.

Relax performance specifications (for example, increase the allowable probability of
committing a decision error) at the expense of increasing decision error risk.

Relax one or more constraints (for example, increase the budget).

Reevaluate the sampling objectives (for example, increase the scale of decision making,
reduce the number of sub-populations that need separate estimates, or consider
surrogate or indicator measurements).

Choose the most resource-effective design. Consider the advantages, disadvantages, and
trade-offs between performance and cost among designs that satisfy performance specifications and
constraints. Consider practical issues, schedule and budget risks, health and safety risks to project
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personnel and the community, and any other relevant issues of concern to those involved with the
project. Finally, obtain agreement within the planning team on the appropriate design.

Document the design in the QA Project Plan. Provide details on how the design should be
implemented, contingency plans if unexpected conditions or events arise in the field, and quality
assurance (QA) and quality control (QC) that will be performed to detect and correct problems and
ensure defensible results. Specify the key assumptions underlying the sampling design, particularly
those that should be verified during implementation and assessment. Details on how to write a QA
Project Plan can be found in Guidance for Quality Assurance Project Plans (QA/G-5) (EPA,

1998b).

3.4 SELECTING A SAMPLING DESIGN

Table 3-1 presents examples of problem types that one may encounter and suggests sampling

designs that are relevant for these problem types in particular situations.

Table 3-1. Choosing the Appropriate Sampling Design for Your Problem

If you are...

and you have...

consider using...

in order to...

performing a
screening phase of
an investigation of a
relatively small-scale
problem

a limited budget and/or a
limited schedule

judgmental sampling

assess whether further
investigation is warranted that
should include a statistical
probabilistic sampling design.

developing an
understanding of
when contamination
is present

an adequate budget for the
number of samples needed

systematic sampling

acquire coverage of the time
periods of interest.

developing an
understanding of
where contamination
is present

an adequate budget for the
number of samples needed

grid sampling

acquire coverage of the area
of concern with a given level
of confidence that you would
have detected a hot spot of a
given size.

estimating a
population mean

an adequate budget

budget constraints and
analytical costs that are

high compared to sampling

costs

systematic or grid
sampling

composite sampling

also produce information on
spatial or temporal patterns.

produce an equally precise or
a more precise estimate of the
mean with fewer analyses and
lower cost.
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Table 3-1. Choosing the Appropriate Sampling Design for Your Problem

If you are...

and you have...

consider using...

in order to...

budget constraints and
professional knowledge or
inexpensive screening
measurements to assess
the relative amounts of the
contaminant at specific
field sample locations

ranked set sampling

reduce the number of analyses
needed for a given level of
precision.

estimating a
population mean or
proportion

spatial or temporal
information on
contaminant patterns

stratified sampling

increase the precision of the
estimate with the same number
of samples, or achieve the
same precision with fewer
samples and lower cost.

delineating the
boundaries of an area
of contamination

a field screening method

adaptive cluster
sampling

simultaneously use all
observations in estimating the
mean

estimating the
prevalence of a rare
trait

analytical costs that are
high compared to sampling
costs

random sampling and
composite sampling

produce an equally precise (or
a more precise) estimate of the
prevalence with fewer
analyses and lower cost.

attempting to identify
population units that
have a rare trait (for a
finite population of
units)

the ability to physically mix
aliquots from the samples
and then retest additional
aliquots

composite sampling and

retesting

classify all units at reduced
cost by not analyzing every
unit.

attempting to identify

the ability to physically mix

composite sampling and

identify such units at reduced

population unit(s) aliquots from the samples retesting cost by not analyzing every
that have the highest and then retest additional unit.
contaminant levels aliquots
(for a finite
population of units)
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CHAPTER 4
JUDGMENTAL SAMPLING
4.1 OVERVIEW

Judgmental sampling refers to the selection of sample locations based on professional judgment
alone, without any type of randomization. Judgmental sampling is useful when there is reliable historical
and physical knowledge about a relatively small feature or condition. As discussed in Quality
Assurance Guidance for Conducting Brownfields Site Assessments (EPA, 1998a), whether to
employ a judgmental or statistical (probability-based) sampling design is the main sampling design
decision. This design decision applies to many environmental investigations including Brownsfield
investigations. An important distinction between the two types of designs is that statistical sampling
designs are usually needed when the level of confidence needs to be quantified, and judgmental
sampling designs are often needed to meet schedule and budgetary constraints.

Implementation of a judgmental sampling design should not be confused with the application of
professional judgment (or the use of professional knowledge of the study site or process). Professional
judgment should a/ways be used to develop an efficient sampling design, whether that design is
judgmental or probability-based. In particular, when stratifying a population or site, exercising good
professional judgment is essential so that the sampling design established for each stratum is efficient
and meaningful.

4.2  APPLICATION

For soil contamination investigations, judgmental sampling is appropriate for situations in which
any of the following apply:

Relatively small-scale features or conditions are under investigation.

An extremely small number of samples will be selected for analysis/characterization.
There is reliable historical and physical knowledge about the feature or condition under
investigation.

C The objective of the investigation is to screen an area(s) for the presence or absence of
contamination at levels of concern, such as risk-based screening levels (note that if such
contamination is found, follow-up sampling is likely to involve one or more statistical
designs).

C Schedule or emergency considerations preclude the possibility of implementing a
statistical design.
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Judgmental sampling is sometimes appropriate when addressing site-specific groundwater
contamination issues. As further discussed in Quality Assurance Guidance for Conducting
Brownfields Site Assessments (EPA, 1998a), a statistical sampling design may be impractical if data
are needed to evaluate whether groundwater beneath a Brownfields site is contaminated due to the high
cost of groundwater sample collection and knowledge of the connection between soil and groundwater
contamination.

4.3  BENEFITS

Because judgmental sampling designs often can be quickly implemented at a relatively low cost,
the primary benefits of judgmental sampling are to meet schedule and budgetary constraints that cannot
be met by implementing a statistical design. In many situations, when some or all of the conditions listed
in Section 4.2 exist, judgmental sampling offers an additional important benefit of providing an
appropriate level of effort for meeting investigation objectives without excessive consumption of project
resources.

4.4 LIMITATIONS

Judgmental sampling does not allow the level of confidence (uncertainty) of the investigation to
be accurately quantified. In addition, judgmental sampling limits the statistical inferences that can be
made to the units actually analyzed, and extrapolation from those units to the overall population from
which the units were collected is subject to unknown selection bias.

45 IMPLEMENTATION

By definition, judgmental sampling is implemented in a manner decided by the professional(s)
establishing the sampling design. Specialized academic and professional training is needed before a
professional is qualified to design a judgmental sampling program. The following paragraphs provide
only a few examples of the most common factors that professionals should consider when establishing
judgmental sampling designs.

As discussed in EPA’s Soil Screening Guidance (EPA, 1996a), current investigative
techniques and statistical methods cannot accurately establish the mean concentration of subsurface
soils within a contaminated source without a costly and intensive sampling program that is well beyond
the level of effort generally appropriate for screening. The Soil Screening Guidance advises that, in
establishing a judgmental sampling design to investigate subsurface soil contamination, the professional
should locate two or three soil borings in the areas suspected of having the highest contaminant
concentrations. If the mean contaminant concentration calculated for any individual boring exceeds the
applicable numerical screening value, additional investigative phases should be conducted. The Soil
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Screening Guidance provides several approaches for calculating a mean contaminant concentration for
each boring; these approaches vary with the sampling-interval design.

In establishing a judgmental sampling design to investigate a subsurface soil contamination
problem, the professional needs to consider many factors including the following:

C Soil properties that affect contaminant migration (for example, texture, layering,
moisture content);

C The physical and chemical nature of the contaminant under investigation (for example,
solubility, volatility, reactivity);

C The manner in which the contaminant is understood to have been released (for

example, surface spill, leachate generated through above ground or buried waste,
leaking underground tank or pipe);

The timing and duration of the release; and

The amount of contaminant understood to have been released.

As stated in Section 4.2, judgmental sampling is often appropriate when addressing site-specific
groundwater contamination issues. The most common factors to consider in establishing a judgmental
sampling design to address a site-specific groundwater contamination issue include the following:

C The physical and chemical nature of the contaminant under investigation (for example,
solubility, volatility, reactivity, density [whether floating or sinking nonaqueous phase
liquid could be present]);

C The possible effects of contaminant migration through the unsaturated zone when and
where the contaminant entered the aquifer;
C The possible ways that contaminant migration through the unsaturated zone might have

changed the chemical nature of the contaminant before it entered the aquifer;
The depths and thicknesses of aquifers beneath the site;
The direction and rate of groundwater flow within each aquifer and variations in these

parameters;

C The aquifer properties that cause the contaminant to disperse within it, both laterally and
vertically; and

C The natural attenuation processes that may affect how the contaminant migrates in
groundwater.

4.6 RELATIONSHIP TO OTHER SAMPLING DESIGNS

Other sampling designs are used in conjunction with judgmental sampling in two common
situations. First, they may be used when the population or site is stratified, and judgmental sampling
takes place within one or more strata. This situation is typical of small-scale soil contamination
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investigations when the suspected location of the contaminant release is known. When the suspect area
is identified as a stratum, then a judgmental sampling design is established for that stratum. Other strata
established for the site may be addressed through implementation of statistical sampling designs.
Judgment is, of course, used in establishing the boundaries and extent of each stratum.

Second, other sampling designs may be used when judgmental sampling indicates that the
screening criteria established for the area under investigation is exceeded, thereby warranting further
investigation. Depending on how much historical information is available and how much information has
been obtained from the judgmental-sampling phase, follow-up phases of investigation might involve any
of the statistical sampling designs described in this guidance document.

4.7 EXAMPLES OF SUCCESSFUL USE
4.7.1 Area Impacted by Contamination Can Be Visually Discerned

An active manufacturing facility is being sold, and the prospective purchaser is conducting an
investigation to characterize existing environmental conditions and potential associated liability. One
feature being assessed is an approximately 500 square meters (m*) fenced area where drums of an
aqueous cupric-chloride waste are stored. When released, the waste stains the soil blue-green. Eight
irregularly shaped blue-green stains are identified ranging in size from about 10 square centimeters to a
square meter. The stains are thought to be a result of relatively small releases that occurred as waste
was poured into drums at the storage area from smaller containers filled at the facility's Satellite
Accumulation Areas. A judgmental sampling design is established whereby a single grab sample of soil
is collected from each of the observed stains and analyzed for copper concentration. If any single
copper result falls within one order of magnitude of the risk-based copper soil-screening level for
industrial land use, the seller has agreed to pay for a follow-up investigation that will involve a statistical
sampling program designed to better characterize the soil copper contamination and assess whether
remediation is warranted.

4.7.2 Potential Location of the Contaminant Release Is Known

An abandoned textile mill is being investigated as a Brownfields site, and one previous
employee was located who gave a reliable account of site features and activities. Based on this
interview, the site was stratified and several different sampling designs (some statistical and some
judgmental) were established. A judgmental sampling design is being used to investigate a 30 meter
long drain pipe that carried a variety of wastes from one of the site factories to a leach field adjacent to
the building; a statistical grid-sampling design was established to investigate the leach field. The drain
pipe is accessible under a grating installed on the basement floor of the factory, and visual (external) and
video (internal) inspections of the pipe showed it to be in good condition with no observable
deterioration or cracks. However, several of the joints between the 3 meter length pipe segments

Final
EPA QA/G-5S 30 December 2002



appeared either loose or slightly separated. The judgmental sampling design established for this feature
involved marking the basement floor adjacent to each pipe joint, removing the pipe, and collecting a
single sample of the soil at each marked location for laboratory analysis. The analytical results then
would be compared to the risk-based screening levels established for the list of potential site
contaminants.

4.8 EXAMPLES OF UNSUCCESSFUL USE
4.8.1 Double Judgmental Sampling
Ginevan (2001) has a practical example:

“...a good question is ‘what do I do if I am stuck with a “dirty
spots” sample?’ The answer is that if there is a great deal of
money riding on the decision one should do the sampling over.
Note also that nothing is ever so bad that it cannot be made worse.
In one case we participated in, a dirty spots sample was taken first.
This was pointed out to the client, who then went out and took a
comparable number of samples from an area known to be clean.
At this point the formula given by Land’s procedure for the upper
bound on the arithmetic mean of log-normal data was applied to
the combined data (which were strongly bimodal because of the
clean/dirty dichotomy). The resulting “upper bound” on the mean
exceeded the largest observation from the dirty spots sample!
Unhappily these data were beyond even the capability of the
bootstrap to salvage. The original sample had been taken to find
dirty spots and was thus not representative of the site. The end
result was a set of about 100 measurements which told us almost
nothing about the nature and extent of contamination at the site.
The client then instituted a statistically designed sampling plan.”

4.8.2 Visual Judgmental Sampling

This example concerns a rural county enforcement officer tramping along a creek periodically
exclaiming, “Here is a contamination!” when encountering dark spots in the stream sediment.
Obviously, the samples collected were only representative of those “dark™ areas of sediment declared
contaminated by the enforcement officer and resulted in a wide range on concentration. Subsequent
investigation of the support of color blind grab samples of sediment revealed that the variation within an
areal area the size of a desk top encompassed all concentrations from not detected to those measured

Final
EPA QA/G-5S 31 December 2002



by the enforcement officer. The support of the sample collected by the enforcement officer was no
better than a single random grab sample.

These examples show how it is possible to be completely misled by reliance on what seems to
be a desirable characteristic upon which to base the inclusion of a sample unit into the overall sample.
The advantage gained by using a probabilistic sampling scheme is that such biases are avoided.
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CHAPTER 5
SIMPLE RANDOM SAMPLING
5.1 OVERVIEW

Simple random sampling is the simplest and most fundamental probability-based sampling
design. Most of the commonly used statistical analysis methods assume either implicitly or explicitly that
the data were obtained using a simple random sampling design.

A simple random sample of size 7 is defined as a set of # sampling units selected from a
population (of objects or locations in space and/or time) so that all possible sets of # sampling units
have the same chance of being selected. For example, if there is a population of four elements
(A,B,C,D) and a sample of size n=3 elements is drawn, without replacement, there are four possible
outcomes:

(A,B,C), (A,B,D), (A,C,D), and (B,C,D).

Any sampling design that makes these outcomes equally likely is, by definition, a simple random
sampling design. A simple random sample of size n occurs when 7 units are independently selected at
random from the population of interest.

The most important characteristic of simple random sampling is that it protects against the bias
(systematic deviation from the “truth™) that can occur if units are selected subjectively. Because it is the
most fundamental sampling design, simple random sampling also is a benchmark against which the
efficiency and cost of other sampling designs often are compared. Moreover, when using an alternative
sampling design, the minimum sample size (number of sampling units) needed for that sampling design
often is estimated by first computing the sample size that would be needed with a simple random
sampling design. That sample size is then multiplied by an adjustment factor, called the survey design
effect, to produce the minimum sample size needed under the alternative sampling design [Section 4.1.1
of Cochran (1977)].

5.2 APPLICATION
Simple random sampling is appropriate when the population being sampled is relatively uniform
or homogeneous. In practice, simple random sampling usually is used in conjunction with other

sampling designs, as discussed in Section 5.6.

Simple random sampling often is appropriate for the last stage of sampling when the sampling
design has more than one stage of sampling (i.e., a sample of units is selected at the first stage and then
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subunits are selected from each sample unit) [Chapter 6 of Gilbert (1987) and Chapters 12 and 13 of
Thompson (1992)]. Examples include the following:

C Selecting one or more leaves from each sample plant for characterization,
C Selecting one or more aliquots from each soil sample for chemical analysis, and
C Assigning split samples or aliquots to laboratories or analytical methods.

In a similar vein, simple random sampling usually is needed for assigning experimental units to
treatments, or experimental conditions, in experimental designs.

53 BENEFITS

The primary benefit of simple random sampling is that it protects against selection bias by
guaranteeing selection of a sample that is representative of the sampling frame, provided that the sample
size is not extremely small (for example, 20 observations or more). Moreover, the procedures needed
to select a simple random sample are relatively simple.

Other benefits of using simple random sampling include the following:

C Statistical analysis of the data is relatively straightforward because most common
statistical analysis procedures assume that the data were obtained using a simple
random sampling design.

C Explicit formulae, as well as tables and charts in reference books, are available for
estimating the minimum sample size needed to support many statistical analyses.

54  LIMITATIONS
Simple random sampling has two primary limitations:

C Because all possible samples are equally likely to be selected, by definition, the sample
points could, by random chance, not be uniformly dispersed in space and/or time. This
limitation is overcome somewhat as the sample size increases, but it remains a
consideration, even with a large number of samples.

C Simple random sampling designs ignore all prior information, or professional
knowledge, regarding the site or process being sampled, except for the expected
variability of the site or process measurements. Prior information almost always can be
used to develop a probability-based sampling design that is more efficient than simple
random sampling (i.e., needs fewer observations to achieve a given level of precision).
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Because of these limitations, simple random sampling is seldom recommended for use in
practice except for relatively uniform populations. Stratified simple random sampling (Chapter 6) is
commonly used to overcome these limitations by defining geographic and/or temporal sampling strata.
Alternatively, one may use systematic sampling (Chapter 7) or quasi-random sampling (Section 5.5.2)
to overcome these same limitations. Nevertheless, simple random sampling is a fundamental building
block and benchmark for most other sampling designs.

5.5 IMPLEMENTATION

This section discusses how to determine the minimum sample size needed with simple random
sampling to (1) estimate a population mean or proportion with prespecified precision or (2) test a
hypothesis regarding a population mean or proportion with a prespecified significance level and power.
This section also addresses the process of selecting a simple random sample.

5.5.1 How do you estimate the sample size?

To determine the minimum sample size needed to estimate a population proportion (for
example, proportion of units with concentrations above a health-based threshold), first identify a
conservative preliminary estimate of the true population proportion. In the absence of prior information,
use 50% as the preliminary estimate as this results in the largest sample size and so is the most
conservative. The closer the preliminary estimate is to the actual value, the greater the savings in
resources.

To determine the minimum sample size needed to estimate a population mean (for example,
mean contaminant concentration), first identify a conservatively large preliminary estimate of the
population variance. The preliminary estimate should be large enough that the true population variance
is not likely to be larger than the preliminary estimate because the sample size will be too small if the
estimated variance is too small. Sources of a preliminary estimate of population variance include: a
pilot study of the same population, another study conducted with a similar population, or an estimate
based on a variance model combined with separate estimates for the individual variance components.
In the absence of prior information, estimate the standard deviation (square root of the variance) by
dividing the expected range of the population by six, i.e.

4= Expected Maximum - Expected Minimum
6

However, this is only a crude approximation and should be used only as a last resort.

Using these inputs, Appendix 5 provides general-purpose formulae for determining the
minimum sample size needed to achieve specified precision for estimates of population means and
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proportions. Sample size formulae for achieving specified power for hypothesis tests are in Section 3
of Guidance for Data Quality Assessment (QA/G-9) (EPA, 2000a). Appendix 5 tabulates the
results from applying these formulae for determining the minimum sample size needed for hypothesis
tests. Examples of the use of these tables are provided in Section 5.7.2.

If the sample sizes calculated using the simple random sampling formulae are greater than the
study budget can support, then other sampling designs may reduce the number of sample specimens
and/or the number of measurements. For example, stratified random sampling (Chapter 6) and ranked
set sampling (Chapter 8) may result in smaller sample sizes if (inexpensive) data are available that are
positively correlated with the outcomes of interest. Moreover, if the objective of the study is estimation
of means, composite sampling (Chapter 10) may greatly reduce the number of analytical measurements.
Finally, if the variability between replicate measurements (for example, in the lab) is greater than the
natural variability between units (for example, using an imprecise method to analyze water samples from
a fairly homogenous body of water), using the mean of replicate measurements on each sample
specimen may reduce the number of sample specimens.

5.5.2 How do you decide where to take samples?

Selecting a simple random sample is most straightforward when all the sampling units (for
example, barrels in a warehouse, trees at a study site) comprising the population of interest can be
listed. When selecting a simple random sample from a list of N distinct sampling units, use the following
procedure:

C Label the sampling units from / to N.
C Use a table of random numbers, or a computerized random number generator, to
randomly select 7 integers from / to N from the list.

The set of sampling units with these 7 labels comprises a simple random sample of size n. These n
sample units may be n points on the surface of a hazardous waste site, # points in time, etc. Here the
word “sample” is used in this statistical sense, related to a list of sampling units or potential sampling
locations. The actual aliquots of air, water, soil, etc., that are collected at the sample locations are
referred to as sample “specimens’ to distinguish them from the statistical sample selected from the
universe of all possible sampling units (objects or locations in space and/or time).

When selecting a sample from a two-dimensional medium, such as surface soils or the
bottom of a lake or stream, the above one-dimensional list sampling approach can be used if an M by N
grid is used to partition the population into MN unique units and the sample is selected from the list of
MN units.
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However, it is often more practical and flexible to select points directly at random in two-
dimensional space if the desired sample support is not a rectangular area. If a rectangular coordinate
system (i.e., x and y coordinates, such as latitude and longitude) can be superimposed on the area of
interest, then a simple random sample of points is generated by randomly generating x- and y-
coordinates, as illustrated in Figure 5-1. Note that in an irregularly shaped sample area, randomly
generated points falling outside of the sample area are not used.
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Figure 5-1. Example of a Map Showing Random Sampling Locations

When these sampling procedures are implemented to generate simple random samples in two
dimensions, the randomly generated sampling points (i.e., x- and y- coordinates or direction) should be
rounded to the nearest unit that can be reliably identified in the field (for example, nearest 1 or 5
meters). A sample specimen with the support defined in the sampling plan should then be obtained as
near as possible to each of these approximate random sampling points using a procedure to avoid
subjective bias factors such as “difficulty in collecting a sample, the presence of vegetation, or the color
of the soil” (EPA, 2000b). The protocols should be defined so that it will always be possible to obtain
a sample from each randomly selected location. However, if it is physically impossible to obtain a
specimen from a randomly selected location, deleting that location from the sample is valid as long as
inferences are restricted to the accessible locations. The use of a subsidiary list of alternate (random)
locations to be substituted for inaccessible locations is recommended.

The above sampling methods can be extended fairly easily, at least conceptually, to sampling
three-dimensional wastes (for example, a waste pile or liquid wastes in a pond, lagoon, or drum).
One approach is to superimpose a three-dimensional coordinate system over the area to be sampled
(i.e., x, v, and z coordinates) and randomly generate x-, y-, and z-coordinates to identify randomly
selected points.
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Although it is conceptually easy to generate random sampling points in three dimensions,
actually getting a sampling tool into a three-dimensional medium at these randomly selected locations
and extracting specimens with the correct sample support (size, shape, and orientation) can be difficult
or impossible. Consider, for example, solid waste in a pile. If the waste pile has the consistency of soil,
a technician may be able to take a core sample at the randomly selected location and extract a
subsample from the core at the correct depth that has the desired support (for example, 5 centimeter
diameter and 15 centimeters depth). However, if the pile contains large impermeable solids (for
example, rocks of larger diameter than the core), taking such a core sample may not be possible.
Alternatively, if the material is very fine, like ash, a technician may not be able to take a core sample
because the process of getting the core would fundamentally alter the nature of the pile being sampled
(for example, it would cause the pile to shift or collapse). In that case, one potential solution may be to
level the pile and take samples from the entire depth of the leveled pile at randomly selected points in
two dimensions.

Liquid wastes present similar problems for sampling in three dimensions. If the liquid waste has
the consistency of water, it may be possible to extract samples from randomly selected locations using a
probe and pump. However, some wastes (for example, a semiliquid sludge) are too thick to be
pumped yet not solid enough to extract competent cores. If a technician were sampling sludge from a
lagoon, it might be necessary to sample the entire vertical thickness of sludge at randomly selected
locations (in two dimensions) and then analyze a subsample(s) from the resulting composite sample.

Section 21.6.5 of Pitard
(1993) states that one could
theoretically obtain correct
(representative) samples from a
waste pile by selecting either one- or
two-dimensional samples
representing the full cross-section of
the waste. A one-dimensional
sample is one in which vertical cross-
sections of a prescribed thickness are
selected, as depicted in Figure 5-2.
A two-dimensional sample is one in
which cores from the top to the
bottom of the waste pile are
randomly extracted, as depicted in
Figure 5-3. Section 14.4.7 of Pitard Figure 5-2. A One-Dimensional Sample of Cross-
(1993) states that attempting to Sections from a Waste Pile
extract such samples is an “‘exercise
in futility” because of the lack of appropriate sampling devices. Additional guidance regarding sampling
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devices and techniques that can be
used to sample from three-
dimensional waste piles is provided in
Section 8.3 of Myers (1997) and by
the American Society for Testing and
Materials (ASTM) D6232-00
(2000).

An alternative sampling
method that provides random samples
that are more uniformly dispersed
than simple random samples is “quasi-
random sampling.” Quasi-random
sampling refers to‘ methods for Figure 5-3. A Two-Dimensional Sample of Cores from a
generating a quasi-random sequence  yyacte Pile
of numbers that are “in a precise
sense, ‘maximally avoiding’ of each other” [Section 7.7 of Press et al.(1992)]. Samples in two or more
dimensions are generated by pairing two or more of these quasi-random sequences. In two
dimensions, the result is a set of sample points that, for any given sample size, appear to be uniformly
scattered throughout the sampled area, as illustrated in Figure 5-4. Quasi-random sampling can be
used to avoid the potential for geographic clustering that exists with simple random sampling without
taking the risk of aligning the sample with an unknown pattern of contamination, a limitation of grid
sampling (as discussed in Chapter 7). The resulting data can be analyzed as if the sample were a simple
random sample, knowing that the sampling variance is likely to be slightly underestimated. Techniques
for generating quasi-random samples are mathematically complex; they are described in Section 7.7 of
Press et al. (1992). A simpler technique that
achieves similar results is “deep” stratification,

in which only one unit is selected at random |\ ———

from each sampling stratum (see Chapter 6). . h . : ' .

A variation would be to divide the population | 0.8 = - . o -]

into small units and take a random sample i ’

from within each unit for a total of # units. 0.6 ]

5.6 RELATIONSHIP TO OTHER oA ]
SAMPLING DESIGNS A -
Simple random sampling often is used P T T E U L

for selecting samples within sampling strata. 0 0.2 0.4 0.6 0.8 I
When an independent simple random sample
is selected from each stratum, the sampling

Figure 5-4. Illustration of a Quasi-Random
Sample

Final
EPA QA/G-5S 39 December 2002



design is referred to as stratified simple random sampling (see Chapter 6). Simple random sampling
also is used as the first step of the ranked set sampling process described in Chapter 7. It also can be
used as the first step of the adaptive cluster sampling process described in Chapter 9.

5.7 EXAMPLES
5.7.1 General Simple Random Sampling Example

Suppose that a company with a fleet of 5,000 late-model, mid-sized sedans decides that they
will overhaul their fleet to improve emissions if the mean (average) carbon monoxide (CO) emission
rate of the fleet (in grams per mile, g/m) is unusually high. Since the EPA standard for passenger cars is
no more than 3.4 g/m, and data from the manufacturers of their fleet’s cars suggests that most cars in
the fleet will be between 1.0 and 3.0 g/m, they decide that an overhaul is needed if their mean CO
emission rate exceeds 2.5 g/m. Hence, to determine whether or not an overhaul is needed, they will
test the following hypothesis for means:

Hy: - #2.5 versus Hy: 1 >2.5g/m

Suppose that all vehicles in the fleet are late-model, 6-cylinder cars that are expected to have similar
emission rates. Hence, for selecting a sample of vehicles to be tested from this relatively homogeneous
5,000-vehicle population, a simple random sampling design is appropriate.

In order to determine appropriate sample sizes using Appendix Table 5-1, a preliminary
estimate of the variability between measurements of CO emission rates is needed for their fleet.
Company researchers referred to old records to estimate the expected variability in the fleet’s CO
emission rates. However, lacking any data regarding variances of CO emission rates, they choose to
use one-sixth of the expected range as an estimate of the standard deviation, as discussed in Section
5.5.1. They expected that the range probably would be from about 0.5 to 3.5, a range of 3.0 g/m. and
were could potentially be as large as 4 g/m or more if some of their cars were not properly tuned.
Hence, sample sizes were determined for the following potential standard deviations:

U
Range (g/m) S = Range/ 6
3 0.50
4 0.67
5 0.83
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In their application of the DQO Process, the company officials determined that the maximum
acceptable error rates were as follows:

C False Rejection: " = Prob(false rejection when : = 2.5 g/m) = 0.05
C False Acceptance: $ = Prob(false acceptance when : = 2.75 g/m) = 0.05

Table 5-1 then was used to determine the minimum sample size needed by entering the table with the
following parameters:

" = Significance level = 0.05 (i.e. 5%)

Power =1 -$=0.95 (i.e. 95%)

Effect size 1 =100( |z, - zo| /F) = 100( |2.75 - 2.50] ) / 0.50 = 50%
Effect size 2 =100( |z, - z,| /F) = 100( |2.75 - 2.50] ) / 0.67 = 37%
Effect size 3 =100( |z, - zo| /F) = 100( |2.75 - 2.50] ) / 0.83 = 30%

OO OO O OO

Hence, the company managers used the first row of Table 5-1 to determine that a sample of 122, 69,
or 45 cars was needed, depending on whether the effect size was 30%, 40%, or 50%, respectively.
Based on these results, they decided that a simple random sample of 100 cars should provide adequate
protection against both false rejection and false acceptance decision errors.

The researchers then assigned inventory control numbers to the cars in the fleet from 1 to 5,000
to facilitate the random sampling process. They used a random number generator to generate 100
random numbers between 1 and 5,000 (for example, using http://www.random.org). The cars with
these inventory control numbers were then selected as the simple random sample of cars to be tested
for CO emission rates.

In this case, the cost of sampling (measuring the emission rate) was relatively low and a large
sample presented no problems. If the cost had been prohibitive, a pilot study would have been
completed in order to give preliminary information on the variability. This would probably result in a
lower number of cars to test.

5.7.2 Examples Using Look-up Tables in Appendix 5

These examples are simply intended to demonstrate the use of the tables.

Tables 5-2 and 5-3: Suppose the company decides that they need to overhaul the fleet of
cars if more than 10% of the fleet have CO emission rates exceeding 3.0 g/m. To determine whether

or not the overhaul is needed, they need to test the hypothesis for proportions:

Hy: P# 10% versus Hy: P> 10%
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In their application of the DQO Process, the company officials determine that the maximum acceptable
error rates are as follows:

C False Rejection: ** = Prob(false rejection when P = 10%) = 0.05
C False Acceptance: $ = Prob(false acceptance when P = 15%) = 0.05

Table 5-2 then can be used to determine the minimum sample size needed by entering the table with the
following parameters:

C " = Significance level = 0.05 (i.e., 5%)

C Power =1 -$=0.95 (i.e., 95%)

C Py, =10%

C [P, - Po| =[15% - 10%| = 5%

Table 5-2 shows that a sample of 468 cars is necessary to achieve the error bounds specified for the
hypothesis test.

Table 5-4: Suppose the company also has a fleet of 5,000 small pick-up trucks. The researchers
want to know if the mean CO emission rate for their fleet of pick-up trucks exceeds that for the fleet of
sedans. They then need to test the hypothesis for difference of two means:

Hy: =y -, #0versusHy: ;- 1,>0,

where :, is the mean CO emission rate for the fleet of pick-up trucks and :, is the mean CO emission
rate for the fleet of sedans.

In their application of the DQO Process, they determine that the maximum acceptable error
rates are as follows:

C " = Prob(false rejection when * =z, - z,=0) = 0.05
C $ = Prob(false acceptance when *= -, - :, =0.25 g/m) = 0.05

Table 5-4 then can be used to determine the minimum sample size needed by entering the table with the
following parameters:

" = Significance level = 0.05 (i.e.5%)
Power =1 -$=0.95 (1.e.95%)
Effect size = 100( |*; - *o| /F) = 100( |0.25 - 0.00| / 0.50) = 50%
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Table 5-4 shows that a sample of 88 sedans and 88 pick-up trucks is necessary to achieve the error
bounds specified for the hypothesis test.

Tables 5-5 and 5-6: Suppose the company decides that they want to determine whether the
proportion of pickup trucks in the fleet with CO emission rates greater than 3.0 g/m is greater than the
proportion for the fleet of sedans. They then need to test the hypothesis for difference of two
proportions:

Ho: P] - P2 # 0% versus HA: P] - P2 > 0%

where P, is the proportion of pick-up trucks with emission rates exceeding 3.0 g/m and P, is the
proportion of sedans with emission rates exceeding 3.0 g/m.

In their application of the DQO Process, they determine that the maximum acceptable error
rates are as follows:

C False Rejection: ** = Prob(false rejection when P, - P, = 0) = 0.05
C False Acceptance: $ = Prob(false acceptance when P, = 10% and P, = 5%) = 0.05

Table 5-5 then can be used to determine the sample size needed by entering the table with the following
parameters:

" = Significance level = 0.05 (i.e.5%)
Power =1 -$=0.95 (1.e.95%)

P, =10%

[Py - Py =[10% - 5%| = 5%

OO OO O O

Table 5-5 indicates that a sample of 947 sedans and a sample of 947 pick-up trucks are necessary to
achieve the error bounds specified for the hypothesis test.

It should be noted, however, that when the estimated sample size (7) becomes relatively large
compared to the population size (), a factor called the Finite Population Correction Factor, the ratio
n/N, must be taken into consideration. For more information, see Section 4.2 of Gilbert (1987),
Section 2.5 of Cochran (1963), and Appendix 5. In addition, these formulae assume the underlying
population to be normally distributed. If approximate normality does not hold, these sample sizes could
be too small.
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APPENDIX §
SAMPLE SIZE TABLES FOR SIMPLE RANDOM SAMPLING DESIGNS

This appendix provides the following tables to determine the minimum sample size needed to
achieve sufficient precision with simple random sampling designs:

Table 5-1. Sample Size Needed for a One-Sample t-Test.
Table 5-2. Sample Size Needed for a One-Sample Test for a Population Proportion,
P, at a 5% Significance Level.

C Table 5-3. Sample Size Needed for a One-Sample Test for a Population Proportion,
P, at a 10% Significance Level.
Table 5-4. Sample Size Needed for a Two-Sample t-Test.
Table 5-5. Sample Size Needed for a Two-Sample Test for Proportions at a 5%
Significance Level.

C Table 5-6. Sample Size Needed for a Two Sample Test for Proportions at a 10%
Significance Level.

The formulae that these sample size calculations are based upon are provided in Chapter 3 of

Guidance for Data Quality Assessment (QA/G-9) (EPA, 2000a) for the remaining tables, which
address sample size needed for hypothesis tests.

Table 5-1. Sample Size Needed for One-Sample t-test

Significance Effect Size

Level Power 10% 20% 30% 40% 50%
5% 95% 1,084 272 122 69 45
90% 858 216 97 55 36
80% 620 156 71 40 27
10% 95% 858 215 96 55 36
90% 658 166 74 42 28
80% 452 114 51 29 19

Case I: Hy: :#CvsH,: 2>C;Case2: Hy: :$CvsH,: - <C. Ineither case, the effect size

is 100( |z, - .|) /P, where : = : is at the boundary of the gray region determined in Step 6 of

the DQO Process and F is a preliminary estimate of the population standard deviation (square
root of the variance).
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Table 5-2. Sample Size Needed for a One-Sample Test for a Population
Proportion, P, at a 5% Significance Level

P, | Py - Py |
Case 1 Case 2 5% 10% 15% 20%
Significance level = 5%, Power = 95%
10% 90% 468 133 65 39
20% 80% 751 200 93 54
30% 70% 947 244 110 63
40% 60% 1056 266 118 65
50% 50% 1077 266 115 63
60% 40% 1012 244 103 54
70% 30% 860 200 80 39
80% 20% 621 133 46 NA
90% 10% 291 NA NA NA
Significance level = 5%, Power = 90%
10% 90% 362 102 49 30
20% 80% 589 156 72 42
30% 70% 746 191 87 49
40% 60% 834 210 93 52
50% 50% 853 211 92 50
60% 40% 804 195 83 44
70% 30% 686 161 66 33
80% 20% 498 109 40 NA
90% 10% 239 NA NA NA
Significance level = 5%, Power = 80%
10% 90% 253 69 33 20
20% 80% 419 109 50 29
30% 70% 534 136 62 35
40% 60% 600 151 67 38
50% 50% 617 153 67 37
60% 40% 583 142 61 33
70% 30% 501 119 50 26
80% 20% 368 83 32 NA
90% 10% 184 NA NA NA

EPA QA/G-5S

Case I: Hy: P#P,vsH,: P>Py; Case2: Hy: P$P,vsH,: P <Py P=P, at the boundary

of the gray region determined in Step 6 of the DQO Process.
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Table 5-3. Sample Size Needed for a One-Sample Test for a
Population Proportion, P, at a 10% Significance Level

Py [Py - Py

Case 1 Case 2 5% 10% 15% 20%

Significance level = 10%., Power = 95%

10%
20%
30%
40%
50%
60%
70%
80%
90%

90%
80%
70%
60%
50%
40%
30%
20%
10%

Significance level = 10%

378
601
753
837
852
798
676
484
221

, Power = 90%

10%
20%
30%
40%
50%
60%
70%
80%
90%

90%
80%
70%
60%
50%
40%
30%
20%
10%

Significance level = 10%

284
456
575
641
654
615
522
377
177

. Power = 80%

10%
20%
30%
40%
50%
60%
70%
80%
90%

90%
80%
70%
60%
50%
40%
30%
20%
10%

188
308
392
439
449
424
363
265
130

109
161
195
211
210
191
156
102
NA

&1
121
148
161
161
148
121

81
NA

53
81
100
110
111
103
86
59
NA

54
75
88
93
91
80
62
34
NA

40
57
67
72
70
63
49
28
NA

25
38
45
49
49
44
36
22

NA

33
44
50
52
49
42
30

NA

NA

24
33
38
40
38
33
24
NA
NA

15
22
26
28
27
24
18
NA
NA

EPA QA/G-5S

Case 1: Hy: P#P,vsH,: P>P,, Case2: Hy: P$P;,vs H,: P<Py; P=P, atthe
boundary of the gray region determined in Step 6 of the DQO Process; NA = not
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Table 5-4. Sample Size Needed for a Two-Sample t-Test

Significance Effect Size

Level Power 10% 20% 30% 40% 50%
5% 95% 2,166 542 242 136 88
90% 1,714 429 191 108 70
80% 1,238 310 139 78 51
10% 95% 1,714 429 191 108 69
90% 1,315 329 147 83 53
80% 902 226 101 57 37

Case I: Hy z,-1,#* vsH,: ;- 1,>%;Case2: Hy ;- 2, 8% vsH,: =, -:,<%*, Ineither

case, *; = (I, - -,) at the boundary of the gray region determined in Step 6 of the DQO

Process, and the effect size is 100 * [*, - * | /F .

See Table 24.1 of Cohen (1988) for a more extensive tabulation.
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Table 5-5. Sample Size Needed for a Two-Sample Test for
Proportions at a 5% Significance Level

P, [P - Py |

Casel Case?2 5% 10% 15% 20%

Significance level = 5%, Power = 95%
10% 90% 947 276 139 87
20% 80% 1510 406 192 114
30% 70% 1900 493 226 130
40% 60% 2116 536 240 136
50% 50% 2160 536 236 130
60% 40% 2030 493 212 114
70% 30% 1727 406 168 87
80% 20% 1250 276 106 NA
90% 10% 601 NA NA NA

Significance level = 5%, Power = 90%
10% 90% 750 219 110 69
20% 80% 1195 322 152 90
30% 70% 1503 390 179 103
40% 60% 1675 424 190 108
50% 50% 1709 424 187 103
60% 40% 1606 390 167 90
70% 30% 1366 322 133 69
80% 20% 990 219 84 NA
90% 10% 476 NA NA NA

Significance level = 5%, Power = 80%
10% 90% 541 158 80 50
20% 80% 863 232 110 65
30% 70% 1086 282 129 75
40% 60% 1209 307 138 78
50% 50% 1234 307 135 75
60% 40% 1160 282 121 65
70% 30% 987 232 96 50
80% 20% 715 158 61 NA
90% 10% 344 NA NA NA

Case 1: Hy: P,-P,#0vsH,: P,-P,>0;Case2: Hy: P,-P,$0vsH,: P, -
P, <0; NA = Not applicable.
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Table 5-6. Sample Size Needed for a Two-Sample Test for
Proportions at a 10% Significance Level

P, [P - Py |

Case 1 Case?2 5% 10% 15%  20%

Significance level = 10%., Power = 95%
10% 90% 750 219 110 69
20% 80% 1195 322 152 90
30% 70% 1503 390 179 103
40% 60% 1675 424 190 108
50% 50% 1709 424 187 103
60% 40% 1606 390 167 90
70% 30% 1366 322 133 69
80% 20% 990 219 84 NA
90% 10% 476 NA NA NA

Significance level = 10%., Power = 90%
10% 90% 575 168 85 53
20% 80% 917 247 117 69
30% 70% 1153 299 137 79
40% 60% 1285 326 146 83
50% 50% 1311 326 143 79
60% 40% 1232 299 129 69
70% 30% 1048 247 102 53
80% 20% 759 168 64 NA
90% 10% 365 NA NA NA

Significance level = 10%, Power = 80%
10% 90% 395 115 58 37
20% 80% 629 170 80 48
30% 70% 792 206 94 55
40% 60% 882 224 100 57
50% 50% 900 224 98 55
60% 40% 846 206 88 48
70% 30% 720 170 70 37
80% 20% 521 115 44 NA
90% 10% 251 NA NA NA

Case I: Hy: P, -P,#0vsH,: P,-P,>0;Case2: H;: P,-P,$0vsH,: P, -
P, <0; NA = Not applicable.
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CHAPTER 6

STRATIFIED SAMPLING

6.1 OVERVIEW

Stratified sampling is a sampling design in which prior information about the population is used
to determine groups (called strata) that are sampled independently. Each possible sampling unit or
population member belongs to exactly one stratum. There can be no sampling units that do not belong
to any of the strata and no sampling units that belong to more than one stratum. When the strata are
constructed to be relatively homogeneous with respect to the variable being estimated, a stratified
sampling design can produce estimates of overall population parameters (for example, mean,
proportion) with greater precision than estimates obtained from simple random sampling. Using
proportional allocation to determine the number of samples to be selected from each stratum will
produce estimates of population parameters with precision at least as good as, and possibly better than,
estimates obtained using simple random sampling (regardless of how the strata are defined). However,
if optimal allocation is used to assign samples to the strata, and the estimates of the variance within the
strata are not close to the actual values, the level of precision in the resulting estimates may be worse
than the level of precision for simple random sampling.

Stratified random sampling also is often used to produce estimates with prespecified precision
for important subpopulations. For example, one of the most common uses of stratification is to account
for spatial variability by defining geographic strata, especially when results need to be reported
separately for particular geographic areas or regions. Strata may also be defined temporally. Temporal
strata permit different samples to be selected for specified time periods and, hence, also permit
designing the sample to support separate estimates for different time periods (for example, seasons)
with prespecified precision. Hence, temporally stratified sampling designs support accurate monitoring
of trends.

6.2  APPLICATION

The method of defining the strata depends on the purpose of the stratification. One of the
principal reasons for using a stratified design is to ensure a more representative sample by distributing
the sample throughout the spatial and/or temporal dimensions of the population. For instance, a sample
drawn with a simple random sample may not be uniformly distributed in space and/or time because of
the randomness. Such a sample may not be as representative of the population as a sample obtained
by stratifying the study area and independently selecting a sample from each stratum.

Stratification may produce gains in precision in the estimates of population characteristics. If the
investigator has prior knowledge of the spatial distribution of the study area, the strata should be
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defined so that the area within each stratum is as homogeneous as possible. In addition, the strata can
be defined using reliable data on another variable that is highly correlated with the variable to be
estimated. If the sample is allocated either proportionally or optimally to the strata, the resulting
estimates will have greater precision than if no stratification were used. The variable providing the
information used to establish the strata is referred to throughout this chapter as an “auxiliary variable.”

Stratification is advisable if a population is subdivided into groups and certain information is
desired separately for each group. If estimates (for example, means, proportions, etc.) are desired for
particular groups or regions, each group or region would be assigned as a separate stratum.
Stratification also is useful if different parts of a population present different sampling issues that may
need to be addressed separately. Field conditions may need different sampling procedures for different
groups of the population in order to be efficient. This approach is facilitated by stratified sampling
because, by definition, each stratum is sampled independently of the other strata. If unbiased estimators
of the stratum mean and variance exist for each stratum, then one also can produce unbiased estimates
of the overall mean and variance. Field conditions may need different sampling procedures for different
groups of the population in order to be efficient. This approach is facilitated by stratified sampling
because each stratum can use a different statistical sampling method.

6.3 BENEFITS

Stratification can be useful when the implementation of different sampling designs in each
stratum could reduce costs associated with the sample selection. The strata can be defined in order to
minimize costs associated with sampling at various sites. Study sites that are close in proximity to one
another can be assigned to one stratum to minimize the travel time for a team of field personnel to take
samples at these locations. Also, if the costs of collecting samples at a portion of a study site are much
greater than the rest of the study site, the most costly portion of the site can be assigned as a stratum to
minimize sample collection costs. Groups of the population with certain characteristics, which may or
may not be the same as the primary stratification variables, can be used as strata in order to ensure that
a sufficient number of sampling units appear in the sample for estimates or other analysis of the groups.
For example, the investigator may want to stratify the country by average yearly rainfall in order to
increase the precision of estimates and may also want to stratify by EPA region to obtain estimates for
each region. Stratification can also ensure that certain rare groups of the population that are of interest
for estimates or analysis, and that may not otherwise have sufficient sample sizes, have the sample sizes
necessary to perform the desired analyses.

When stratification is based on correlation with an auxiliary variable which is adequately
correlated with the variable of interest, stratification can produce estimates with increased precision
compared with simple random sampling or, equivalently, achieve the same precision with fewer
observations. For increased precision, the auxiliary variable used to define the strata should be highly
correlated with the outcomes being measured. The amount of increase in precision over simple random
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sampling depends on the strength of the correlation between the auxiliary variable and the outcome
variable being measured. Consider a situation in which a prior study had found that the amount of clay
in the soil is correlated with the amount of a chemical that remains in the soil. In this case, the
investigator could use a map of the study area showing the amount of clay in the soil to define the strata
needed to estimate the concentration of the chemical. Strata can be defined in order to minimize costs
to attain a given level of precision or to maximize precision for a given cost. Example 6-1 shows how
the appropriate use of stratification in a planned sampling design can produce estimates with increased
precision or need fewer samples as compared to simple random sampling.

6.4 LIMITATIONS

Stratified sampling needs reliable prior knowledge of the population in order to effectively
define the strata and allocate the sample sizes. The gains in the precision, or the reductions in cost,
depend on the quality of the information used to set up the stratified sampling design. Any possible
increases in precision are particularly dependent on strength of the correlation of the auxiliary,
stratification variable with the variable being observed in the study. Precision may be reduced if
Neyman or optimal allocation is used and if the auxiliary variable used for the optimization calculations
does not accurately reflect the variability of observations for the study.

As with simple random sampling, with a stratified sampling plan the investigator may encounter
difficulties identifying and gaining access to the sampled locations in the field. Such limitations may
reduce the expected gains in precision anticipated by using a stratified sampling scheme.

6.5 IMPLEMENTATION
6.5.1 How do you decide what sample size to use with this design?

The strata should be determined before allocating the sample sizes, and the methods used to
define the strata depend on the reasons that stratification is desired. When the strata are to be defined
according to an auxiliary variable that is correlated with the variable to be estimated, the optimal
definition of the strata is to allocate the strata so that the population included in each stratum is as
homogeneous as possible with respect to the auxiliary variable.

Section 5A.6 of Cochran (1977) offers some guidelines on how to optimally assign strata when
the auxiliary variable is continuous (i.e., consists of measured values). If the investigator is interested in
estimating the overall mean for the population, Cochran suggests defining no more than six strata and
using a procedure attributed to Dalenius and Hodges (1959) to determine the optimal cutoff values for
each of the strata based on the distribution of the second variable for the population. The steps for
determining the Dalenius-Hodges strata are given in Appendix 6-B. Section 5A.7 of Cochran (1977)
also provides a discussion and an example of the Dalenius-Hodges procedure. The effectiveness of
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using a pilot study to determine the strength of the correlation between the two variables cannot be
under estimated.

Once the strata have been defined, a number of options can be used to allocate the sample
sizes to each stratum. Equal allocation can be used to assign the same number of samples to be
selected within each stratum. Proportional allocation can be used to allocate the samples to the strata
so that the proportion of the total sampling units allocated to a stratum is the same as the proportion of
sampling units in the population that are classified in that stratum. As mentioned in Section 6.1,
proportional allocation can ensure that the precision of the population estimates will be as least as good
as, if not better than, the precision without the use of stratification. Optimal allocation has two options:

C Optimize the precision for a fixed study cost.
C Optimize the cost of the study for a fixed level of precision.

If the investigator has a fixed budget in order to collect the samples, the samples could be allocated so
that the results would produce the highest precision for the variable to be estimated. If the investigator
needs a specific level of precision, the samples could be allocated so that the costs in obtaining the
designated level of precision are as low as possible. A special case of the optimal allocation in which
the cost of sampling each unit is the same across all strata is Neyman allocation. As previously stated,
the extent of the benefits of the stratified sampling design, especially when the optimal sample
allocations are used, depend on the quality of the data used to set up the sampling design and the
strength of the correlation between the auxiliary variable and the variable to be estimated. However,
because the optimal and Neyman sample allocations depend on auxiliary data, the increase (or possible
decrease) in precision of the estimates as compared to simple random sampling depends on the
accuracy of the variance values used in the sample allocation calculations. Disproportionate allocation
may not work well if good estimates of variances are not available. The formulae for the sample size
allocations can be found in Appendix 6-A.

6.5.2 How do you decide where to take samples with this design?

Once the strata are established, any sampling design can be used to select the samples within
each stratum. Where to select these samples will depend on the choice of sampling design that is used
(Section 6.6).

6.6 RELATIONSHIP TO OTHER SAMPLING DESIGNS
As mentioned earlier, any sampling design can be used within each stratum. The choices

include, but are not limited to, simple random sampling, quasi-random sampling, grid sampling, and
even another level of stratified sampling.

Final
EPA QA/G-5S 54 December 2002



6.7 EXAMPLE

An investigator wants to estimate the average concentration of arsenic in the surface soil around
the smoke stack at a hazardous waste incinerator facility to determine if the soil has been contaminated
above the naturally occurring concentrations of arsenic for the region. Samples are to be taken within
500 meters from the smoke stack. Information gathered from prior studies indicates that the
concentration of arsenic will be higher in the area along the prevailing wind direction and that the
variability of the concentration of arsenic in the soil will be higher for clayey soils compared to sandy
soils. Because the hazardous waste incinerator facility is located along the ocean coast, the prevailing
winds flow from the east. The precision for the estimate of the concentration of arsenic can be
increased by dividing the study area into strata according to the prevailing wind direction and the type
of soil (see Figure 6-1).

Budget restrictions will only allow 60
samples to be taken from the area around the smoke
stack. The study area was stratified according to
Figure 6-1, and the Neyman allocation (described in
Section 6.5.1) was used to determine the number of
samples to be randomly selected within each
stratum. The summary statistics for the stratified
samples are shown in Table 6-1. Suppose that a
simple random sample of 60 soil samples was also
taken from the study area for comparison of the
performance of the designs. Table 6-1 shows that
taking 60 samples by simple random sampling and
stratified random sampling produce similar estimates
for the mean concentration of arsenic, but the
standard error associated with the stratified random
sample is lower (i.e., the precision is higher) than that of the simple random sample. Table 6-2 shows
that the investigator would have only needed to take 40 soil samples using stratified random sampling in
order to get a precision similar to that obtained by analysis of 60 samples taken by simple random
sampling. This result is shown by comparing the standard errors and the 95% confidence intervals
shown for the various sample sizes under stratified random sampling and simple random sampling. If a
particular precision was desired for this study (for example, a standard error of 1.00 for estimating the
mean), the investigator could reduce the costs of obtaining an estimate of the average concentration of
arsenic by using a stratified sampling design as described above instead of a simple random sampling
design.

Radius = 500 m

Clayey Soil

Direction of
Prevailing
Wind

Clayey Soil

Figure 6-1. Stratification of Area to Be
Sampled
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Table 6-1. Summary Statistics for Simple and Stratified Random Samples

Stratified Random Sampling
Down- Down-
Simple wind/ wind/ Perpendicular | Perpendicular
Random | Clayey Soil| Sandy Wind/Clayey Wind/Sandy
Sampling Soil Soil Soil Overall
# samples 60 43 5 10 2 60
mean 19.81 46.16 12.66 9.49 10.20 22.94
standard 4.35 9.99 4.63 2.28 3.12 3.68
error
Table 6-2. Number of Samples Needed to Produce Various Levels
of Precision for the Mean
Simple
Random Stratified Random Sampling
Sampling
# samples 60 60 40 20 14 9 8 7
standard 435 | 368 | 451 | 641 | 757 | 906 | 973 | 10.59
error
95%
Contfid. £8.60 | £7.36 | £9.12 | £10.57 | £16.35 | +20.50 | +22.43 | +25.04
Interval
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APPENDIX 6-A

FORMULAE FOR ESTIMATING SAMPLE SIZE SPECIFICATIONS
FOR STRATIFIED SAMPLING DESIGNS

This appendix contains formulae for several commonly used estimates of sample size 7.

L = number of strata
Ni = total number of units in stratum h
N = total number of units in population, N = 3§ }le N,
n, = number of units sampled in stratum h
C To calculate the overall mean and the variance of the overall mean for stratified random
sampling:
L
Xgt = 4 W}l Xh
h=1
<] 0
3 L ¢ ) n, s}zl N
variance of xg; = & Qwh (1- N )"
h=Ig h e
& 5
where X, is the ordinary mean of stratum h, and sfl is the ordinary estimated variance of
stratum h.
C To calculate the sample size within the stratum:
n = total number of units sampled, n = § ;_ n,
Fp = prior known standard deviation in stratum h
W,  =stratum weight, W, = N, /N
C = total budget
Co = initial fixed costs
Cy = cost per sample for stratum h
v = fixed variance

- equal allocation: n, =

wll=
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- proportional allocation: 7 = nW

h
o 6
Q =
. _.C th h T . . .
- Neyman allocation: nj, = néT - Note that in practice, Fy, is replaced by s,
[o]
¢ad Wiy~
e h=1 %)
L (C-COWs, /G,
- optimal allocation for fixed cost: b L Again, in practice,
a W,;s ,.+JC,
k=1

F, is replaced by s,

- optimal allocation for a fixed margin of error for each stratum:

where d is the “margin of error” for each estimate within the strata
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APPENDIX 6-B
DALENIUS-HODGES STRATIFICATION PROCEDURE

This procedure is used to determine the optimal cut-off points for stratification using a variable
(y) that is highly correlated with the variable of interest. Often this is a continuous variable expected to
be highly correlated with the primary outcome to be measured in the study.

1. Form an initial set of K intervals that cover the entire range of observed y values. Let
[A;, A;] denote the endpoints of the i interval (i=1,2,3,...,K-1). Count the number of
observations, /V,, in each interval.

2. Calculate D, = Ai- A, and 7= (N, D, .
3. For each interval i, calculate Cl = é ]; . That is, add all the 7} from the first interval

J=1
up to, and including, interval i. This makes a cumulative count.

L
o]

4. Calculate Q = Total/L where Total = @ 7, and L is the desired number of strata.
i=1

5. For each interval i, calculate C;/Q and round it up to the next higher integer. This now

gives the stratum number to which the observations in interval i will be classified.

For example, supply the correlated variable y ranges from 0 to 50, and suppose L=3 strata will be
created. The Dalenius-Hodges procedure can be used to define the strata:

C;/
Interval D; N; T; C; Q= 225.333=75.1) Rounded value
0-5 5 254 35.6 35.6 0.47 1
5-14 9 195 41.9 77.5 1.03 2
14-20 6 160 31.0 108.5 1.44 2
20-30 10 135 36.7 145.2 1.93 2
30-35 5 90 21.2 166.4 2.22 3
35-45 10 155 39.4 205.8 2.74 3
45-50 5 76 19.5 2253 3.00 3
Total 1065 2253

It follows that the 1st stratum contains y-values 0-5, the second stratum contains y-values between 5
and 30, the last stratum contains y-values between 30 and 50.
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APPENDIX 6-C
CALCULATING THE MEAN AND STANDARD ERROR

Since it would be very difficult to estimate the number of soil samples, N, which could be taken
in each stratum, assign a weight, W,, to each stratum based on the percentage of the study area
covered by the stratum. For instance, if down-wind clayey soil covers 35% of the study area, then
W,=0.35 for this stratum. Note that the sum of the weights for all strata should equal 1.

Stepl1: Calculate the sample size, n,, for each stratum with a total sample size of 60
(n=60) under Neyman allocation using the equation:

Wis
np :n—h h
WiSs n
1

T QDo

The assumed population standard deviations, F,, and weights, W, for each
stratum were assigned as follows:

Weight Population Standard Neyman Allocation
Stratum (Wp) Deviation, F, Sample Size, n,
Down-Wind / Clayey Soil 0.35 75 43
Down-Wind / Sandy Soil 0.15 20 5
Perpendicular Wind / Clayey Soil | 0.30 20 10
Perpendicular Wind / Sandy Soil | 0.20 5 2
Step 2: Calculate the mean, X ,, and variance, si , of the samples within each stratum

using the standard formulae used for Simple Random Sampling. The results are
summarized in the following table:
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Mean Variance Sample Size Weight
Stratum X, s ny Wi
Down-Wind/Clayey Soil 46.16 4287.84 43 0.35
Down-Wind/Sandy Soil 12.66 107.08 5 0.15
Perpendicular Wind/Clayey Soil 9.49 51.88 10 0.30
Perpendicular Wind/Sandy Soil 10.20 19.52 2 0.20
Step 3: Calculate the mean, X, , under stratified sampling
L
Y = @ W T = 22.94
h=l1

When N is very large, as it is in this example, the equation for the variance
under stratified sampling reduces to:

AL 2 20
éd wrstU

variance of x, = gq 0= 1355
=1 " QO
Step 4: The standard error of the stratified sampling mean is the square root of the

variance:

/2

&g Ws, =368

standard error of X, = &g
€n=1 "

oocr
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CHAPTER 7
SYSTEMATIC/GRID SAMPLING
71 OVERVIEW

Systematic sampling, also called grid sampling or regular sampling, consists of collecting
samples at locations or over time in a specified pattern. For example, samples might be collected from
a square grid over a set geographical area or at equal intervals over time. Systematic designs are good
for uniform coverage, ease of use, and the intuitive notion that important features of the population being
sampled will not be missed. Also, samples taken at regular intervals, such as at every node of an area
defined by a grid, are useful when the goal is to estimate spatial or temporal correlations or to identify a
pattern.

Systematic sampling is used to ensure that the target population is fully and uniformly
represented in the set of n samples collected. To make systematic sampling a probability-based design,
the initial sampling location is chosen at random. Then the remaining (n-1) sampling locations are
chosen so all n are spaced according to some pattern.

There are two major applications for systematic sampling:

C Spatial designs. Samples may be collected in one,
two, or three dimensions if the population
characteristic of interest has a spatial component.
Sampling along a line or transect is an example of
sampling in one dimension. Sampling every nodeon | @
a grid laid over an area of interest is sampling in two
dimensions. If depth or volume is of interest,
samples can be taken at regular grid intervals in
three dimensions, such as uniformly spacing samples _ _
from a pile of dirt both horizontally and vertically. Unaligned Gnd
Several options for systematic two-dimensional ! B|§ D
sampling in space are shown in Figure 7-1 (Gilbert,
1987). In Figure 7-1a, sample location “A” is
randomly assigned and all other sampling locations
are then known once the grid is laid down. Note
how