

Assessment of the Potential Impacts of Hydraulic Fracturing for Oil and Gas on Drinking Water Resources

Presentation by the U.S. Environmental Protection Agency Office of Research and Development

5 June 2015

HF Study Background

- STATED STATES FOR BY TON BOY TO A STATES
- In FY2010, Congress urged EPA to study the relationship between hydraulic fracturing and drinking water.
- EPA launched this study with the purpose to:
 - Assess whether hydraulic fracturing can impact drinking water resources
 - Identify driving factors that affect the severity and frequency of any impacts
- EPA's HF study was outlined in a 2011 Study Plan with additional details provided in a 2012 Progress Report.

HF Study Progress

• EPA's HF study has produced:

- 12 EPA technical reports Including 9 reports being released today
- 4 EPA authored journal publications
- 9 journal publications from colleagues at Lawrence Berkeley National Laboratory
- Draft Hydraulic Fracturing Drinking Water Assessment report
- All completed products available online:
 - <u>www.epa.gov/hfstudy</u>

Final HF Technical Reports Released Today

- Study of water acquisition in the Susquehanna and Upper Colorado river basins.
- Study of sources of selected HF-related chemicals in the Allegheny river and streams in PA.
- Studies of possible impacts to drinking water resources (five retrospective case studies):
 - Northeast, PA (Bradford County)
 - Southwest, PA (Washington County)
 - Killdeer, ND
 - Raton Basin, CO
 - Wise County, TX
- Description of well construction and design characteristics.
- Characterization of spills related to HF operations.

Draft HF Assessment Report

What it is:

- A state-of-the-science integration and synthesis of information
- Based upon EPA research results, a robust literature review, and other information, including input from stakeholders.
- Identifies potential vulnerabilities and addresses questions identified in the Study Plan and Progress Report

What it is not:

- Not a human health, exposure, or risk assessment
- Not site specific
- Does not identify or evaluate best management practices
- Not designed to inform specific policy decisions
- Does not identify or evaluate policy options

Hydraulic Fracturing Water Cycle: Follow the water

STATE

Summary of Impacts on Drinking Water Resources

- Assessment identified potential vulnerabilities to drinking water resources due to hydraulic fracturing activities.
- These vulnerabilities include:
 - Water withdrawals in areas with low water availability
 - Spills of HF fluids and flowback/produced water
 - HF conducted directly into formations containing drinking water resources
 - Well integrity failures
 - Subsurface migration of gases and liquids
 - Inadequately treated wastewater
- Despite vulnerabilities, there is no evidence of widespread, systemic impacts on drinking water resources due to hydraulic fracturing activities.

Water Acquisition: Sources and volume

- Sources of water used for HF include surface water, ground water, and reused wastewaters.
- Cumulative water use is at least 44 BG/year; Median water use for a well is approximately 1.5 MG.
- There is much variability and water use varies between <1 MG to >5 MG per well.
- Factors affecting water use include:
 - length of well (well volume)
 - formation depth and geology
 - fracturing fluid formulation

Water Acquisition: Comparison to other uses

- HF water use is small compared with total water use and consumption at the national and state spatial scales.
- For most counties, HF activities account for <1% of total water use and consumption.
- Potential for impacts on drinking water resources greatest in areas with:
 - High HF water use
 - Low water availability
 - Frequent drought
 - Declining water sources
- Example area experiencing all four factors: southern and western Texas.

Chemical Mixing

Chemical Mixing: HF Fluids

STATES STATES

- HF fluids generally consist of:
 - Base fluid
 - Chemical additives
 - Proppants
- Base fluids:
 - Largest constituent by volume
 - Most often water

- Other base fluids include: non-aqueous fluids, acids, energized fluids, foams and emulsions
- Proppants:
 - Most often sands, resin-coated sands, other specialty engineered particles

Chemical Mixing: HF Chemical Additives

- Chemical additives:
 - Perform multiple functions
 - Can be a single chemical or a mixture of multiple chemicals
 - Are injected during different stages of the HF process
 - Generally comprise <2% of injected fluid volumes
 - Thousands of gallons are potentially stored on-site and used in the HF process
- We identified more than 1000 chemicals used as components of HF fluids:
 - Median of 14 unique chemicals used per well
 - No single chemical used at all well sites across country
 - Chemicals used at >65% of well sites include: methanol, hydrotreated light petroleum distillates, hydrochloric acid

Well Injection: Potential subsurface pathways

- Movement of gas or liquids from the wellbore into a drinking water resource
- Movement of gas or fluids from production zone through subsurface rock formations into a drinking water resource

Well Construction and Integrity

- Multiple barriers act together to prevent migration of gases and fluids.
- Inadequate construction, defects and degradation of casings or cement, or absence of redundancies can create pathways leading to contamination of drinking water resources.
- EPA's Well File Review Report:
 - Estimated 66% of wells had one or more uncemented intervals
 - Estimated 3% of wells did not have cement across a portion of the operator defined drinking water zone
- Specific rate of well failures unknown but generally increases over time.

Sub-Surface Movement

- Physical separation between the production zone and drinking water resources can minimize impacts.
- In some cases, the production zone is co-located with drinking water resources:
 - Estimated 0.4% of wells fractured in 2009 and 2010 showed evidence of fracturing directly within a drinking water resource
 - Use of the drinking water resource not well characterized
- Deep HF operations are unlikely to create direct flow paths from fracture production zones to shallow drinking water resources.
- Well-to-well communications provide documented and potential pathways for fluid movement into drinking water resources.

Flowback and Produced Water

- Flowback and produced water come out of the well when pressure is released.
- Amount of fracturing fluid returned to surface is generally 10% to 25% of injected fluid and varies widely.
- Data on produced water composition limited:
 - 134 chemical detected specifically in FB/PW
 - High total disolved solids
 - Metals, organics
 - Naturally occurring radionuclides
- High TDS present analytical challenges for characterizing chemical composition

Chemical Mixing: Spills

ENVIR

Spills of HF Fluids and Produced Waters

- Spills of HF fluids and produced waters have occurred; when spills occur, they can and have reached drinking water resources through multiple pathways.
- Total number and frequency of spills due to HF activities unknown.
- Based upon spill data reviewed:
 - Hundreds of spills of hydraulic fracturing fluids and produced waters have occurred
 - Spill volumes varied greatly: 2 gallons to 1.3 Million gallons
 - Most common causes of spills were equipment failure and human error
 - Of those spills reviewed, 8% of documented spills reached a surface or ground water resource; 64% reached soils

Hydraulic Fracturing Wastewater

- STATES TATES
- HF produces large volumes of wastewater.
- Most HF wastewater is disposed of using underground injection control (UIC) wells.
- UIC disposal varies geographically:
 - 95% UIC in Barnett Shale area (TX)
 - 10% UIC in Marcellus Shale area (PA)
- Wastewater reuse varies geographically:
 - 5% wastewater use in Barnett Shale area
 - 70% wastewater reuse in Marcellus Shale area
- Other disposal options for HF wastewater:
 - Centralized wastewater treatment facilities (CWT)
 - Evaporation pits, land irrigation and road spreading

HF Chemical Characterization

- 1,173 chemicals reportedly used in HF fluids or detected in FB/PW.
- 148 have human oral toxicity reference values.
- Absence of toxicity reference values limits ability to conduct future site specific exposure/risk assessments.
- CBI limits complete characterization of chemical use in HF operations:
 - From EPA's analysis of the FracFocus 1.0 database
 - One or more ingredients were claimed as confidential in more than 70% of disclosures
 - Operators designated 11% of all ingredient records as confidential business information

- Assessment identified potential vulnerabilities to drinking water resources due to hydraulic fracturing activities.
- The number of documented impacts to drinking water resources is small relative to the number of fractured wells.
- Despite vulnerabilities, there is no evidence of widespread, systemic impacts on drinking water resources due to hydraulic fracturing activities.

- EPA's assessment represents a synthesis of the science and contributes to overall understanding of potential impacts.
- The assessment helps to advance the science and understanding of hydraulic fracturing by identifying potential vulnerabilities.
- The assessment can inform future decisions by industry and by federal, tribal, state, and local entities concerning how best to protect drinking water resources now and in the future.

- Science Advisory Board (SAB) review of draft assessment:
 - Public, open process
 - Opportunity to comment on charge questions
 - Opportunity to address SAB panel concerning EPA's draft assessment
 - Opportunity to provide comments on the draft assessment
- Agency will use comments from public and SAB to revise draft assessment and release as final.