Stream Functions Pyramid

Will Harman, PG

www.stream-mechanics.com
We are at a 2nd Crossroad

Crossroad # 1

Traditional Channel Design
Transport water quickly; Bed and banks don’t move

Natural Channel Design
Create a dimension, pattern, and profile that transports water and sediment.
Crossroad # 2

Restoration of Dimension, Pattern, and Profile

Restoration of Functions
What is a Stream Function?

“The physical, chemical, and biological processes that occur in ecosystems,” Clean Water Act (33 CFR 332.2; 40 CFR 230.92)

“The processes that create and support a stream system.“ EPA Region 10
Stream Function and Structure

- **Structural measures** evaluate stream condition at a point in time
 - Channel Form, Habitat Features, Number of Species
 - Describes “How the System Is.”

- **Functional Attributes** describe processes and rates (per unit time)
 - Describes how the system is performing

Source: Palmer and Bernhardt, 2009
Stream Functions Pyramid

1. HYDROLOGY » Transport of water from the watershed to the channel
2. HYDRAULIC » Transport of water in the channel, on the floodplain, and through sediments
3. GEOMORPHOLOGY » Transport of wood and sediment to create diverse bed forms and dynamic equilibrium
4. PHYSIOCHEMICAL » Temperature and oxygen regulation; processing of organic matter and nutrients
5. BIOLOGY » Biodiversity and the life histories of aquatic and riparian life
Stream Functions Pyramid

1. **HYDROLOGY**
 - **FUNCTION:** Transport of water from the watershed to the channel
 - **PARAMETERS:** Precipitation/Runoff relationship, Channel Forming Discharge, Flood Frequency, Flow Duration

2. **HYDRAULIC**
 - **FUNCTION:** Transport of water in the channel, on the floodplain, and through sediments
 - **PARAMETERS:** Velocity, Shear Stress, Stream Power, Bank Height Ratio, Entrainment Ratio, Rating Curves (discharge vs. stage), Groundwater/Surface Water Exchange

3. **GEOMORPHOLOGY**
 - **FUNCTION:** Transport of wood and sediment to create diverse bed forms and dynamic equilibrium
 - **PARAMETERS:** Sediment Transport Capacity and Competency, Channel Evolution, Streambank Erosion Rates, Percent Riffle and Pool, Depth Variability, Substrate Distributions, Large Woody Debris Transport and Storage, Riparian Vegetation density and composition

4. **PHYSIOCHEMICAL**
 - **FUNCTION:** Temperature and oxygen regulation; processing of organic matter and nutrients
 - **PARAMETERS:** Dissolved Oxygen, Temperature Regulation, pH, Conductivity, Nutrient Processing, Organic Processing, Turbidity

5. **BIOLOGY**
 - **FUNCTION:** Biodiversity, the life histories of aquatic and riparian life
 - **PARAMETERS:** Primary and Secondary Production, Macri/invertebrate Communities, Fish Communities, Riparian Communities, Landscape Pathways

A Guide for Assessing & Restoring Stream Functions

FUNCTIONS & PARAMETERS
1. HYDROLOGY »
FUNCTION: Transport of water from the watershed to the channel
PARAMETERS: Precipitation/runoff relationship, Channel Forming Discharge, Flood Frequency, Flow Duration

2. HYDRAULIC »
FUNCTION: Transport of water in the channel, on the floodplain, and through sediments
PARAMETERS: Velocity, Shear Stress, Stream Power, Bank Height Ratio, Entrenchment Ratio, Rating Curves (discharge vs. stage), Groundwater/Surface Water Exchange

3. GEOMORPHOLOGY »
FUNCTION: Transport of wood and sediment to create diverse bed forms and dynamic equilibrium
PARAMETERS: Sediment Transport Capacity and Competency, Channel Evolution, Streambank Erosion Rates, Percent Riffle and Pool, Depth Variability, Substrate Distributions, Large Woody Debris Transport and Storage, Riparian Vegetation density and composition
BIOLOGY

FUNCTION: Biodiversity and the life histories of aquatic and riparian life

PARAMETERS: Primary and Secondary Production, Macroinvertebrate Communities, Fish Communities, Riparian Communities, Landscape Pathways

PHYSIOCHEMICAL

FUNCTION: Temperature and oxygen regulation; processing of organic matter and nutrients

PARAMETERS: Dissolved Oxygen, Temperature Regulation, pH, Conductivity, Nutrient Processing, Organic Processing, Turbidity

Parameters in bold are also functions
Why do we need the Pyramid?

- So we don’t incentivize this result and we think about what we’re trying to achieve.
• So we don’t miss key functions and processes during the design process.
• So we don’t do this!
Why are we struggling with success?

• We don’t ask *why*.
 – We don’t link functional lift to functional loss.

• Because we don’t focus on *what* functions can be improved and *how* to restore those functions.

• We don’t align the site selection with the functional goals.
 – We’re not going to fully restore biological functions with severely degraded watersheds and patchwork restoration.
So, what do we do?
How can we use the Pyramid to help?

To Create Better:

- Goals and Objectives
- Function-Based Assessment Protocols
- SOP’s
 - Debit and Credit Determination Methods
 - Success Criteria
 - Performance Standards
To Create Better Goals and Objectives

• **Common Goal**
 - Create a stable dimension, pattern and profile so that the channel doesn’t aggrade or degrade

• **Better Goal**
 - Reduce sediment supply to improve native fish populations:
 • Restore floodplain connectivity,
 • Reduce streambank erosion,
 • Improve bedform diversity, and
 • Establish a riparian buffer.

Objectives
Functional Drivers for C and E Stream Types

- Floodplain Connectivity
- Bedform Diversity
- Streambank Erosion (Lateral Stability)
- Riparian Buffer
- Site Selection

Requires

- Appropriate Watershed Condition.
- Adequate hydrology functions.
- Reach scale versus watershed scale understanding.
Quantitative Objectives

• Floodplain Connectivity
 – Reduce bank height ratios from 2.0 to 1.0.
 – Increase entrenchment ratio from 1.2 to 3.0.
• Bedform Diversity
 – Convert riffle dominated bedform (95% riffle) to riffle-pool sequence (70/30).
• Streambank erosion
 – Reduce erosion rates by 95%.
 – Reduce erosion rates to reference reach condition.
• Riparian Buffer
 – Increase buffer width from 0 feet to 50 feet.
Framework for Function-Based Assessments

- Functional Assessments
 - Focus on parameters listed in pyramid
 - Acknowledge the hierarchy
 - Tailor to different regions
Assessments for Different Reasons

• Mitigation Related
• Departure from Stability and Restoration Potential
• Watershed Management and Planning
Assessments for Different Reasons

- Mitigation Related
 - Assess lost functions at permitted impact site
 - Assess functional lift at mitigation site
 - Basis for credit determination and performance
Assessments for Different Reasons

- Departure from Stability and Restoration Potential
 - Hydrologic Changes
 - Geomorphic Assessments
 - Physiochemical and Biological Health
 - Restoration Potential

- Watershed Management and Planning
Assessments for Different Reasons

• Watershed Management and Planning
 – Watershed scale
 – ID healthy sub-watersheds
 – ID unhealthy sub-watersheds / reaches and the stressor
 – Develop management plan to restore functions
 • Use all appropriate tools, like restoration, BMPs, preservation, etc.
Framework for Mitigation SOPs

• SOPs
 – Move from restoration of dimension, pattern, and profile to functions.
 – Better link between impact site and mitigation site.
 – Applies to:
 • Debit and Credit Determination Methods
 • Functional Assessment
 • Performance Standards
Rural Piedmont: South Fork Mitchell River
Darnell / Harman Reach

- Not a mitigation project
- Funded by the NC Clean Water Management Trust Fund
- Mitchell River Watershed Coalition and Surry Soil and Water Conservation District
- Watershed scale effort
- Design by Michael Baker Corporation
Pre-Restoration Condition

Widespread bank erosion
Channel is re-adjusting pattern
Pre-Restoration Condition

<table>
<thead>
<tr>
<th>Feature</th>
<th>Stream Type</th>
<th>BKF Area</th>
<th>BKF Width</th>
<th>BKF Depth</th>
<th>Max BKF Depth</th>
<th>W/D</th>
<th>BH Ratio</th>
<th>ER</th>
<th>BKF Elev</th>
<th>TOB Elev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riffle</td>
<td></td>
<td>76</td>
<td>27.77</td>
<td>2.74</td>
<td>4.16</td>
<td>10.15</td>
<td>1.5</td>
<td>>357.20</td>
<td>87.84</td>
<td>89.95</td>
</tr>
</tbody>
</table>

Cross-section 7+50

- **Elevation (ft)**: 80 to 110
- **Station (ft)**: 600 to 850

- **Bankfull**
- **Floodprone**

Moderately Incised. BHR = 1.5
Pre-Restoration Profile

South Fork Mitchell River - Longitudinal Profile

Elevation

Station
Functional Lift

- Hydrology
- Hydraulic
- Geomorphic
- Physiochemical
- Biological
Hydrology

• No lift
 – No change in rainfall / runoff relationship
 – No change in design discharge (bankfull)
 – No change in flow duration
Hydraulics

- Floodplain Connectivity
 - Bank Height Ratio reduced from 1.5 to 1.0
 - Entrenchment ratio did not change

- Flow Dynamics
 - Reduced average channel velocities
 - Reduced shear stress from 0.85 to 0.67 lbs/sqft
 - Reduced stream power
Floodplain Connectivity

Before

After
Floodplain Connectivity

Cross-section 9+45 -- Riffle

Elevation (ft)

Distance (ft)

Bankfull
Geomorphic

- Sediment Transport Competency
 - Reduced average depth from 3.4 to 2.5
 - As-built depth matches required depth

- Sediment Transport Capacity
 - Not quantitatively assessed
Geomorphic

• Channel Evolution
 – Pre-restoration condition
 • E moving towards a Gc – F – C – E
 – Restored to a C/E
Geomorphologic

- Lateral Stability
 - Did not do before and after BEHI assessments, which could be used for functional lift
 - Used cross section surveys to show lateral stability after restoration construction.
Lateral Stability

Darnell Reach Post Construction
Cross-section 3+90 -- Pool

- 1/27/2003
- 3/26/2004
- 3/22/2005
- Bankfull
Bed Form Diversity

- Percent Riffle and Pool
- Pool Depth Variability
- Substrate Distributions
Rosgen Priority 1
Profile After Restoration
Percent Riffle and Pool

<table>
<thead>
<tr>
<th>Bed Form</th>
<th>Before Restoration Percentage</th>
<th>Year 5 Restoration Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riffle</td>
<td>51</td>
<td>46</td>
</tr>
<tr>
<td>Pool</td>
<td>49</td>
<td>54</td>
</tr>
</tbody>
</table>
Cross Vane Too High

Downstream Cross Vane

Upstream Riffle
Substrate Variability
Pre and Post Beaver Dam

Summer 2008

Winter 2008
Physiochemical Functional Lift

• Not measured
 – DO
 – Temperature
 – pH
 – Conductivity
 – Nutrients

• Discussion
Biological Functional Lift

• Primary Production – not measured
• Macroinvertebrate Communities
 – Ken Bridle, Ecologic
• Fish Communities
 – Stamper Aquatics
• Riparian Communities
Macroinvertebrate Communities

Total Number of Taxa

<table>
<thead>
<tr>
<th>Station</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
<td>35</td>
<td>54</td>
<td>46</td>
<td>31</td>
<td>51</td>
</tr>
<tr>
<td>Downstream</td>
<td>39</td>
<td></td>
<td>48</td>
<td></td>
<td>35</td>
</tr>
</tbody>
</table>

Total Number of Organisms

<table>
<thead>
<tr>
<th>Station</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
<td>135</td>
<td>294</td>
<td>278</td>
<td>149</td>
<td>286</td>
</tr>
<tr>
<td>Downstream</td>
<td>186</td>
<td></td>
<td>362</td>
<td></td>
<td>184</td>
</tr>
</tbody>
</table>
Fish Communities

Darnell Species Percent Composition (2003-2007)

Golden Species Percent Composition (2003-2007)

Darnell Site 2003-2007
Volunteer Monitoring 2007-8
Riparian Communities
Riparian Communities

<table>
<thead>
<tr>
<th>Tree Species</th>
<th>2004 Stem Count</th>
<th>2005 Stem Count</th>
<th>2006 Stem Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prunus serotina, Black cherry</td>
<td>0</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Diospyros virginiana, Persimmon</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Platanus occidentalis, Sycamore</td>
<td>9</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Acer rubrum, Red maple</td>
<td>2</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Liriodendron tulipifera, Tulip poplar</td>
<td>3</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Juglans nigra, Black walnut</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Fraxinus pennsylvanica, Green ash</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Nyssa sylvatica, Black gum</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Stems</td>
<td>21</td>
<td>40</td>
<td>32</td>
</tr>
<tr>
<td>Stems/Acre</td>
<td>378</td>
<td>720</td>
<td>576</td>
</tr>
</tbody>
</table>
Volunteer Wetland Monitoring
Fun for the whole family ...
Mountain Stream Example
Mitchell River, Mickey Reach

- Drainage Area = 0.45 square miles
- Channel Slope = 3.5%
- Bankfull Discharge = 55 cfs
- Bankfull Cross Sectional Area = 14 ft²
- D50 = 31 mm (Coarse gravel)
- Rosgen Stream Type = B4
- Design by Michael Baker Corporation
Existing Condition
Before Restoration Profile

Mickey Reach Profile Chart

7 pools out of 3,300 feet of channel
Pool to Pool Spacing / Bankfull Width and Total Number of Pools

<table>
<thead>
<tr>
<th>Year</th>
<th>Min</th>
<th>Max</th>
<th>Total #</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>1</td>
<td>>100</td>
<td>7</td>
<td>Existing</td>
</tr>
<tr>
<td>2003</td>
<td>2</td>
<td>16</td>
<td>29</td>
<td>As-built</td>
</tr>
<tr>
<td>2005</td>
<td>0.5</td>
<td>9</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>0.5</td>
<td>9</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>0.6</td>
<td>8</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>
Lower end of project
Riparian Buffer
Functional Summary

• Improved floodprone area connection in lower reach.
 – Converted G to B

• Improved bed form diversity
 – 7 pools to ~50 pools
 – Maintained pool to pool spacing

• Improved wetland / bog

• Created riparian buffer
Thank You