Overview of Key Principles

Establish air flow across the entire spraying area
- Direct fans to establish the air flow
- Draw vapors, mists and dusts away from workers
- Begin working at the exhaust end and progress downstream (away) from exhaust
- Keep exhaust collection point as close to the source as possible

Establish enclosures to isolate and contain the work area
- Place warning signs on entrances to the enclosure
- Maintain a negative pressure in the enclosure
- Avoid openings that short circuit the ventilation
- Seal off HVAC openings to prevent migration of contaminants

Direct exhaust to a safe location outside the building
- Direct exhaust away from workers or other people
- Direct exhaust away from air intakes for neighboring buildings
- Establish control zones and post warning signs if needed
- Filter exhaust air with particulate filters to protect nearby vehicles and other property
- Place the filter before the exhaust fan to ensure continued fan efficiency

Continue ventilating the area after application
- Check with the manufacturer to determine safe re-entry times
- Minimize worker re-entry during this time
- Ensure that those entering have proper protective equipment
- Restrict occupant re-entry until after the building has been fully ventilated and cleaned

EPA’s Design for the Environment (DfE) Program
The DfE Program promotes safer chemicals and best practices that reduce exposures to chemicals of concern in the workplace and community. This Fact Sheet describes basic ventilation principles and strategies to help protect workers and building occupants and promote the safe use of spray polyurethane foam (SPF) insulation.

What is Spray Polyurethane Foam (SPF)?
SPF is a widely used and highly-effective insulation and sealant material that is spray-applied to walls, ceilings, attics, basements, crawl spaces, and roofs. The two-component SPF systems (both high and low pressure) contain isocyanates (the A-side) and a polyol blend (the B-side). The A and B sides are fed through hoses to a spray gun where they are mixed and sprayed under pressure, rapidly reacting and expanding in volume to form polyurethane foam.

Does SPF Application Present any Health Risks?
Yes, exposure to SPF chemicals poses health risks such as irritation and chronic lung disease to workers or others in the area if they are not adequately protected from skin, eye, and inhalation exposure. In addition, isocyanates (A-side) are strong sensitizers that can cause an allergy-like response in certain people and are the leading chemical cause of work-related asthma. A person can become sensitized after long term or even initial exposure and a sensitized person can suffer a severe or fatal asthma attack if exposed even at very low levels. In addition, the polyol blend (B-side) contains blowing agents, amines, flame retardants, and other chemicals, which may also cause adverse health effects.

Why is Ventilation Important?
Properly designed ventilation can reduce airborne levels of aerosols, mists, and vapors generated during spray application and can help protect SPF applicators, helpers, and others who may be working in adjacent areas.

During and after spray application, vapors and mists, as well as particulates and dust from trimming or sanding the foam, may linger until the area is ventilated and fully cleaned.

Construction activities should be carefully scheduled so that no other trades or occupants are in the building during SPF Installation.

Fundamentals of Ventilation
Ventilation is a method of controlling worker exposure to airborne hazardous chemicals or flammable vapors by exhausting contaminated air away from the work area and replacing it with clean air. There are two basic types of ventilation—general exhaust ventilation and local exhaust ventilation.

EPA—WORKING DRAFT—6/29/11 Page 1 www.epa.gov/dfe
A ventilation system is normally designed to serve a specific location or room where the operation is well defined. For example, a spray booth used for spraying truck bed liners will always have the same room dimensions (i.e., volume and geometry) and the application process will always be the same. As a result, an effective ventilation system can be designed and installed to the exact specifications of the room.

The application of SPF to walls, ceilings, attics, and basements within multiple job sites, however, presents ventilation challenges because every job site will have different room sizes and shapes. In addition, the process requires frequent movement of the workers as the work progresses resulting in vapors, mists, dusts, and particulates being generated throughout the room. This work area variability and movement prevents a “one size fits all” approach and presents challenges associated with designing a “booth-like” enclosure and ventilation system that can capture vapors, mists, dusts, and particulates at the source (i.e., the point of application).

Because of this, it is important for SPF insulation applicators to understand some basic ventilation principles so they can implement effective ventilation controls in the wide variety of work configurations that they face. While a properly designed ventilation system can help protect workers and building occupants, an improperly designed system could make matters worse.

Protective Clothing and Equipment

The Occupational Safety and Health Administration (OSHA) requires that engineering controls such as ventilation and enclosures be used to reduce worker exposures to acceptable levels. When engineering controls alone are not sufficient to reduce exposures to acceptable levels (typically the case for indoor applications of two component SPF systems), OSHA requires that workers wear appropriate protective equipment to prevent inhalation of and skin contact with contaminants. SPF manufacturer’s recommendations for proper respiratory and other protective equipment can be found in the product’s material safety data sheet (MSDS). Generally, these recommendations will include the use of full facepiece or hooded supplied air respirators.

Basic Ventilation Design Principles

Because the source of emissions moves as the work progresses in SPF applications, designing a local exhaust system can be difficult. In fact, in many cases the system may look more like a general exhaust system. There are some tips to consider, however, to maximize the system’s effectiveness. The key to understanding and applying these tips is understanding the three important components of a ventilation system and how they work together. These components include:

- **The work space**, room, or enclosure to be exhausted.
- **The exhaust system**—including a hood or exhaust vent, ductwork, and fan—that captures contaminants at the source and transports them to a location outside the building away from HVAC air intakes and occupied areas.
- **The make up air** which is the fresh air to the room or work area that replaces the exhausted air. This can either be forced make up air (air forced into the room with a fan) or passive make up air (air drawn into the room through openings such as doors, windows, or exterior vents).

How you design or place each of these components will determine the effectiveness of your system.

Establish Air Flow Across the Spraying Area

A fundamental consideration of any ventilation system is that the system creates an air flow from the make-up air entry location to the exhaust collection point (e.g., hood or vent). It is important that this flow of air:

- Flows across the entire work space to be ventilated (see figure 1). This is achieved by ensuring the make-up air entry location is on the opposite end of the work area from the exhaust hood or vent.
- Draws contaminants away from the workers. When possible, applicators should begin spraying near the exhaust hood or vent and progress away from that point so that off-gassing from applied SPF is drawn away from the applicator. Helpers should also work upstream from the sprayer (see figure 1).
Establish Enclosures to Isolate and Contain the Work Area

Establishing enclosures around the work area serves two important purposes:

- Prevents migration of contaminants to other areas of the building. This protects workers in other areas and minimizes the need for more widespread building ventilation during the application process and prior to occupancy.
- Improves the efficiency and effectiveness of the ventilation system by minimizing the size of the area to be ventilated (which affects the number and size of fans needed) and by helping to direct or channel the airflow to the exhaust vent or hood.

In some cases the configuration and size of the room where the application will occur may be sufficient to isolate the work area. In other cases, it may be necessary to construct temporary enclosures. Such enclosures typically include plastic sheeting with overlapped seams sealed with tape.

Remember to place warning signs on entrances to the enclosure or work area to alert other workers of the hazard and prevent them from entering the area.

Figure 1. Establish air flow across the spraying area and draw overspray away from workers
Related tips:

- **Particulate exhaust filters should be used to remove SPF dusts and mists from the exhaust air.** This not only helps to minimize hazardous air contaminants in the exhaust air but can also prevent SPF from settling on nearby vehicles or other property. Note that SPF can also build up on the exhaust fan blades significantly reducing the exhaust fan’s efficiency over time. For this reason, the exhaust filter should be installed in front of the fan to remove the dusts and mists before they reach the fan. Clogged filters can also reduce efficiency, so remember to follow the filter manufacturer’s recommendations for filter replacement.

- **Some SPF vapors and mists can present explosion hazards at certain concentrations.** As a result, you may need to use a fan rated for use in explosive environments. Check with SPF manufacturer to determine if certain uses of the product pose this hazard.

Ensure Adequate Ventilation Following Application

Always remember to continue ventilating the area following application until the material has fully cured, off-gassing has stopped, and vapors have been removed. During this time, worker re-entry should be kept to a minimum and should only include those with appropriate respiratory protection (and skin protection if contact with the SPF is possible). Occupant re-entry should only occur after the building is fully ventilated. The amount of time needed for this depends on several factors including:

- SPF formulations and related cure times as specified by the manufacturer
- Accurate proportioning and mixing of A-side and B-side

Ventilation rate

Temperature and humidity

Check with the manufacturer of your SPF product to determine an appropriate re-occupancy time and ventilation rate.

How Can I Get More Information on SPF ventilation and other important health and safety practices?

- Talk to your SPF product manufacturer or vendor.
- Consult the National Institute for Occupational Safety and Health (NIOSH) by either calling 1-800-CDC-INFO or by visiting their website at http://www.cdc.gov/niosh/topics/isocyanates/
- Visit the following websites:
 - Spray Polyurethane Foam Alliance’s website at http://www.sprayfoam.org/

Ongoing research at NIOSH and the CPI will continue to provide updated information on appropriate ventilation rates and isolation and capture methods.