Foreword

The U.S. Environmental Protection Agency (EPA) Combined Heat and Power (CHP) Partnership is a voluntary program that seeks to reduce the environmental impact of power generation by promoting the use of CHP. CHP is an efficient, clean, and reliable approach to generating power and thermal energy from a single fuel source. CHP can increase operational efficiency and decrease energy costs, while reducing the emissions of greenhouse gases, which contribute to global climate change. The CHP Partnership works closely with energy users, the CHP industry, state and local governments, and other stakeholders to support the development of new projects and promote their energy, environmental, and economic benefits.

This version 1.1 deletes references to the CO₂ benefits of combusting biomass pending a final EPA determination on how to evaluate CO₂ emissions from the combustion of biomass.

The partnership provides resources about CHP technologies, incentives, emission profiles, and other information on its Web site at www.epa.gov/chp. For more information, contact:

Susan Wickwire
202 343 9155
wickwire.susan@epa.gov
Table of Contents

Table of Contents ... i
List of Tables ... iii
List of Figures ... v
Acronyms & Abbreviations ... vii
1. Introduction and Overview.. 1
 1.1 Biomass for Power and Heat Generation ... 1
 1.2 Biomass Feedstocks ... 2
 1.3 Biomass Conversion ... 3
 1.4 Report Layout .. 4
2. Basic First Steps and Considerations... 7
 2.1 Survey Availability of Local Resources .. 7
 2.2 Cost Considerations.. 8
3. Biomass Resources ... 11
 3.1 Rural Resources ... 11
 3.1.1 Forest Residues and Wood Wastes ... 11
 3.1.2 Crop Residues .. 13
 3.1.3 Energy Crops ... 14
 3.1.4 Manure Biogas... 15
 3.2 Urban Resources .. 16
 3.2.1 Urban Wood Waste.. 16
 3.2.2 Landfill Gas ... 17
 3.2.3 Wastewater Treatment Biogas .. 18
 3.2.4 Food Processing Waste .. 20
4. Biomass Preparation ... 21
 4.1 Solid Biomass Fuel Preparation .. 21
 4.1.1 Receiving System .. 23
 4.1.2 Processing System ... 24
 4.1.3 Buffer Storage .. 24
 4.1.4 Fuel Metering ... 24
 4.1.5 Prep-Yard Capital Costs... 25
 4.1.6 Labor for Operating the Prep-Yard ... 26
 4.2 Biogas Fuel Preparation ... 26
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1</td>
<td>Gas Collection Systems</td>
<td>27</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Gas Treatment Systems</td>
<td>27</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Collection and Treatment System Capital and O&M Costs</td>
<td>29</td>
</tr>
<tr>
<td>5.1</td>
<td>Direct-Fired Systems</td>
<td>31</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Boilers</td>
<td>31</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Cofiring</td>
<td>42</td>
</tr>
<tr>
<td>5.2</td>
<td>Gasification Technologies</td>
<td>45</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Gasifiers</td>
<td>46</td>
</tr>
<tr>
<td>5.3</td>
<td>Modular Systems</td>
<td>56</td>
</tr>
<tr>
<td>5.2</td>
<td>Gasification Technologies</td>
<td>45</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Gasifiers</td>
<td>46</td>
</tr>
<tr>
<td>6.1</td>
<td>Steam Turbine Technologies</td>
<td>64</td>
</tr>
<tr>
<td>6.2</td>
<td>Gas Turbine Technologies</td>
<td>66</td>
</tr>
<tr>
<td>6.3</td>
<td>Microturbine Systems</td>
<td>69</td>
</tr>
<tr>
<td>6.4</td>
<td>Reciprocating Internal Combustion Engine Technologies</td>
<td>71</td>
</tr>
<tr>
<td>6.5</td>
<td>Fuel Cell Systems</td>
<td>74</td>
</tr>
<tr>
<td>6.6</td>
<td>Stirling Engines</td>
<td>76</td>
</tr>
<tr>
<td>7.1</td>
<td>Direct Firing of Biomass (Boilers With Steam Turbines)</td>
<td>79</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Fixed Bed Stoker Boiler CHP Configurations and Performance</td>
<td>80</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Circulating Fluidized Bed Boiler CHP Configurations and Performance</td>
<td>84</td>
</tr>
<tr>
<td>7.2</td>
<td>Biomass Gasification Systems</td>
<td>89</td>
</tr>
<tr>
<td>7.3</td>
<td>Modular Biomass Systems</td>
<td>93</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Fixed Bed Stoker Boiler CHP Configurations and Performance</td>
<td>80</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Circulating Fluidized Bed Boiler CHP Configurations and Performance</td>
<td>84</td>
</tr>
<tr>
<td>7.2</td>
<td>Biomass Gasification Systems</td>
<td>89</td>
</tr>
<tr>
<td>7.3</td>
<td>Modular Biomass Systems</td>
<td>93</td>
</tr>
<tr>
<td>Appendix A—Not used</td>
<td></td>
<td>97</td>
</tr>
<tr>
<td>Appendix B—EPA CHP Partnership Biomass Tools and Resources</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>Appendix C—Landfill Gas</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Appendix D—Anaerobic Digesters</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Appendix E—Modular Biomass Systems Available or in Pre-Commercial Development</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>Appendix F—References</td>
<td>106</td>
<td></td>
</tr>
</tbody>
</table>
List of Tables

Table 1-1. Commercialization Status of Biomass Conversion Systems for Power and Heat Generation 5
Table 3-1. Energy and Cost Characteristics of Energy Crops ... 15
Table 4-1. Installed Capital Costs for Solid Biomass Receiving and Preparation 25
Table 4-2. Labor Requirements .. 26
Table 4-3. Summary of Representative Collection and Treatment Costs ($2006) 29
Table 5-1. Summary of Biomass CHP Conversion Technologies ... 30
Table 5-2. Biomass Boiler Efficiency as a Function of Input Fuel and Combustion Characteristics 36
Table 5-3. Comparison of Stoker and Fluidized Bed Boilers ... 38
Table 5-4. Estimated Installed Capital Costs for a Biomass-Fueled Steam Plant 39
Table 5-5. Effect of Steam Output Conditions on Boiler Capital Costs .. 40
Table 5-6. Annual O&M Costs for a Biomass-Fueled Steam Plant ... 40
Table 5-7. Summary of Biomass Combustion Boiler System Cost and Performance 41
Table 5-8. Utility Cofiring Biomass With Coal (Continuous Operation) ... 39
Table 5-9. Comparison of Fixed Bed Gasification Technologies ... 48
Table 5-10. Typical Characteristics of a Fixed Bed Gasifier ... 48
Table 5-11. Typical Characteristics of a Fluidized Bed Gasifier .. 50
Table 5-12. Gas Cleanup Issues ... 51
Table 5-13. Relative Advantages/Disadvantages of Gasifier Types ... 52
Table 5-14. Biomass Gasification Capital Costs to Produce Syngas .. 53
Table 5-15. Gasification O&M Cost Estimates for Syngas Production .. 54
Table 5-16. Biomass Gasification Cost and Performance .. 54
Table 5-17. Efficiencies of Modular Biomass Systems, Based on Conversion Switchgrass at 20 Percent Moisture .. 60
Table 6-1. Comparison of Prime Mover Technologies Applicable to Biomass 63
List of Figures

Figure 3-1. Forest Residue Potential .. 12

Figure 3-2. Forest Thinning Generation Potential From National Forests and Bureau of Land
Management Property... 12

Figure 3-3. Primary Mill Residue Potential ... 13

Figure 3-4. Available Corn Stover Residues at Less Than $50/Dry Ton 14

Figure 3-5. Available Wheat Straw Residues at Less Than $50/Dry Ton 14

Figure 3-6. Available Switchgrass Residues at Less Than $50/Dry Ton 15

Figure 3-7. Urban Wood Waste Potential Including Yard Trimmings, C&D Waste, and Other Wood
Wastes... 16

Figure 3-8. Operational LFG Energy Projects and Candidate Landfills............... 18

Figure 3-9. Wastewater Treatment Facilities Greater Than 5 Million Gallons Per Day and Electric
Generating Potential... 19

Figure 4-1. Manual Biomass Receiving and Preparation System 22

Figure 4-2. Automatic Biomass Receiving and Preparation System 22

Figure 4-3. Estimated Unit PrepYard Capital Cost As a Function of Throughput 26

Figure 5-1. Cut-Away View of a Traveling Grate Stoker Boiler 32

Figure 5-2. Cross Section of Underfeed, Side-Ash Discharge Stoker 32

Figure 5-3. Cross Section of Overfeed, Water-Cooled, Vibrating-Grate, Mass-Feed Stoker 33

Figure 5-4. Cut-Away View of a Fluidized Bed Combustion Boiler 34

Figure 5-5. Biomass Cofiring in Coal Power Plant .. 42

Figure 5-6. Fixed Bed Gasifier Types .. 47

Figure 5-7. Fluidized Bed Gasifier ... 49

Figure 5-8. Example Modular Biomass Gasification System 57

Figure 5-9. Heat Engine Power Cycles for Modular Biomass Combustion Systems .. 58

Figure 5-10. Example of Modular Gasification/Combustion Process 59
Figure 5-11. Size and Cost Ranges for Direct-Fired Modular Systems .. 61
Figure 6-1. Simple Steam Turbine Power Cycle ... 65
Figure 6-2. Components of a Simple-Cycle Gas Turbine ... 67
Figure 6-3. Proposed Gas Turbine Configuration in Integrated Biomass Gasification Facility 69
Figure 6-4. Microturbine-Based CHP System (Single-Shaft Design) ... 70
Figure 6-5. Closed-Loop Heat Recovery System for a Reciprocating Engine ... 73
Figure 7-1. Kettle Falls Plant Schematic ... 80
Figure 7-2. Power to Steam Production Options for Boiler/Steam Turbine CHP System 82
Figure 7-3. Atmospheric Pressure Biomass Gasification Combined-Cycle .. 90
Figure 7-4. High-Pressure Biomass Gasification Combined-Cycle .. 90
Acronyms & Abbreviations

AC alternating current
Btu British thermal unit(s)
C&D construction and demolition
CCAR California Climate Action Registry
CDM clean development mechanism
CHP combined heat and power
cfm cubic feet per minute
CI compression ignition
CIBO Council of Industrial Boiler Owners
CO carbon monoxide
CO₂ carbon dioxide
DOE U.S. Department of Energy
EPA U.S. Environmental Protection Agency
EPRI Electric Power Research Institute
ft³ cubic foot
GHG greenhouse gases
HHV high heating value
hr hour(s)
Hz Hertz
IC internal combustion
IGCC integrated gasification combined cycle
IPCC Intergovernmental Panel on Climate Change
kW kilowatt(s)
kWh kilowatt-hour(s)
lb pound(s)
LFG landfill gas
LMOP Landfill Methane Outreach Program
MCFC molten carbonate fuel cell
Mlb thousand pounds
MMBtu million British thermal units
MSW municipal solid waste
MW megawatt(s)
MWh megawatt-hour(s)
N₂O nitrous oxide
NOₓ nitrogen oxides
NRCS Natural Resource Conservation Service
O&M operations and maintenance
ORC organic Rankine cycle
PAFC phosphoric acid fuel cell
PEMFC proton exchange membrane fuel cell
PM particulate matter
ppm parts per million
psig pounds per square inch gauge
scf standard cubic foot
SI spark ignition
SO₂ sulfur dioxide
SOFC solid oxide fuel cell
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNFCCC</td>
<td>United Nations Framework Convention on Climate Change</td>
</tr>
<tr>
<td>USDA</td>
<td>U.S. Department of Agriculture</td>
</tr>
<tr>
<td>WWTF</td>
<td>wastewater treatment facility</td>
</tr>
</tbody>
</table>
1. Introduction and Overview

1.1 Biomass for Power and Heat Generation

As part of its efforts to reduce the environmental impacts of energy production and use, the U.S. Environmental Protection Agency (EPA) has engaged in outreach and technical assistance to broadly increase understanding and use of highly efficient combined heat and power (CHP) applications through the efforts of the CHP Partnership program. Over the past three years, market and policy forces have driven strong interest and early implementation of new biomass-fueled CHP projects by Partners and other clean energy stakeholders. In the interest of continuing the trend toward greater utilization of biomass fuels to power clean, efficient electricity and thermal energy generation, this document provides resource owners, facility managers, developers, policymakers, and other interested parties with a detailed technology characterization of biomass CHP systems. The report reviews the technical and economic characterization of biomass resources, biomass preparation, energy conversion technologies, power production systems, and complete integrated systems.

There are many potential advantages to using biomass instead of fossil fuels for meeting energy needs. Specific benefits depend upon the intended use and fuel source, but often include: greenhouse gas and other air pollutant reductions, energy cost savings, local economic development, waste reduction, and the security of a domestic fuel supply. In addition, biomass is more flexible (e.g., can generate both power and heat) and reliable (as a non-intermittent resource) as an energy option than many other sources of renewable energy.

Biomass fuels are typically used most efficiently and beneficially when generating both power and heat through CHP. CHP, also known as cogeneration, is the simultaneous production of electricity and heat from a single fuel source, such as biomass/biogas, natural gas, coal, or oil. CHP provides:

- **Distributed generation** of electrical and/or mechanical power.
- **Waste-heat recovery** for heating, cooling, or process applications.
- **Seamless system integration** for a variety of technologies, thermal applications, and fuel types into existing building infrastructure.

CHP is not a single technology, but an integrated energy system that can be modified depending on the needs of the energy end user. The hallmark of all well-designed CHP systems is an increase in the efficiency of fuel use. By using waste heat recovery technology to capture a significant proportion of heat created as a byproduct in electricity generation, CHP systems typically achieve total system efficiencies of 60 to 80 percent for producing electricity and thermal energy. These efficiency gains improve the economics of using biomass fuels, as well as produce other environmental benefits. More than 60 percent of current biomass-powered electricity generation in the United States is in the form of CHP.1

The industrial sector currently produces both steam or hot water and electricity from biomass in CHP facilities in the paper, chemical, wood products, and food-processing industries. These industries are major users of biomass fuels; utilizing the heat and steam in their processes can improve energy efficiency by more than 35 percent. The biggest industrial user of bioenergy is the forest products industry, which consumes 85 percent of all wood waste used for energy in the United States. Manufacturing plants that utilize forest products can typically generate more than half of their own energy from woody waste products and other renewable sources of fuel (e.g., wood chips, black liquor).

Most of the electricity, heat, and steam produced by industrial facilities are consumed on site; however, some manufacturers that produce more electricity than they need on site sell excess power to the grid. Wider use of biomass resources will directly benefit many companies that generate more residues (e.g., wood or processing wastes) than they can use internally. New markets for these excess materials may support business expansion as the residues are purchased for energy generation purposes or new profit centers of renewable energy production may diversify and support the core business of these companies.

1.2 Biomass Feedstocks

The success of any biomass-fueled CHP project is heavily dependent on the availability of a suitable biomass feedstock. Biomass feedstocks are widely available in both rural and urban settings and can include:

Rural Resources:
- Forest residues and wood wastes
- Crop residues
- Energy crops
- Manure biogas

Urban Resources:
- Urban wood waste
- Wastewater treatment biogas
- Municipal solid waste (MSW) and landfill gas (LFG)
- Food processing residue

Feedstocks vary widely in their sources and fuel characteristics and therefore vary in typical considerations for their utilization. Various biomass resources can require different approaches to collection, storage, and transportation, as well as different considerations regarding the conversion process and power generation technology that they would most effectively fuel.

Of the 9,709 megawatts (MW) of biomass electric capacity in the United States in 2004, about 5,891 MW were from wood and wood wastes; 3,319 MW of generating capacity was from MSW and LFG; and 499 MW of capacity was attributable to other biomass, such as agricultural residues, sludge, anaerobic digester gas, and other sources.2

2 Energy Information Administration, 2006.
1.3 **Biomass Conversion**

Biomass can be used in its solid form or gasified for heating applications or electricity generation, or it can be converted into liquid or gaseous fuels. Biomass conversion refers to the process of converting biomass feedstocks into energy that will then be used to generate electricity and/or heat.

Multiple commercial, proven and cost effective technologies for converting biomass feedstocks to electricity and heat are currently available in the United States (see Table 1-1). These technologies include anaerobic digesters for animal waste or wastewater, and three types of direct-fired boiler systems that have been used for decades for converting woody biomass: fixed bed boilers, fluidized bed boilers, and cofiring applications. Some of these boiler technologies are extremely clean and can result in electricity production of up to 50 megawatts (MW)—enough electricity to power 50,000 homes.³

Additionally, an emerging class of biomass conversion technologies is becoming available that converts woody biomass feedstocks to useable fuel through gasification processes. These technologies, called fixed bed gasifiers and fluidized bed gasifiers, are becoming commercialized and are currently in limited use producing syngas for power and heat. Rapid commercialization may be seen in the near future as these gasification technologies are expected to be used in integrated gasification combined cycle (IGCC) coal plants and within some of the thermochemical (cellulosic) biorefineries built in the United States in the next two to ten years (see Table 1-1). Modular versions—smaller than 5 MW—of both direct-fired boiler and gasification technologies are also being developed, though they are at earlier stages of commercialization.

³ In contrast, coal-fired power plants are generally sized in the 100 MW to 1,000 MW range.
1.4 Report Layout

The report is organized into the following chapters:

Chapter 2: Basic First Steps and Considerations—This chapter provides an overview of basic considerations that need to be taken into account when beginning to evaluate the viability of biomass-fueled electricity and thermal energy generation.

Chapter 3: Biomass Resources—This chapter presents a discussion of the various types of biomass resources, locations, characteristics, resource potential, and costs.

Chapter 4: Biomass Preparation—This chapter describes the receiving, processing, and treatment systems required for preparing biomass feedstocks and biogas for use as a power generation fuel. Equipment configurations and capital and operating costs are outlined.

Chapter 5: Biomass Conversion Technologies—This chapter describes configurations, cost, and performance for the two basic biomass conversion approaches: combustion and gasification. In addition, a brief discussion of small modular biomass conversion technologies is presented.

Chapter 6: Power Generation Technologies—This chapter provides basic cost and performance information for power generation technologies with heat recovery, and special considerations for selecting and operating these technologies on biomass or biogas fuels.

Chapter 7: Representative Biomass CHP System Cost and Performance Profiles—This chapter provides an integration of resource, preparation, conversion, and power and heat production system costs into integrated biomass-fueled CHP facilities. Capital costs, operating costs, fuel costs, and typical energy balances, including power and heat production options, are described. This chapter provides a starting point for conducting a preliminary economic screening of possible biomass energy production options.

Additional biomass-related resources and tools created by the EPA CHP Partnership are listed in Appendix B.
Table 1-1. Commercialization Status of Biomass Conversion Systems for Power and Heat Generation
This table identifies the major biomass conversion technologies and associated prime mover technologies for CHP applications. The commercial status of each technology for biomass applications is described.

<table>
<thead>
<tr>
<th>Energy Conversion Technology</th>
<th>Conversion Technology</th>
<th>Commercialization Status</th>
<th>Integrated CHP Technology (Prime Mover)</th>
<th>Prime Mover Commercialization Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaerobic Digestion</td>
<td></td>
<td></td>
<td>Internal combustion engine</td>
<td>Commercial technology</td>
</tr>
<tr>
<td>Anaerobic digester</td>
<td></td>
<td></td>
<td>Microturbine</td>
<td>Commercial technology</td>
</tr>
<tr>
<td>(from animal feeding operations or wastewater treatment facilities)</td>
<td></td>
<td></td>
<td>Gas turbine</td>
<td>Commercial technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fuel cell</td>
<td>Commercial introduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stirling engine</td>
<td>Emerging</td>
</tr>
</tbody>
</table>

Direct Combustion—Boilers

<table>
<thead>
<tr>
<th>Energy Conversion Technology</th>
<th>Conversion Technology</th>
<th>Commercialization Status</th>
<th>Integrated CHP Technology (Prime Mover)</th>
<th>Prime Mover Commercialization Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed bed boilers (stoker)</td>
<td></td>
<td></td>
<td></td>
<td>Steam turbine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Commercial technology</td>
</tr>
<tr>
<td>Fluidized bed boilers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Commercial technology</td>
<td>Gas turbine</td>
<td>Commercial technology</td>
</tr>
<tr>
<td>Cofiring</td>
<td></td>
<td>Commercial technology</td>
<td>Fuel cell</td>
<td>Commercial introduction</td>
</tr>
<tr>
<td>Modular* direct combustion</td>
<td></td>
<td>Commercial technology</td>
<td>Small steam turbine</td>
<td>Commercial technology</td>
</tr>
<tr>
<td>technology</td>
<td></td>
<td></td>
<td>Organic Rankine cycle</td>
<td>Emerging technology – Some “commercial” products available.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“Entropic” cycle</td>
<td>Research and development (R&D) status</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hot air turbine</td>
<td>R&D status</td>
</tr>
</tbody>
</table>

*Small, packaged, pre-engineered systems (smaller than 5 MW).
Energy Conversion Technology

<table>
<thead>
<tr>
<th>Gasification</th>
<th>Conversion Technology Commercialization Status</th>
<th>Integrated CHP Technology (Prime Mover)</th>
<th>Prime Mover Commercialization Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed bed gasifiers</td>
<td>Emerging technology – The actual number of biomass gasification systems in operation worldwide is unknown, but is estimated to be below 25.</td>
<td>Gas turbines – simple cycle</td>
<td>Prime movers have been commercially proven with natural gas and some medium heating value biogas.</td>
</tr>
<tr>
<td>Fluidized bed gasifiers</td>
<td>A review of gasifier manufacturers in Europe, USA, and Canada identified 50 manufacturers offering commercial gasification plants from which 75 percent of the designs were fixed bed; 20 percent of the designs were fluidized bed systems.</td>
<td>Gas turbines – combined cycle</td>
<td>Operation on low heating value biogas and the effects of impurities on prime mover reliability and longevity need to be demonstrated.</td>
</tr>
<tr>
<td>Modular* gasification technology</td>
<td>Emerging technology – A small number of demonstration projects supported with research, design, and development funding.</td>
<td>Large internal combustion (IC) engines</td>
<td></td>
</tr>
<tr>
<td>Modular* hybrid gasification/combustion</td>
<td>Emerging technology – Limited commercial demonstration.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Small, packaged, pre-engineered systems (smaller than 5 MW).