NEW COAL-FIRED POWER PLANT PERFORMANCE AND COST ESTIMATES

SL-009808

AUGUST 28, 2009 PROJECT 12301-003

PREPARED BY

55 East Monroe Street • Chicago, IL 60603-5780 USA • 312-269-2000 www.sargentlundy.com

LEGAL NOTICE

This report was prepared by Sargent & Lundy, L.L.C., hereinafter referred to as S&L, expressly for Perrin Quarles Associates, Inc., hereinafter referred to as PQA, in support of work for the U.S. Environmental Protection Agency (EPA) under EPA Contract No. EP-W-07-064. Neither S&L nor any person acting on its behalf (a) makes any warranty, express or implied, with respect to the use of any information or methods disclosed in this report or (b) assumes any liability with respect to the use of any information or methods disclosed in this report or (b) assumes any liability with respect to the use of any information or methods disclosed in this report or (b) assumes any liability with respect to the use of any information or methods disclosed in this report. Although prepared with EPA funding and reviewed by the EPA, this report has not been approved by the EPA for publication as an EPA report. The contents do not necessarily reflect the views or policies of the EPA, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

SARGENT & LUNDY, L.L.C - CONTRIBUTORS

PREPARED BY:

David Hasler Senior Process Engineer

REVIEWED BY:

Burgues

William Rosenquist Technical Advisor

APPROVED BY:

Rai Gailwad

8/27/09 Date

Raj Gaikwad Vice President, Advanced Fossil Technologies

U.S. Environmental Protection Agency – Reviewer

William Stevens Senior Advisor - Power Technology Office of Atmospheric Programs

CONTENTS

1.	INTRODUCTION	1-1
2.	PC POWER PLANT PERFORMANCE ESTIMATES	2-1
2.1	THERMAL CYCLES	2-1
2.2	Material Handling	2-2
2.3	BOILER SYSTEM	2-2
2.4	Environmental Controls	2-3
3.	PC POWER PLANT CAPITAL, FIXED, VARIABLE, AND TOTAL PROJECT COST ESTIMATES	3-1
3.1	Cost Estimate Methodology	3-1
3.2	CAPITAL COSTS	
4.	600-MW NET IGCC PERFORMANCE ESTIMATES	4-1
4.1	IGCC CONCEPTUAL DESIGN	4-1
4.2	AIR SEPARATION UNIT	4-1
4.3	COAL HANDLING	4-2
4.4	GASIFICATION ISLAND	4-2
4.5	THERMAL CYCLE	4-3
4.6	PERFORMANCE	4-3
5.	IGCC PLANT COST ESTIMATES	5-1
5.1	Cost Estimate Methodology	5-1
5.2	Cost Estimates	5-2
6.	REFERENCES	6-1

TABLES AND FIGURES

No.

Page

Table 2-1. Cycle Conditions Used for Performance Estimates	2-1
Table 2-2. PC Performance Estimates Reported as Net Heat Rate (Btu/kWh)	2-4
Table 2-3. PC Performance Estimates Reported as Net Plant Efficiency (100%)	2-4
Table 3-1. Total Installed Cost Estimates (±30%) for Various PC Plants (\$2008/kW Net)	3-4
Table 4-1. 600-MW Net SC and IGCC Performance Reported as Heat Rate (Btu/kWh Net) and Thermal Efficiency (%	Net)4-4
Table 5-1. Total Installed Cost Estimates (±30%) for SC and IGCC Plants Based on Comparable 600-MW Net (\$2008/kW Net)	Output 5-2

Figure 2-1. Bituminous Plant Performance Represented by Net Heat Rate	2-5
Figure 2-2. PRB Plant Performance Represented by Net Heat Rate	2-6
Figure 2-3. Lignite Plant Performance Represented by Net Heat Rate	2-6

APPENDIXES

- A. PC Power Plant Performance and Cost Estimate Spreadsheets
- B. PC Power Plant Cost Estimate Details
- C. PC Power Plant Heat Balances
- D. PC Power Plant Heat Balance Calculation Details
- E. SC and IGCC Power Plant Performance and Cost Estimate Spreadsheets
- F. IGCC Power Plant Cost Estimate Details
- G. SC and IGCC Power Plant Heat Balances

1. INTRODUCTION

On behalf of Perrin Quarles Associates, Inc. (PQA), Sargent & Lundy, L.L.C. (S&L) developed for the EPA estimates of performance and order-of-magnitude costs of conventional pulverized coal (PC) and integrated gasification combined cycle (IGCC) power plants. The estimates cover a range of coals and plant sizes. PC analyses consider plant sizes of 400, 600, and 900 MW gross, and subcritical (subC), supercritical (SC), ultra-supercritical (USC), and advanced ultra-supercritical (AUSC) steam cycles, on greenfield sites. Coal types evaluated are Illinois bituminous No. 6, Texas lignite, and Powder River Basin (PRB). IGCC plant analyses are based on the same three coals, at a 600-MW net plant size.

This report summarizes the S&L estimates of performance, total installed cost (TIC), and operations and maintenance (O&M) cost for conventional PC power plants and for IGCC plants. The Appendixes provided include the details of these estimates.

The TIC as developed in this report includes cost escalation and interest during construction (IDC). Sufficient detail is provided to derive overnight costs, excluding escalation, with or without IDC. All costs in this report are based on mid-2008 market conditions, and are expressed in 2008 U.S. dollars, and therefore, likely reflect a historical peak in U.S. and global costs for power plant equipment, materials, labor, services, etc. Any subsequent moderation of market price levels that may have occurred - in connection with the global economic recession, which commenced in 2008 - is not reflected in this report.

2. PC POWER PLANT PERFORMANCE ESTIMATES

2.1 THERMAL CYCLES

Performance is compared for four PC plant types, with the steam conditions shown in Table 2-1, representing subC, SC, USC, and AUSC thermal cycles. These steam conditions are considered representative of current market offerings in the U.S., except for the AUSC plant. Materials and equipment for the AUSC thermal cycle require further development and are not likely to be constructed in the U.S. in the near future.

	····· = ··· • • • • • • • • • • • • • •		
Plant Type	Main Steam Pressure (psia)	Main Steam Temperature (°F)	Reheat Steam Temperature (°F)
subC	2535	1050	1050
SC	3690	1050	1100
USC	3748	1100	1100
AUSC	4515	1300	1300

Table 2-1. Cycle Conditions Used for Performance Estimates

Steam turbines considered in the performance analyses include HP, IP, and LP sections configured in a tandemcompound arrangement, consisting of one HP, one IP, and opposed-flow LP turbines. The number of LP opposedflow turbines varies based on size of the power plant. The 400-, 600-, and 900-MW plants were simulated with two, four, and six opposed-flow LP turbines, respectively. The steam turbine drives a single 3600-rpm electric generator.

Thermal cycles are based on a modified Rankine cycle, which uses feedwater heaters supplied with extraction steam from various stages of the turbines to preheat boiler feedwater prior to its entering the steam generator (boiler). The number of heaters considered in the performance analyses represents designs typically seen in commercial construction of U.S. power plants, and is a tradeoff between thermal efficiency and capital costs.

The subC case uses seven feedwater heaters, including one direct-contact type (Appendix C). Heaters 1-4 are supplied with steam extracted from the LP turbine; heater 5 is the deaerator, using steam from the IP turbine exhaust; heater 6 is supplied with IP turbine extraction steam; and heater 7 is supplied with HP turbine exhaust steam.

Both the SC and the USC cases involve eight feedwater heaters (Appendix C), with a distribution similar to the subC case except that the extra heater (8) is supplied with extraction steam from the HP turbine. The heater

configurations used for the SC and USC cases are commonly referred to as a *HARP* system, which is a <u>H</u>eater <u>A</u>bove the <u>R</u>eheat <u>P</u>oint of the turbine steam flow path.

Boiler feedwater is pressurized with a single HP boiler feedwater pump (BFP), powered by an electric drive for the 400- and 600-MW cases and a steam turbine drive for the 900-MW case. For steam turbine-driven cases, the exhaust is directed to the LP turbine condenser. A motor-driven BFP is used for the 400- and 600-MW plant sizes because advances in LP turbine design have led to increased efficiency and availability in recent years, while the cost of larger electric motors has decreased.

The plant cooling system uses mechanical-draft cooling towers with a circulating water temperature rise of 20°F. The condensers are evaluated as multi-flow units, one per each two-flow LP unit.

2.2 MATERIAL HANDLING

The material handling equipment electrical loads include items such as intermittent rail car unloading, conveyors and crushers. The electrical demand is intermittent and therefore an average load is used for auxiliary power consumption estimates.

The ash handling system encompasses equipment required to remove ash from the boiler, economizer, air heater, baghouse, and wet electrostatic precipitator (ESP) collection systems. Conveying equipment electrical loads include LP compressors, drag chains, fans, and conveyors. The average electrical load required by intermittent operation of the equipment is considered in the auxiliary power requirements.

2.3 BOILER SYSTEM

The total number of pulverizers (including one spare) and their associated power requirement is based on plant size and coal type. The 400-MW plant uses five pulverizers for bituminous and PRB cases, and six for lignite; the 600-MW plant uses six pulverizers for bituminous and PRB, and seven for lignite; and the 900-MW plant uses seven pulverizers for bituminous and PRB, and eight for lignite.

Estimated boiler performance is based on a balanced-draft unit operating with low- NO_X combustion systems and a submerged flight conveyor system for bottom ash removal. Steam is heated in the primary and secondary superheater sections and one reheater section. An economizer preheats feedwater prior to its entering the boiler water walls. Combustion air is preheated with one trisector air preheater in the 400-MW case and with two in the 600- and 900-MW cases.

Combustion air is delivered to the boiler by forced draft (FD) and primary air (PA) fans. Induced draft (ID) fans are used to transfer combustion gases through a flue gas desulfurization (FGD) system, baghouse, and stack. The 400-MW case uses a fan arrangement of 1 PA/1 FD/1 ID, and the 600-and 900-MW cases use a 2 PA/2 FD/2 ID fan arrangement (axial ID fans for 900-MW case). Fan power requirements are based on the fan arrangements, the estimated gas flows for each specific coal case, and the specific environmental equipment for each case.

2.4 ENVIRONMENTAL CONTROLS

 NO_X formed in the boiler furnace is converted to nitrogen and water by catalytic reaction with ammonia in a selective catalytic reduction reactor (SCR). The pressure drop incurred by flue gas flowing through the SCR is accounted for in the fan power requirements.

SO₂ and SO₃ produced during the combustion of coal, and SO₃ formed in the SCR, are removed from the flue gas with a wet FGD system, wet ESP, or spray dryer absorber. The type of FGD is dependent on the coal burned, permitting requirements, and economic factors. For this conceptual performance estimate, the bituminous and lignite cases are both evaluated with wet FGD, whereas the PRB case is evaluated with spray dryer absorbers. A wet ESP is included to mitigate H₂SO₄ emissions for the bituminous coal case; using one wet ESP in the 400-MW case, two for the 600-MW case, and three for 900-MW case. PRB fuel cases are evaluated with one spray dryer absorber module for the 400-MW case, two for the 600-MW case, two for the 600-MW case. All FGD power requirements related to limestone or lime preparation and conveyance, calcium sulfate product transfer and dewatering and general FGD operation are included in the auxiliary power requirements. Additionally, the pressure drop incurred by flue gas flowing through the absorbers is accounted for in the ID fan requirements.

Ash particles entrained with flue gas leaving the boiler are removed with a fabric filter baghouse system. Flue gas pressure drop through the baghouse is accounted for in the ID fan power requirements. Power required to operate the baghouse, such as compressor power for back-pulsing, is also included in auxiliary power requirements. One baghouse is included for the 400-MW case, two for 600-MW case, and three for the 900-MW case.

Mercury removal is achieved by activated carbon injection (ACI - brominated) into the flue gas and by mercurybound particulate capture in the baghouse for the PRB and lignite cases. The bituminous case does not include ACI because the majority of the mercury is in the ionic form and is captured in the wet FGD system. The inherent capture of mercury in the bituminous case is due to significant levels of chloride and its ability to generate ionic mercury.

Results from the performance estimate analyses, net plant heat rate and net plant efficiency, are summarized in Table 2-2 and Table 2-3, below. Coal heating value, as used in the heat rate calculation, is the higher heating value (HHV), which accounts for all heat generated by combustion of the coal, including the heat of condensation of any water formed during the combustion process. Plant size, represented by gross generator output in megawatts, includes auxiliary power used internally by the plant. Performance calculations are based on ambient conditions of 59°F, 60% relative humidity, and sea level elevation. Details of the performance analyses, including heat rate calculations and air emissions, are presented in Appendix A.

	MW Gross (Btu/kW net)								
	400	600	900	400	600	900	400	600	900
Plant Type	Bituminous		PRB			Texas Lignite			
subC	9,349	9,302	9,291	9,423	9,369	9,360	9,963	9,912	9,901
SC	9,058	9,017	8,990	9,128	9,080	9,057	9,647	9,603	9,576
USC	8,924	8,874	8,855	8,993	8,937	8,921	9,502	9,449	9,430
AUSC	8,349	8,305	8,279	8,414	8,363	8,341	8,882	8,834	8,808

Table 2-2. PC Performance Estimates Reported as Net Heat Rate (Btu/kWh)

Table 2-3. PC Performance	Estimates Reported	as Net Plant Efficiency (100	0%)
---------------------------	---------------------------	------------------------------	-----

	MW Gross (η% net)								
	400	600	900	400	600	900	400	600	900
Plant Type	t Type Bituminous		Bituminous PRB			PRB Texas Lignite			
subC	36.5	36.7	36.7	36.2	36.4	36.5	34.2	34.4	34.5
SC	37.7	37.8	38.0	37.4	37.6	37.7	35.4	35.5	35.6
USC	38.2	38.4	38.5	37.9	38.2	38.2	35.9	36.1	36.2
AUSC	40.9	41.1	41.2	40.6	40.8	40.9	38.4	38.6	38.7

The data presented in Table 2-2 and Table 2-3 and the figures below show the effects of plant scale, fuel type, and thermal cycle on the net plant heat rate and efficiency. Plants exhibit improved performance as the gross generation capacity is increased, which is the result of efficiencies of scale. These efficiencies are derived from a plantwide reduction in heat and friction process losses per unit of gross power generated.

Plant efficiency is strongly affected by fuel moisture content. As the fuel is varied from bituminous to PRB and lignite, plant performance decreases due to the corresponding increase in coal moisture content. Also note that

although the sulfur content of PRB is significantly lower than that of bituminous, thus allowing PRB to use a spray dryer FGD with its lower auxiliary power requirements, the adverse effects of higher PRB moisture content on boiler efficiency and plant heat rate more than offset PRB reduced FGD auxiliary power load.

The various thermal cycles affects plant performance by increasing the pressure and temperature of steam going to the steam turbine-generator. The increase in steam conditions (primarily the higher temperature) provides more energy that can be converted to shaft power in the steam turbine per pound of fuel combusted in the boiler. A comparison of the first three types of thermal cycle evaluated reveals that the subC to SC transition increases efficiency by approximately 1.2 percentage points at the 900-MW scale. The change in performance between SC and USC is about half of the initial subC to SC transition. The smaller increase is due primarily to the fact that only reheat temperature was increased in the transition to the USC cycle. The AUSC plant performance provides insight into potential efficiencies that may be realized by higher temperature designs. At the 900-MW scale, the transition from subC to AUSC could provide an approximate 4.4 percentage points increase in overall efficiency. The large increase in efficiency results from raising both the steam pressure and the main and reheat steam temperatures significantly above the values used for either the SC or USC cycles.

Figure 2-2. PRB Plant Performance Represented by Net Heat Rate

Figure 2-3. Lignite Plant Performance Represented by Net Heat Rate

Sargent & Lundy

3. PC POWER PLANT CAPITAL, FIXED, VARIABLE, AND TOTAL PROJECT COST ESTIMATES

3.1 COST ESTIMATE METHODOLOGY

Capital, fixed, and variable O&M costs are estimated based on 2008 market conditions and expressed in 2008 U.S. dollars. Plant conceptual designs are based on a greenfield site. Actual project capital costs may deviate significantly due to differences in the particular technologies chosen, the region where the plant is built, and the Owner's financing strategy. Fixed O&M costs are based on specific equipment maintenance requirements, operating and administrative labor, and industry standards. Variable O&M cost is primarily affected by changes in waste generation and consumables such as reagents, water, and catalysts.

Different coal types, with differing moisture, sulfur, and ash contents, can have a significant impact on plant design and cost. Lower-rank coals (PRB and lignite), with their lower heating values, require higher fuel feed rates and need larger or multiple pieces of equipment to obtain the same gross generation as a bituminous fired plant. Higher coal feed rate particularly affects the coal handling and pulverizer systems. For lignite, some of the additional costs of higher feed rate may be offset because such plants generally are associated with mine-mouth sites and do not require rail car dumpers or a loop track. Higher-ash coals, particularly lignite, increase the amount of ash produced and the associated cost of equipment to remove, cool, and transport the ash.

The use of higher moisture coals (PRB and lignite) reduces boiler efficiency because water in the coal is vaporized during the combustion process and the heat of vaporization is not recovered. The significant amount of heat used to vaporize water in the coal reduces the amount of heat available to generate steam in the boiler. Because higher moisture coals exhibit a lower heating value per pound of fuel, the overall size of the boiler must be increased to accommodate the increased amount of coal and air required per kilowatt of power produced. Likewise, lower-rank coals produce more flue gas per British thermal unit (Btu) of coal burned, and this increases the cost of fans (PA, FD, ID), which transport combustion air and flue gas through the boiler and pulverizers, flue gas ductwork, SCR, baghouse, FGD, and chimney.

The higher steam pressures and temperatures of advanced thermal cycles generally increase costs for the boiler, steam turbine (primarily HP), feedwater heaters, pumps, valves, and the associated piping. Either thicker-walled tubing, headers, and piping or more creep- and corrosion-resistant steels and alloys must be used, at greater expense. BFP motor or steam turbine drive costs are also increased at higher pressures.

Project 12301-005

Emission of sulfur oxides (SO₂, SO₃) produced by the combustion of coal is controlled to an assumed permit limit by the FGD system. Higher-sulfur coal increases FGD costs due to the impacts of higher materials throughput. Items affected range from pumps, motors, and piping, to limestone preparation and gypsum handling equipment. With wet FGD there is also the requirement for a corrosion resistant wet chimney stack/liner due to the saturated moisture condition of flue gas leaving the FGD. Higher-sulfur coals also increase the formation of sulfuric acid mist, which is captured in a wet ESP to meet environmental regulations. Material, transport and landfill costs are also affected by the increased material handling requirements of higher-sulfur coals.

Removal of mercury from flue gas is achieved by ACI and subsequent mercury-bound particulate capture in the baghouse for the PRB and lignite cases. The bituminous case does not include ACI because most of the mercury is in ionic form and is captured in the wet FGD system. For ACI-baghouse cases, fixed O&M cost includes the filter bag replacement. Variable O&M cost is a function of the mercury content of the coal, which drives the costs of ACI sorbent, material transport, and landfill.

The AUSC analysis does not include capital or O&M cost estimates. Commercial development of AUSC technology in the U.S. stalled after the original units were built in the 1950s (Eddystone Unit 1 (5000 psi / 1200/1050/1050F) and Philo Unit 6 (4500 psi / 1150/1050/1000F)). This lack of development was primarily the result of economic factors. AUSC boiler pressure parts and related equipment pose a cost risk because of the need for very expensive materials, such as nickel-based super-alloys in their construction. Such materials are necessary at the high AUSC steam temperatures to handle high-sulfur coals and cycling operations. AUSC boilers can be manufactured today, but the economic risks associated with this unproven technology in the current market, outweigh the higher efficiencies to be gained. Steam turbines, on the other hand, are not exposed to the highly corrosive environments that boilers must endure and therefore, present less economic risk for long-term operation at AUSC temperatures. Overall, the cost of an AUSC boiler may actually become similar to a more conventional unit when all other items are accounted for, because the more efficient cycle requires less material throughput per kilowatt-hour generated. The higher efficiency would reduce the capacity requirements and physical sizes of various pieces of equipment, possibly lowering the overall cost of an AUSC plant. The performance of more advanced alloys is being actively investigated in the U.S., Western Europe, and Japan. If these developments are successful, they might become economic for commercial use in future advanced PC plants.

3.2 CAPITAL COSTS

The TIC as conceptually estimated for this report, includes all costs associated with constructing and financing a new coal-based power plant. Labor rate is based on conditions in the Gulf Coast.

In addition to the direct costs of structures, equipment, materials, labor, etc (Appendix B), the TIC includes the following: indirect project costs, contingency, Owner's costs, operating spare parts, escalation, and IDC. Generally, these additional costs vary significantly from Owner to Owner. Therefore, the estimated TIC values used in this report are intended to provide only a reasonable range of total project costs, with an accuracy of $\pm 30\%$.

Indirect project costs cover an architect and engineer's (AE) services, which include engineering, construction management, procurement expediting, startup, and commissioning. Contingency is based on a fixed percentage of 15% for the PC plants. Owner's costs are assumed to be 3%, and the operating and spare parts are accounted for as 1%. Project cost escalation for PCs is based on an annual rate of 4%, a project start date of January 2009, construction beginning by January 2011, and commercial operation by December 2013. Separate spend rate curves are developed for equipment, materials, labor, and indirect expenses. IDC is based on a 6% annual rate.

The use of an engineer, procure, and construct (EPC) lump-sum contract could increase the estimated TIC by 10-15%. The increased fees would be attributable to the EPC Contractor's fees and contingency costs associated with its exposure to financial risk stemming from unanticipated escalation in the market price for resources required for the project, as well as its liability for project schedule and performance.

The TIC estimates for the various cases are presented in Table 3-1. The costs are all-inclusive, representing all costs that may be incurred at completion of a PC project in 2013. The results indicate that the PRB-based plant is least expensive on a dollar per net kilowatt basis, followed by the bituminous and the lignite-based plants. This ordering of costs derives from characteristics of the coal types and the associated effects on the plant design. Compared with the PRB case, a plant designed for the bituminous coal as used in this report will include higher capital cost items, such as a wet FGD, wet ESP, and acid-resistant chimney liner, and its net kilowatt power output will be reduced due to a higher auxiliary power requirement. Although PRB coal requires a larger boiler and coal handling system than bituminous, due to PRB's greater fuel input per kilowatt of generation, that extra cost does not outweigh the even higher cost of wet FGD and wet ESP equipment associated with the high-sulfur bituminous case. Lignite requires the same type of emission control equipment as the bituminous case, excepting wet ESP, because of its significant sulfur content, and lignite necessitates an even larger boiler than PRB because it has the lowest heating value of the three fuels.

	MW Gross (\$/kW net)								
	400	600	900	400	600	900	400	600	900
Plant Type	Bituminous		PRB		Texas Lignite				
subC	4,523	3,844	3,190	4,186	3,555	2,951	4,760	4,045	3,357
SC	4,686	3,982	3,262	4,332	3,679	3,015	4,931	4,190	3,433
USC	4,835	4,109	3,362	4,466	3,792	3,105	5,090	4,325	3,540

Table 3-1. Total Installed Cost Estimates (±30%) for Various PC Plants (\$2008/kW Net)

4. 600-MW NET IGCC PERFORMANCE ESTIMATES

Estimated performance and total installed cost are compared for an IGCC plant and a conventional PC-fired SC plant. For this comparison, performance and costs were developed at 600-MW net output for both plants, and for the same three coal types as used in the PC-fired analysis presented in Sections 2 and 3.

4.1 IGCC CONCEPTUAL DESIGN

The assumed design basis for IGCC incorporates current industry trends in plant configuration, and uses the same site conditions as described for the PC plant analyses. The IGCC plant conceptual design is based on two gasification and cleanup trains supplying synthesis gas (syngas) fuel to two F-Class combustion turbine generators (CTGs), two heat recovery steam generators (HRSGs), and one steam turbine (STG). Each gasification train includes an air separation unit (ASU). Plant integration includes the transfer of steam, cooling water, and gases between the gasification island and the combined cycle power block. The gasification island is modeled with process simulation software (AspenPlusTM); the power block is modeled with GateCycleTM. The gasifier is based on Shell's entrained flow, oxygen-fired technology. The use of one gasification technology in this analysis is recognized as an approximation and a convenience, as other gasifiers in fact perform differently on some of the coal types considered. The selected gasifier does have a history of performance on coals similar to the three types used in this analysis, and a significant amount of performance information available in the open literature [Ref. 1].

4.2 AIR SEPARATION UNIT

The ASU produces oxygen and nitrogen streams used in the IGCC plant. The main liquid oxygen (O_2) stream is pumped to high pressure and then vaporized prior to sending it to the gasifier. A smaller, low-pressure O_2 stream is used in the Claus sulfur removal unit. The majority of the nitrogen (N_2) is compressed and sent back to the CTG as a syngas diluent. The remaining N_2 is used for coal drying, pneumatic transport of coal to the gasifier, and other process purposes. Integration between the ASU and the CTG air compressor involves the supply of 35% of the air to the ASU main air compressor (MAC) by a high-pressure extraction line from the CTG. This percentage of air extraction has been the norm in recent IGCC conceptual designs; but in practice, integration at 0-100% has been used in actual IGCC plants. Because the ASU requires a significant amount of power for air compression, full integration between the CTG and ASU can improve IGCC plant efficiency. But the use of full CTG-ASU integration can potentially reduce the availability of the plant and increase the complexity of the system at start up if a smaller, stand alone air compressor is not included in the plant design.

4.3 COAL HANDLING

Coal handling and milling for the IGCC are based on conventional equipment. Because the selected gasifier operates on a dry coal feed that is pneumatically injected into the gasifier, the coal must be dried to a specific moisture content to prevent flow instability. Coal is dried by pre-heated air as it flows through pulverizers. The air used for coal drying is heated with medium pressure (MP) steam produced in the gasification island. Drying air is supplemented with excess N₂ from the ASU to reduce its oxygen concentration and prevent coal fires. Dried pulverized coal is separated from its transport air in a baghouse and stored in silos. It then flows to lock-hoppers and is pneumatically injected into the gasifiers with high pressure (HP) N₂. The performance analysis is based on drying bituminous coal to 2% wt moisture content, PRB to 6% wt, and lignite to 7% wt. Low-moisture content in coal provides for effective transport of pulverized coal through the injection system.

4.4 GASIFICATION ISLAND

High-temperature syngas, produced by reacting the coal with oxygen and steam in the gasifier, is initially quenched by cooled syngas that has been recompressed and recycled back to the gasifier. After the gasifier, syngas is further cooled in a syngas cooler, generating steam. The syngas cooler provides both MP saturated steam and HP superheated steam. This HP steam is mixed with HP steam generated in the HRSG as main steam to the HP STG. MP steam is used in the ASU, the sulfur removal unit, and for coal drying. Additional LP steam is produced by further cooling of the syngas and is used in the ASU, acid gas removal unit, and sour water stripper.

The syngas particulate cleanup portion of the plant uses a high-temperature cyclone, candle filter, and lowtemperature water scrubber. The cyclone and candle filter remove the majority of particulates, while the very fine particles are removed in a counter-flow water scrubber. Approximately half of the syngas is compressed and recycled back to the gasifier for quenching after flowing through the cyclone and candle filter. The remaining syngas enters the water scrubber, which removes the remaining fine particulates and absorbs most of the ammonia, hydrochloric acid, and other ionic compounds generated in the gasifier.

The majority of the ash present in the coal is liquefied in the gasifier and flows down through the bottom of the vessel into a water quench system. Solidified slag is removed via a crushing, cooling, and depressurization process before separation from the water for temporary storage and transport.

After particulate cleanup the syngas is processed in an acid gas removal (AGR) system to remove sulfur. Sulfur is present primarily in the form of hydrogen sulfide (H_2S) and carbonyl sulfide (COS). The AGR converts carbonyl

sulfide to hydrogen sulfide by reacting it with steam in a catalytic reactor. H_2S is separated from the syngas by preferential absorption in a gas-liquid absorption column.

Mercury is removed from the syngas by chemisorption onto the surface of activated carbon pellets in a packed bed vessel through which the syngas flows.

 H_2S separated from the syngas in the AGR is converted to elemental sulfur in a Claus unit. Approximately a third of the H_2S is reacted with O_2 to generate SO_2 . The remaining H_2S is then catalytically reacted with the SO_2 to form elemental sulfur. Unconverted gases are recycled back to the AGR.

4.5 THERMAL CYCLE

Clean syngas is diluted and reheated before being combusted in the CTG. The diluent consists of steam and N_2 . The steam is extracted from the power block, and N_2 , which is a product of the ASU, is compressed before mixing with the syngas. Hot exhaust gas from the CTG flows through the HRSG, which preheats feed water and generates main steam and reheat steam for the STG. The thermal cycle is based on conventional combined cycle conditions of 1800 psig/1000°F/1000°F.

The HRSG is configured with an SCR system for NO_X control. NO_X formed during the combustion process is converted back to N_2 by reaction with ammonia over an SCR catalyst.

4.6 PERFORMANCE

IGCC performance results are presented in Table 4-1, providing a comparison between the SC and IGCC cases.

IGCC performs better than conventional SC on all three fuel types, with the difference in performance becoming greater as the fuel moves from bituminous to the higher moisture coals. The higher efficiency of the IGCC on PRB and lignite is primarily due to the ability of the IGCC plant to pre-dry the coal prior to processing.

IGCC performance in this analysis is lower than that commonly reported for IGCC designs that are fully integrated with respect to air extraction from the CTG compressor for ASU air supply. The difference is primarily due to the increased power consumption of the ASU MAC in this analysis (compressing 65% of the air for the ASU versus extracting 100% of the air supply from the CTG compressor). IGCC units that have actually employed 100% integration are the Buggenum plant in the Netherlands and the Puertollano unit in Spain. They have yielded efficiencies over 42% (HHV basis).

Sargent & Lundy

	Bituminous		Pi	RB	Lignite	
	SC IGCC		SC	IGCC	SC	IGCC
Btu/kWh (net)	9,000	8,425	9,063	8,062	9,584	8,515
Thermal efficiency (% met)	37.91	40.50	37.65	42.32	35.60	40.07

Table 4-1. 600-MW Net SC and IGCC Performance Reported as Heat Rate (Btu/kWh Net) and Thermal Efficiency (% Net)

For this analysis, the IGCC performance with the PRB coal was more efficient than with the Illinois No. 6 bituminous coal. This is primarily due to the higher reactivity of the PRB coal and a lesser need for oxygen as a reactant in the gasifier. Similar results were reported by Shell in a paper in which they attributed this difference to the constituents of the particular Illinois No. 6 coal [Ref. 2]. Because the ASU consumes a significant amount of power to compress its air feed and oxygen product streams, a decrease in oxygen consumption by the gasification process can significantly reduce total plant auxiliary power requirements, thus increasing efficiency. The amounts of MP and LP steam used by the ASU are also reduced when the oxygen requirement of the gasifier is reduced. Furthermore, with PRB's lower sulfur content the amount of sulfur that has to be processed is significantly lower (COS hydrolysis, AGR, and Claus units affect performance through their steam and cooling demands). The gasification of PRB fuel produces a lower Btu per standard cubic foot (SCF) syngas than a bituminous fuel, which in turn, requires more syngas to be generated to fuel the CTGs and therefore more HP, MP and LP steam is generated to cool the higher mass flow of syngas. And since this analysis has included the use of a syngas cooler that generates superheated HP steam, the effects on the thermal cycle are more pronounced than if a saturated steam were produced. Further, because the PRB coal produces a lower Btu/SCF fuel, less diluent is needed prior to combustion, which reduces both steam and N_2 consumption demands. PRB's higher moisture content has a significant impact on performance because more steam is needed to dry PRB than bituminous, but the increased drying steam load for PRB does not offset the efficiency benefits of its smaller ASU and lower ash and sulfur contents.

IGCC performance on lignite is primarily affected by the fuel's moisture and ash content. The high moisture content requires a significant amount of steam for coal drying, which reduces the percentage of the steam generated in the gasification island that can be supplied to the power block. Lignite's high ash content affects gasifier performance because a considerable amount of heat is consumed to liquefy the ash into a molten slag, reducing the heat available to support endothermic gasification reactions. These negative impacts are partly offset by the highly reactive nature of the lignite, which requires less oxygen than the bituminous case. IGCC plant performance with lignite can be improved if the coal is dried to a lesser extent. Coal's inherent moisture content, and the type of

dense, pneumatic feed system used in the design, dictates the required extent of coal drying. This analysis uses a value of 7% wt, which is lower than some estimates, which indicate a 13% wt moisture content is feasible with a similar pneumatic injection system. By increasing the moisture content of the coal fed to the gasifier, the overall IGCC efficiency on lignite would increase due to the reduction in steam demand for the drying process.

An alternative IGCC design that uses a supercritical steam cycle could provide increased plant efficiency for all cases. Two concerns with such a design are that neither a HRSG nor a syngas cooler have been manufactured to operate on a SC steam cycle, and it will likely have significant cost disadvantages. Because a power plant designed around an SC thermal cycle has to take advantage of economies of scale in a competitive marketplace (450 MW or larger SC Class STG), an IGCC plant using an SC system might best be designed around the larger H-Class CTG. An IGCC design based on both an H-Class CTG and SC thermal cycle might benefit from the efficiency of SC steam conditions, but most of the efficiency improvement would likely be provided by the higher efficiency of the H-Class CTG.

5. IGCC PLANT COST ESTIMATES

5.1 COST ESTIMATE METHODOLOGY

Estimated IGCC power plant capital and fixed and variable O&M costs are based on the same principles and conventions used for the conventional PC-fired plants as explained in subsection 3.1, and the same caveats apply. Only those aspects of the IGCC plant that require a difference in the estimating approach are discussed here.

Coal reactivity determines the amount of oxygen necessary to effectively gasify the coal in an IGCC. Of the three coals compared, bituminous is the least reactive, requires the most oxygen, and therefore requires a larger ASU. The ASU constitutes a significant portion of the total plant cost. It directly affects auxiliary power consumption, and its size can therefore substantially affect plant capital and O&M costs.

Higher-moisture coals affect plant costs because the size of the equipment required to transport, mill, and dry the lower heating value fuel is increased. These coals also reduce power output from the plant as more steam is required to dry the fuel.

Higher ash coals increase costs associated with the equipment required to remove, cool, and transport the ash. Because ash content is significantly higher for the lignite, a third gasifier is added in the conceptual design to process that coal. A more cost-effective approach would scale-up the size of the gasifiers to handle the extra coal throughput and associated slag, keeping the lignite design at two gasifiers. However, it is difficult to accurately estimate an all-inclusive cost of a new gasifier design without working directly with a vendor on a specific coal. Therefore, the lignite-based IGCC cost may be significantly higher in this analysis than would otherwise be expected, due to the requirements of three standard-size gasifier slag are assumed to be negligible. Because slag is a vitreous, inert material, quite suitable for use in building products (concrete, shingles, etc.), it is assumed that it would be sold at a price equivalent to transportation costs.

The higher-sulfur bituminous coal requires larger equipment to process the sulfur byproduct. Sections of the plant most significantly affected by higher-sulfur coal are the hydrolysis reactors, the Claus unit, and the AGR. Higher-sulfur coal also requires more steam and electricity for processing the byproduct, which lowers plant thermal efficiency. O&M costs associated with sulfur processing include catalyst and chemical replacement.

Mercury removal from the syngas requires larger packed beds of activated carbon for the higher-mercury content fuels. Mercury capture itself affects O&M cost to some extent due to the necessity of handling the spent sorbent as a hazardous material.

5.2 COST ESTIMATES

The TIC as conceptually estimated for this report, includes all costs associated with constructing and financing a new IGCC power plant. The various elements of TIC for IGCC are the same as for the PC plants as explained in subsection 3.2. Only a few significant differences are discussed here. TIC estimates in this evaluation are intended only to provide a reasonable range of total project costs with an accuracy of $\pm 30\%$.

The IGCC contingency allowance is based on a fixed 20%, which is higher than the amount used for the PC plants due to the extra risk attributed to development of an IGCC plant. The project escalation amount is based on an annual rate of 4%, a project start date of January 2009, construction beginning by January 2011, and commercial operation by December 2015 for IGCC. IDC for IGCC is based on a 6% annual rate and a seven-year cash flow.

The TIC estimates for 600 MW net SC and IGCC plants are presented in Table 5-1 for comparison. The significant cost difference between the two types of plants can be attributed partly to the risks associated with financing an IGCC, but primarily to the more complex systems and advanced technology used in the IGCC plant.

Table 5-1. Total Installed Cost Estimates (±30%) for SC and IGCC Pla	ants
Based on Comparable 600-MW Net Output (\$2008/kW Net)	

Plant Type	Bituminous	PRB	Lignite
SC	3,641	3,393	4,076
IGCC	4,589	4,652	5,763

6. **REFERENCES**

- 1. Eurlings, J. Th. G. M.; B. V. Demkolec, "Process Performance of the SCGP at Buggenum IGCC," Proceedings from the Gasification Technologies Conference, San Francisco, CA, 1999.
- 2. van der Ploeg, H. J.; T. Chhoa; P. L. Zuideveld, "The Shell Coal Gasification Process for the US Industry," Proceedings from the Gasification Technologies Conference, Washington, DC, 2004.

APPENDIX A

PC POWER PLANT PERFORMANCE AND COST ESTIMATE SPREADSHEETS

		Subcritical	Subcritical	Subcritical	Subcritical	Subcritical	Subcritical	Subcritical	Subcritical	Subcritical
		Subcritical	Subcritical	Subcritical	Subcritical	Subcritical	Subcritical	Subcritical	Subcritical	Subcritical
Base set-up for meeting Target BACT		400MW -	400WW -	400MW -	600MW -	600WW -	600MW -	900MW -	900WW -	900MW -
limits for NOX & SO2	UNITS	Subcritical PC,	Subcritical PC,	Subcritical PC, PRB	Subcritical PC,	Subcritical PC,	Subcritical PC, PRB	Subcritical PC,	Subcritical PC,	Subcritical PC, PRB
<u></u>		Bituminous	Lignite		Bituminous	Lignite		Bituminous	Lignite	000000000000000000000000000000000000000
Number of BFW Heaters		7	7	7	7	7	7	7	7	7
Number of FGD Absorbers		1	1	1	1	1	2	1	1	3
Number of wet ESPs		1	0	0	2	0	0	3	0	0
Number of Pulverizers		5	6	5	6	7	6	7	8	7
\$02		Wet FGD	Wet FGD	Dry FGD	Wet FGD	Wet FGD	Dry FGD	Wet FGD	Wet FGD	Dry FGD
NOX		High Dust SCR	High Dust SCR	High Dust SCR	High Dust SCR	High Dust SCR	High Dust SCR	High Dust SCR	High Dust SCR	High Dust SCR
Primary Particulate Control		Baghouse	Baghouse	Baghouse	Baghouse	Baghouse	Baghouse	Baghouse	Baghouse	Baghouse
Secondary Particulate Control		Wet ESP	None	None	Wet ESP	None	None	Wet ESP	None	None
Mercury Control		Inherent	ACI-w/BGH	ACI-w/BGH	Inherent	ACI-w/BGH	ACI-w/BGH	Inherent	ACI-w/BGH	ACI-w/BGH
PLANT CONFIGURATION: (Gross-MW)	1x400	1x400	1x400	1x600	1x600	1x600	1x900	1x900	1x900
NO. OF STEAM GENERATORS		1 Boiler	1 Boiler	1 Boiler	1 Boiler	1 Boiler	1 Boiler	1 Boiler	1 Boiler	1 Boiler
Main Steam Pressure	psig	2535	2535	2535	2535	2535	2535	2535	2535	2535
Main Steam Temperature	°F	1050	1050	1050	1050	1050	1050	1050	1050	1050
Hot Reheat Temperature	°F	1050	1050	1050	1050	1050	1050	1050	1050	1050
NO. OF STEAM TURBINES		1 Turbine	1 Turbine	1 Turbine	1 Turbine	1 Turbine	1 Turbine	1 Turbine	1 Turbine	1 Turbine
		W/+/ 50D	Wei FOD	D. 500	W/ 50D	Wei 500	D. 50D	N/11 500	Wei 500	D. 500
SOX CONTROL:	lle (as as Dtu	Wei FGD	Wel FGD	DIV FGD	Wei FGD	Wet FGD	DIV FGD	Wei FGD	Wel FGD	DIV FGD
Uncontrolled SO2 Emission Rate	id/mmBtu	4.32	2.14	0.52	4.32	Z.14	0.52	4.32	2.14	0.52
Target "Permit" SO ₂ Emission Rate	lb/mmBtu	0.10	0.08	0.08	0.10	0.08	0.08	0.10	0.08	0.08
SULFUR REMOVAL percent required										
meet Target "Permit" Rate	%	97.68	96.27	84.76	97.68	96.27	84.76	97.68	96.27	84.76
T I IN I OOOD I										
Typical Maximum SO2 Removal	0/	00.45	07.00	04.70	00.45	07.00	04.70	00.45	07.00	04.70
	%	98.15	97.20	84.76	98.15	97.20	84.76	98.15	97.20	84.76
NOX CONTROL:	lle (as as Dtu	SUR	SCR	SUR	SUR	SUR	SUR	SUR	SUR	SUR
Uncontrolled Rate from Furnace	Ib/mmBtu	0.25	0.20	0.20	0.25	0.20	0.20	0.25	0.20	0.20
Target "Permit" NOX Emission Rate	ib/mmBtu	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07
Specified Design Guarantee from	lle (as as Dtu	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
	id/mmBtu	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Target "Dermit" Emission Date	lle /mm Dtu	Bagnouse	Bagnouse	Bagnouse	Bagnouse	Bagnouse	Bagnouse	Bagnouse	Bagnouse	Bagnouse
Margury Control	ID/IIIIIDIU	0.015		0.015	0.015	0.015	0.015	0.015	0.015	0.015
Cooling Method		MD-CT			MD-CT			MD-CT		
		NID-OT	WID-CT	WID-CT	NID-OT	IVID-C1	WID-CT	WID-OT	IVID-C1	WID-CT
Net Plant Heat Pate HHV	Btu/pet-k/Wb	0 3/0	0.063	0 /23	9 302	0.012	0 360	0 201	9 901	9 360
Gross Plant Output	Gross-kW	400.000	400.000	400.000	600.000	600.000	600,000	900.000	900 000	900 000
Net Plant Output (based on Annual	01033-KW	400,000	400,000	400,000	000,000	000,000	000,000	300,000	300,000	300,000
Average Conditions)	Net-kW	359 151	355 843	362 958	539 059	534 133	545 152	828 433	820 750	837 573
Gross Plant Heat Rate HHV	Btu/gross-kWh	8 394	8 863	8 550	8 358	8 824	8 513	8 552	9 030	8 711
Auxiliary Power	kW	40.849	44.157	37.042	60.941	65.867	54.848	71.567	79.250	62.427
Turbine Heat Rate	Btu/kWh	7.347	7.347	7.347	7.316	7,316	7.316	7.487	7.487	7.487
Primary Fuel Feed Rate per Boiler	lb/hr	288,672	594,036	408,025	431,129	887,181	609,379	661,740	1,361,727	935,335
Primary Fuel Feed Rate per Boiler	Tons/hr	144	297	204	216	444	305	331	681	468
Primary Fuel Feed Rate per Boiler	lb/net-MWh	804	1,669	1,124	800	1,661	1,118	799	1,659	1,117
Full load Heat input to Boiler	mmBtu's/hr	3,358	3,545	3,420	5,015	5,295	5,108	7,697	8,127	7,840
Secondary Fuel Feed Rate	lb/hr	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Secondary Fuel Feed Rate	lb/net-MWh	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lime/Limestone Feed Rate	lb/hr	25,433	13,216	1,920	37,984	19,739	2,867	58,302	30,296	4,401
Lime/Limestone Feed Rate	lb/net-MWh	70.8	37.1	5.3	70.5	37.0	5.3	70.4	36.9	5.3
Ammonia Feed Rate(Anhydrous)	lb/hr lb/net-MWh	264 0.736	210 0.591	203 0.559	297 0.552	314 0.588	303 0.556	456 0.551	482 0.587	465 0.555
Activated Carbon Injection Rate	lb/hr	0.130	124	112	0	185	168	0	284	258
Activated Carbon Injection Rate	lb/net-MWh	0.00	0.35	0.31	0.00	0.35	0.31	0.00	0.35	0.31
		2.00	2.00		2.00	2.00		2.00	2.00	

	1	Subcritical	Subcritical	Subcritical	Subcritical	Subcritical	Subcritical	Subcritical	Subcritical	Subcritical
Base set-up for meeting Target BACT	UNITS	400MW -	400MW -	400MW -	600MW -	600MW -	600MW -	900MW - Subcritical PC	900MW -	900MW -
limits for NOX & SO2	00	Bituminous	Lignite	Subcritical PC, PRB	Bituminous	Lignite	Subcritical PC, PRB	Bituminous	Lignite	Subcritical PC, PRB
		Bituillillous	Lignite		Bituininous	Liginite		Bituininous	Lignite	
Water Consumption		500		400			014	1005	1005	1005
Cycle Make-up & Misc. Services	gpm	503	623	403	814	814	814	1225	1225	1225
Cooling Tower/lake make-up	gpm	4,310	4,270	4,355	6,469	6,410	6,542	9,941	9,849	10,051
l otal Water	gpm	4,813	4,893	4,759	7,283	7,224	7,356	11,166	11,074	11,275
Water Consumption	gal/net-MWh	804	825	787	811	811	810	809	810	808
		Bituminous	Lignite	PRB	Bituminous	Lignite	PRB	Bituminous	Lignite	PRB
FUEL ANALYSIS:										
Ultimate Analysis										
Carbon	%	63.75	36.27	50.25	63.75	36.27	50.25	63.75	36.27	50.25
Sulfur	%	2.51	0.64	0.22	2.51	0.64	0.22	2.51	0.64	0.22
Oxygen	%	6.88	10.76	13.55	6.88	10.76	13.55	6.88	10.76	13.55
Hydrogen	%	4.50	2.42	3.41	4.50	2.42	3.41	4.50	2.42	3.41
Nitrogen	%	1.25	0.71	0.65	1.25	0.71	0.65	1.25	0.71	0.65
Chlorine	%	0.29	0.00	0.00	0.29	0.00	0.00	0.29	0.00	0.00
Ash	%	9.70	17.92	4.50	9.70	17.92	4.50	9.70	17.92	4.50
Moisture	%	11.12	31.24	27.40	11.12	31.24	27.40	11.12	31.24	27.40
Gross Higher Heating Value (Dulong)	Btu/lb	11,631	5,968	8,382	11,631	5,968	8,382	11,631	5,968	8,382
SORBENT ANALYSIS:										
CaCO3	%	90	90	0	90	90	0	90	90	0
MaCO3	%	5	5	0	5	5	0	5	5	0
CaO	%	0	0	90	0	0	90	0	0	90
Ash/Inerts	%	5	5	10	5	5	10	5	5	10
Moisture	%	0	0	0	0	0	0	0	0	0
	Ļ									
STEAM GENERATOR DATA (Per Boile	er):									
Theoretical Air	lb/lb-fuel	8.70	4.57	6.39	8.70	4.57	6.39	8.70	4.57	6.39
Theoretical Dry Gas	lb/lb-tuel	9.09	4.87	6.76	9.09	4.87	6.76	9.09	4.87	6.76
Actual Dry Gas	lb/lb-fuel	10.83	5.78	8.04	10.83	5.78	8.04	10.83	5.78	8.04
Excess Air	%	20	20	20	20	20	20	20	20	20
Total Dry Air Flow	lb/lb-fuel	10.45	5.49	7.67	10.45	5.49	7.67	10.45	5.49	7.67
Ambient Air Moisture	lb/lb-lair	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025
Total Air Flow	lb/lb-fuel	10.71	5.63	7.86	10.71	5.63	7.86	10.71	5.63	7.86
Flue Gas Moisture Flow	lb/lb-fuel	0.774	0.666	0.770	0.774	0.666	0.770	0.774	0.666	0.770
Products of Combustion	lb/lb-tuel	11.61	6.45	8.81	11.61	6.45	8.81	11.61	6.45	8.81
Air Heater Leakage	% ≈⊑	5	5	5	5	5	5	5	5	5
All meater inlet i emperature	Г 0/	100	100	100	100	100	100	100	100	100
Infiltration	%	5	5	5	5	5	5	5	5	5
Exit Flue Gas Temperature	Г 0Г	310	305	280	310	305	280	310	305	280
Flue Gas Temp. Uncorrected	Г lb/br	319	314	200	319	314 6 177 452	200	319	314	200
Flue Gas Flow Rate (per boller)	oofm	1,000,070	4,100,200	1 250 000	1 915 007	0,177,400	1 966 959	0,000,144	3,401,721	0,910,009 2 96F 42F
Computing Air Flow	duilli lle/ler	1,210,290	1,3/4,332	1,230,000	1,010,027	2,032,337	1,000,000	2,100,000	3,130,422	2,000,400
Combustion Air Flow	ib/nr	3,090,646	3,342,492	3,205,710	4,615,848	4,991,943	4,787,684	7,084,868	7,002,092	7,348,604
Stock Eluc Gas Tomporature	o⊑	131,241	191,322	170	1,101,070	1,190,704	1,142,000	1,090,033	1,027,720	1,752,945
	F	100	140	170	100	140	170	0.070 5 15	140	0.000.077
Stack Flue Gas Flow Rate per Flue	acim	994,411	1,141,406	1,148,550	1,485,142	1,704,666	1,/15,344	2,279,545	2,616,478	2,632,877
Radiation Loss	%	0.194	0.194	0.194	0.184	0.184	0.184	0.175	0.175	0.175
Dry Gas Heat Loss	70	5.89	5.96	5.19	5.89	5.96	5.19	5.89	5.96	5.19
Fuel Moisture Loss	%	1.07	5.84	3.62	1.07	5.84	3.62	1.07	5.84	3.62
Hydrogen in Fuel Loss	70	3.89	4.07	4.06	3.89	4.07	4.06	3.89	4.07	4.06
Air ivioisture Heat Loss	%	0.237	0.236	0.206	0.237	0.236	0.206	0.237	0.236	0.206
	70	0.50	0.10	0.10	0.00	0.10	0.10	0.00	0.10	0.10
Unaccounted Loss	70	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
ivianuiaciurers iviardin	70	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50

		Subcritical	Subcritical	Subcritical	Subcritical	Subcritical	Subcritical	Subcritical	Subcritical	Subcritical
Base set-up for meeting Target BACT limits for NOX & SO2	UNITS	400MW - Subcritical PC, Bituminous	400MW - Subcritical PC, Lignite	400MW - Subcritical PC, PRB	600MW - Subcritical PC, Bituminous	600MW - Subcritical PC, Lignite	600MW - Subcritical PC, PRB	900MW - Subcritical PC, Bituminous	900MW - Subcritical PC, Lignite	900MW - Subcritical PC, PRB
Total Boiler Loss	%	12.47	17.10	14.07	12.46	17.09	14.06	12.45	17.08	14.05
Boiler Efficiency	%	87.53	82.90	85.93	87.54	82.91	85.94	87.55	82.92	85.95
Total Heat Output from Boiler	mmBtu/hr	2,938.80	2,938.80	2,938.80	4,389.60	4,389.60	4,389.60	6,738.30	6,738.30	6,738.30
Main Steam Flow	lb/hr	2,469,730	2,469,730	2,469,730	3,684,000	3,684,000	3,684,000	5,641,301	5,641,301	5,641,301
	I									
STEAM TURBINE/CYCLE DATA (Per T	urbine):		<u> </u>					-		
Turbine Back Pressure	in HgA	2	2	2	2	2	2	2	2	2
Steam Turbine Gross Output	kVV	400,000	400,000	400,000	600,000	600,000	600,000	900,000	900,000	900,000
LP Turbine Exhaust to Condenser	ib/nr	1,663,778	1,663,778	1,663,778	2,482,394	2,482,394	2,482,394	3,588,894	3,588,894	3,588,894
Exhaust Energy	Btu/Ib	1,018.50	1,018.50	1,018.50	1,014.60	1,014.60	1,014.60	1,015.00	1,015.00	1,015.00
Condensate Enthalpy	Btu/ID	69.1	69.1	69.1	69.1	69.1	69.1	69.1	69.1	69.1
Reat Rejection from LP Turbine	mmBtu/nr	1,580	1,580	1,580	2,347	2,347	2,347	3,395	3,395	3,395
BEP Turbine Exhaust Enthalow	Btu/b	0	0	0	0	0	0	213,354	213,354	213,354
Heat Rejection from BEP Turbine	Btu/br	0	0	0	0	0	0	202	202	202
Total Heat Rejected to Condenser	mmBtu/hr	1 580	1 580	1 580	2 347	2 347	2 347	3 597	3 597	3 597
Circulating Water Temp. Rise	°F	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
Circulating Water Flow	dom	167 246	167 246	167 246	248.318	248.318	248.318	381 114	381 114	381 114
Number of Cooling Tower Cells	90	14	14	14	20	20	20	30	30	30
Total Circ. Water Flow	gpm	167,246	167,246	167,246	248,318	248,318	248,318	381,114	381,114	381,114
Service Water Flow	gpm	8,362	8,362	8,362	12,416	12,416	12,416	19,055	19,055	19,055
Total Cooling water Requirement	gpm	175,608	175,608	175,608	260,734	260,734	260,734	400,169	400,169	400,169
PLANT AUXILIARY DOWED										
Induced Draft Fan Pressure Rise	"wc	44.0	44.0	41.8	44.0	44.0	41.8	44.0	44.0	41.8
Boiler	"w.c	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
Econ Outlet to SCR outlet	"w.c	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
SCR Outlet to AH Outlet	"w.c	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
AH Outlet to ESP Outlet	-w.c	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AH/ESP Outlet to COHPAC or Dry				10.0			10.0			10.0
FGD/BH Outlet	"W.C	8.0	8.0	16.0	8.0	8.0	16.0	8.0	8.0	16.0
ID inlet to Wet FGD outlet	"w.c	8.0	8.0	2.0	8.0	8.0	2.0	8.0	8.0	2.0
Wet FGD outlet to stack outlet	"w.c	4.0	4.0	0.0	4.0	4.0	0.0	4.0	4.0	0.0
Total ID fan static pressure	"w.c	40.0	40.0	38.0	40.0	40.0	38.0	40.0	40.0	38.0
Dereent Total Air to ED Fon	9/	70	70	70	70	70	70	70	70	70
Forced Droft Fon Proceuro Pico	/0 "WO	20	20	20	20	20	20	20	20	20
Porceu Diali Fan Pressure Rise	WC	20	20	20	20	20	20	20	20	20
Primary Air Fan Proceura Pico	/0 "WO	30	40	30	30	40	30	30	40	30
Percent Total Air to SA Fan	wc	40	40	40	40	40	40	40	40	40
Secondary Air Fan Pressure Rise	"wc	15	15	15	15	15	15	15	15	15
Condensate P/P	%	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36
Circulating Water P/P	%	0.50	0.50	0.50	0.50	0.50	0.50	0.51	0.51	0.51
Cooling Towers	%	0.72	0.72	0.72	0.69	0.69	0.69	0.69	0.69	0.69
Feedwater P/P	%	2.30	2.30	2.30	2.30	2.30	2.30	0.00	0.00	0.00
Subtotal CWS	%	3.89	3.89	3.89	3.85	3.85	3.85	1.56	1.56	1.56
Forced Draft Fan	%	0.36	0.39	0.37	0.36	0.39	0.37	0.37	0.40	0.38
Induced Draft Fan	%	2.09	2.36	1.86	2.08	2.35	1.86	2.13	2.41	1.90
Primary Air Fan	%	0.31	0.34	0.32	0.31	0.34	0.32	0.32	0.34	0.33
Pulverizer	%	0.52	1.07	0.73	0.52	1.07	0.73	0.53	1.09	0.75
Fuel Handling	%	0.13	0.23	0.17	0.13	0.23	0.17	0.13	0.23	0.17
Ash Handling	%	0.20	0.62	0.14	0.20	0.62	0.14	0.20	0.64	0.15
Wet ESP for H2SO4 collection	%	0.15	0.00	0.00	0.15	0.00	0.00	0.15	0.00	0.00
Baghouse	%	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
FGD	%	1.25	0.82	0.45	1.25	0.82	0.38	1.25	0.82	0.38
Transformer Losses	%	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Miscellaneous		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

		Subcritical	Subcritical	Subcritical	Subcritical	Subcritical	Subcritical	Subcritical	Subcritical	Subcritical
Base set-up for meeting Target BACT limits for NOX & SO2	UNITS	400MW - Subcritical PC, Bituminous	400MW - Subcritical PC, Lignite	400MW - Subcritical PC, PRB	600MW - Subcritical PC, Bituminous	600MW - Subcritical PC, Lignite	600MW - Subcritical PC, PRB	900MW - Subcritical PC, Bituminous	900MW - Subcritical PC, Lignite	900MW - Subcritical PC, PRB
TOTAL Auxiliary Power Net Unit Heat Rate Plant Efficiency	% Btu/kWh %	10.21 9,349 36.5	11.04 9,963 34.2	9.26 9,423 36.2	10.16 9,302 36.7	10.98 9,912 34.4	9.14 9,369 36.4	7.95 9,291 36.7	8.81 9,901 34.5	6.94 9,360 36.5
ECONOMIC ANALYSIS INPUT:										
2008 to COD Start of Engineering to COD Operating Life Fixed Labor Costs Fixed Non-Labor O&M Costs	years months years \$ \$	5 55 35 7,187,292 5,280,000	5 55 35 7,187,292 5,280,000	5 55 35 7,187,292 5,280,000	5 55 35 8,556,300 6,660,000	5 55 35 8,556,300 6,660,000	5 55 35 8,556,300 6,660,000	5 55 35 10,609,812 8,460,000	5 55 35 10,609,812 8,460,000	5 55 35 10,609,812 8,460,000
Total Fixed O&M Costs	\$ \$/pot kW/ \vr	12,467,292	12,467,292	12,467,292	15,216,300	15,216,300	15,216,300	19,069,812	19,069,812	19,069,812
Property Taxes	\$/year	3,000,000 13.20	3,000,000	3,000,000	3,000,000 11.10	3,000,000	3,000,000	3,000,000 9.40	3,000,000 9.40	3,000,000 9.40
FGD Reagent Cost \$/ton, delivered Activated Carbon		15.00	15.00	95.00	15.00	15.00	95.00	15.00	15.00	95.00
\$/M ³		6000	6000	6000	6000	6000	6000	6000	6000	6000
\$/ton, delivered Water Cost		450	450	450	450	450	450	450	450	450
\$/1000 gallons		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fly Ash Sales Fly Ash Disposal Bottom Ash Sales Bottom Ash Disposal Activated Carbon waste FGD Waste Sale FGD Waste Disposal	\$/ton \$/ton \$/ton \$/ton \$/ton \$/ton	\$0.00 \$20.00 \$20.00 \$20.00 \$20.00 \$0.00 \$20.00	\$0.00 \$20.00 \$20.00 \$20.00 \$20.00 \$0.00 \$20.00	\$0.00 \$20.00 \$20.00 \$20.00 \$20.00 \$0.00 \$20.00	\$0.00 \$20.00 \$20.00 \$20.00 \$20.00 \$0.00 \$20.00	\$0.00 \$20.00 \$20.00 \$20.00 \$20.00 \$20.00 \$20.00	\$0.00 \$20.00 \$20.00 \$20.00 \$20.00 \$0.00 \$20.00	\$0.00 \$20.00 \$20.00 \$20.00 \$20.00 \$0.00 \$20.00	\$0.00 \$20.00 \$20.00 \$20.00 \$20.00 \$20.00 \$20.00	\$0.00 \$20.00 \$20.00 \$20.00 \$20.00 \$0.00 \$20.00
Other Variable O&M Costs	\$/net-MWh	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
SO2 Allowance Market Cost \$/ton NOX Allowance Market Cost \$/ton Sulfur Byproduct		\$500 \$3,000	\$500 \$3,000	\$500 \$3,000	\$500 \$3,000	\$500 \$3,000	\$500 \$3,000	\$500 \$3,000	\$500 \$3,000	\$500 \$3,000
\$/ton Equivalent Availability Factor Replacement Power cost Fuel Cost Delivered \$/ton delivered	% \$/gross-kWh \$/mmBtu	\$0 90.00% 0.065 1.70 39.55	\$0 90.00% 0.065 1.50 17 90	\$0 90.00% 0.065 1.40 23.47	\$0 90.00% 0.065 1.70 39.55	\$0 90.00% 0.065 1.50 17 90	\$0 90.00% 0.065 1.40 23.47	\$0 90.00% 0.065 1.70 39.55	\$0 90.00% 0.065 1.50 17 90	\$0 90.00% 0.065 1.40 23.47
ECONOMIC ANALYSIS OUTPUT: Annual Capacity Factor	%/yr	90.00%	90.00%	90.00%	90.00%	90.00%	90.00%	90.00%	90.00%	90.00%
Equivalent Full Load Hours Used for Potential to Emit (MW- hours@100%CF & Availability)	Hr's Mw-Hr/yr	7,880 2,830,113	7,880 2,804,040	7,880 2,860,107	7,880 4,247,782	7,880 4,208,964	7,880	7,880 6,528,050	7,880 6,467,510	7,880 6,600,072

		Subcritical	Subcritical	Subcritical	Subcritical	Subcritical	Subcritical	Subcritical	Subcritical	Subcritical
Base set-up for meeting Target BACT limits for NOX & SO2	UNITS	400MW - Subcritical PC, Bituminous	400MW - Subcritical PC, Lignite	400MW - Subcritical PC, PRB	600MW - Subcritical PC, Bituminous	600MW - Subcritical PC, Lignite	600MW - Subcritical PC, PRB	900MW - Subcritical PC, Bituminous	900MW - Subcritical PC, Lignite	900MW - Subcritical PC, PRB
Capital costs	\$1.000			Ï I						
Direct & Indirect Costs \$1000	\$1,000	1.624.527	1.693.870	1.519.360	2.071.959	2.160.403	1.937.827	2.642.629	2.755.430	2.471.549
\$/kW Capital Cost based on net output	\$/net-kw	4,523	4,760	4,186	3,844	4,045	3,555	3,190	3,357	2,951
Capital Costs										
Costs in year 2008 dollars	\$1,000	1,624,527	1,693,870	1,519,360	2,071,959	2,160,403	1,937,827	2,642,629	2,755,430	2,471,549
Fixed O&M Costs										
Fixed O&M Costs	\$1,000	12,467	12,467	12,467	15,216	15,216	15,216	19,070	19,070	19,070
Yariable O&M Costs (\$/vr) Limestone Reagent Lime Reagent for Dry-FGD Activated Carbon Water Bottom Ash Disposal/Sale Fly ash sale/Disposal Gypsum sale/Disposal AC Waste Disposal AC Waste Disposal AC Waste Disposal AC Waste Disposal AC Catalyst Replacement Bags for Baghouse SO2 Allowances Other Sulfur Sale	\$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000	1,504 0 0238 442 1,762 3,094 0 469 673 210 662 1,985 1,416 N/A	781 0 1.073 295 1.679 6.710 1.614 10 373 673 242 559 2.096 1.403 N/A	0 719 976 191 290 1,154 305 9 360 673 231 539 2,022 1,431 N/A	2,246 0 0 385 659 2,632 4,621 0 527 1,010 336 988 2,965 2,125 N/A	1,167 0 385 2,507 10,021 2,411 15 557 1,010 380 835 3,131 2,106 N/A	0 1,074 1,457 385 432 1,724 565 13 537 1,010 346 805 3,020 2,149 N/A	3,447 0 0 579 1,012 4,039 7,093 0 810 1,515 516 1,517 4,551 3,266 N/A	1,791 0 2,459 3,848 15,381 3,700 22 855 1,515 583 1,281 4,805 3,235 N/A	0 1,648 2,237 664 2,645 867 20 825 1,515 531 1,236 4,636 3,302 N/A
Total	\$1,000	11,550	17,507	8,900	18,495	26,125	13,517	28,345	40,056	20,705
Variable O&M Costs	\$/MWh	3.55	5.96	3.11	3.82	5.93	3.15	3.81	5.91	3.14
Total Non-Fuel O&M Cost	\$1,000 \$/MWb	24,017	29,974	21,367	33,711 7.93	41,341 9.82	28,733	47,415	59,126 9.14	39,775
Capital Costs Costs in year 2008 dollars Fixed O&M Costs Fixed O&M Costs Fixed O&M Costs Variable O&M Costs (\$/vr) Limestone Reagent Lime Reagent for Dry-FGD Activated Carbon Water Bottom Ash Disposal/Sale Fly ash sale/Disposal Gypsum sale/Disposal AC Waste Disposal AC Waste Disposal AC Waste Disposal SCR-Catalyst Replacement Bags for Baghouse SO2 Allowances NOx Allowances NOx Allowances Other Sulfur Sale Total Variable O&M Costs Total Non-Fuel O&M Cost Total Non-Fuel O&M Cost	\$1,000 \$1	1,624,527 12,467 1,504 0 0 238 442 1,762 3,094 0 469 673 210 662 1,985 1,416 N/A 11,550 3.55 24,017 8.48	1,693,870 12,467 781 0 1,073 295 1,679 6,710 1,614 10 373 673 242 559 2,096 1,403 N/A 17,507 5.96 29,974 10,68	1,519,360 12,467 0 719 976 191 290 1,154 305 9 360 673 231 539 2,022 1,431 N/A 8,900 3.11 21,367 7.47	2,071,959 15,216 2,246 0 0 385 659 2,632 4,621 0 527 1,010 336 988 2,965 2,125 N/A 18,495 3.82 33,711 7,93	2,160,403 15,216 1,167 0 1,602 385 2,507 10,021 2,411 15 557 1,010 380 835 3,131 2,106 N/A 26,125 5,93 41,341 9,82	1,937,827 15,216 0 1,074 1,457 385 432 1,724 565 13 537 1,010 346 805 3,020 2,149 N/A 13,517 3.15 28,733 6.69	2,642,629 19,070 3,447 0 0 579 1,012 4,039 7,093 0 810 1,515 516 1,517 4,551 3,266 N/A 28,345 3.81 47,415 7.26	2,755,430 19,070 1,791 0 2,459 579 3,848 15,381 3,700 22 855 1,515 583 1,281 4,805 3,235 N/A 40,056 5,91 59,126 9.14	2,471,54 19,070 0 1,648 2,237 579 664 2,645 867 20 825 1,515 531 1,236 4,636 3,302 N/A 20,705 3,14 39,775 6,02

		Supercritical								
		Supercifical	Supercifical	Supercifical	Supercifical	Supercifical	Supercritical	Supercritical	Supercifical	Supercifical
Pass set up for mosting Target BACT		400MW -	400MW -	400MW -	600MW -	600MW -	600MW -	900MW -	900MW -	900MW -
Base set-up for meeting Target BACT	UNITS	Supercritical PC,								
limits for NOX & SO2		Bituminous	Lignite	PRB	Bituminous	Lignite	PRB	Bituminous	Lignite	PRB
Number of BFW Heaters		8 (HARP)								
Number of FGD Absorbers		1	1	1	1	1	2	1	1	3
Number of wet ESPs		1	0	0	2	0	0	3	0	0
Number of Pulverizers		5	6	5	6	7	6	7	8	7
S02		Wet FGD	Wet FGD	Dry FGD	Wet FGD	Wet FGD	Dry FGD	Wet FGD	Wet FGD	Dry FGD
NOX		High Dust SCR								
Primary Particulate Control		Baghouse								
Secondary Particulate Control		Wet ESP	Nono	Nono	Wet ESP	Nono	Nono	Wet ESP	Nono	Nono
Secondary Particulate Control		WetESF	None	None	WetESF	None	None	WellESF	None	None
Mercury Control		Inherent	ACI-w/BGH	ACI-w/BGH	Inherent	ACI-w/BGH	ACI-w/BGH	Inherent	ACI-w/BGH	ACI-w/BGH
PLANT CONFIGURATION: (Gross-MW))	1x400	1x400	1x400	1x600	1x600	1x600	1x900	1x900	1x900
NO. OF STEAM GENERATORS		1 Boiler								
Main Steam Pressure	nsia	3690	3690	3690	3690	3690	3690	3690	3690	3690
Main Steam Temperature	°E	1050	1050	1050	1050	1050	1050	1050	1050	1050
Het Pohost Tomporature	°E	1100	1100	1100	1100	1100	1100	1100	1100	1100
not Relieat Temperature	г	1100	1100	1100	1100	1100	1100	1100	1100	1100
NO. OF STEAM TURBINES		1 Turbine								
SOX CONTROL:		Wet FGD	Wet FGD	Drv FGD	Wet FGD	Wet FGD	Dry FGD	Wet FGD	Wet FGD	Drv FGD
Incontrolled SO2 Emission Rate	lb/mmBtu	4 32	2 14	0.52	4 32	2 14	0.52	4.32	2 14	0.52
	ib/iiiiibtu	4.02	2.14	0.02	4.02	2.14	0.02	4.02	2.14	0.02
Target "Permit" SO ₂ Emission Rate	lb/mmBtu	0.10	0.08	0.08	0.10	0.08	0.08	0.10	0.08	0.08
SULFUR REMOVAL percent required										
meet Target "Permit" Rate	%	97.68	96.27	84.76	97.68	96.27	84.76	97.68	96.27	84.76
Typical Maximum SO2 Removal										
Guarantee from Vendor	%	98.15	97.20	84.76	98.15	97.20	84.76	98.15	97.20	84.76
NOx CONTROL:		SCR								
Uncontrolled Rate from Furnace	lb/mmBtu	0.25	0.20	0.20	0.25	0.20	0.20	0.25	0.20	0.20
Target "Permit" NOx Emission Rate	lb/mmBtu	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07
PARTICULATE CONTROL		Baghouse	Badhouse							
Target "Permit" Emission Rate	lb/mmBtu	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015
Mercury Control	io/minota	Inherent	ACL-W/BGH	ACL-W/BGH	Inherent	ACL-W/BGH	ACL-W/BGH	Inherent	ACL-W/BGH	ACL-w/BGH
Cooling Mothed		MD CT								
		ND-C1	IVID-C1	IVID-C1	IVID-C1	IVID-C1	WID-C1	WID-C1	WID-CT	NID-C1
PLANT PERFORMANCE:	D. /	0.050	0.047	0.400	0.047	0.000	0.000	0.000	0.570	0.057
Net Plant Heat Rate, HHV	Btu/net-kvvn	9,058	9,647	9,128	9,017	9,603	9,080	8,990	9,576	9,057
Gross Plant Output	Gross-kW	400,001	400,001	400,001	600,002	600,002	600,002	900,004	900,004	900,004
Net Plant Output (based on Annual										
Average Conditions)	Net-kW	355,105	352,033	358,912	532,967	528,392	539,062	829,725	822,441	838,866
Gross Plant Heat Rate, HHV	Btu/gross-kWh	8,041	8,490	8,191	8,009	8,456	8,158	8,288	8,751	8,442
Auxiliary Power	kW	44,896	47,968	41,089	67,035	71,610	60,940	70,279	77,563	61,138
Turbine Heat Rate	Btu/kWh	7,038	7,038	7,038	7,011	7,011	7,011	7,256	7,256	7,256
Primary Fuel Feed Rate per Boiler	lb/hr	276.536	569.063	390.871	413,162	850.208	583,983	641.330	1.319.728	906.487
Primary Fuel Feed Rate per Boiler	Tons/hr	138	285	195	207	425	292	321	660	453
Primary Fuel Feed Rate per Boiler	lb/net-MWb	779	1 617	1 089	775	1 609	1 083	773	1 605	1 081
Full load Heat input to Boiler	mmBtu's/hr	3 216	3 396	3 276	4 806	5.074	4 895	7 459	7,876	7 598
Secondary Fuel Feed Rate	lh/hr	N/A	N/A	N/A	-,500 N/Δ	N/A	-,335 N/Δ	N/A	N/A	N/A
Secondary Fuel Food Pate	lb/not M\\/b	N/A								
Lime/Limestene Feed Rate	ID/TIEL-IVIVVII	IN/A 24.264	IN/A 10.661	1 920	IN/A 26.404	IN/A 19.016	IN/A 0.740	IN/A	IN/A 20.262	IN/A
Lime/Limestone Feed Rate		24,304	12,001	1,839	30,401	18,916	2,748	50,503	29,302	4,200
Lime/Limestone Feed Rate	ID/NET-IVIVVN	68.6	36.0	5.1	68.3	35.8	5.1	68.1	35.7	5.1
Ammonia Feed Rate(Anhydrous)	id/nr	253	201	194	285	301	290	442	467	451
Ammonia Feed Rate	lb/net-MWh	0.713	0.572	0.541	0.535	0.569	0.538	0.533	0.568	0.537
Activated Carbon Injection Rate	lb/hr	0	118	108	0	177	161	0	275	250
Activated Carbon Injection Rate	lb/net-MWh	0.00	0.34	0.30	0.00	0.34	0.30	0.00	0.33	0.30

		Supercritical	Supercritical	Supercritical	Supercritical	Supercritical	Supercritical	Supercritical	Supercritical	Supercritical
Base set-up for meeting Target BACT limits for NOX & SO2	UNITS	400MW - Supercritical PC, Bituminous	400MW - Supercritical PC, Lignite	400MW - Supercritical PC, PRB	600MW - Supercritical PC, Bituminous	600MW - Supercritical PC, Lignite	600MW - Supercritical PC, PRB	900MW - Supercritical PC, Bituminous	900MW - Supercritical PC, Lignite	900MW - Supercritical PC, PRB
Water Consumption										
Cvcle Make-up & Misc, Services	apm	504	624	404	816	816	816	1228	1228	1228
Cooling Tower/lake make-up	gpm	4,261	4,224	4,307	6,396	6,341	6,469	9,957	9,869	10,066
Total Water	gpm	4,765	4,849	4,711	7,211	7,156	7,284	11,184	11,097	11,294
Water Consumption	gal/net-MWh	805	826	788	812	813	811	809	810	808
		Bituminous	Lignite	PRB	Bituminous	Lignite	PRB	Bituminous	Lignite	PRB
FUEL ANALYSIS:										
Orthage Analysis	0/	00.75	00.07	50.05	00.75	00.07	50.05	00.75	00.07	50.05
Sulfur	% %	03.75 2 51	36.27	50.25 0.22	03.75 2 51	36.27	50.25 0.22	03.75 2 51	36.27	50.25 0.22
Oxygen	%	6.88	10.76	13.55	6.88	10.76	13.55	6.88	10.76	13.55
Hydrogen	%	4.50	2.42	3.41	4.50	2.42	3.41	4.50	2.42	3.41
Nitrogen	%	1.25	0.71	0.65	1.25	0.71	0.65	1.25	0.71	0.65
Chlorine	%	0.29	0.00	0.00	0.29	0.00	0.00	0.29	0.00	0.00
Ash	%	9.70	17.92	4.50	9.70	17.92	4.50	9.70	17.92	4.50
Moisture	%	11.12	31.24	27.40	11.12	31.24	27.40	11.12	31.24	27.40
Gross Higher Heating Value (Dulong)	Btu/lb	11,631	5,968	8,382	11,631	5,968	8,382	11,631	5,968	8,382
Hardgrove Grindability	HGI	59	59	59	59	59	59	59	59	59
SURBENT ANALYSIS:	0/	00	00	0	00	00	0	00	00	0
	%	90	90	0	90	90	0	90	90	0
	70 9/	0	0	90	0	0	90	0	0	90
Ash/Inerts	%	5	5	10	5	5	10	5	5	10
Moisture	%	0	0	0	0	0	0	0	0	0
		Ū.	-	-	-	-	-	-	-	-
STEAM GENERATOR DATA (Per Boile	r):									
Theoretical Air	lb/lb-fuel	8.70	4.57	6.39	8.70	4.57	6.39	8.70	4.57	6.39
Theoretical Dry Gas	lb/lb-fuel	9.09	4.87	6.76	9.09	4.87	6.76	9.09	4.87	6.76
Actual Dry Gas	lb/lb-fuel	10.83	5.78	8.04	10.83	5.78	8.04	10.83	5.78	8.04
Excess Air	%	20	20	20	20	20	20	20	20	20
Total Dry Air Flow	lb/lb-fuel	10.45	5.49	7.67	10.45	5.49	7.67	10.45	5.49	7.67
Ambient Air Moisture	lb/lb-lair	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025
Total Air Flow	lb/lb-tuel	10.71	5.63	7.86	10.71	5.63	7.86	10.71	5.63	7.86
Products of Combustion	ID/ID-TUEI	0.774	0.000	0.770	0.774	0.000	0.770	0.774	0.666	0.770
Air Heater Leakage	0/10-10e1	5	5	5	5	5	5	5	5	5
Air Heater Inlet Temperature	°F	100	100	100	100	100	100	100	100	100
Infiltration	%	5	5	5	5	5	5	5	5	5
Exit Flue Gas Temperature	°F	310	305	280	310	305	280	310	305	280
Flue Gas Temp. Uncorrected	°F	319	314	288	319	314	288	319	314	288
Flue Gas Flow Rate (per boiler)	lb/hr	3,481,102	3,962,390	3,725,675	5,200,978	5,920,011	5,566,373	8,073,221	9,189,284	8,640,387
Flue Gas Flow Rate	acfm	1,164,200	1,316,554	1,197,448	1,739,385	1,966,998	1,789,057	2,699,962	3,053,256	2,777,058
Combustion Air Flow	lb/hr	2,960,711	3,201,971	3,070,938	4,423,482	4,783,907	4,588,158	6,866,352	7,425,777	7,121,955
Combustion Air Flow	acfm	706,252	763,802	732,545	1,055,183	1,141,159	1,094,465	1,637,908	1,771,354	1,698,880
Stack Flue Gas Temperature	°F	135	140	170	135	140	170	135	140	170
Stack Flue Gas Flow Rate per Flue	acfm	952,604	1,093,420	1,100,264	1,423,248	1,633,625	1,643,857	2,209,238	2,535,780	2,551,673
Radiation Loss	%	0.196	0.196	0.196	0.185	0.185	0.185	0.175	0.175	0.175
Dry Gas Heat Loss	% 0/	5.89	5.96	5.19	5.89	5.96	5.19	5.89	5.96	5.19
Hydrogen in Fuel Loss	70 0/	1.07	5.84	3.02	1.07	5.84	3.02	1.07	5.84	3.62
Air Moisture Heat Loss	%	0.227	4.07	4.00	0.09	4.07	4.00	0.03	4.07	4.00
Carbon Loss	%	0.50	0.10	0.10	0.50	0.10	0.10	0.50	0.10	0.10
Unaccounted Loss	%	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Manufacturer's Margin	%	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50

		Supercritical	Supercritical	Supercritical	Supercritical	Supercritical	Supercritical	Supercritical	Supercritical	Supercritical
Base set-up for meeting Target BACT limits for NOX & SO2	UNITS	400MW - Supercritical PC, Bituminous	400MW - Supercritical PC, Lignite	400MW - Supercritical PC, PRB	600MW - Supercritical PC, Bituminous	600MW - Supercritical PC, Lignite	600MW - Supercritical PC, PRB	900MW - Supercritical PC, Bituminous	900MW - Supercritical PC, Lignite	900MW - Supercritical PC, PRB
Total Boiler Loss	%	12.48	17 10	14 07	12.46	17.09	14.06	12 45	17.08	14.05
Boiler Efficiency	%	87.52	82.90	85.93	87.54	82.91	85.94	87.55	82.92	85.95
Total Heat Output from Boiler	mmBtu/hr	2.815.21	2.815.21	2.815.21	4,206,61	4.206.61	4.206.61	6.530.43	6.530.43	6.530.43
Main Steam Flow	lb/hr	2,503,200	2,503,200	2,503,200	3,727,700	3,727,700	3,727,700	5,758,900	5,758,900	5,758,900
STEAM TURBINE/CYCLE DATA (Per T	urbine):									
Turbine Back Pressure	in HgA	2	2	2	2	2	2	2	2	2
Steam Turbine Gross Output	kW	400,001	400,001	400,001	600,002	600,002	600,002	900,004	900,004	900,004
LP Turbine Exhaust to Condenser	lb/hr	1,547,948	1,547,948	1,547,948	2,305,964	2,305,964	2,305,964	3,248,365	3,248,365	3,248,365
Exhaust Energy	Btu/lb	1,015.40	1,015.40	1,015.40	1,015.80	1,015.80	1,015.80	1,015.50	1,015.50	1,015.50
Condensate Enthalpy	Btu/lb	69.1	69.1	69.1	69.1	69.1	69.1	69.1	69.1	69.1
Heat Rejection from LP Turbine	mmBtu/hr	1,465	1,465	1,465	2,183	2,183	2,183	3,074	3,074	3,074
BFP Turbine Drive Steam Flow	lb/hr	0	0	0	0	0	0	329,912	329,912	329,912
BFP Turbine Exhaust Enthalpy	Btu/Ib	0	0	0	0	0	0	1,053	1,053	1,053
Heat Rejection from BFP Turbine	Btu/hr	0	0	0	0	0	0	312	312	312
Circulating Water Tagen, Diag	mmBtu/nr	1,465	1,465	1,465	2,183	2,183	2,183	3,386	3,386	3,386
Circulating Water Temp. Rise	-F	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
Number of Cooling Tower Cells	gpm	155,066	135,000	135,000	230,896	230,896	230,896	300,743	300,743	300,743
Total Circ. Water Flow	apm	155.068	155.068	155.068	230,896	230,896	230,896	358,743	358,743	358,743
Service Water Flow	gpm	7,753	7,753	7,753	11,545	11,545	11,545	17,937	17,937	17,937
Total Cooling Water Requirement	gpm	162,821	162,821	162,821	242,441	242,441	242,441	376,680	376,680	376,680
PLANT AUXILIARY POWER:		44.0	44.0	44.9	44.0	44.0	44.9	44.0	44.0	44.0
Induced Draft Fan Pressure Rise Boiler	WC	44.0	44.0	41.8	44.0	44.0	41.8	44.0	44.0	41.8
Econ Outlet to SCR outlet	"w.c	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
SCR Outlet to AH Outlet	"W.C	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
AH Outlet to ESP Outlet	"w.c	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AH/ESP Outlet to COHPAC or Dry										
FGD/BH Outlet	"W.C	8.0	8.0	16.0	8.0	8.0	16.0	8.0	8.0	16.0
COHPAC/Dry FGD BH Outlet to stack	"W.C	0.0	0.0	2.0	0.0	0.0	2.0	0.0	0.0	2.0
Wet EGD outlet to stack outlet	W.C	8.0	8.0	0.0	8.0	8.0	0.0	8.0	8.0	0.0
Total ID fan static pressure	"w.c	40.0	40.0	38.0	40.0	40.0	38.0	40.0	40.0	38.0
	-									
Percent Total Air to FD Fan	%	70	70	70	70	70	70	70	70	70
Forced Draft Fan Pressure Rise	"wc	20	20	20	20	20	20	20	20	20
Percent Total Air to PA Fan	%	30	30	30	30	30	30	30	30	30
Primary Air Fan Pressure Rise	"WC	40	40	40	40	40	40	40	40	40
Percent Total Air to SA Fan	%	0	0	0	0	0	0	0	0	0
Secondary Air Fan Pressure Rise	WC	15	15	15	15	15	15	15	15	15
Circulating Water P/P	70 0/	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30
Cooling Towers	70 0/_	0.47	0.47	0.47	0.40	0.40	0.40	0.48	0.48	0.40
Feedwater P/P	70 %	3.50	3.50	3.50	3.50	3.50	3.50	0.00	0.00	0.03
Subtotal CWS	70 %	5.05	5.05	5.05	5.01	5.01	5.01	1.53	1.53	1.53
Forced Draft Fan	%	0.34	0.37	0.36	0.34	0.37	0.36	0.36	0.38	0.37
Induced Draft Fan	%	2.00	2.26	1 79	1 99	2.25	1 78	2.06	2 33	1.84
Primary Air Fan	%	0.30	0.32	0.31	0.30	0.32	0.31	0.31	0.33	0.32
Pulverizer	%	0.50	1.02	0.70	0.50	1.02	0.70	0.51	1.06	0.73
Fuel Handling	%	0.12	0.22	0.16	0.12	0.22	0.16	0.12	0.23	0.16
Ash Handling	%	0,19	0,60	0.14	0,19	0,60	0.14	0,19	0.62	0.14
Wet ESP for H2SO4 collection	%	0.15	0.00	0.00	0.15	0.00	0.00	0.15	0.00	0.00
Baghouse	%	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
FGD	%	1.25	0.82	0.45	1.25	0.82	0.38	1.25	0.82	0.38
Transformer Losses	%	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Miscellaneous		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

		Supercritical								
Base set-up for meeting Target BACT limits for NOX & SO2	UNITS	400MW - Supercritical PC, Bituminous	400MW - Supercritical PC, Lignite	400MW - Supercritical PC, PRB	600MW - Supercritical PC, Bituminous	600MW - Supercritical PC, Lignite	600MW - Supercritical PC, PRB	900MW - Supercritical PC, Bituminous	900MW - Supercritical PC, Lignite	900MW - Supercritical PC, PRB
TOTAL Auxiliary Power Net Unit Heat Rate Plant Efficiency	% Btu/kWh %	11.22 9,058 37.7	11.99 9,647 35.4	10.27 9,128 37.4	11.17 9,017 37.8	11.93 9,603 35.5	10.16 9,080 37.6	7.81 8,990 38.0	8.62 9,576 35.6	6.79 9,057 37.7
ECONOMIC ANALYSIS INPUT:		ļļ	ļ		I	<u> </u>				
2008 to COD Start of Engineering to COD Operating Life Fixed Labor Costs Fixed Non-Labor C&M Costs	years months years \$ \$	5 55 35 7,187,292 5 600 014	5 55 35 7,187,292 5 600 014	5 55 35 7,187,292 5 600 014	5 55 35 8,556,300 7,020,023	5 55 35 8,556,300 7,020,023	5 55 35 8,556,300 7 020 023	5 55 35 10,609,812 8 820 039	5 55 35 10,609,812 8 820 039	5 55 35 10,609,812 8 820 039
Total Fixed O&M Costs	¢ \$	12,787,306	12,787,306	12,787,306	15,576,323	15,576,323	15,576,323	19,429,851	19,429,851	19,429,851
Fixed O&M Costs Property Taxes	\$/net kW-yr \$/year	36.01 3,000,000	36.32 3,000,000	35.63 3,000,000	29.23 3,000,000	29.48 3,000,000	28.90 3,000,000	23.42 3,000,000	23.62 3,000,000	23.16 3,000,000
FGD Reagent Cost \$/ton, delivered Activated Carbon		15.00	15.00	95.00	15.00	15.00	95.00	15.00	15.00	95.00
\$/ton, delivered SCR Catalyst		2200	2200	2200	2200	2200	2200	2200	2200	2200
\$/M³ Ammonia (Anhydrous)		6000	6000	6000	6000	6000	6000	6000	6000	6000
Water Cost \$/1000 gallons		450	1.00	1.00	450	450	1.00	1.00	1.00	1.00
Fly Ash Sales Fly Ash Disposal Bottom Ash Sales Bottom Ash Disposal Activized Carbon waste	\$/ton \$/ton \$/ton \$/ton	\$0.00 \$20.00 \$0.00 \$20.00 \$20.00								
FGD Waste Sale FGD Waste Disposal	\$/ton \$/ton	\$0.00 \$20.00								
Other Variable O&M Costs	\$/net-MWh	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
SO2 Allowance Market Cost \$/ton NOX Allowance Market Cost		\$500	\$500	\$500	\$500	\$500	\$500	\$500	\$500	\$500
\$/ton Sulfur Byproduct		\$3,000	\$3,000	\$3,000	\$3,000	\$3,000	\$3,000	\$3,000	\$3,000	\$3,000
\$/ton Equivalent Availability Factor Replacement Power cost Fuel Cost Delivered	% \$/gross-kWh \$/mmBtu	\$0 90.00% 0.065 1.70 39.55	\$0 90.00% 0.065 1.50 17.90	\$0 90.00% 0.065 1.40 23.47	\$0 90.00% 0.065 1.70 39.55	\$0 90.00% 0.065 1.50 17.90	\$0 90.00% 0.065 1.40 23.47	\$0 90.00% 0.065 1.70 39.55	\$0 90.00% 0.065 1.50 17 90	\$0 90.00% 0.065 1.40 23.47
ECONOMIC ANALYSIS OUTPUT: Annual Capacity Factor Equivalent Full Load Hours	%/yr Hr's	90.00% 7,880								
Used for Potential to Emit (MW- hours@100%CF & Availability)	Mw-Hr/yr	2,798,226	2,774,021	2,828,225	4,199,782	4,163,729	4,247,807	6,538,232	6,480,833	6,610,262
			1 1			1				1

		Supercritical	Supercritical	Supercritical	Supercritical	Supercritical	Supercritical	Supercritical	Supercritical	Supercritical
Base set-up for meeting Target BACT limits for NOX & SO2	UNITS	400MW - Supercritical PC, Bituminous	400MW - Supercritical PC, Lignite	400MW - Supercritical PC, PRB	600MW - Supercritical PC, Bituminous	600MW - Supercritical PC, Lignite	600MW - Supercritical PC, PRB	900MW - Supercritical PC, Bituminous	900MW - Supercritical PC, Lignite	900MW - Supercritical PC, PRB
Capital costs	\$1,000									
Direct & Indirect Costs \$1000	\$1,000	1,663,873	1,735,779	1,554,896	2,122,143	2,213,853	1,983,150	2,706,635	2,823,605	2,529,357
\$/kW Capital Cost based on net summer output	\$/net-kw	4,686	4,931	4,332	3,982	4,190	3,679	3,262	3,433	3,015
Capital Costs										
Costs in year 2008 dollars	\$1,000	1,663,873	1,735,779	1,554,896	2,122,143	2,213,853	1,983,150	2,706,635	2,823,605	2,529,357
Fixed O&M Costs										
Fixed O&M Costs	\$1,000	12,787	12,787	12,787	15,576	15,576	15,576	19,430	19,430	19,430
Variable O&M Costs (\$/vr) Limestone Reagent Lime Reagent for Dry-FGD Activated Carbon Water Bottom Ash Sale/Disposal Fly ash sale/Disposal Gypsum sale/Disposal AC Waste Disposal AC Waste Disposal AC Waste Disposal SCR-Catalyst Replacement Bags for Baghouse SO2 Allowances NOX Allowances Other Sulfur Sale	\$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000	1,441 0 0 238 423 1,688 2,964 0 449 673 202 634 1,902 1,400 N/A	749 0 1,028 295 1,608 6,428 1,546 9 357 673 231 535 2,008 1,388 N/A	0 689 935 191 277 1,106 292 8 345 673 292 8 73 273 1,937 1,415 N/A	2,152 0 0 386 632 2,522 4,429 0 505 1,010 322 947 2,842 2,101 N/A	1,118 0 1,535 386 2,402 9,603 2,310 14 534 1,010 364 800 3,000 2,083 N/A	0 1,029 1,396 414 1,652 541 13 515 1,010 331 772 2,894 2,125 N/A	3,341 0 0 581 981 3,915 6,874 0 785 1,515 500 1,470 4,411 3,271 N/A	1,736 0 2,383 3,729 14,907 3,586 22 828 1,515 565 1,242 4,657 3,242 N/A	0 1,597 2,168 581 643 2,564 840 20 799 1,515 514 1,198 4,493 3,307 N/A
Total Variable O&M Costs Total Non-Fuel O&M Cost Total Non-Fuel O&M Cost	\$1,000 \$/MWh \$1,000 \$/MWh	11,147 3.98 23,934 8.55	16,856 6.07 29,643 10.68	8,607 3.04 21,394 7.56	17,848 3.74 33,424 7.95	25,160 5.77 40,736 9.78	13,078 3.08 28,654 6.74	27,643 3.72 47,073 7.20	38,993 5.75 58,423 9.01	20,239 3.06 39,669 6.00
		Illtra Supararitical	Illtra Supararitical	Liltra Superaritical	Illtra Supararitical	Liltra Supararitical	Illtra Supararitical	Illtra Supararitical	Liltra Superaritical	Ultra Superaritical
---	---------------	----------------------	----------------------	----------------------	----------------------	----------------------	----------------------	----------------------	----------------------	---------------------
		onra-Supercritical	onra-Supercritical	onra-Supercritical	onra-Supercritical	ona-Supercritical	onra-Supercritical	onra-Supercritical	ona-Supercritical	onra-oupercritical
Base set-up for meeting Target BACT		400MW - Ultra-	400MW - Ultra-	400MW - Ultra-	600MW - Ultra-	600MW - Ultra-	600MW - Ultra-	900MW - Ultra-	900MW - Ultra-	900MW - Ultra-
limits for NOX & SO2	UNITS	Bituminous	Lignite	PRB	Bituminous	Lignite	PRB	Bituminous	Lignite	PRB
Number of BFW Heaters		8 Heaters (HARP)	8 (HARP)	8 (HARP)	8 (HARP)	8 (HARP)	8 (HARP)	8 (HARP)	8 (HARP)	8 (HARP)
Number of FGD Absorbers		1	1	1	1	1	2	1	1	3
Number of wet ESPs		1	0	0	2	0	0	3	0	0
Number of Pulverizers		5	6	5	6	7	6	7	8	7
502 NOX		Wet FGD	Wet FGD	Dry FGD	Wet FGD	Wet FGD	Dry FGD	Wet FGD	Wet FGD	Dry FGD
NOA Brimary Particulato Control		Paghouso	Raghouso	Raghouso	Raghouso	Ranhouso	Paghouso	Baghouso	Ranhouso	Raghouso
		Bagnouse	Bagnouse							
Secondary Particulate Control		Wet ESP	None	None	Wet ESP	None	None	Wet ESP	None	None
Mercury Control		Inherent	ACI-w/BGH	ACI-w/BGH	Inherent	ACI-w/BGH	ACI-w/BGH	Inherent	ACI-w/BGH	ACI-w/BGH
PLANT CONFIGURATION: (Gross-MW)		1x400	1x400	1x400	1x600	1x600	1x600	1x900	1x900	1x900
NO. OF STEAM GENERATORS	ncia	1 Boiler	1 Boiler							
Main Steam Temperature	°F	1100	1100	1100	1100	1100	1100	1100	1100	1100
Hot Reheat Temperature	°F	1100	1100	1100	1100	1100	1100	1100	1100	1100
NO. OF STEAM TURBINES		1 Turbine	1 Turbine							
SOx CONTROL:		Wet FGD	Wet FGD	Dry FGD	Wet FGD	Wet FGD	Dry FGD	Wet FGD	Wet FGD	Dry FGD
Uncontrolled SO2 Emission Rate	lb/mmBtu	4.32	2.14	0.52	4.32	2.14	0.52	4.32	2.14	0.52
Target "Permit" SO2 Emission Rate	lb/mmBtu	0.10	0.08	0.08	0.10	0.08	0.08	0.10	0.08	0.08
SULFUR REMOVAL percent required meet Target "Permit" Rate	%	97.68	96.27	84.76	97.68	96.27	84.76	97.68	96.27	84.76
Typical Maximum SO2 Removal										
Guarantee from Vendor	%	98.15	97.20	84.76	98.15	97.20	84.76	98.15	97.20	84.76
NOx CONTROL:		SCR	SCR							
Uncontrolled Rate from Furnace	lb/mmBtu	0.25	0.20	0.20	0.25	0.20	0.20	0.25	0.20	0.20
PARTICULATE CONTROL	io/miniblu	Baghouse	Baghouse							
Target "Permit" Emission Rate	lb/mmBtu	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015
Specified Design Guarantee from	lle /m.m.Dtu	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
Mercury Control	ID/IIIIIBIU	0.012	ACI-w/BGH	ACI-w/BGH	0.012	ACI-w/BGH	ACI-w/BGH	0.012	ACI-w/BGH	ACI-w/BGH
Cooling Method		MD-CT	MD-CT							
PLANT PERFORMANCE: Net Plant Heat Rate, HHV	Btu/net-kWh	8.924	9.502	8,993	8.874	9.449	8.937	8.855	9.430	8.921
Gross Plant Output	Gross-kW	400,004	400,004	400,004	600,001	600,001	600,001	900,001	900,001	900,001
Net Plant Output (based on Annual										
Average Conditions)	Net-kW	354,969	351,979	358,776	532,781	528,336	538,876	830,306	823,201	839,447
Auxiliary Power	kW	45 035	48 025	6,000 41,228	67 220	0,320 71.665	61 125	69 695	76 800	60.554
Turbine Heat Rate	Btu/kWh	6,931	6,931	6,931	6,898	6,898	6,898	7,152	7,152	7,152
Primary Fuel Feed Rate per Boiler	lb/hr	272,335	560,418	384,933	406,504	836,508	574,573	632,138	1,300,812	893,494
Primary Fuel Feed Rate per Boiler	Tons/hr	136	280	192	203	418	287	316	650	447
Full load Heat input to Boiler	mmBtu's/hr	3 168	3 344	3 226	4 728	4 992	4 816	7 353	7 763	7 489
Secondary Fuel Feed Rate	lb/hr	N/A	N/A							
Secondary Fuel Feed Rate	lb/net-MWh	N/A	N/A							
Lime/Limestone Feed Rate	lb/hr	23,994	12,469	1,811	35,814	18,611	2,704	55,694	28,941	4,204
Ammonia Feed Rate(Anhydrous)	lb/het-ivivvn	249	35.4 198	5.0	280	35.2 296	286	436	35.2 460	5.0
Ammonia Feed Rate	lb/net-MWh	0.702	0.563	0.533	0.526	0.560	0.530	0.525	0.559	0.529
Activated Carbon Injection Rate	lb/hr	0	117	106	0	174	158	0	271	246
Activated Carbon Injection Rate	lb/net-MWh	0.00	0.33	0.30	0.00	0.33	0.29	0.00	0.33	0.29

		Illtra-Supercritical	Illtra-Supercritical	Illtra-Supercritical	Illtra-Supercritical	Illtra-Supercritical	Illtra-Supercritical	Illtra-Supercritical	Illtra-Supercritical	Illtra-Supercritical
Base set-up for meeting Target BACT limits for NOX & SO2	UNITS	400MW - Ultra- Supercritical PC, Bituminous	400MW - Ultra- Supercritical PC, Lignite	400MW - Ultra- Supercritical PC, PRB	600MW - Ultra- Supercritical PC, Bituminous	600MW - Ultra- Supercritical PC, Lignite	600MW - Ultra- Supercritical PC, PRB	900MW - Ultra- Supercritical PC, Bituminous	900MW - Ultra- Supercritical PC, Lignite	900MW - Ultra- Supercritical PC, PRB
Water Consumption Cycle Make-up & Misc. Services	gpm	506	626	406	819	819	819	1225	1225	1225
Cooling Tower/lake make-up	gpm	4,260	4,224	4,305	6,393	6,340	6,467	9,964	9,878	10,073
Vater Consumption	gpm gal/pet-M\\/b	4,766	4,850	4,712	7,212 812	7,159	7,285	11,189	11,104	11,299
FUEL ANALYSIS:	gaimerninn	Bituminous	Lignite	PRB	Bituminous	Lignite	PRB	Bituminous	Lignite	PRB
Ultimate Analysis										
Carbon Sulfur Oxygen Hydrogen	% % %	63.75 2.51 6.88 4.50	36.27 0.64 10.76 2.42	50.25 0.22 13.55 3.41	63.75 2.51 6.88 4.50	36.27 0.64 10.76 2.42	50.25 0.22 13.55 3.41	63.75 2.51 6.88 4.50	36.27 0.64 10.76 2.42	50.25 0.22 13.55 3.41
Nitrogen	%	1.25	0.71	0.65	1.25	0.71	0.65	1.25	0.71	0.65
Chiorine Ash Moisture	% % %	0.29 9.70 11.12	0.00 17.92 31.24	0.00 4.50 27.40	0.29 9.70 11.12	0.00 17.92 31.24	0.00 4.50 27.40	0.29 9.70 11.12	0.00 17.92 31.24	0.00 4.50 27.40
Gross Higher Heating Value (Dulong)	Btu/lb	11,631	5,968	8,382	11,631	5,968	8,382	11,631	5,968	8,382
SORBENT ANALYSIS:	<u>.</u>									
MgCO3 CaO	% % %	90 5 0	90 5 0	0 0 90	90 5 0	90 5 0	0 0 90	90 5 0	90 5 0	0 0 90
Ash/Inerts	%	5	5	10	5	5	10	5	5	10
STEAM GENERATOR DATA (Per Boile	% r):	0	0	0	0	0	0	0	0	0
Theoretical Air	lb/lb-fuel	8.70	4.57	6.39	8.70	4.57	6.39	8.70	4.57	6.39
Theoretical Dry Gas	lb/lb-fuel	9.09	4.87	6.76	9.09	4.87	6.76	9.09	4.87	6.76
Actual Dry Gas	ID/ID-TUEI	10.83	5.78	8.04	10.83	5.78	8.04	10.83	5.78	8.04
Total Dry Air Flow	/o lb/lb-fuel	10.45	5 49	7.67	10.45	5 49	7.67	10.45	5 49	7.67
Ambient Air Moisture	lb/lb-lair	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025
Total Air Flow Flue Gas Moisture Flow Braduate of Combustion	lb/lb-fuel lb/lb-fuel lb/lb fuel	10.71 0.774	5.63 0.666	7.86 0.770	10.71 0.774	5.63 0.666	7.86 0.770	10.71 0.774	5.63 0.666	7.86 0.770
Air Heater Leakage	%	5	5	5	5	5	5	5	5	5
Air Heater Inlet Temperature	°F	100	100	100	100	100	100	100	100	100
Infiltration	%	5	5	5	5	5	5	5	5	5
Exit Flue Gas Temperature	°F	310	305	280	310	305	280	310	305	280
Flue Gas Temp. Uncorrected	°F	319	314	288	319	314	288	319	314	288
Flue Gas Flow Rate (per boller)	Ib/nr	3,428,222	3,902,200	3,669,080	5,117,166	5,824,613	5,476,673	7,957,506	9,057,574	8,516,544
Compustion Air Flow	acim lb/br	2 015 736	1,290,000	3 024 289	1,711,330	1,935,301	1,760,227	2,001,203	3,009,493 7 310 343	2,737,235
Combustion Air Flow	acfm	695.523	752.200	721.418	1.038.179	1,122,770	1.076.828	1.614.432	1,745,965	1,674,530
Stack Flue Gas Temperature	°F	135	140	170	135	140	170	135	140	170
Stack Flue Gas Flow Rate per Flue	acfm	938,133	1,076,811	1,083,550	1,400,313	1,607,300	1,617,367	2,177,573	2,499,435	2,515,100
Radiation Loss	%	0.196	0.196	0.196	0.185	0.185	0.185	0.176	0.176	0.176
Dry Gas Heat Loss	%	5.89	5.96	5.19	5.89	5.96	5.19	5.89	5.96	5.19
Fuel Moisture Loss	%	1.07	5.84	3.62	1.07	5.84	3.62	1.07	5.84	3.62
Hydrogen in Fuel Loss	%	3.89	4.07	4.06	3.89	4.07	4.06	3.89	4.07	4.06
Carbon Loss	70 %	0.237	0.236	0.206	0.237	0.236	0.206	0.237	0.236	0.206
Unaccounted Loss	%	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Manufacturer's Margin	%	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50

				1		I	1		I	1
		Ultra-Supercritical	Ultra-Supercritical	Ultra-Supercritical	Ultra-Supercritical	Ultra-Supercritical	Ultra-Supercritical	Ultra-Supercritical	Ultra-Supercritical	Ultra-Supercritical
Base set-up for meeting Target BACT limits for NOX & SO2	UNITS	400MW - Ultra- Supercritical PC, Bituminous	400MW - Ultra- Supercritical PC, Lignite	400MW - Ultra- Supercritical PC, PRB	600MW - Ultra- Supercritical PC, Bituminous	600MW - Ultra- Supercritical PC, Lignite	600MW - Ultra- Supercritical PC, PRB	900MW - Ultra- Supercritical PC, Bituminous	900MW - Ultra- Supercritical PC, Lignite	900MW - Ultra- Supercritical PC, PRB
Total Boiler Loss	%	12.48	17.10	14.07	12.46	17.09	14.06	12.46	17.08	14.05
Boiler Efficiency	%	87.52	82.90	85.93	87.54	82.91	85.94	87.54	82.92	85.95
Total Heat Output from Boiler	mmBtu/hr	2,772.43	2,772.43	2,772.43	4,138.81	4,138.81	4,138.81	6,436.81	6,436.81	6,436.81
Main Steam Flow	lb/hr	2,587,480	2,587,480	2,587,480	3,848,020	3,848,020	3,848,020	5,666,050	5,666,050	5,666,050
	 urbino):									
JUSTICA PORT CONTRACT CLE DATA (FEI TI		2	2	2	2		2	2		2
Steam Turbing Gross Output	IN HGA	2	400.004	2	2 600.001	ے 600 001	2 600.001	2	2	2
L D Turbing Exhaust to Condensor	KVV llb/br	400,004	400,004	400,004	2.257.205	2 257 205	2 257 205	300,001	300,001	300,001
EP TUIDIne Exhaust to Condenser	D/III Dtu/lb	1,516,546	1,516,546	1,516,546	2,257,395	2,257,395	2,257,395	3,160,394	3,160,394	3,160,394
Condenante Enthelmu	Dtu/ID Dtu/lb	1,007.10	1,007.10	1,007.10	1,007.20	1,007.20	1,007.20	1,004.20	1,004.20	1,004.20
Heat Baiastian from LB Turbing	DIU/ID	09.1	09.1	09.1	09.1	09.1	09.1	09.1	09.1	09.1
RED Turbing Drive Steam Flow	IIIIIDIU/III	1,424	1,424	1,424	2,110	2,110	2,110	2,955	2,900	2,955
BEP Turbine Exhaust Enthalow	ID/III Btu/lb	0	0	0	0	0	0	1 040	1 040	1 040
Heat Rejection from BED Turbine	Btu/br	0	0	0	0	0	0	336	336	336
Total Heat Rejected to Condenser	mmBtu/br	1 /2/	1 424	1 424	2 118	2 118	2 118	3 202	3 202	3 202
Circulating Water Temp. Rise	°E	20.0	20.0	20.0	2,110	2,110	2,110	20.0	20.0	20.0
Circulating Water Flow	anm	150 702	150 792	150 792	224.026	224.026	224.026	3/8 303	3/8 303	3/8 303
Number of Cooling Tower Cells	gpin	14	14	14	20	20	20	30	30	30
Total Circ. Water Flow	gpm	150,792	150,792	150,792	224,026	224,026	224,026	348,393	348,393	348,393
Service Water Flow	gpm	7,540	7,540	7,540	11,201	11,201	11,201	17,420	17,420	17,420
Total Cooling Water Requirement	gpm	158,332	158,332	158,332	235,227	235,227	235,227	365,813	365,813	365,813
DI ANT AUVILIARY DOWED.										
Induced Draft Ean Pressure Rise	"wc	44.0	44.0	/1.8	44.0	44.0	/1.8	44.0	44.0	/1.8
Boiler	"w.c	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
Econ Outlet to SCR outlet	"W.C	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
SCR Outlet to AH Outlet	"W.C	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
AH Outlet to ESP Outlet	"w.c	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AH/ESP Outlet to COHPAC or Dry										
FGD/BH Outlet	"w.c	8.0	8.0	16.0	8.0	8.0	16.0	8.0	8.0	16.0
COHPAC/Dry FGD BH Outlet to stack	"W.C	0.0	0.0	2.0	0.0	0.0	2.0	0.0	0.0	2.0
ID Inlet to wet FGD outlet	W.C	8.0	8.0	0.0	8.0	8.0	0.0	8.0	8.0	0.0
Total ID fan static pressure	"W.C	40.0	40.0	38.0	40.0	40.0	38.0	40.0	40.0	38.0
	-									
Percent Total Air to FD Fan	%	70	70	70	70	70	70	70	70	70
Forced Draft Fan Pressure Rise	"wc	20	20	20	20	20	20	20	20	20
Percent Total Air to PA Fan	%	30	30	30	30	30	30	30	30	30
Primary Air Fan Pressure Rise	"wc	40	40	40	40	40	40	40	40	40
Percent Total Air to SA Fan	%	0	0	0	0	0	0	0	0	0
Secondary Air Fan Pressure Rise	"wc	15	15	15	15	15	15	15	15	15
Condensate P/P	%	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36
Circulating Water P/P	%	0.45	0.45	0.45	0.45	0.45	0.45	0.47	0.47	0.47
Cooling Towers	%	0.72	0.72	0.72	0.69	0.69	0.69	0.69	0.69	0.69
Feedwater P/P	%	3.60	3.60	3.60	3.60	3.60	3.60	0.00	0.00	0.00
Subtotal CWS	%	5.14	5.14	5.14	5.10	5.10	5.10	1.52	1.52	1.52
Forced Draft Fan	%	0.34	0.37	0.35	0.34	0.37	0.35	0.35	0.38	0.36
Induced Draft Fan	%	1.97	2.23	1.76	1.96	2.22	1.75	2.03	2.30	1.81
Primary Air Fan	%	0.29	0.32	0.31	0.29	0.32	0.30	0.30	0.33	0.31
Pulverizer	%	0.49	1.01	0.69	0.49	1.00	0.69	0.51	1.04	0.72
Fuel Handling	%	0.12	0.22	0.16	0.12	0.22	0.16	0.12	0.22	0.16
Ash Handling	%	0.19	0.59	0.14	0.18	0.59	0.14	0.19	0.61	0.14
Wet ESP for H2SO4 collection	%	0.15	0.00	0.00	0.15	0.00	0.00	0.15	0.00	0.00
Baghouse	%	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
FGD	%	1.25	0.82	0.45	1.25	0.82	0.38	1.25	0.82	0.38
Transformer Losses	%	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Miscellaneous	.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

December 15, 2008
Revision 1
Page 4

		Ultra-Supercritical	Ultra-Supercritical	Ultra-Supercritical	Ultra-Supercritical	Ultra-Supercritical	Ultra-Supercritical	Ultra-Supercritical	Ultra-Supercritical	Ultra-Supercritical
Base set-up for meeting Target BACT limits for NOX & SO2	UNITS	400MW - Ultra- Supercritical PC, Bituminous	400MW - Ultra- Supercritical PC, Lignite	400MW - Ultra- Supercritical PC, PRB	600MW - Ultra- Supercritical PC, Bituminous	600MW - Ultra- Supercritical PC, Lignite	600MW - Ultra- Supercritical PC, PRB	900MW - Ultra- Supercritical PC, Bituminous	900MW - Ultra- Supercritical PC, Lignite	900MW - Ultra- Supercritical PC, PRB
TOTAL Auxiliary Power Net Unit Heat Rate Plant Efficiency	% Btu/kWh %	11.26 8,924 38.2	12.01 9,502 35.9	10.31 8,993 37.9	11.20 8,874 38.4	11.94 9,449 36.1	10.19 8,937 38.2	7.74 8,855 38.5	8.53 9,430 36.2	6.73 8,921 38.2
ECONOMIC ANALYSIS INPUT:										
2008 to COD	years	5	5	5	5	5	5	5	5	5
Start of Engineering to COD	months	55	55	55	55	55	55	55	55	55
Operating Life	years	35	35	35	35	35	35	35	35	35
Fixed Labor Costs	\$	7,187,292	7,187,292	7,187,292	8,556,300	8,556,300	8,556,300	10,609,812	10,609,812	10,609,812
Fixed Non-Labor O&M Costs	<u></u>	5,760,058	5,760,058	5,760,058	7,200,012	7,200,012	7,200,012	9,000,010	9,000,010	9,000,010
Fixed O&M Costs	⊅ \$/net kW-vr	36.47	36 78	36.09	29.57	29.82	29.24	23.62	23.82	23.36
Property Taxes	\$/year	3,000,000	3,000,000	3,000,000	3,000,000	3,000,000	3,000,000	3,000,000	3,000,000	3,000,000
FGD Reagent Cost \$/ton, delivered		15.00	15.00	95.00	15.00	15.00	95.00	15.00	15.00	95.00
\$/ton, delivered		2200	2200	2200	2200	2200	2200	2200	2200	2200
SCR Catalyst \$/M ³		6000	6000	6000	6000	6000	6000	6000	6000	6000
Ammonia (Anhydrous)		450	450	450	450	450	450	450	450	450
Water Cost		450	450	450	450	450	450	450	450	450
\$/1000 gallons		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fly Ash Sales	\$/ton	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Fly Ash Disposal	\$/ton	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00
Bottom Ash Sales	\$/ton	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Bottom Ash Disposal	\$/ton	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00
Activated Carbon waste	\$/ton	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00
FGD Waste Sale FGD Waste Disposal	\$/ton \$/ton	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Other Variable O&M Costs	\$/net-MWh	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
SO2 Allowance Market Cost \$/ton		\$500	\$500	\$500	\$500	\$500	\$500	\$500	\$500	\$500
NOX Allowance Market Cost \$/ton		\$3,000	\$3,000	\$3,000	\$3,000	\$3,000	\$3,000	\$3,000	\$3,000	\$3,000
Sulfur Byproduct		¢0,000	\$0,000	\$0,000	\$0,000	\$0,000	\$0,000	\$0,000	\$0,000	¢0,000
5/ton Equivalent Availability Factor	%	۵0 90 00%	۵0 90 00%	۵0 90 00%	۵0 90 00%	\$0 90.00%	۵0 90 00%	۵0 90 00%	۵0 90 00%	۵0 90 00%
Replacement Power cost	\$/gross-kWh	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065
Fuel Cost Delivered	\$/mmBtu	1.70	1.50	1.40	1.70	1.50	1.40	1.70	1.50	1.40
\$/ton, delivered		39.55	17.90	23.47	39.55	17.90	23.47	39.55	17.90	23.47
ECONOMIC ANALYSIS OUTPUT: Annual Capacity Factor Equivalent Full Load Hours	%/yr Hr's	90.00% 7.880	90.00% 7.880	90.00% 7.880	90.00% 7.880	90.00% 7.880	90.00% 7.880	90.00% 7.880	90.00% 7.880	90.00% 7.880
Used for Potential to Emit (MW- hours@100%CF & Availability)	Mw-Hr/yr	2,797,154	2,773,596	2,827,155	4,198,317	4,163,290	4,246,345	6,542,808	6,486,823	6,614,840

		Ultra-Supercritical	Ultra-Supercritical	Ultra-Supercritical	Ultra-Supercritical	Ultra-Supercritical	Ultra-Supercritical	Ultra-Supercritical	Ultra-Supercritical	Ultra-Supercritical
Base set-up for meeting Target BACT limits for NOX & SO2	UNITS	400MW - Ultra- Supercritical PC, Bituminous	400MW - Ultra- Supercritical PC, Lignite	400MW - Ultra- Supercritical PC, PRB	600MW - Ultra- Supercritical PC, Bituminous	600MW - Ultra- Supercritical PC, Lignite	600MW - Ultra- Supercritical PC, PRB	900MW - Ultra- Supercritical PC, Bituminous	900MW - Ultra- Supercritical PC, Lignite	900MW - Ultra- Supercritical PC, PRB
Capital costs	\$1,000									
Direct & Indirect Costs \$1000	\$1,000	1,716,256	1,791,529	1,602,263	2,188,954	2,284,959	2,043,564	2,791,846	2,914,296	2,606,412
\$/kW Capital Cost based on net summer output	\$/net-kw	4,835	5,090	4,466	4,109	4,325	3,792	3,362	3,540	3,105
<u>Capital Costs</u> Costs in year 2008 dollars	\$1,000	1,716,256	1,791,529	1,602,263	2,188,954	2,284,959	2,043,564	2,791,846	2,914,296	2,606,412
Fixed O&M Costs										
Fixed O&M Costs	\$1,000	12,947	12,947	12,947	15,756	15,756	15,756	19,610	19,610	19,610
Variable O&M Costs (\$/vr) Limestone Reagent Lime Reagent to Tyv-FGD Activated Carbon Water Bottom Ash Sale/Disposal Fly ash sale/Disposal AC Waste Disposal AC Waste Disposal AC Waste Disposal Act Waste Disposal Act Waste Disposal Act Waste Disposal Amonoia SCR-Catalyst Replacement Bags for Baghouse SO2 Allowances NOx Allowances Other Sulfur Sale	\$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000	1,419 0 240 417 1,662 2,919 0 442 673 199 624 1,873 1,399 N/A	737 0 1,012 296 1,584 6,330 1,523 9 352 673 228 527 1,978 1,388 N/A	0 678 920 192 273 1,089 288 8 339 673 218 509 1,908 1,414 N/A	2,118 0 387 622 2,481 4,357 0 497 1,010 317 932 2,796 2,100 N/A	1,100 0 1,511 387 2,364 9,449 2,273 14 525 1,010 358 787 2,952 2,083 N/A	0 1.013 1.374 387 408 1.625 533 12 507 1.010 326 759 2,848 2,124 N/A	3,293 0 580 967 3,859 6,776 0 773 1,515 493 1,449 4,348 3,273 N/A	1,711 0 2,349 580 3,676 14,693 3,534 21 817 1,515 557 1,224 4,590 3,245 N/A	0 1,575 2,136 580 634 2,527 828 19 788 1,515 507 1,181 4,428 3,309 N/A
Total	\$1,000	11,013	16,636	8,511	17,617	24,813	12,925	27,325	38,512	20,026
Variable O&M Costs	\$/MWh	3.94	6.00	3.01	3.69	5.69	3.04	3.67	5.67	3.03
Total Non-Fuel O&M Cost Total Non-Fuel O&M Cost	\$1,000 \$/MWh	23,960 8.56	29,583 10.66	21,458 7.59	33,373 7.95	40,569 9.74	28,681 6.75	46,935 7.17	58,122 8.96	39,636 5.99

		Adv. USC								
Base set-up for meeting Target BACT	-	400MW - Adv. Ultra	400MW - Adv. Ultra	400MW - Adv. Ultra	600MW - Adv. Ultra	600MW - Adv. Ultra	600MW - Adv. Ultra	900MW - Adv. Ultra	900MW - Adv. Ultra	900MW - Adv. Ultra
limits for NOX & SO2	UNITS	Supercritical PC,								
minus for NOX & SO2		Bituminous	Lignite	PRB	Bituminous	Lignite	PRB	Bituminous	Lignite	PRB
Number of REW Heaters	+									
Number of ECD Absorbors		0 (FARF) 1	0 (HAKF) 1	0 (HAKF) 1	0 (FARF) 1	0 (FARF) 1	0 (FARF) 2	0 (HAKF) 1	0 (HAKF) 1	0 (HARF) 2
Number of yet ESDa					2		2	2		3
Number of Pulverizers		5	6	5	2	7	6	3		7
	+	5	0	5		· · · · · ·	0	· · · · ·	8	'
SO2		Wet FGD	Wet FGD	Dry FGD	Wet FGD	Wet FGD	Dry FGD	Wet FGD	Wet FGD	Dry FGD
NOX		High Dust SCR								
Primary Particulate Control		Baghouse	Barthouse	Barthouse						
Triniary Farticulate Control		Bughouse	Bughouse	Bagnouse	Bughouse	Bughouse	Bughouse	Bughouse	Bughouse	Bagnouse
Secondary Particulate Control		Wet ESP	None	None	Wet ESP	None	None	Wet ESP	None	None
	1									
Mercury Control		Inherent	ACI-w/BGH	ACI-w/BGH	Inherent	ACI-w/BGH	ACI-w/BGH	Inherent	ACI-w/BGH	ACI-w/BGH
PLANT CONFIGURATION: (Gross-MW	n	1x400	1x400	1x400	1x600	1x600	1x600	1x900	1x900	1x900
NO. OF STEAM GENERATORS		1 Boiler								
Main Steam Pressure	psia	4515	4515	4515	4515	4515	4515	4515	4515	4515
Main Steam Temperature	°F	1300	1300	1300	1300	1300	1300	1300	1300	1300
Hot Reheat Temperature	°F	1300	1300	1300	1300	1300	1300	1300	1300	1300
NO. OF STEAM TURBINES		1 l'urbine	1 Turbine	1 Turbine	1 l'urbine	1 l'urbine	1 I urbine	1 Turbine	1 Turbine	1 I urbine
SOx CONTROL:		Wet FGD	Wet FGD	Dry FGD	Wet FGD	Wet FGD	Dry FGD	Wet FGD	Wet FGD	Dry FGD
Uncontrolled SO2 Emission Rate	lb/mmBtu	4.32	2.14	0.52	4.32	2.14	0.52	4.32	2.14	0.52
Target "Permit" SO ₂ Emission Rate	lb/mmBtu	0.10	0.08	0.08	0.10	0.08	0.08	0.10	0.08	0.08
0									1	
SULFUR REMOVAL percent required										
meet Target "Permit" Rate	%	97.68	96.27	84.76	97.68	96.27	84.76	97.68	96.27	84.76
Trainel Maximum 2002 Bernauel										
Typical Maximum SO2 Removal	<u>.</u>	00.45	07.00	04.70	00.45	07.00	04.70	00.45	07.00	0.4 70
	%	98.15	97.20	84.76	98.15	97.20	84.76	98.15	97.20	84.76
NOX CONTROL:	lle (an an Dési	SCR 0.05	SUR	SUR	30K	SUR	30R	30K	SUR	SCR 0.00
Torget "Dermit" NOv Emission Date	ID/IIIIIDlu	0.25	0.20	0.20	0.25	0.20	0.20	0.25	0.20	0.20
	id/mmbtu	0.07 Badbouse	0.07 Bagbouse	0.07 Bagbouse	0.07 Badbouse	0.07 Badbouse	0.07 Badbouse	0.07 Bagbouse	0.07 Bagbouse	0.07 Badbouse
Target "Bermit" Emission Pate	lb/mmPtu	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015
Specified Design Guarantee from	io/minota	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015
vendor	lb/mmBtu	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
Mercury Control	io/minbra	Inherent	ACI-w/BGH	ACI-w/BGH	Inherent	ACI-w/BGH	ACI-w/BGH	Inherent	ACI-w/BGH	ACI-w/BGH
Cooling Method		MD-CT								
PLANT PERFORMANCE:					-	-		-		
Net Plant Heat Rate, HHV	Btu/net-kWh	8,349	8,882	8,414	8,305	8,834	8,363	8,279	8,808	8,341
Gross Plant Output	Gross-kW	400,003	400,003	400,003	600,004	600,004	600,004	900,000	900,000	900,000
Net Plant Output (based on Annual										
Average Conditions)	Net-kW	356,023	353,361	359,831	534,356	530,399	540,452	832,772	826,437	841,915
Gross Plant Heat Rate, HHV	Btu/gross-kWh	7,431	7,846	7,569	7,396	7,809	7,533	7,660	8,088	7,802
Auxiliary Power	kW	43,980	46,642	40,172	65,648	69,605	59,552	67,228	73,563	58,085
Turbine Heat Rate	Btu/kWh	6,504	6,504	6,504	6,474	6,474	6,474	6,706	6,706	6,706
Primary Fuel Feed Rate per Boiler	lb/hr	255,563	525,904	361,226	381,526	785,109	539,268	592,726	1,219,711	837,787
Primary Fuel Feed Rate per Boiler	Tons/hr	128	263	181	191	393	270	296	610	419
Primary Fuel Feed Rate per Boiler	lb/net-MWh	718	1,488	1,004	714	1,480	998	712	1,476	995
Full load Heat input to Boiler	mmBtu's/hr	2,973	3,139	3,028	4,438	4,685	4,520	6,894	7,279	7,022
Secondary Fuel Feed Rate	lb/hr	N/A								
Secondary Fuel Feed Rate	lb/net-MWh	N/A								
Lime/Limestone Feed Rate	id/nr	22,516	11,701	1,700	33,614	17,468	2,538	52,221	27,137	3,942
Lime/Limestone Feed Rate	ib/net-iViVVh	03.2	33.1 196	4./	02.9	32.9	4./	02.7	32.8	4./
Ammonia Feed Rate(Amryurous)	lb/net-MW/h	234	0 5 2 7	0.400	203	2/0	200	409	40Z	410
Activated Carbon Injection Rate	lb/hr	0.057	110	100	0.492	163	1490	0.491	254	231
Activated Carbon Injection Rate	lb/net-M\\/b	0.00	0.31	0.28	0.00	0.31	0.28	0.00	0.31	0.27
		0.00	0.01	0.20	0.00	0.01	0.20	0.00	0.01	0.21

		Adv. USC								
Base set-up for meeting Target BACT		400MW - Adv. Ultra	400MW - Adv. Ultra	400MW - Adv. Ultra	600MW - Adv. Ultra	600MW - Adv. Ultra	600MW - Adv. Ultra	900MW - Adv. Ultra	900MW - Adv. Ultra	900MW - Adv. Ultra
limits for NOX & SO2	UNITS	Supercritical PC,								
		Bituminous	Lignite	PRB	Bituminous	Lignite	РКВ	Bituminous	Lignite	PKB
Water Consumption										
Cycle Make-up & Misc. Services	gpm	494	614	394	800	800	800	1204	1204	1204
Cooling Tower/lake make-up	gpm	4,272	4,240	4,318	6,412	6,365	6,485	9,993	9,917	10,103
Total Water	gpm	4,766	4,854	4,712	7,213	7,165	7,286	11,197	11,121	11,307
Water Consumption	gal/net-MWh	803	824	786	810	811	809	807	807	806
		Bituminous	Lignite	PRB	Bituminous	Lignite	PRB	Bituminous	Lignite	PRB
FUEL ANALYSIS:										
Ultimate Analysis										
Carbon	%	63.75	36.27	50.25	63.75	36.27	50.25	63.75	36.27	50.25
Sulfur	%	2.51	0.64	0.22	2.51	0.64	0.22	2.51	0.64	0.22
Oxygen	%	6.88	10.76	13.55	6.88	10.76	13.55	6.88	10.76	13.55
Hydrogen	%	4.50	2.42	3.41	4.50	2.42	3.41	4.50	2.42	3.41
Nitrogen	%	1.25	0.71	0.65	1.25	0.71	0.65	1.25	0.71	0.65
Chiorine	%	0.29	0.00	0.00	0.29	0.00	0.00	0.29	0.00	0.00
Ash	%	9.70	17.92	4.50	9.70	17.92	4.50	9.70	17.92	4.50
Moisture	% Dtu/lb	11.12	5 069	27.40	11.12	5 069	27.40	11.12	5 069	27.40
	Blu/ID	11,031	5,900	0,302	11,031	5,900	0,302	11,031	5,900	0,302
CoCO2	0/	00	00	0	00	00	0	00	00	0
MaCO3	/0 0/_	5	5	0	50	5	0	90 5	5	0
CoO	/0 0/	5	5	00	0	5	0	5	5	0
Ash/Inorts	0/	5	5	10	5	5	10	5	5	10
Moisture	%	0	0	0	0	0	0	0	0	0
molotaro	70	Ŭ		•	Ŭ					
STEAM GENERATOR DATA (Per Boile	r):									
Theoretical Air	lb/lb-fuel	8.70	4.57	6.39	8.70	4.57	6.39	8.70	4.57	6.39
Theoretical Dry Gas	lb/lb-fuel	9.09	4.87	6.76	9.09	4.87	6.76	9.09	4.87	6.76
Actual Dry Gas	lb/lb-fuel	10.83	5.78	8.04	10.83	5.78	8.04	10.83	5.78	8.04
Excess Air	%	20	20	20	20	20	20	20	20	20
Total Dry Air Flow	lb/lb-fuel	10.45	5.49	7.67	10.45	5.49	7.67	10.45	5.49	7.67
Ambient Air Moisture	lb/lb-lair	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025
Total Air Flow	lb/lb-fuel	10.71	5.63	7.86	10.71	5.63	7.86	10.71	5.63	7.86
Flue Gas Moisture Flow	lb/lb-fuel	0.774	0.666	0.770	0.774	0.666	0.770	0.774	0.666	0.770
Products of Combustion	lb/lb-fuel	11.61	6.45	8.81	11.61	6.45	8.81	11.61	6.45	8.81
Air Heater Leakage	%	5	5	5	5	5	5	5	5	5
Air Heater Inlet Temperature	°F	100	100	100	100	100	100	100	100	100
Infiltration	%	5	5	5	5	5	5	5	5	5
Exit Flue Gas Temperature	°F	310	305	280	310	305	280	310	305	280
Flue Gas Temp. Uncorrected	°F	319	314	288	319	314	288	319	314	288
Flue Gas Flow Rate (per boiler)	lb/hr	3,217,082	3,661,874	3,443,108	4,802,739	5,466,723	5,140,158	7,461,374	8,492,863	7,985,560
Flue Gas Flow Rate	actm	1,075,903	1,216,704	1,106,630	1,606,201	1,816,388	1,652,069	2,495,339	2,821,861	2,566,594
Combustion Air Flow	ib/nr	2,736,160	2,959,127	2,838,028	4,084,776	4,417,609	4,236,844	6,345,971	6,863,005	6,582,205
Combustion Air Flow	actm	652,687	705,874	676,987	974,388	1,053,782	1,010,662	1,513,776	1,637,110	1,570,127
Stack Flue Gas Temperature	<u>г</u>	135	140	170	135	140	170	135	140	170
Stack Flue Gas Flow Rate per Flue	actm	880,355	1,010,493	1,016,816	1,314,270	1,508,541	1,517,988	2,041,806	2,343,603	2,358,290
Radiation Loss	%	0.198	0.198	0.198	0.187	0.187	0.187	0.177	0.177	0.177
Dry Gas Heat Loss	% 0/	5.89	5.96	5.19	5.89	5.96	5.19	5.89	5.96	5.19
Fuel Moisture Loss	% 0/	1.07	5.84	3.62	1.07	5.84	3.62	1.07	5.84	3.62
nyurugen in Fuel Loss	70	3.89	4.07	4.06	3.89	4.07	4.06	3.89	4.07	4.06
Air Moisture Heat Loss	%	0.237	0.236	0.206	0.237	0.236	0.206	0.237	0.236	0.206
Carbon Loss	70 0/	0.50	0.10	0.10	0.50	0.10	0.10	0.50	0.10	0.10
Mapufacturaria Marcin	/0	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
manulaciulei s margin	/0	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50

		Adv USC	Adv USC	Adv USC	Adv USC	Adv USC	Adv USC	Adv USC	Adv USC	Adv USC
		Auv. 000	Auv. 000	Auv. 000	Auv. 000	Auv. 000	Auv. 000	Auv. 000	Auv. 000	Auv. 000
		400MW - Adv Liltra	400MW - Adv Liltra	400MW - Adv Liltra	600MW - Adv Illtra	600MW - Adv Illtra	600MW - Adv Illtra	900MW - Adv Illtra	000MW - Adv Illtra	900MW - Adv Illtra
Base set-up for meeting Target BACT		400ivivv - Auv. Oilia	400WW - Auv. Ollia	400WW - Auv. Olla	Cumenenities DO	Our energiation DO	OUNIN - AUV. UII a	Sum energiational DO	Sumerentia al DO	Soowww - Auv. Oilia
limits for NOX & SO2	UNITS	Supercritical PC,	Supercritical PC,	Supercritical PC,	Supercritical PC,	Supercritical PC,	Supercritical PC,	Supercritical PC,	Supercritical PC,	Supercritical PC,
		Bituminous	Lignite	PRB	Bituminous	Lignite	PRB	Bituminous	Lignite	PRB
Total Dailag Laga	0/	40.40	47.44	44.07	40.47	47.40	44.00	40.40	47.00	44.05
Total Boller Loss	%	12.48	17.11	14.07	12.47	17.10	14.06	12.46	17.09	14.05
Boiler Efficiency	%	87.52	82.89	85.93	87.53	82.90	85.94	87.54	82.91	85.95
Total Heat Output from Boiler	mmBtu/hr	2,601.62	2,601.62	2,601.62	3,884.43	3,884.43	3,884.43	6,035.40	6,035.40	6,035.40
Main Steam Flow	lb/hr	2,110,500	2,110,500	2,110,500	3,136,701	3,136,701	3,136,701	4,848,440	4,848,440	4,848,440
STEAM TURBINE/CYCLE DATA (Per Tu	urbine):									
Turbine Back Pressure	in HaA	2	2	2	2	2	2	2	2	2
Steam Turbine Gross Output	kW	400.003	400.003	400.003	600.004	600.004	600.004	900.000	900.000	900.000
I P Turbine Exhaust to Condenser	lb/br	1 289 272	1 289 272	1 289 272	1 915 626	1 915 626	1 915 626	2 641 475	2 641 475	2 641 475
Exhaust Energy	Btu/b	1 0/0 80	1 0/0 80	1,200,272	1,010,020	1 0/1 30	1,041,30	1 0/0 10	1 0/0 10	1 0/0 10
Condenante Enthelmy	Dtu/Ib	60.1	60.1	60.1	60.1	60.1	60.1	60.1	60.1	60.1
Condensate Entrapy	Blu/ID	09.1	09.1	09.1	09.1	09.1	09.1	0.505	0.505	0.505
Heat Rejection from LP Turbine	mmBtu/nr	1,253	1,253	1,253	1,862	1,862	1,862	2,565	2,565	2,565
BFP Turbine Drive Steam Flow	ID/Nr	0	0	0	0	0	0	333,700	333,700	333,700
DFF Turbine Exhaust Enthalpy	DIU/ID	U	0	0	0	0	0	1,085	1,085	1,085
Heat Rejection from BFP Turbine	Biu/nr	0	0	0	0	0	0	324	324	324
Total Heat Rejected to Condenser	mmBtu/hr	1,253	1,253	1,253	1,862	1,862	1,862	2,889	2,889	2,889
Circulating Water Temp. Rise	۴	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
Circulating Water Flow	gpm	132,688	132,688	132,688	197,046	197,046	197,046	306,902	306,902	306,902
Total Circ Water Flow	anm	122 600	14	122 699	20	20	20	30	30	30
Service Water Flow	gpm	6 634	6 634	6 634	9.852	9.852	9 852	15 345	15 345	15 345
Total Cooling Water Requirement	apm	139.322	139.322	139.322	206.898	206.898	206.898	322,247	322,247	322.247
	51							- 1		
DI ANT AUXULARY DOWED.										
Induced Dreft Ean Proceure Rice	"wo	44.0	44.0	/1 0	44.0	44.0	41.9	44.0	44.0	11.0
Boiler	"w c	8.0	8.0	80	8.0	8.0	80	8.0	8.0	8.0
Econ Outlet to SCR outlet	"w.c	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
SCR Outlet to AH Outlet	"w.c	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
AH Outlet to ESP Outlet	"w.c	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AH/ESP Outlet to COHPAC or Drv										
FGD/BH Outlet	"w.c	8.0	8.0	16.0	8.0	8.0	16.0	8.0	8.0	16.0
COHPAC/Dry FGD BH Outlet to stack	"w.c	0.0	0.0	2.0	0.0	0.0	2.0	0.0	0.0	2.0
ID inlet to Wet FGD outlet	"w.c	8.0	8.0	0.0	8.0	8.0	0.0	8.0	8.0	0.0
Wet FGD outlet to stack outlet	"W.C	4.0	4.0	0.0	4.0	4.0	0.0	4.0	4.0	0.0
Total ID fan static pressure	"w.c	40.0	40.0	38.0	40.0	40.0	38.0	40.0	40.0	38.0
Percent Total Air to FD Fan	%	70	70	70	70	70	70	70	70	70
Forced Draft Fan Pressure Rise	"wc	20	20	20	20	20	20	20	20	20
Percent Total Air to PA Fan	%	30	30	30	30	30	30	30	30	30
Primary Air Fan Pressure Rise	"wc	40	40	40	40	40	40	40	40	40
Percent Total Air to SA Fan	%	0	0	0	0	0	0	0	0	0
Secondary Air Fan Pressure Rise	"wc	15	15	15	15	15	15	15	15	15
Condensate P/P	%	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36
Circulating Water P/P	%	0.40	0.40	0.40	0.40	0.40	0.40	0.41	0.41	0.41
Cooling Towers	%	0.72	0.72	0.72	0.69	0.69	0.69	0.69	0.69	0.69
Feedwater P/P	%	3.60	3.60	3.60	3.60	3.60	3.60	0.00	0.00	0.00
Subtotal CWS	%	5.08	5.08	5.08	5.04	5.04	5.04	1.46	1.46	1.46
Forced Draft Fan	%	0.32	0.34	0.33	0.32	0.34	0.33	0.33	0.35	0.34
Induced Draft Fan	%	1.85	2.09	1.65	1.84	2.08	1.64	1.91	2.16	1.70
Primary Air Fan	%	0.28	0.30	0.29	0.27	0.30	0.28	0.28	0.31	0.30
Pulverizer	%	0.46	0.95	0.65	0.46	0.94	0.65	0.47	0.98	0.67
Fuel Handling	%	0.11	0.20	0.15	0.11	0.20	0.15	0.11	0.21	0.15
Ash Handling	%	0.17	0.55	0.13	0.17	0.55	0.13	0.18	0.57	0.13
Wet ESP for H2SO4 collection	%	0.15	0.00	0.00	0.15	0.00	0.00	0.15	0.00	0.00
Baghouse	%	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
FGD	%	1.25	0.82	0.45	1.25	0.82	0.38	1.25	0.82	0.38
Transformer Losses	%	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Miscellaneous		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

		Adv. USC								
Base set-up for meeting Target BACT		400MW - Adv. Ultra	400MW - Adv. Ultra	400MW - Adv. Ultra	600MW - Adv. Ultra	600MW - Adv. Ultra	600MW - Adv. Ultra	900MW - Adv. Ultra	900MW - Adv. Ultra	900MW - Adv. Ultra
limits for NOX & SO2	UNITS	Supercritical PC,								
		Bituminous	Lignite	PRB	Bituminous	Lignite	РКВ	Bituminous	Lignite	PRB
TOTAL Auxiliary Power	%	10.99	11.66	10.04	10.94	11.60	9.93	7.47	8.17	6.45
Net Unit Heat Rate	Btu/kWh	8,349	8,882	8,414	8,305	8,834	8,363	8,279	8,808	8,341
Flant Enclency	/0	40.9	30.4	40.0	41.1	36.0	40.0	41.2	30.7	40.9
ECONOMIC ANALYSIS INPUT:										
2008 to COD	years	5	5	5	5	5	5	5	5	5
Start of Engineering to COD	months	55	55	55	55	55	55	55	55	55
Operating Life	years ¢	35	35	35	35	35	35	35	35	35
Fixed Labor Costs	ф ¢	1,107,292	7,107,292 NA	7,107,292 NA	0,550,500	0,000,000	0,000,000	10,009,012	10,609,612	10,009,012
Total Fixed O&M Costs	Ф Ф	7 187 292	7 187 292	7 187 292	8 556 300	8 556 300	8 556 300	10 609 812	10 609 812	10 609 812
Fixed O&M Costs	\$/net kW-yr	20.19	20.34	19.97	16.01	16.13	15.83	12.74	12.84	12.60
Property Taxes	\$/year	3,000,000	3,000,000	3,000,000	3,000,000	3,000,000	3,000,000	3,000,000	3,000,000	3,000,000
	-									
FGD Reagent Cost		15.00	15.00	05.00	15.00	15.00	05.00	15.00	15.00	05.00
Activated Carbon		15.00	15.00	95.00	15.00	15.00	95.00	15.00	15.00	95.00
\$/ton_delivered		2200	2200	2200	2200	2200	2200	2200	2200	2200
SCR Catalyst		2200	2200	2200	2200	2200	2200	2200	2200	2200
\$/M ³		6000	6000	6000	6000	6000	6000	6000	6000	6000
Ammonia (Anhydrous)		0000	0000	0000	0000	0000	0000	0000	0000	0000
\$/ton, delivered		450	450	450	450	450	450	450	450	450
Water Cost										
\$/1000 gallons		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fly Ash Sales	\$/ton	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Fly Ash Disposal	\$/ton	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00
Bottom Ach Disposal	\$/1011 \$/ton	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Activated Carbon waste	\$/ton	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00
FGD Waste Sale	\$/ton	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
FGD Waste Disposal	\$/ton	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00	\$20.00
•										
Other Variable O&M Costs	\$/net-MWh	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
SO2 Allowance Market Cost										
\$/ton		\$500	\$500	\$500	\$500	\$500	\$500	\$500	\$500	\$500
NOX Allowance Market Cost		¢2.000	¢2.000	£2.000	¢2.000	¢2.000	¢2.000	£2.000	¢2.000	£2.000
a/turi Sulfur Pyproduct		\$3,000	\$3,000	\$3,000	\$3,000	\$3,000	\$3,000	\$3,000	\$3,000	\$3,000
\$/ton		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Equivalent Availability Factor	%	90.00%	90.00%	90.00%	90.00%	90.00%	90,00%	90.00%	90.00%	90.00%
Replacement Power cost	\$/gross-kWh	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065
Fuel Cost Delivered	\$/mmBtu	1.70	1.50	1.40	1.70	1.50	1.40	1.70	1.50	1.40
\$/ton, delivered		39.55	17.90	23.47	39.55	17.90	23.47	39.55	17.90	23.47
FCONOMIC ANALYSIS OUTPUT										
Annual Capacity Factor	%/yr	90.00%	90.00%	90.00%	90.00%	90.00%	90.00%	90.00%	90.00%	90.00%
Equivalent Full Load Hours	Hr's	7,880	7,880	7,880	7,880	7,880	7,880	7,880	7,880	7,880
Used for Potential to Emit (MW-										
hours@100%CF & Availability)	Mw-Hr/yr	2,805,462	2,784,486	2,835,469	4,210,725	4,179,542	4,258,762	6,562,241	6,512,322	6,634,288

		Adv. USC	Adv. USC	Adv. USC	Adv. USC	Adv. USC	Adv. USC	Adv. USC	Adv. USC	Adv. USC
Base set-up for meeting Target BACT limits for NOX & SO2	UNITS	400MW - Adv. Ultra Supercritical PC, Bituminous	400MW - Adv. Ultra Supercritical PC, Lignite	400MW - Adv. Ultra Supercritical PC, PRB	600MW - Adv. Ultra Supercritical PC, Bituminous	600MW - Adv. Ultra Supercritical PC, Lignite	600MW - Adv. Ultra Supercritical PC, PRB	900MW - Adv. Ultra Supercritical PC, Bituminous	900MW - Adv. Ultra Supercritical PC, Lignite	900MW - Adv. Ultra Supercritical PC, PRB
Capital costs	\$1,000									
Direct & Indirect Costs \$1000	\$1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA
\$/kW Capital Cost based on net output	\$/net-kw	NA	NA	NA	NA	NA	NA	NA	NA	NA
Capital Costs										
Costs in year 2008 dollars	\$1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fixed O&M Costs										
Fixed O&M Costs	\$1,000	NA	NA	NA	NA	NA	NA	NA	NA	NA
Variable O&M Costs (\$/vr) Limestone Reagent Lime Reagent for Dry-FGD Activated Carbon Water Bottom Ash Disposal/Sale Fly ash sale/Disposal Act Waste Disposal Act Waste Disposal Act Waste Disposal Ammonia SCR-Catalyst Replacement Bags for Baghouse SO2 Allowances NOx Allowances Other Sulfur Sale	\$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000 \$1,000	1,331 0 234 391 1,560 2,739 0 415 673 186 586 1,758 1,403 N/A	692 0 950 290 1,486 5,940 1,429 9 330 673 214 495 1,856 1,393 N/A	0 637 864 186 256 1,022 270 8 318 673 205 477 1,790 1,418 N/A	1,988 0 0 379 584 2,329 4,090 0 467 1,010 297 875 2,624 2,106 N/A	1,033 0 1,418 379 2,218 8,868 2,133 1,3 493 1,010 336 739 2,770 2,091 N/A	0 950 1,289 379 383 1,525 500 12 475 1,010 306 713 2,673 2,130 N/A	3,088 0 0 570 907 3,618 6,353 0 725 1,515 462 1,359 4,077 3,283 N/A	1,605 0 2,203 570 3,446 13,777 3,314 20 766 1,515 523 1,148 4,304 3,258 N/A	0 1,476 2,003 570 594 2,370 777 18 739 1,515 475 1,107 4,152 3,319 N/A
Total	\$1,000	45,576	15,757	8,126	16,747	23,501	12,344	25,956	36,447	19,115
Variable O&M Costs	\$/MWh	15.76	5.41	2.86	3.50	5.37	2.90	3.48	5.35	2.88
Total Non-Fuel O&M Cost Total Non-Fuel O&M Cost	\$1,000 \$/MWh	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA

APPENDIX B

PC POWER PLANT COST ESTIMATE DETAILS

PQA Greenfield Coal Fired PC Plants Order of Magnitude Cost Study Summary of Estimated Project Costs Based on Bituminous Coal

Unit Size, MW Gross	400	600	900	400	600	900	400	600	900
Unit Size, MW Net	359	539	828	355	533	830	355	533	830
Configuration	Subcritical PC	Subcritical PC	Subcritical PC	Supercritical PC	Supercritical PC	Supercritical PC	Ultra- Supercritical PC	Ultra- Supercritical PC	Ultra- Supercritical PC
						(* 1 1 I			
Land and Land Rights	not included	not included	not included	not included	not included	not included	not included	not included	not included
Structures and Improvements	109,923,000	140,198,000	178,812,000	109,923,000	140,198,000	178,812,000	109,923,000	140,198,000	178,812,000
Boiler Plant	579,411,000	738,995,000	942,532,000	603,553,000	769,786,000	981,804,000	635,319,000	810,301,000	1,033,478,000
Turbine Plant	107,723,000	137,393,000	175,234,000	108,264,000	138,083,000	176,115,000	109,358,000	139,478,000	177,894,000
Misc. Power Plant Equipment	11,540,000	14,719,000	18,773,000	11,540,000	14,719,000	18,773,000	11,540,000	14,719,000	18,773,000
Main Power System	10,059,000	12,829,000	16,363,000	10,059,000	12,829,000	16,363,000	10,059,000	12,829,000	16,363,000
Auxiliary Power System	13,652,000	17,412,000	22,208,000	13,652,000	17,412,000	22,208,000	13,652,000	17,412,000	22,208,000
Emergency Power System	784,000	1,000,000	1,275,000	784,000	1,000,000	1,275,000	784,000	1,000,000	1,275,000
Electrical BOP.	62,835,000	80,141,000	102,214,000	62,835,000	80,141,000	102,214,000	62,835,000	80,141,000	102,214,000
Substation and Switchyard Structures and Facilities	957,000	1,220,000	1,556,000	957,000	1,220,000	1,556,000	957,000	1,220,000	1,556,000
Substation and Switchyard Equipment	9,050,000	11,543,000	14,722,000	9,050,000	11,543,000	14,722,000	9,050,000	11,543,000	14,722,000
Initial Fills	466,000	594,000	758,000	466,000	594,000	758,000	466,000	594,000	758,000
Startup Personnel & Craft Startup Support	4,609,000	5,879,000	7,498,000	4,609,000	5,879,000	7,498,000	4,609,000	5,879,000	7,498,000
Consumables	2,882,000	3,676,000	4,689,000	2,882,000	3,676,000	4,689,000	2,882,000	3,676,000	4,689,000
Overtime Inefficiency & Overtime Premium Pay	49,658,000	63,335,000	80,779,000	49,658,000	63,335,000	80,779,000	49,658,000	63,335,000	80,779,000
Per Diem (Subsistence)	55,537,000	70,833,000	90,342,000	55,537,000	70,833,000	90,342,000	55,537,000	70,833,000	90,342,000
EPC Fees (0%)	-	-	-	-	-	-	-	-	-
Subtotal Direct Project Costs	1,019,086,000	1,299,767,000	1,657,755,000	1,043,769,000	1,331,248,000	1,697,908,000	1,076,629,000	1,373,158,000	1,751,361,000
Indiract Drainat Casta	-	07.016.000	100 707 000	77 009 000	00.366.000	106 704 000	80.361.000	102 405 000	120 724 000
Indirect Project Costs.	76,066,000	97,016,000	123,737,000	17,908,000	99,366,000	126,734,000	80,361,000	102,495,000	130,724,000
Contingency (15%)	164,273,000	209,517,000	267,224,000	168,252,000	214,592,000	273,696,000	173,549,000	221,348,000	282,313,000
Owner's Costs (3%)	32,855,000	41,903,000	53,445,000	33,650,000	42,918,000	54,739,000	34,710,000	44,270,000	56,463,000
Operating Spare Parts (1%)	10,952,000	13,968,000	17,815,000	11,217,000	14,306,000	18,246,000	11,570,000	14,757,000	18,821,000
Escalation (4% Annual Rate)	198,399,000	253,043,000	322,737,000	203,204,000	259,171,000	330,553,000	209,601,000	267,330,000	340,959,000
Interest During Construction (6% Annual Rate)	122,896,000	156,745,000	199,916,000	125,873,000	160,542,000	204,759,000	129,836,000	165,596,000	211,205,000
Subtotal Project Costs	1,624,527,000	2,071,959,000	2,642,629,000	1,663,873,000	2,122,143,000	2,706,635,000	1,716,256,000	2,188,954,000	2,791,846,000
\$/kW Net	4,523	3,844	3,190	4,686	3,982	3,262	4,835	4,109	3,362

Notes:

1. The contracting scheme is based on multiple lump sum contracts. An EPC contract could add an additional 10-15% to the cost of the plant.

2. Total Project Cost represents cost at completion for a project started 01/2009 and completed 12/2013, a 5 year overall schedule.

3. Indirect Project Costs include engineering and construction management.

4. The labor cost is based on Gulf region of the U.S. Adjustments will be required for other regions of the country.

5. The costs provided are within a +/-30% range.

6. Adjustments for Bituminous coal fired plant from PRB coal fired plant:

Smaller Boiler and smaller Boiler Building

Wet FGD with Wet ESP in place of Dry FGD and no Wet ESP

Lined Chimney

Greater Auxiliary Power requirement

Greater Electrical BOP

12301-003 BJD - 12/10/2008 PAG - 12/10/2008

PQA Greenfield Coal Fired PC Plants Order of Magnitude Cost Study Summary of Estimated Project Costs Based on PRB Coal

Unit Size, MW Gross	400	600	900	400	600	900	400	600	900
Unit Size, MW Net	363	545	838	359	539	839	359	539	839
Configuration	Subcritical PC	Subcritical PC	Subcritical PC	Supercritical PC	Supercritical PC	Supercritical PC	Ultra- Supercritical PC	Ultra- Supercritical PC	Ultra- Supercritical PC
Land and Land Rights	not included	not included	not included	not included	not included	not included	not included	not included	not included
Structures and Improvements	109,923,000	140,198,000	178,812,000	109,923,000	140,198,000	178,812,000	109,923,000	140,198,000	178,812,000
Boiler Plant	522,039,000	665,821,000	849,204,000	543,790,000	693,563,000	884,587,000	572,410,000	730,066,000	931,144,000
Turbine Plant	107,723,000	137,393,000	175,234,000	108,264,000	138,083,000	176,115,000	109,358,000	139,478,000	177,894,000
Misc. Power Plant Equipment	11,540,000	14,719,000	18,773,000	11,540,000	14,719,000	18,773,000	11,540,000	14,719,000	18,773,000
Main Power System	10,059,000	12,829,000	16,363,000	10,059,000	12,829,000	16,363,000	10,059,000	12,829,000	16,363,000
Auxiliary Power System	13,600,000	17,346,000	22,123,000	13,600,000	17,346,000	22,123,000	13,600,000	17,346,000	22,123,000
Emergency Power System	784,000	1,000,000	1,275,000	784,000	1,000,000	1,275,000	784,000	1,000,000	1,275,000
Electrical BOP.	61,770,000	78,783,000	100,482,000	61,770,000	78,783,000	100,482,000	61,770,000	78,783,000	100,482,000
Substation and Switchyard Structures and Facilities	957,000	1,220,000	1,556,000	957,000	1,220,000	1,556,000	957,000	1,220,000	1,556,000
Substation and Switchyard Equipment	9,050,000	11,543,000	14,722,000	9,050,000	11,543,000	14,722,000	9,050,000	11,543,000	14,722,000
Initial Fills	466,000	594,000	758,000	466,000	594,000	758,000	466,000	594,000	758,000
Startup Personnel & Craft Startup Support	4,303,000	5,488,000	7,000,000	4,303,000	5,488,000	7,000,000	4,303,000	5,488,000	7,000,000
Consumables	2,692,000	3,433,000	4,378,000	2,692,000	3,433,000	4,378,000	2,692,000	3,433,000	4,378,000
Overtime Inefficiency & Overtime Premium Pay	46,360,000	59,129,000	75,414,000	46,360,000	59,129,000	75,414,000	46,360,000	59,129,000	75,414,000
Per Diem (Subsistence)	51,849,000	66,129,000	84,342,000	51,849,000	66,129,000	84,342,000	51,849,000	66,129,000	84,342,000
EPC Fees (0%)	-	-	-	-	-	-	-	-	-
Subtotal Direct Project Costs	953,115,000	1,215,625,000	1,550,436,000	975,407,000	1,244,057,000	1,586,700,000	1,005,121,000	1,281,955,000	1,635,036,000
	-								
Indirect Project Costs.	71,141,000	90,735,000	115,726,000	72,806,000	92,858,000	118,433,000	75,024,000	95,687,000	122,041,000
Contingency (15%)	153,638,000	195,954,000	249,924,000	157,232,000	200,537,000	255,770,000	162,022,000	206,646,000	263,562,000
Owner's Costs (3%)	30,728,000	39,191,000	49,985,000	31,446,000	40,107,000	51,154,000	32,404,000	41,329,000	52,712,000
Operating Spare Parts (1%)	10,243,000	13,064,000	16,662,000	10,482,000	13,369,000	17,051,000	10,801,000	13,776,000	17,571,000
Escalation (4% Annual Rate)	185,555,000	236,661,000	301,843,000	189,895,000	242,196,000	308,902,000	195,679,000	249,574,000	318,313,000
Interest During Construction (6% Annual Rate)	114,940,000	146,597,000	186,973,000	117,628,000	150,026,000	191,347,000	121,212,000	154,597,000	197,177,000
Subtotal Project Costs	1,519,360,000	1,937,827,000	2,471,549,000	1,554,896,000	1,983,150,000	2,529,357,000	1,602,263,000	2,043,564,000	2,606,412,000
							· · · · ·		
\$/kW Net	4,186	3,555	2,951	4,332	3,679	3,015	4,466	3,792	3,105

Notes:

1. The contracting scheme is based on multiple lump sum contracts. An EPC contract could add an additional 10-15% to the cost of the plant.

2. Total Project Cost represents cost at completion for a project started 01/2009 and completed 12/2013, a 5 year overall schedule.

3. Indirect Project Costs include engineering and construction management.

4. The labor cost is based on Gulf region of the U.S. Adjustments will be required for other regions of the country.

5. The costs provided are within a \pm -30% range.

Sargent & Lundy

12301-003 BJD - 12/10/2008 PAG - 12/10/2008

Greenfield Coal Fired PC Plants Order of Magnitude Cost Study Summary of Estimated Project Costs Based on Lignite Coal

PQA

Unit Size, MW Gross	400	600	900	400	600	900	400	600	900
Unit Size, MW Net	356	534	821	352	528	822	352	528	823
Configuration	Subcritical PC	Subcritical PC	Subcritical PC	Supercritical PC	Supercritical PC	Supercritical PC	Ultra- Supercritical PC	Ultra- Supercritical PC	Ultra- Supercritical PC
Land and Land Rights	not included	not included	not included	not included	not included	not included	not included	not included	not included
Structures and Improvements	109,923,000	140,198,000	178,812,000	109,923,000	140,198,000	178,812,000	109,923,000	140,198,000	178,812,000
Boiler Plant	617,968,000	788,172,000	1,005,254,000	643,717,000	821,013,000	1,047,140,000	677,597,000	864,224,000	1,102,253,000
Turbine Plant	107,723,000	137,393,000	175,234,000	108,264,000	138,083,000	176,115,000	109,358,000	139,478,000	177,894,000
Misc. Power Plant Equipment	11,540,000	14,719,000	18,773,000	11,540,000	14,719,000	18,773,000	11,540,000	14,719,000	18,773,000
Main Power System	10,059,000	12,829,000	16,363,000	10,059,000	12,829,000	16,363,000	10,059,000	12,829,000	16,363,000
Auxiliary Power System	13,652,000	17,412,000	22,208,000	13,652,000	17,412,000	22,208,000	13,652,000	17,412,000	22,208,000
Emergency Power System	784,000	1,000,000	1,275,000	784,000	1,000,000	1,275,000	784,000	1,000,000	1,275,000
Electrical BOP.	62,835,000	80,141,000	102,214,000	62,835,000	80,141,000	102,214,000	62,835,000	80,141,000	102,214,000
Substation and Switchyard Structures and Facilities	957,000	1,220,000	1,556,000	957,000	1,220,000	1,556,000	957,000	1,220,000	1,556,000
Substation and Switchyard Equipment	9,050,000	11,543,000	14,722,000	9,050,000	11,543,000	14,722,000	9,050,000	11,543,000	14,722,000
Initial Fills	466,000	594,000	758,000	466,000	594,000	758,000	466,000	594,000	758,000
Startup Personnel & Craft Startup Support	4,811,000	6,136,000	7,826,000	4,811,000	6,136,000	7,826,000	4,811,000	6,136,000	7,826,000
Consumables	3,009,000	3,838,000	4,895,000	3,009,000	3,838,000	4,895,000	3,009,000	3,838,000	4,895,000
Overtime Inefficiency & Overtime Premium Pay	51,836,000	66,113,000	84,322,000	51,836,000	66,113,000	84,322,000	51,836,000	66,113,000	84,322,000
Per Diem (Subsistence)	57,973,000	73,940,000	94,305,000	57,973,000	73,940,000	94,305,000	57,973,000	73,940,000	94,305,000
EPC Fees (0%)	-	-	-	-	-	-	-	-	-
Subtotal Direct Project Costs	1,062,586,000	1,355,248,000	1,728,517,000	1,088,876,000	1,388,779,000	1,771,284,000	1,123,850,000	1,433,385,000	1,828,176,000
Indirect Drainet Costs	-	101 159 000	120 010 000	91 275 000	102 660 000	122 211 000	83 885 000	106 080 000	126 457 000
Indirect Project Costs.	171,285,000	218 461 000	129,019,000	175 522 000	103,000,000	132,211,000	181 160 000	231 056 000	130,437,000
Contingency (15%)	171,263,000	218,401,000	278,030,000	175,525,000	223,000,000	285,524,000	181,100,000	231,030,000	294,095,000
Owner's Costs (3%)	34,257,000	43,692,000	55,726,000 18,575,000	35,105,000	44,773,000	57,105,000	30,232,000	46,211,000	10 646 000
Operating Spare Parts (1%)	11,419,000	14,564,000	16,575,000	211.085.000	14,924,000	19,035,000	12,077,000	15,404,000	19,646,000
Escalation (4% Annual Rate)	200,867,000	203,843,000	330,512,000	211,985,000	270,371,000	344,838,000	218,794,000		355,914,000
Interest During Construction (6% Annual Rate)	128,143,000	103,437,000	208,451,000	131,313,000	107,480,000	213,000,000	135,531,000	172,859,000	220,469,000
Subtotal Project Costs	1,093,870,000	2,160,403,000	2,755,430,000	1,/35,//9,000	2,213,853,000	2,823,000,000	1,791,529,000	2,284,959,000	2,914,290,000
\$/kW Net	4,760	4,045	3,357	4,931	4,190	3,433	5,090	4,325	3,540

Notes:

1. The contracting scheme is based on multiple lump sum contracts. An EPC contract could add an additional 10-15% to the cost of the plant.

2. Total Project Cost represents cost at completion for a project started 01/2009 and completed 12/2013, a 5 year overall schedule.

3. Indirect Project Costs include engineering and construction management.

4. The labor cost is based on Gulf region of the U.S. Adjustments will be required for other regions of the country.

5. The costs provided are within a $\pm -30\%$ range.

6. Adjustments for Lignite fired plant from Bituminous coal fired plant:

Larger Boiler and larger Boiler Building

No Wet ESP

Larger diameter Chimney

Smaller Limestone Handling & Gypsum Handling

Larger Bottom Ash & Fly Ash Handling

No Car Dumper and no Loop Track

Larger Coal Handling

Sargent & Lundy

12301-003 MNO - 10/24/2008 PFE - 10/27/2008 Revised 11/7/2008

APPENDIX C

PC POWER PLANT HEAT BALANCES

APPENDIX D

PC POWER PLANT HEAT BALANCE CALCULATION DETAILS

NET TURBINE HEAT RATE

Estimating net turbine heat rate was based on the assumptions described below.

1. Steam Turbine Predicted Performance

Steam turbine performance is reported as heat rate (Btu/kWh). This is a measure of the thermal heat energy provided to the steam cycle and the generated electrical output. Heat rate is related to the overall steam cycle efficiency.

The most common method of predicting steam turbine performance is the Spencer Cotton Cannon (SCC) method. This method, developed by General Electric and published in the 1960s, is used in most commercially available heat balance programs. However, due to modern steam turbine improvements in blade design and configurations for intermediate-pressure (IP) and low-pressure (LP) sections, the turbine section efficiencies are about 2% better than what would be predicted by SCC. This has been confirmed by comparing predicted performance to performance received from steam turbine manufacturers.

The high-pressure (HP) steam turbine design condition is at the operating condition corresponding to the maximum inlet steam flow rate with the maximum pressure and temperature. At this condition, it is assumed that the control valve is in the valve-wide-open position, thus establishing a throttle flow ratio of 1.0.

A 2.0% pressure drop is accounted for across the control valve at the inlet to the turbine. For opposed-flow HP-IP turbine sections, the heat balance calculation accounts for the shaft/seal leakage that occurs from the HP to the IP steam turbine. This leakage is approximated at 2.2% of the main steam flow rate into the turbine. It is assumed that it exits the HP section just before the governing stage and mixes with the hot reheat steam flow entering the IP steam turbine. The HP steam turbine discharge pressure generally is 20-25% of the steam pressure entering the turbine.

For the LP section, additional losses must be accounted for due to steam exhausting from the turbine into the condenser. These losses are primarily due to turbulent flow and directional changes when exiting the turbine. These losses are calculated using the "exhaust loss curve," which is unique for different last-stage blade lengths and LP frame sizes.

Using manufacturer-developed exhaust loss curves, the LP section last-stage blade length and related annulus area are analyzed with the purpose of minimizing the exhaust losses. The SCC method provides the predicted exhaust loss for a given blade length as a function of the exhaust steam velocity. The blade length used in performance analyses is selected to minimize exhaust losses (Btu/lb) and still maintain a reasonable exhaust velocity.

Because the LP turbine exhaust pressure can significantly affect exhaust losses, the condenser pressure is held constant at 2" HgA to provide comparable results between all cases.

2. Generator

The steam turbine generator is modeled with a 0.85 power factor, and a coolant pressure of 74.7 psia. The mechanical and electrical loss is approximated by 1.5-2.0% of the gross generator output.

3. Condensate Pump

The condensate pump discharge pressure is assumed to be 250 psia, with an overall pump efficiency of 85%.

4. Feedwater Heaters

When extraction steam from the steam turbines is used to heat the feedwater, this method of heating the boiler feedwater is known as regenerative feedwater heating. For a typical subcritical design, the cycle is designed with four LP and two HP feedwater heaters, with a direct-contact deaerating feedwater heater for seven stages of feedwater heating. For a supercritical and ultra-supercritical cycle, a HARP (heater above reheat point) feedwater heater is added to the cycle. These are established feedwater heater arrangements that have proven to be economically beneficial.

5. Boiler Feedwater Pump

For units operating below 650 MW, motor-driven boiler feed pumps are preferred. The boiler feedwater pump discharge pressure typically is designed as 125% of the main steam pressure into the HP turbine, and with a pump efficiency of 85%. For motor-driven feedwater pumps the motor efficiency of 95% is also included.

6. Boiler Feed Pump Turbine Drive

For units operating above 650 MW, a boiler feed pump turbine drive is normally selected. The usual steam source for these turbine drives is from IP extraction steam at normal unit loads, and main steam at low-unit loads and bypass cases. The boiler feed pump turbine drive exhaust pressure is assumed as 0.5 in.Hg Abs. greater than the condenser operating pressure. The turbine drive efficiency is calculated using the SCC method.

7. System Pressure Drops

The pressure drop characteristics of each pipeline, at the design condition, are listed in the following table:

	Pressure Drop
Reheat system	8.0% ultra-supercritical 8.0% supercritical 10.0% subcritical
Extraction line	5.0%
Turbine flange	3.0%
BFP turbine drive	3.0%

8. Turbine Heat Rates

Turbine heat rate is a measure of steam turbine efficiency as defined by the following equation:

(Note that the definition of gross turbine heat rate and net turbine heat rate depends on whether the boiler feed pump is motor driven or turbine driven.)

 $\begin{aligned} \text{Heat Rate } [\text{Btu/kWh}] &= \frac{\text{Heat added to turbine cycle } [\text{Btu/hr}]}{\text{Generator Output[kW]}} \\ \text{Heat Input} &= \text{Q}_{\text{T}}(\text{H}_{\text{T}} - \text{H}_{\text{FW}}) + \text{Q}_{\text{Rhtr}}(\text{H}_{\text{HRH}} - \text{H}_{\text{CRH}}) \\ \text{Where:} \qquad \text{Q}_{\text{T}} &= \text{Throttle flow } [\text{lb/hr}] \\ \qquad \text{Q}_{\text{Rhtr}} &= \text{Reheater flow } [\text{lb/hr}] \end{aligned}$

 H_T = Throttle enthalpy [BTU/lb]

H_{FW} = Final feedwater enthalpy [BTU/lb]

H_{HRH} = Enthalpy leaving reheater [BTU/lb]

H_{CRH} = Enthalpy entering reheater [BTU/lb]

For cycles with motor driven boiler feed pump:

Gross turbine heat rate $[Btu/kWh] = \frac{Heat Input [Btu/hr]}{Generator Output[kW]}$

Net turbine heat rate $[Btu/kWh] = \frac{Heat Input [Btu/hr]}{Generator Output[kW] - Power to Motor [kW]}$

For cycles with steam driven boiler feed pump:

Gross turbine heat rate
$$[Btu/kWh] = \frac{Heat Input [Btu/hr]}{Generator Output[kW] + Auxiliary Turbine Output[kW]}$$

Net turbine heat rate $[Btu/kWh] = \frac{Heat Input [Btu/hr]}{Generator Output[kW]}$

The net turbine heat rate is used to estimate the net unit heat rate by correcting it for boiler efficiency and auxiliary power.

BOILER EFFICIENCY

The boiler efficiency is estimated according to ASME guidelines. The inputs required for the boiler efficiency estimation include the following:

- Coal composition
- Ambient air temperature, humidity
- Excess air
- Uncorrected air heater outlet temperature

This information is used to calculate the following losses associated with un-recovered heat from the burned fuel:

- Radiation losses
- Sensible heat with dry flue gas
- Latent and sensible heat with water vapor from the fuel, moisture in combustion air, and the combustion of hydrogen in fuel
- Carbon loss, assumed as 0.5% for bituminous coal and 0.1% for PRB and lignite
- Unaccounted losses, 0.5% for all fuels
- Manufacturer's margin, 0.2% for all fuels

The air heater outlet temperature was estimated based on the sulfuric acid dew point. The sulfuric acid dew point was calculated for all three coals with estimated SO_3 concentrations at the air heater outlet. A 20°F margin was added to the acid dew point, which is a typical practice in the industry to eliminate the possibility of sulfuric acid condensation at the cold end of air heater and the downstream equipment.

AUXILIARY POWER ESTIMATION

The auxiliary power included the following categories:

- Condensate pumps
- Circulating water pumps
- Cooling towers
- Forced draft (FD) fan
- Induced draft (ID) fan
- Primary air (PA) fan
- Pulverizers
- Fuel handling
- Ash handling
- Baghouse
- Wet FGD for bituminous coal and lignite, dry FGD for PRB, wet ESP for bituminous coal
- Transformer losses
- Miscellaneous, 1% margin for all fuels

The pressure drop for the total system was estimated for FD and ID fans.

NET UNIT HEAT RATE

Net unit heat rate (NUHR) is a measure of overall plant efficiency and accounts for steam turbine efficiency, boiler efficiency, and auxiliary power demands.

 $NUHR [Btu/kWh] = \frac{\text{Net Turbine Heat Rate [Btu/kWh]}}{\text{Boiler Efficiency[\%] / 100 × (1 - (Auxiliary Power / 100[\%]))}}$

Plant Efficiency:

Plant Efficiency [%] = $\frac{3412 \text{ [Btu / kWh]}}{\text{NUHR [Btu / kWh]}} \times 100$

APPENDIX E

SC AND IGCC POWER PLANT PERFORMANCE AND COST ESTIMATE SPREADSHEETS

		Supercritical	Supercritical	Supercritical	subCritical	subCritical	subCritical
Base set-up for meeting Target BACT limits for NOX & SO2	UNITS	685MW - Supercritical PC, Bituminous	685MW - Supercritical PC, Lignite	685MW - Supercritical PC, PRB	726 MW - IGCC, Bituminous	711MW - IGCC, Lignite	727MW - IGCC, PRB
Number of BFW Heaters		8 (HARP)	8 (HARP)	8 (HARP)	NA	NA	NA
Number of FGD Absorbers Number of wet FSPs		1	1	2	2 AGR 2 CYC/CFI T/SCRB	2 AGR 2 CYC/CFI T/SCRB	2 AGR 2 CYC/CELT/SCRB
Number of Pulverizers		6	7	6	5	9	6
502		Wot EGD	Wot EGD	Dry EGD	Sulfinal	Sulfinal	Sulfinal
302		Wetrod	Wetrob	DIVEGO	Sumo	Sumio	Sumo
NOX Primary Particulate Control		High Dust SCR Bagbouse	High Dust SCR Baghouse	High Dust SCR Baghouse	SCR Cyclone/Candle Filter	SCR Cyclone/Candle Filter	SCR Cyclone/Candle Filter
Secondary Particulate Control		Wet ESP	None	None	Wet Scrubber	Wet Scrubber	Wet Scrubber
Mercury Control		Inherent	ACI-w/BGH	ACI-w/BGH	Carbon - Packed Bed	Carbon - Packed Bed	Carbon - Packed Bed
PLANT CONFIGURATION: (Gross-MW)		1×685	1×685	1×685	1x728	1x711	1x727
NO. OF STEAM GENERATORS		1 Boiler	1 Boiler	1 Boiler	2 SGC/HRSG	2 SGC/HRSG	2 SGC/HRSG
Main Steam Pressure	psig	3690	3690	3690	1800	1800	1800
Main Steam Temperature	°F	1050	1050	1050	1000	1000	1000
Hot Reheat Temperature	°F	1100	1100	1100	1000	1000	1000
NO, OF STEAM TURBINES		1 STG	1 STG	1 STG	1 STG	1 STG	1 STG
NO. OF COMBUSTION TURBINES		N/A	N/A	N/A	2 CTG	2 CTG	2 CTG
SOX CONTROL:		Wet FGD	Wet FGD	Drv FGD	Sulfinol	Sulfinol	Sulfinol
Uncontrolled SO2 Emission Rate	lb/mmBtu	4.32	2.14	0.52	4.32	2.14	0.52
Target "Permit" SO ₂ Emission Rate	lb/mmBtu	0.10	0.08	0.08	0.02	0.02	0.02
SULFUR REMOVAL percent required meet Target "Permit" Rate	%	97.68	96.27	84.76	99.54	99.07	96.19
Typical Maximum SO2 Removal							
Guarantee from Vendor	%	98.15	97.20	88.57	99.77	99.53	98.10
NOx CONTROL:		SCR	SCR	SCR	SCR	SCR	SCR
Uncontrolled Rate from Boiler/CTG	lb/mmBtu	0.25	0.20	0.20	0.048	0.050	0.048
	ib/mmBtu	0.07 Boghouso	0.07 Boghouse	0.07 Boghouse			
Target "Permit" Emission Rate	lb/mmBtu	0.015	Daynouse	Daynouse	2 CTC/CFL1/SCRD	2 CTC/CFL1/30RD	2 010/0FL1/30RB
Target Territ Emission Rate	io/minota	0.015	0.015	0.015	0.013	0.015	0.015
Specified Design Guarantee from vendor	lb/mmBtu	0.012	0.012	0.012	0.007	0.007	0.007
Mercury Control		Inherent	ACI-w/BGH	ACI-w/BGH	Carbon - Packed Bed	Carbon - Packed Bed	Carbon - Packed Bed
Cooling Method		MD-CT	MD-CT	MD-CT	MD-CT	MD-CT	MD-CT
PLANT PERFORMANCE:						0.162418206	
Net Plant Heat Rate, HHV	Btu/net-kWh	9,000	9,584	9,063	8,425	8,515	8,062
Gross Plant Output	Gross-kW	685,000	685,000	685,000	726,061	711,238	726,824
Net Plant Output (based on Annual							
Average Conditions)	Net-kW	609,083	603,868	616,041	610,232	595,720	612,365
Gross Plant Heat Rate, HHV	Btu/gross-kvvn	8,002	8,449	8,151	7,081	7,132	6,792
Turbine Heat Rate	Rtu/k\//h	7,005	7 005	7.005	NA	NA	ΝΔ
Primary Fuel Feed Rate per Boiler/Gasifie	lb/hr	471.271	969.784	666.118	221.000	425.000	294,500
Primary Fuel Feed Rate per Boiler/Gasifie	Tons/hr	236	485	333	111	213	147
Primary Fuel Feed Rate per Boiler/Gasifie	lb/net-MWh	774	1,606	1,081	362	713	481
Full load Heat input to Boiler/Gasifier	mmBtu's/hr	5,481	5,788	5,583	2,571	2,536	2,468
Secondary Fuel Feed Rate	lb/hr	N/A	N/A	N/A	N/A	N/A	N/A
Limestone Feed Rate	lb/net-MWh				N/A	N/A	N/A
Lime/Limestone Feed Rate	lb/hr	41,521	21,576	3,134	N/A	N/A	N/A
Lime/Limestone Feed Rate	Ib/net-MWh	68.2	35.7	5.1	N/A	N/A	N/A
Ammonia Feed Rate(Anhydrous)	ID/NF	325	343	331	111	111	111
Activated Carbon Injection Rate	lb/hr	0.554	202	184	0.10Z NA	0.100 NA	0.101 NA
Activated Carbon Injection Rate	lb/net-MWh	0.00	0.33	0.30	NA	NA	NA
		2.00	2.00	0.00			

		Supercritical	Supercritical	Supercritical	subCritical	subCritical	subCritical
Base set-up for meeting Target BACT limits for NOX & SO2	UNITS	685MW - Supercritical PC, Bituminous	685MW - Supercritical PC, Lignite	685MW - Supercritical PC, PRB	726 MW - IGCC, Bituminous	711MW - IGCC, Lignite	727MW - IGCC, PRB
Water Consumption							
Cycle Make-up & Misc. Services	gpm	931	931	931	1,010	910	984
Cooling Tower/lake make-up	gpm	7,309	7,246	7,392	3,866	3,716	3,745
Total Water	gpm	8,240	8,177	8,323	4,876	4,626	4,729
Water Consumption	gal/net-MWh	812	812	811	479	466	463
FUEL ANALYSIS:		Bituminous	Lignite	PRB	Bituminous	Lignite	PRB
Ultimate Analysis							
Carbon	%	63.75	36.27	50.25	63.75	36.27	50.25
Sulfur	%	2.51	0.64	0.22	2.51	0.64	0.22
Oxygen	%	6.88	10.76	13.55	6.88	10.76	13.55
Hydrogen	%	4.50	2.42	3.41	4.50	2.42	3.41
Nitrogen	%	1.25	0.71	0.65	1.25	0.71	0.65
Chlorine	%	0.29	0.00	0.00	0.29	0.00	0.00
Ash	%	9.70	17.92	4.50	9.70	17.92	4.50
Moisture	%	11.12	31.24	27.40	11.12	31.24	27.40
Proximate Analysis							
Moisture	%	11.12	31.24	27.40	11.12	31.24	27.40
Volatile matter	%	34.99			34.99		
Fixed Carbon	%	44.19			44.19		
Ash	%	9.70	17.92	4.50	9.70	17.92	4.50
Gross Higher Heating Value (Dulong)	Btu/lb	11,631	5,968	8,382	11,631	5,968	8,382
SORBENT ANALYSIS:							
CaCO3	%	90	90	0	NA	NA	NA
MgCO3	%	5	5	0	NA	NA	NA
CaO	%	0	0	90	NA	NA	NA
Ash/Inerts	%	5	5	10	NA	NA	NA
Moisture	%	0	0	0	NA	NA	NA
STEAM GENERATOR DATA (Per Boile	<u>r):</u>						
Theoretical Air	lb/lb-fuel	8.70	4.57	6.39	NA	NA	NA
Theoretical Dry Gas	lb/lb-fuel	9.09	4.87	6.76	NA	NA	NA
Actual Dry Gas	lb/lb-fuel	10.83	5.78	8.04	NA	NA	NA
Excess Air	%	20	20	20	NA	NA	NA
Total Dry Air Flow	lb/lb-fuel	10.45	5.49	7.67	NA	NA	NA
Ambient Air Moisture	lb/lb-lair	0.025	0.025	0.025	NA	NA	NA
Total Air Flow	lb/lb-fuel	10.71	5.63	7.86	NA	NA	NA
Flue Gas Moisture Flow	lb/lb-fuel	0.774	0.666	0.770	NA	NA	NA
Products of Combustion	lb/lb-fuel	11.61	6.45	8.81	NA	NA	NA
Air Heater Leakage	%	5	5	5	NA	NA	NA
Air Heater Inlet Temperature	°F	100	100	100	NA	NA	NA
	% *	5	5	5	NA	NA	NA
Exit Flue Gas Temperature	°F	310	305	280	NA NA	NA	NA
Flue Gas Temp. Uncorrected	· F	319	314	288	NA	NA	NA NA
Flue Gas Flow Rate (JCCC apol dry oir)	iD/III	5,952,472	0,752,021	0,349,234	179 621	10A 220 E0E	NA 229.229
Compussion Air Flow	aciiii lb/br	5.045.625	2,243,044	2,040,070	170,031 NA	329,305 NA	220,320
Combustion Air Flow	acfm	1 203 590	1 301 655	1 2/18 306	NA	NA	
Stack Flue Gas Temperature	°F	135	140	170	210	210	210
Stack Flue Gas Flow Rate per Flue	acfm	1,623,422	1,863,384	1,875,057	1,214,183	1,214,790	1,214,487
Radiation Loss	%	0.182	0.182	0.182	N/A	N/A	N/A
Dry Gas Heat Loss	%	5.89	5.96	5.19	N/A	N/A	N/A
Fuel Moisture Loss	%	1.07	5.84	3.62	N/A	N/A	N/A
Hydrogen in Fuel Loss	%	3.89	4.07	4.06	N/A	N/A	N/A
Air Moisture Heat Loss	%	0.237	0.236	0.206	N/A	N/A	N/A
Carbon Loss	%	0.50	0.10	0.10	N/A	N/A	N/A
Unaccounted Loss	%	0.20	0.20	0.20	N/A	N/A	N/A
Manufacturer's Margin	%	0.50	0.50	0.50	N/A	N/A	N/A
PQA Study Technology Spreadsheet Efficiency/Heat Rate for New Coal-Fired Power Plants Supercritical and IGCC

Base set-up for meeting Target BACT binding for MAX 502 UNITS Specifical PC, Bumminous Specifical PC, Upplie Specifical PC, PRB T28 MV -ISCC, Bumminous T11 MW - ISCC, Upplie T27 MW - ISCC, Bumminous T27 MW - ISCC, PRB T27 MW - ISCC, Bumminous T27 MW - ISCC T27 MW - ISCCC T27 MW - ISCC T27 MW - ISCC T27 MW - ISCC T27 MW - ISCCC T2			Supercritical	Supercritical	Supercritical	subCritical	subCritical	subCritical
Base serving for meeting Turnel BAT UNTS Support Title of C, Bit Muminous 72 BWV -IGCC, Bit Muminous 77 MW -IGCC, Bit Muminous 77 MW -IGCC, Bit Muminous Total Boler Loss % 17.30 11.20 NA NA NA Total Boler Loss % 17.30 12.00 NA NA NA Total Boler Loss % 17.30 12.00 NA NA NA Total Man Stean Flow EM 42.98.93 42.98.93 1.499.728 1.409.028 22.05.964 Total Man Stean Flow EM 2 <				•				
Bank Sock ASQL UNTS Supercritical PC, Ignite Supercritical PC, PRB Supercritical PC	Base set-up for meeting Target BACT		685MW -	685MW -	685MW -	726 MW - IGCC	711MW - IGCC	727MW - IGCC
Image: Difference Bituminous Lignite PR Image: Difference	limits for NOX & SO2	UNITS	Supercritical PC,	Supercritical PC,	Supercritical PC,	Bituminous	Lignite	PPB
Total Boline Loss N. 12.46 17.00 14.00 NA NA NA Total Faculoput from Boline ImmBultry 4.788.43 4.788.43 4.788.43 NA NA NA Total Faculoput from Boline ImmBultry 4.788.43 4.788.43 NA NA NA Total Book Processo ImmBultry 4.788.43 4.788.43 4.788.43 NA NA NA Total Book Processo ImmBultry 4.788.43 4.788.43 4.788.43 NA NA NA Total Book Processo ImmBultry 4.248.625 4.248.625 4.248.625 4.248.625 4.248.625 4.248.625 4.248.625 4.257.521 2.257.921 2.207.921	mints for NOX & SOZ		Bituminous	Lignite	PRB	Bitaninous	Liginte	T NB
Baler Efformacy % 87.4 82.91 85.94 NA NA NA Main Steam Row Khr 4.248,925 4.248,925 4.248,925 1.411.228 1.410.067 1.006.894 Steam Turber Cost ED ATA (PP running): 1.006.894 Steam Turber Cost ED ATA (PP running): 2.2 2	Total Boiler Loss	%	12.46	17.09	14.06	NA	NA	NA
Total Head Cupied from Solar mmeBu/h 4.788.43 4.788.43 4.788.43 4.788.43 NA NA NA Stream VulgemeECYCLE DATA (ber Turbing): <	Boiler Efficiency	%	87.54	82.91	85.94	N/A	N/A	N/A
Main Seam Prov bhr 4.248.925 4.248.925 4.248.925 1.491.728 1.410.087 1.508.954 STEAM TURBINE/CYCLE DATA (PC Turbine): 2 <td>Total Heat Output from Boiler</td> <td>mmBtu/hr</td> <td>4,798.43</td> <td>4,798.43</td> <td>4,798.43</td> <td>NA</td> <td>NA</td> <td>NA</td>	Total Heat Output from Boiler	mmBtu/hr	4,798.43	4,798.43	4,798.43	NA	NA	NA
TEAM TURBINE/CYCLE DATA (PPT Turbing): C C C C C Turbine Back Pressure in 19/A 2 </td <td>Main Steam Flow</td> <td>lb/hr</td> <td>4,248,925</td> <td>4,248,925</td> <td>4,248,925</td> <td>1,491,728</td> <td>1,410,067</td> <td>1,508,954</td>	Main Steam Flow	lb/hr	4,248,925	4,248,925	4,248,925	1,491,728	1,410,067	1,508,954
STEAM TURBINECYCLE DATA (Per Turbine); -								
Turbine Bask Pressure in HgA 2 3 1 1 2 1 <th1< t<="" td=""><td>STEAM TURBINE/CYCLE DATA (Per T</td><td>urbine):</td><td></td><td></td><td></td><td></td><td></td><td></td></th1<>	STEAM TURBINE/CYCLE DATA (Per T	urbine):						
Steam Turbus Grass Cuput. KV 665.000 665.000 265.001 220.31 247.285 222.744 Entrans frammy Burls 1.015.0 1.015.0 1.015.0 1.015.0 1.021.0 1.005.0	Turbine Back Pressure	in HgA	2	2	2	2	2	2
Proteine Exhaust Inconcenser Bhr 2.627.921 2.627.921 2.627.921 2.305.964 1.415.00 2.035.964 Condensate Enhand Bhub Bhub 09.1 00.1 00.1 00.1 00.1 00.1 00.0 0.0	Steam Turbine Gross Output	kW	685,000	685,000	685,000	262,031	247,208	262,794
Enhanse Ferrery Bubb (1015-90 1.015-90 1.015-90 1.015-80 (0.21.40 1.015-80) Condensite Enhancy (0.81.1 0.8	LP Turbine Exhaust to Condenser	lb/hr	2,627,921	2,627,921	2,627,921	2,305,964	1,483,005	2,305,964
Condensite Entraligy Bu/b 69.1 70.0 <	Exhaust Energy	Btu/lb	1,015.90	1,015.90	1,015.90	1,015.80	1,021.40	1,015.80
Heat Rejection from LP1 utprine mmBlu/hr 2.488 2.488 2.488 2.483 1.412 2.183 PF1 Utprine Drow Stame Flow Buhr 0	Condensate Enthalpy	Btu/lb	69.1	69.1	69.1	69.1	69.1	69.1
BPT Under Diversitie Builting 0<	Heat Rejection from LP Turbine	mmBtu/hr	2,488	2,488	2,488	2,183	1,412	2,183
Bit Jump Use Use <thuse< th=""> <thuse<< td=""><td>BFP Turbine Drive Steam Flow</td><td>lb/hr</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></thuse<<></thuse<>	BFP Turbine Drive Steam Flow	lb/hr	0	0	0	0	0	0
Instruction Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	BFP Turbine Exhaust Enthalpy	Btu/lb	0.00	0.00	0.00	0.00	0.00	0.00
India Hespitical to Condenser Instrum 2.485 2.485 2.183 1.142 2.183 Cinculating Water Tom, Rise pm 283.04 280.04 220.04 220.00 224.0 12.5 13.155 13.155 13.155 13.155 13.155 13.155 13.155 13.155 13.155 13.154 13.155 13.154 13.155 13.155 13.155 13.154 13.155 13.155 13.155 13.155 13.155 13.155 13.155 13.155 13.155 13.155 13.155 13.155 13.155	Heat Rejection from BFP Turbine	Btu/nr	0	0	0	0	0	0
Carculating Water Flow Open 220,104 220,105 220,206 220,206 220,215 230,215 232,015 <td>Total Heat Rejected to Condenser</td> <td>mmBtu/nr</td> <td>2,488</td> <td>2,488</td> <td>2,488</td> <td>2,183</td> <td>1,412</td> <td>2,183</td>	Total Heat Rejected to Condenser	mmBtu/nr	2,488	2,488	2,488	2,183	1,412	2,183
Circulating water + bw part = bw opin 253,104 253,104 253,104 253,104 225,204 21,203 230,005 230,005 Service Water Flow opin 13,155 13,155 13,155 13,155 11,545	Circulating Water Temp. Rise	°F	20.0	20.0	20.0	20.0	20.0	20.0
Total Cir. Water Flow: gpm 263 (04	Circulating Water Flow	gpm	263,104	263,104	263,104	225,244	191,580	230,896
Sance Water Flow Ippin 13.155 14.154 14.154 <t< td=""><td>Total Circ Water Flow</td><td>apm</td><td>20 263 104</td><td>20 263 104</td><td>20 263 104</td><td>20</td><td>212 864</td><td>230,896</td></t<>	Total Circ Water Flow	apm	20 263 104	20 263 104	20 263 104	20	212 864	230,896
Total Cooling Water Requirement jpm 276,259 276,259 276,259 236,789 224,409 242,411 GAS TURBINE DATA (Per Turbine): Gas Turbine Power BlukWh N/A N/A N/A N/A 232,015 </td <td>Service Water Flow</td> <td>apm</td> <td>13,155</td> <td>13,155</td> <td>13,155</td> <td>11,545</td> <td>11,545</td> <td>11,545</td>	Service Water Flow	apm	13,155	13,155	13,155	11,545	11,545	11,545
GAS TURBINE DATA (Per Turbine): Gas Turbine Power Gross-kW BlukWh N/A N/A N/A 232.015 232.015 232.015 PLANT AUXILIARY POWER: Individed Dial Tar Pressure Rise We 44.0 44.0 41.8 N/A N/A N/A N/A Econ Outlet to SCR outlet Moded Dial Tar Pressure Rise We 6.0 6.0 N/A N/A N/A N/A SCR Outlet to ADD Unlet We 0.0 0.0 0.0 N/A N/A N/A N/A AH-ESP Outlet to SCHACK or Dry FGD/BH Outlet we w.c 8.0 16.0 N/A N/A N/A COHPACDY FOB HO Unlet w.c 8.0 0.0 N/A N/A N/A COHPACDY FOB HO Unlet w.c 4.0 4.0 0.0 N/A N/A N/A Cotter Stack southet w.c 8.0 0.0 0.0 N/A N/A N/A Percent Total AI're DF Fan % 70 70 70 N/A N/A N/A Percent Total AI're DF Fan % 0 0 <t< td=""><td>Total Cooling Water Requirement</td><td>gpm</td><td>276,259</td><td>276,259</td><td>276,259</td><td>236,789</td><td>224,409</td><td>242,441</td></t<>	Total Cooling Water Requirement	gpm	276,259	276,259	276,259	236,789	224,409	242,441
Data Laboration Data Sale N/A N/A N/A N/A 232,015 232,015 232,015 gas Turbine Power Gross-kW Mu/kWh N/A N/A N/A N/A N/A Induced Diaft Fan Pressure Nise wc 4.0 44.0 44.0 N/A N/A N/A Con Dute to SCR ontiet wc 6.0 6.0 6.0 N/A N/A N/A A H4 Outlet to SCR ontiet wc 6.0 6.0 6.0 N/A N/A N/A AHESP Outlet to AHO uniet wc 8.0 8.0 16.0 N/A N/A N/A COHPAC/Dry FGD BH Outlet to stack wc 8.0 8.0 0.0 N/A N/A N/A Ver FGD outlet to stack outlet w.c 4.0 4.0 0.0 N/A N/A N/A Percent Total Air to FD Fan % 70 70 70 N/A N/A N/A Percent Total Air to FD Fan % 0 0 0 N/A N/A N/A <	GAS TURRINE DATA (Por Turbino):							
Olds Didds NVA NVA NVA NVA NVA Z22,013 Z22,013 <t< td=""><td>Con Turbine Dowor</td><td>Cross KW</td><td>NI/A</td><td>NI/A</td><td>NI/A</td><td>222.015</td><td>222.015</td><td>222.015</td></t<>	Con Turbine Dowor	Cross KW	NI/A	NI/A	NI/A	222.015	222.015	222.015
PLANT AUXILIARY POWER: PLANT MUXILIARY POWER: PLANT AUXILIARY POWER:<	Gas Turbine Power	Btu/k/k/b	IN/A	IN/A	IN/A	232,015	232,015	232,015
Data Data Data Pressure Rise wc 44.0 41.8 NA NA NA NA Induced Dial Pressure Rise wc 6.0 6.0 6.0 NA NA NA NA SCR Outlet to Al Outlet W. wc 6.0 6.0 6.0 NA NA NA NA AH Cullet to SSP Outlet to wc 0.0 0.0 0.0 NA NA NA AHESP Outlet to COLPAC or Dry FDDH Outlet W. wc 8.0 8.0 16.0 NA NA NA COHPAC/Dry FGD BH Outlet to stack W. wc 0.0 0.0 0.0 NA NA NA Yeerent Total Air to FD Fan % 70 70 70 NA NA NA Percent Total Air to FD Fan % 70 70 70 NA NA NA Percent Total Air to SA Fan % 0 0 0 NA NA NA Condenster P/P % 0.36 0.36 0.36 NA NA NA<	DI ANT AUXILIARY DOWED.	DIU/KVVII						
Billing Boller for C 8.0 8.0 8.0 8.0 NA NA NA NA Econ Outlet to SRC nutlet for Vx C 6.0 6.0 6.0 8.0 NA NA NA NA A H Outlet to SEP Outlet for Xx C 6.0 6.0 6.0 NA NA NA AH Dutte to SEP Outlet for Xx C 0.0 0.0 0.0 NA NA NA FGDBH Outlet for Stack for Xx C 0.0 0.0 2.0 NA NA NA VERDBH Collet for Stack outlet Xx C 8.0 0.0 0.0 NA NA NA Wet FGD outlet Xx C 4.0 4.0 0.0 NA NA NA Percent Total Air to FD Fan % 70 70 70 NA NA NA Percent Total Air to FD Fan % 30 30 30 NA NA NA Percent Total Air to FD Fan % 0 0 0 NA NA NA	Induced Draft Fan Pressure Rise	"WC	44.0	44.0	41.8	NA	NA	NA
Econ Outlet to SCR Outlet to V.c. 6.0 6.0 6.0 6.0 NA NA NA AH Outlet to SP Outlet V.c. 0.0 0.0 0.0 NA NA NA AHESP Outlet to SP Outlet to stack Vive 8.0 8.0 16.0 NA NA NA COHPACIDY FGD BH Outlet to stack Vive 0.0 0.0 2.0 NA NA NA Di niet to Wet FGD outlet to stack Vive 4.0 4.0 0.0 NA NA NA Vote FGD UBH Outlet to stack Vive 4.0 4.0 0.0 NA NA NA Vive FGD utlet to stack vive v.c 40.0 40.0 38.0 NA NA NA Percent Total Air to FA Fan % 70 70 70 NA NA NA Percent Total Air to FA Fan % 0 0 0 NA NA NA Condensate P/P % 0.36 0.36 0.36 NA NA NA Condensate P/P	Boiler	"w.c	8.0	8.0	8.0	NA	NA	NA
SCR Outlet to AH Outlet tw.c 6.0 6.0 6.0 NA NA NA AH Outlet to ESP Outlet to COHPAC or Dry FG0/GHD Outlet to stack tw.c 8.0 8.0 16.0 NA NA NA COHPAC/Dry FGD BH Outlet to stack tw.c 8.0 0.0 0.0 NA NA NA Dirlet to Wer FGD outlet to stack tw.c 8.0 8.0 0.0 NA NA NA Wei FGD outlet to stack outlet tw.c 4.0 4.0 0.0 NA NA NA Percent Total Air to FD Fan % 70 70 70 NA NA NA Percent Total Air to FD Fan % 70 70 70 NA NA NA Percent Total Air to FD Fan % 30 30 30 NA NA NA Percent Total Air to PA Fan % 0 0 0 NA NA NA Sccndary Air Fan Pressure Rise wc 40 40 40 NA NA NA <t< td=""><td>Econ Outlet to SCR outlet</td><td>"w.c</td><td>6.0</td><td>6.0</td><td>6.0</td><td>NA</td><td>NA</td><td>NA</td></t<>	Econ Outlet to SCR outlet	"w.c	6.0	6.0	6.0	NA	NA	NA
AH JUSP Outlet Corbuit O.0 O.0 O.0 NA NA NA NA FGD/BH Outlet Source 8.0 8.0 16.0 NA NA NA NA COHPAC/OP FGD BH Outlet to stack vitet We 8.0 8.0 0.0 NA NA NA Weit FGD outlet to stack vitet W.c 4.0 4.0 0.0 NA NA NA Procent Total Air to FD Fan % 70 70 70 NA NA NA Percent Total Air to PA Fan % 20 20 20 NA NA NA Percent Total Air to PA Fan % 0 0 0 NA NA NA Secondary Air Fan Pressure Rise 'wc 4.0 40 40 NA NA NA Condensate P/P % 0 0 0 NA NA NA Condensate P/P % 0.36 0.36 NA NA NA Coudensate P/P	SCR Outlet to AH Outlet	"w.c	6.0	6.0	6.0	NA	NA	NA
AP/ESP Outlet to COHPAC or bry FGD/BH Outlet to stack 1w.c 8.0 8.0 NA N	AH Outlet to ESP Outlet	"W.C	0.0	0.0	0.0	NA	NA	NA
COHPAC/Dry FGD BH Outlet Nuc. 8.0 8.0 8.0 16.0 NA NA NA COHPAC/Dry FGD BH Outlet to Stack Outlet Nuc. 8.0 8.0 0.0 2.0 NA NA NA NA Wel FGD outlet to stack outlet Nuc. 4.0 4.0 0.0 NA NA NA Percent Total Air to FD Fan % 70 70 70 NA NA NA Percent Total Air to PA Fan % 70 70 70 NA NA NA Percent Total Air to PA Fan % 30 30 30 NA NA NA Percent Total Air to PA Fan % 0 0 0 NA NA NA Secondary Air Fan Pressure Rise wc 15 15 15 NA NA NA Cordinary Air Fan Pressure Rise 'wc 15 15 NA NA NA Condensate P/P % 0.36 0.36 0.36 NA NA NA	AH/ESP Outlet to COHPAC or Dry							
COMPAC/DMP Fold BH Outlief to stack w.c. 0.0 0.0 2.0 NA NA NA NA Wet FGD outlet to stack outlet fw.c. 4.0 4.0 0.0 NA NA NA NA Total ID fails to stack outlet fw.c. 40.0 40.0 38.0 NA NA NA Percent Total Air to FD Fan % 70 70 70 NA NA NA Percent Total Air to FD Fan % 30 30 30 NA NA NA Percent Total Air to FD Fan % 30 30 30 NA NA NA Percent Total Air to SA Fan %c 0 0 0 NA NA NA Secondary Air Fan Pressure Rise *wc 15 15 NA NA NA Condensate P/P % 0.36 0.36 0.36 NA NA NA Cooldens Towers % 0.60 0.60 0.60 NA NA NA	FGD/BH Outlet	"w.c	8.0	8.0	16.0	NA	NA	NA
Wet FGD outlet to stack outlet W.c. 40.0 40.0 00.0 NA NA NA NA Total ID fan static pressure W.c. 40.0 40.0 38.0 NA NA NA NA Percent Total Air to FD Fan % 70 70 70 NA NA NA NA Percent Total Air to FD Fan % 70 70 70 NA NA NA Percent Total Air to PA Fan % 30 30 30 NA NA NA Percent Total Air to SA Fan % 0 0 0 NA NA NA Percent Total Air to SA Fan % 0.36 0.36 NA NA NA NA Secondary Air Fan Pressure Rise 'wc 15 15 NA NA NA NA Codenset P/P % 0.36 0.36 NA NA NA NA Subtotal CWS % 0.320 3.50 3.50 3.	D inlet to Wet EGD outlet	W.C	0.0	0.0	2.0	NA NA	NA NA	
Total ID fan static pressure w.c. 40.0 40.0 38.0 NA NA NA Percent Total Air to FD Fan % 70 70 70 NA NA NA Forced Draft Fan Pressure Rise *wc 20 20 20 NA NA NA Percent Total Air to PA Fan % 30 30 30 NA NA NA Percent Total Air to SA Fan %c 40 40 40 NA NA NA Secondary Air Fan Pressure Rise *wc 40 0 0 NA NA NA Secondary Air Fan Pressure Rise *wc 15 15 NA NA NA Condensate P/P % 0.36 0.36 0.36 NA NA NA Coolensate P/P % 0.60 0.60 0.60 NA NA NA Subtotal CWS % 4.93 4.93 M.93 NA NA NA Forced Dra	Wet FGD outlet to stack outlet	"w.c	4.0	4.0	0.0	NA	NA	NA
Percent Total Air to FD Fan % 70 70 70 NA NA NA Forced Draft Fan Pressure Rise 'wc 20 20 20 NA NA NA Percent Total Air to PA Fan % 30 30 30 NA NA NA Primary Air Fan Pressure Rise 'wc 40 40 40 NA NA Percent Total Air to SA Fan % 0 0 0 NA NA NA Secondary Air Fan Pressure Rise 'wc 15 15 NA NA NA Condensate P/P % 0.36 0.36 0.36 NA NA NA Condensate P/P % 0.46 0.46 0.46 NA NA NA Subtotal CWS % 4.93 4.93 A.93 NA NA NA Induced Draft Fan % 0.30 0.32 0.31 NA NA NA Induced Draft Fan %	Total ID fan static pressure	"W.C	40.0	40.0	38.0	NA	NA	NA
Percent Total Air to FD Fan % 70 70 70 NA NA NA NA Porced Draft Fan Pressure Rise *wc 20 20 20 NA NA NA NA Primary Air Fan Pressure Rise *wc 40 40 40 NA NA NA NA Percent Total Air to SA Fan % 0 0 0 NA NA NA NA Secondary Air Fan Pressure Rise *wc 15 15 15 NA NA NA Condensate P/P % 0.36 0.36 0.36 NA NA NA Condensate P/P % 0.60 0.60 0.60 NA NA NA Eedwater P/P % 3.50 3.50 3.50 NA NA NA Subtotal CWS % 4.93 4.93 4.93 NA NA NA Induced Draft Fan % 0.30 0.32 0.31 NA								
Proceed Draft Pan Pressure Rise WC 20 20 20 20 NA NA NA NA Percent Total Air to SA Fan % 30 30 30 NA NA NA NA Percent Total Air to SA Fan % 0 0 0 NA NA NA Secondary Air Fan Pressure Rise *wc 15 15 15 NA NA NA Condensate P/P % 0.36 0.36 0.36 NA NA NA Condensate P/P % 0.46 0.46 0.46 NA NA NA Cooling Towers % 0.60 0.60 0.60 NA NA NA Forced Draft Fan % 0.33 4.93 4.93 NA NA NA Induced Draft Fan % 0.30 0.32 0.31 NA NA NA Primary Air Fan Pressure Rise % 0.30 0.32 0.31 NA NA <td>Percent Total Air to FD Fan</td> <td>%</td> <td>70</td> <td>70</td> <td>70</td> <td>NA</td> <td>NA</td> <td>NA</td>	Percent Total Air to FD Fan	%	70	70	70	NA	NA	NA
Percent Total Air to PA Fan % 30 30 30 30 NA NA NA NA Primary Air Fan Pressure Rise *wc 40 40 40 NA NA NA NA Percent Total Air to SA Fan % 0 0 0 NA NA NA NA Secondary Air Fan Pressure Rise *wc 15 15 15 NA NA NA NA Condensate P/P % 0.36 0.36 0.36 NA NA NA NA Cooling Towers % 0.60 0.60 0.60 NA NA NA Subtotal CWS % 4.93 4.93 4.93 NA NA NA Subtotal CWS % 0.34 0.37 0.36 NA NA NA Primary Air Fan % 0.30 0.32 0.31 NA NA NA Forced Draft Fan % 0.30 0.32 0.31	Forced Draft Fan Pressure Rise	"WC	20	20	20	NA	NA	NA
Primary Air Fan Pressure Rise WC 40 40 40 NA NA NA NA Percent Total Air to SA Fan % 0 0 0 NA NA NA NA Secondary Air Fan Pressure Rise 'wc 15 15 15 NA NA NA NA Condensate P/P % 0.36 0.36 0.36 NA NA NA NA Cordensate P/P % 0.46 0.46 0.46 NA NA NA NA Cooling Towers % 0.60 0.60 0.60 NA NA NA Subtotal CWS % 4.93 4.93 4.93 NA NA NA Induced Draft Fan % 0.30 0.32 0.31 NA NA NA Pulwary Air Fan % 0.30 0.32 0.31 NA NA NA Pulwary Air Fan % 0.50 1.02 0.70 NA	Percent Total Air to PA Fan	%	30	30	30	NA	NA	NA
Percent rotat Air to SA Fain % 0 0 0 0 0 0 NA NA NA NA NA Secondary Air Fan % 0.36 0.36 0.36 NA NA NA NA Condensate P/P % 0.46 0.46 0.46 NA NA NA NA Cooling Towers % 0.60 0.60 0.60 NA NA NA Feedwater P/P % 3.50 3.50 3.50 NA NA NA Subtotal CWS % 0.34 0.37 0.36 NA NA NA Induced Draft Fan % 0.30 0.32 0.31 NA NA NA Primary Air Fan % 0.50 1.02 0.70 NA NA NA Pulverizer % 0.50 1.02 0.70 NA NA NA Baghouse % 0.12 0.22 0.16 NA <td>Primary Air Fan Pressure Rise</td> <td>WC 0/</td> <td>40</td> <td>40</td> <td>40</td> <td>NA NA</td> <td>NA</td> <td>NA</td>	Primary Air Fan Pressure Rise	WC 0/	40	40	40	NA NA	NA	NA
SecUndary All Pair Pressure Kise WC 13 13 13 14 NA	Secondary Air Ean Brassura Bias	% "wo	0	15	0	NA NA	NA NA	
Concensate P/P % 0.36 0.36 0.36 NA NA NA NA Circulating Water P/P % 0.60 0.60 0.60 NA NA NA NA Cooling Towers % 0.60 0.60 0.60 NA NA NA NA Feedwater P/P % 3.50 3.50 3.50 NA NA NA NA Subtotal CWS % 4.93 4.93 4.93 NA NA NA NA Forced Draft Fan % 0.34 0.37 0.36 NA NA NA Primary Air Fan % 0.30 0.32 0.31 NA NA NA Pulverizer % 0.50 1.02 0.70 NA NA NA Fuel Handling % 0.12 0.22 0.16 NA NA NA Wet ESP for H2SO4 collection % 0.12 0.12 0.12 NA NA <td>Secondary All Fall Flessure Rise</td> <td>WC</td> <td>10</td> <td>15</td> <td>10</td> <td>NA NA</td> <td>NA NA</td> <td>NA NA</td>	Secondary All Fall Flessure Rise	WC	10	15	10	NA NA	NA NA	NA NA
Childhalfy Water P/P % 0.40 0.46 0.46 0.48 NA NA NA NA Cooling Towers % 0.60 0.60 0.60 NA NA NA NA Feedwater P/P % 3.50 3.50 3.50 NA NA NA NA Subtotal CWS % 4.93 4.93 4.93 NA NA NA NA Forced Draft Fan % 0.34 0.37 0.36 NA NA NA Primary Air Fan % 0.30 0.32 0.31 NA NA NA Pulverizer % 0.50 1.02 0.70 NA NA NA Fuel Handling % 0.12 0.22 0.16 NA NA NA Wet ESP for H2SO4 collection % 0.15 0.00 0.00 NA NA NA FGD % 0.12 0.12 0.12 NA NA	Condensate P/P	%	0.30	0.36	0.36	NA NA	NA NA	
Cooling Towers % 0.00 0.00 0.00 0.00 NA NA NA Subtotal CWS % 4.93 4.93 4.93 NA NA NA NA Subtotal CWS % 0.34 0.37 0.36 NA NA NA NA Forced Draft Fan % 0.34 0.37 0.36 NA NA NA NA Induced Draft Fan % 0.30 0.32 0.31 NA NA NA Primary Air Fan % 0.50 1.02 0.70 NA NA NA Pulverizer % 0.12 0.22 0.16 NA NA NA Feel Handling % 0.12 0.22 0.16 NA NA NA Wet ESP for H2SO4 collection % 0.12 0.12 0.12 NA NA NA FGD % 0.12 0.12 0.12 NA NA NA		70 0/.	0.46	0.46	0.46	NA NA	NA NA	
Technicit % 3.30 3.30 3.30 3.30 3.30 3.40 NA NA NA Subtrait CVNS % 4.93 4.93 4.93 NA NA NA NA NA Forced Draft Fan % 0.34 0.37 0.36 NA NA NA NA Primary Air Fan % 0.30 0.32 0.31 NA NA NA NA Pulverizer % 0.50 1.02 0.70 NA NA NA Fuel Handling % 0.12 0.22 0.16 NA NA NA Ash Handling % 0.12 0.22 0.16 NA NA NA Wet ESP for H2SO4 collection % 0.12 0.12 0.12 NA NA NA FGD % 0.12 0.12 0.12 NA NA NA FGD % 0.20 0.20 0.20 0.20	Ecodivision P/P	70 0/.	2.50	2.50	2.50	NA NA	NA	NA
Solution of Solutio	Subtotal CWS	70 0/.	4.02	1.02	3.50	NA NA	NA	NA
Induced Draft Fan % 0.34 0.37 0.30 NA NA NA Primary Air Fan % 0.30 0.32 0.31 NA NA NA NA Pulverizer % 0.50 1.02 0.70 NA NA NA Fuel Handling % 0.12 0.22 0.16 NA NA NA Ash Handling % 0.19 0.60 0.14 NA NA NA Wet ESP for H2SO4 collection % 0.12 0.12 0.12 NA NA NA Baghouse % 0.12 0.12 0.12 NA NA NA FGD % 0.12 0.12 0.12 NA NA NA FGD % 0.12 0.12 0.12 NA NA NA Wet ESP for H2SO4 collection % 0.12 0.12 0.12 NA NA NA FGD % 0.20 </td <td>Forced Draft Fan</td> <td>70 0/.</td> <td>4.93</td> <td>4.93</td> <td>4.93</td> <td>NA NA</td> <td>NA</td> <td></td>	Forced Draft Fan	70 0/.	4.93	4.93	4.93	NA NA	NA	
Induced Drant and % 1.59 2.23 1.76 NA NA NA Primary Air Fan % 0.30 0.32 0.31 NA NA NA NA Pulverizer % 0.50 1.02 0.70 NA NA NA Fuel Handling % 0.12 0.22 0.16 NA NA NA Ash Handling % 0.19 0.60 0.14 NA NA NA Wet ESP for H2SO4 collection % 0.15 0.00 0.00 NA NA NA Baghouse % 0.12 0.12 0.12 NA NA NA FGD % 0.12 0.12 0.12 NA NA NA FGD % 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20<	Induced Draft Fan	70 0/.	1.00	2.25	1 79	NA NA	NA	
Initial Yah Tahi 70 0.50 0.52 0.51 NA NA NA Pulverizer % 0.50 1.02 0.70 NA NA NA Fuel Handling % 0.12 0.22 0.16 NA NA NA Ash Handling % 0.19 0.60 0.14 NA NA NA Wet ESP for H2SO4 collection % 0.15 0.00 0.00 NA NA NA Baghouse % 0.12 0.12 0.12 NA NA NA FGD % 0.12 0.12 0.12 NA NA NA FGD % 0.20 0.	Primany Air Fan	70 0/_	0.30	0.32	0.31	NA	NA	NA
Indicating % 0.12 0.22 0.16 NA NA NA Ash Handling % 0.19 0.60 0.14 NA NA NA Wet ESP for H2SO4 collection % 0.15 0.00 0.00 NA NA NA Baghouse % 0.12 0.12 0.12 0.12 NA NA NA FGD % 1.25 0.82 0.38 NA NA NA Transformer Losses % 0.20 <td>Pulverizer</td> <td>0/_</td> <td>0.50</td> <td>1.02</td> <td>0.70</td> <td>NA</td> <td>NA</td> <td>NA</td>	Pulverizer	0/_	0.50	1.02	0.70	NA	NA	NA
Note interang No 0.12 0.12 0.12 0.10 NA NA Wet ESP for H2SO4 collection % 0.19 0.60 0.14 NA NA NA Baghouse % 0.12 0.12 0.12 NA NA NA FGD % 1.25 0.82 0.38 NA NA NA Transformer Losses % 0.20 0.20 0.20 0.20 0.20 0.20	Fuel Handling	%	0.00	0.22	0.16	NΔ	NA	NΔ
Wet ESP for H2SO4 collection % 0.15 0.00 0.17 NA NA NA Baghouse % 0.12 0.12 0.12 NA NA NA FGD % 1.25 0.82 0.38 NA NA NA Transformer Losses % 0.20 0.20 0.20 0.20 0.20 0.20	Ash Handling	%	0.12	0.60	0.10	NA	NA	ΝΔ
Note of the loss of	Wet ESP for H2SO4 collection	%	0.15	0.00	0.00	NA	NA	NΔ
FGD % 0.12 0.12 0.12 101 104 104 FGD % 1.25 0.82 0.38 NA NA NA Transformer Losses % 0.20 0.20 0.20 0.20 0.20 0.20 0.20 Miscellaneous . 1.00 1.00 0.80 0.80 0.80	Badhouse	%	0.13	0.12	0.00	NΔ	NΔ	NA
Transformer Losses % 0.20	EGD	%	1.25	0.82	0.38	NA	NA	NA
Miscellanceus 1.00 1.00 1.00 0.80 0.80 0.80	Transformer Losses	%	0.20	0.20	0.20	0.20	0.20	0.20
	Miscellaneous		1.00	1.00	1.00	0.80	0.80	0.80

PQA Study Technology Spreadsheet Efficiency/Heat Rate for New Coal-Fired Power Plants Supercritical and IGCC

		Supercritical	Supercritical	Supercritical	subCritical	subCritical	subCritical
Base set-up for meeting Target BACT limits for NOX & SO2	UNITS	685MW - Supercritical PC, Bituminous	685MW - Supercritical PC, Lignite	685MW - Supercritical PC, PRB	726 MW - IGCC, Bituminous	711MW - IGCC, Lignite	727MW - IGCC, PRB
TOTAL Auxiliary Power	% Rtu/kWb	11.08	11.84	10.07	15.95	16.24	15.75
Plant Efficiency	%	37.9	35.6	37.6	40.5	40.1	42.3
	70	51.5	55.0	51.0	40.5	40.1	42.0
2008 to COD	veare	5	5	5	7	7	7
Start of Engineering to COD	months	55	55	55	79	79	79
Operating Life	years	35	35	35	35	35	35
Levelized Fixed Charge Rate							
%/yr over operating life	%/yr	17.32%	17.32%	17.32%	17.32%	17.32%	17.32%
Total Staffing	¢	100	100	100	120	120	120
Fixed Labor Costs	\$ \$	8.556.300	8.556.300	8.556.300	10.267.560	10.267.560	10.267.560
Fixed Non-Labor O&M Costs	\$	8,014,500	8,014,500	8,014,500	19,603,437	24,031,042	19,942,349
Total Fixed O&M Costs	\$	16,570,800	16,570,800	16,570,800	29,870,997	34,298,602	30,209,909
Fixed O&M Costs	\$/net kW-yr	27.21	27.44	26.90	48.95	57.58	49.33
Property Taxes	\$/year	3,000,000	3,000,000	3,000,000	3,000,000	3,000,000	3,000,000
FGD Reagent Cost \$/ton, delivered Activated Carbon		15.00	15.00	95.00	0.00	0.00	0.00
\$/ton, delivered SCR Catalyst		2200	2200	2200	10000	10000	10000
\$/M³ Ammonia (Anhydrous)		6000	6000	6000	6000	6000	6000
\$/ton, delivered Water Cost		450	450	450	450	450	450
\$/1000 gallons		1.00	1.00	1.00	1.00	1.00	1.00
Fly Ash Sales	\$/ton	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Fly Ash Disposal	\$/ton	\$20.00	\$20.00	\$20.00	\$0.00 \$0.00	\$0.00	\$0.00 \$0.00
Bottom Ash Disposal	\$/ton	\$20.00	\$20.00	\$20.00	\$0.00	\$0.00	\$0.00
Activated Carbon waste	\$/ton	\$20.00	\$20.00	\$20.00	\$800.00	\$800.00	\$800.00
FGD Waste Sale	\$/ton	\$0.00	\$0.00	\$0.00	\$100.00 sulfur	\$100.00 sulfur	\$100.00 sulfur
FGD Waste Disposal	\$/ton	\$20.00	\$20.00	\$20.00	\$0.00	\$0.00	\$0.00
Other Variable O&M Costs	\$/net-MWh	0.5	0.5	0.5	0.5	0.5	0.5
SO2 Allowance Market Cost \$/ton		\$500	\$500	\$500	\$500	\$500	\$500
NOX Allowance Market Cost \$/ton		\$3,000	\$3,000	\$3,000	\$3,000	\$3,000	\$3,000
Sulfur Byproduct		¢0,	0.9	¢0,	¢100	¢100	¢100
5/ton Equivalent Availability Factor	%	\$0 90.00%	\$0 90.00%	\$0 90.00%	\$100 90.00%	\$100 90.00%	\$100 90.00%
Replacement Power cost	\$/gross-kWh	0.065	0.065	0.065	0.065	0.065	0.065
Fuel Cost Delivered	\$/mmBtu	1.70	1.50	1.40	1.70	1.50	1.40
\$/ton, delivered		39.55	17.90	23.47	39.55	17.90	23.47
ECONOMIC ANALYSIS OUTPUT: Annual Capacity Factor Equivalent Full Load Hours	%/yr Hr's	90.00% 7,880	90.00% 7,880	90.00% 7,880	85.00% 7,450	85.00% 7,450	85.00% 7,450
Used for Potential to Emit (MW- hours@100%CF & Availability)	Mw-Hr/yr	4,799,572	4,758,478	4,854,401	4,546,232	4,438,115	4,562,121

PQA Study Technology Spreadsheet Efficiency/Heat Rate for New Coal-Fired Power Plants Supercritical and IGCC

		Supercritical	Supercritical	Supercritical	subCritical	subCritical	subCritical
Base set-up for meeting Target BACT limits for NOX & SO2	UNITS	685MW - Supercritical PC, Bituminous	685MW - Supercritical PC, Lignite	685MW - Supercritical PC, PRB	726 MW - IGCC, Bituminous	711MW - IGCC, Lignite	727MW - IGCC, PRB
Capital costs	\$1,000						
Direct & Indirect Costs \$1000	\$1,000	2,217,840	2,461,143	2,090,180	2,800,491	3,433,006	2,848,907
\$/kW Capital Cost based on net	\$/net-kw	3,641	4,076	3,393	4,589	5,763	4,652
Capital Costs							
Costs in year 2008 dollars	\$1,000	2,217,840	2,461,143	2,090,180	2,800,491	3,433,006	2,848,907
Fixed O&M Costs							
Fixed O&M Costs	\$1,000	16,571	16,571	16,571	29,871	34,299	30,210
Variable O&M Costs (\$/yr) Limestone Reagent Lime Reagent, dryFGD, MDEA, Catalysts Activated Carbon Water Bottom Ash Sale/Disposal Fly ash sale/Disposal Gypsum sale/Disposal AC Waste Disposal AC Waste Disposal A	\$1,000 \$1,000	2,455 0 440 721 2,877 5,051 0 577 1,153 367 1,080 3,241 2,401 N/A	1,276 0 1,751 440 2,740 2,635 16 609 1,153 415 913 3,422 2,380 N/A	0 1,174 1,593 440 473 1,884 617 14 587 1,153 3,78 880 3,301 2,428 N/A	0 1.593 296 451 0 0 0 24 186 399 33 191 431 2.272 555	0 1,415 1,068 407 0 0 85 186 399 61 189 425 2,218 272	0 1.340 296 440 0 0 0 24 186 399 42 184 414 2,280 65
Total	\$1,000	20,364	28,705	14,924	6,430	6,725	5,668
Variable O&M Costs	\$/MWh	3.73	5.76	3.07	1.42	1.52	1.24
Total Non-Fuel O&M Cost	\$1,000	36,935	45,276	31,495	36,301	41,023	35,878
Total Non-Fuel O&M Cost	\$/MWh	7.69	9.51	6.48	7.99	9.25	7.87

APPENDIX F

IGCC POWER PLANT COST ESTIMATE DETAILS

Sargent & Lundy

12301-003 TJM - 12/18/08

PQA Greenfield IGCC Plant Study Order of Magnitude Cost Study Summary of Estimated Project Costs

Unit Size, MW Net	610	612	596
	Greenfield Shell Design with	Greenfield Shell Design with	Greenfield Shell Design with
Configuration	Illinois Bituminous # 6	PRB	Texas Lignite
			·
Coal & Sorbent Handling	36,007,000	42,023,000	34,171,000
Coal & Sorbent Prep & Feed	159,390,000	173,908,000	252,127,000
Feedwater & Misc. BOP Systems	48,779,000	48,865,000	47,104,000
Gasifier & Accessories			
Gasifier Syngas Cooler & Auxiliaries	378 962 000	450 206 000	581 514 000
ASU / Oxidant Compression	170,396,000	168 704 000	154 933 000
Other Gasification Equipment	65,182,000	70,114,000	78.962.000
Subtotal Gasifier & Accessories	614,540,000	689.024.000	815.409.000
			,,
Gas Cleanup & Piping	145,163,000	87,368,000	130,083,000
Combustion Turbine & Accessories			
Combustion Turbine & Generator	124,519,000	124,519,000	124,519,000
Combustion Turbine, Other	2,648,000	2,648,000	2,648,000
Subtotal Combustion Turbine & Accessories	127,167,000	127,167,000	127,167,000
HRSG Ducting & Stack			
Heat Recovery Steam Generato	52 218 000	52 218 000	52 218 000
Ductwork & Stack	15 850 000	15 850 000	15 850 000
Subtotal HRSG, Ducting, & Stack	68.068.000	68.068.000	68.068.000
Steam Turbine Generator			
Steam Turbine Generator & Accessories	50,783,000	50,796,000	50,515,000
Turbine Plant Auxiliaries & Steam Piping	32,575,000	32,632,000	31,457,000
Subtotal Steam Turbine Generator	83,358,000	83,428,000	81,972,000
Cooling Water System	36,331,000	36,395,000	35,084,000
ASH / Spent Sorbent Handling System	48,704,000	37,794,000	119,767,000
Accessory Electric Plant	67,228,000	67,099,000	66,389,000
Instrumentation & Controls	33,073,000	33,073,000	33,073,000
Improvements to Site	23,287,000	23,287,000	23,287,000
Buildings & Structures	24,743,000	24,743,000	24,743,000
Subtotal Direct Project Costs	1,515,638,000	1,542,242,000	1,656,444,000
Indirect Project Costs.	\$125,972,000	\$127,871,000	\$154,084,000
Contingency @ 20%	328,362,000	334,023,000	402,506,000
Owner's Costs @ 3%	49,254,000	50,103,000	60,376,000
Operating Spare Parts @ 1%	16,418,000	16,701,000	20,125,000
Escalation (4% Annual Rate)	346,098,000	352,127,000	424,322,000
Interest During Construction (6% Annual Rate)	418,549,000	425,840,000	513,149,000
Total Project Costs	2,800,491,000	2,848,907,000	3,433,006,000
\$/kW Net	4,589	4,652	5,763

Notes:

1. The contracting scheme is assumed to be multiple lump sum. EPC contracting, if obtainable, would warrant additional fees.

2. Total Project Cost represents cost at completion for a project started 01/09 and completing 12/15, a 7 year overall schedule.

3. Labor costs are based on the Gulf Coast region of the U.S. Adjustments will be required for other regions of the country.

- 4. Owner's Costs are highly variable. Included here as an allowance at 3% of Subtotal Project Costs.
- 5. Escalation calculated at 4% annual rate, compounded annually and based on projected 7-year cash flow.

6. IDC calculated at 6% annual rate, compounded annually and based on projected 7-year cash flow.

APPENDIX G

SC AND IGCC POWER PLANT HEAT BALANCES

