Read Input Data

i = 154	$nput_i = READ(hwyinput)$		
Testnumber $=$ input ₁		Numeric test identifier	Testnumber = 199702
Procedure = input ₂	Procedure $= 3$	Numeric Test Procedure	

§86.144-94(e) For Phase II California fueled vehicle with measured fuel composition of CxHyOz:

$\mathbf{x} = input_{49}$	$\mathbf{x} = 1$	Carbon-to-carbon ratio as measured for the fuel used.
$y = input_{50}$	y = 3.97	Hydrogen-to-carbon ratio as measured for thefuel used.
y HC = y	y _{HC} = 3.97	Hydrogen-to-carbon ratio as measured for the fuel used.
y NMHC = input ₅₂	y _{NMHC} = 2.596	Non-Methane Hydrocarbon Hydrogen-to-carbon ratio as measured for the Non-Methane Hydrocarbon components of the fuel used.
z = input ₅₃	z = 0	Oxygen-to-carbon ratio as measured for the fuel used.

FID response to methane

r CH4 = input ₇	$r_{CH4} = 1.114$	FID response to methane.
----------------------------	-------------------	--------------------------

The analyzer concentrations were as follows:

FIDHC $_{e}$ = input $_{10}$	FIDHC $_{e} = 104.295$	Concentration of hydrocarbon plus methane in dilute exhaust as measured by the FID, ppm carbon equivalent.
NOx e^{1} = input ₁₁	NOx _e = 29.477	Oxides of nitrogen concentration of the dilute exhaust sample as measured, in ppm.
$CO_e = input_{12}$	CO _e = 15.774	Carbon monoxide concentration of the dilute exhaust sample as measured, in ppm.
$CO2_{e} = input_{13}$	CO2 $_{e} = 1.845$	Carbon dioxide concentration of the dilute exhaust sample as measured, in percent.
CH4 $_{e}$ = input ₁₄	CH4 $_{\rm e} = 0$	Concentration of methane in dilute exhaust sample as measured, ppm carbon equivalent.

FIDHC $d = input_{15}$	FIDHC _d = 99.794	Concentration of hydrocarbon plus methane in dilution air as measured by the FID, ppm carbon equivalent.
NOx $d = input_{16}$	NOx $_{\rm d} = 0.153$	Oxides of nitrogen concentration of the dilution air sample as measured, in ppm.
$CO_d = input_{17}$	CO $_{\rm d}$ = 0.094	Carbon monoxide concentration of the dilution air sample as measured, in ppm.
$\operatorname{CO2}_{\mathbf{d}} = \operatorname{input}_{18}$	CO2 _d = 0.045	Carbon dioxide concentration of the dilution air as measured, in percent.
CH4 $d = input_{19}$	CH4 $d = 0$	Concentration of methane in dilution air as measured, ppm carbon equivalent.

$D = input_{20}$	D = 10.293	The measured driving distance from the "transient" phase of the cold start test, in miles.
$V_{mix} = input_{21}$	V _{mix} = 3937	Volume of dilute exhaust collected during the transient phase of the cold-start test, in scf.
K _H = input ₂₂	$K_{\rm H} = 0.865$	NOx Humidity Correction Factor

CONSTANTS

Density $_{\rm HC}$ = 16.33	Density is grams per cubic foot, at 68ïF and 760 mm Hg pressure.
Density THC = 16.33	Density is grams per cubic foot, at 68ïF and 760 mm Hg pressure.
Density NMHC = 16.33	Density is grams per cubic foot, at 68ïF and 760 mm Hg pressure.
Density $CH4 = 18.89$	Density is grams per cubic foot, at 68ïF and 760 mm Hg pressure.
Density $NOx = 54.16$	Density is grams per cubic foot, at 68ïF and 760 mm Hg pressure.
Density $_{\rm CO}$ = 32.97	Density is grams per cubic foot, at 68ïF and 760 mm Hg pressure.
Density $_{\rm CO2}$ = 51.81	Density is grams per cubic foot, at 68ïF and 760 mm Hg pressure.

DERIVED DENSITIES

Density $_{\rm HC}$ = 1.1771 · (12.011 + y $_{\rm HC}$ · 1.008)	Density $HC = 18.849$
Density $_{\rm NMHC} = 1.1771 \cdot (12.011 + y_{\rm NMHC} \cdot 1.008)$	Density $NMHC = 17.218$

Testnumber = 199702

	Testnumber = 199702
EPA and CARB - Non-methane hydrocarbon concentration of the dilute exhaust sample as measured, in ppm carbon equivalent.	
NMHC $_{e}$ = FIDHC $_{e}$ - r $_{CH4}$ ·CH4 $_{e}$	NMHC _e = 104.295
EPA and CARB - Non-methane hydrocarbon concentration of the dilution air as measured, in ppm carbon equivalent.	
NMHC $d = FIDHC d - r CH4$ CH4 d	NMHC _d = 99.794
Total hydrocarbon (non-methanol) concentration of the dilute exhaust sample as measured, ppm carbon equivalent, i.e., equivalent propane X 3.	
HC $_{e}$ = FIDHC $_{e}$	HC $_{\rm e} = 104.295$
Total hydrocarbon (non-methanol) concentration of the dilution air as measured, in ppm carbon equivalent.	
HC d = FIDHC d	HC _d = 99.794
Dilution factor for Natural Gas fueled vehicles where fuel composition is CxHyOz as measured for the fuel used.	
$DF := \frac{100 \cdot \left[\frac{x}{x + \frac{y}{2} + 3.76 \cdot \left[x + \frac{y}{4}\right]}\right]}{CO2 + (NMHC + CH4 + CO + CH4 + $	DF = 5.14
Non-methane concentration of the dilute exhaust sample corrected for background, in ppm carbon equivalent.	
NMHC conc = NMHC $_{e}$ - NMHC $_{d} \cdot \left[1 - \frac{1}{DF} \right]$	NMHC $_{\rm conc} = 23.92$
Non-methane hydrocarbon mass, in grams per test phase.	
NMHC mass $= \frac{V_{\text{mix}} \cdot \text{Density}_{\text{NMHC}} \cdot \text{NMHC}_{\text{conc}}}{10^6}$	NMHC mass = 1.621
Methane concentration of the dilute exhaust sample corrected for background, in ppm carbon equivalent. $CH4_{conc} = CH4_{e} - CH4_{d} \cdot \left[1 - \frac{1}{DF} \right]$	CH4 _{conc} = 0

Methane hydrocarbon mass, in grams per test phase.

$$CH4_{mass} = \frac{V_{mix} \cdot Density_{CH4} \cdot CH4_{conc}}{10^6} CH4_{mass} = 0$$

Testnumber = 199702Hydrocarbon concentration of the dilute exhaust sample, in ppm carbon equivalent. HC conc = HC $_{\rm e}$ - HC $_{\rm d}$ \cdot $\left[1 - \frac{1}{\rm DF}\right]$ HC $_{conc} = 23.916$ Total hydrocarbon emissions, in grams per test phase. HC mass = $\frac{V_{mix} \cdot Density_{HC} \cdot HC_{conc}}{V_{mix} \cdot Density_{HC} \cdot HC_{conc}}$ HC mass = 1.775 10^{6} Oxides of nitrogen concentration of the dilute exhaust sample corrected for background, ppm. NOx conc = NOx $e - NOx d \cdot \left[1 - \frac{1}{DF} \right]$ NOx $_{conc} = 29.35$ Oxides of nitrogen emissions, in grams per test phase. NOx mass $= \frac{V_{mix} \cdot Density_{NOx} \cdot K_{H} \cdot NOx_{conc}}{V_{mix} \cdot Density_{NOx} \cdot K_{H} \cdot NOx_{conc}}$ NOx mass = 5.412 10^{6} Carbon monoxide concentration of the dilute exhaust sample corrected for background, ppm. $CO_{conc} = CO_{e} - CO_{d} \cdot \left[1 - \frac{1}{DF} \right]$ $CO_{conc} = 15.7$ Carbon monoxide emissions, in grams per test phase. $CO_{mass} := \frac{V_{mix} \cdot Density_{CO} \cdot CO_{conc}}{10^6}$ $CO_{mass} = 2.04$ Carbon dioxide concentration of the dilute exhaust sample corrected for background, percent.

 $\operatorname{CO2}_{\operatorname{conc}} = \operatorname{CO2}_{\operatorname{e}} - \operatorname{CO2}_{\operatorname{d}} \left[1 - \frac{1}{\operatorname{DF}} \right]$ $\operatorname{CO2}_{\operatorname{conc}} = 1.808$

Carbon dioxide emissions, in grams per test phase.

$$CO2_{mass} = \frac{V_{mix} \cdot Density_{CO2} \cdot CO2_{conc}}{10^2} CO2_{mass} = 3689$$

Testnumber = 199702

(1) The above calculations resulted in the following:

$HC = HC_{mass}$	Total hydrocarbon equivalent, in grams per test phase.	HC = 1.775
CH4 = CH4 mass	Total hydrocarbon equivalent, in grams per test phase.	CH4 = 0
NMHC = NMHC mass	Total hydrocarbon equivalent, in grams per test phase.	NMHC = 1.621
NOx = NOx mass	Oxides of nitrogen, in grams per test phase.	NOx = 5.412
$CO = CO_{mass}$	Carbon monoxide, in grams per test phase.	CO = 2.038
CO2 = CO2 mass	Carbon dioxide in grams per test phase.	CO2 = 3689

(4) Emission results:

Total hydrocarbon, in grams per vehicle mile.

$$HC_{gpm} = \frac{HC}{D}$$

$$HC_{gpm} = 0.1724$$

Methane hydrocarbon, in grams per vehicle mile.

CH4 gpm	CH4	C	$CH4_{gpm} = 0$
	D		01

Non-methane hydrocarbon, in grams per vehicle mile.

NMUC	NMHC	NMHC $- 0.1575$
NMHC gpm	D	NMHC $_{\text{gpm}} = 0.1575$

Oxides of nitrogen, in grams per vehicle mile.

NOx $gpm = \frac{NOx}{D}$ NOx gpm = 0.5258

Carbon monoxide, in grams per vehicle mile.

$$CO_{gpm} = \frac{CO}{D}$$
 $CO_{gpm} = 0.198$

Carbon dioxide, in grams per vehicle mile.

CO2 gpm	$\frac{CO2}{D}$	CO2 _{gpm} = 358.3628	}
	2		