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Neurodevelopmental Disorders 
Neurodevelopmental disorders are disabilities associated primarily with the functioning of the 
neurological system and brain. Examples of neurodevelopmental disorders in children include 
attention-deficit/hyperactivity disorder (ADHD), autism, learning disabilities, intellectual 
disability (also known as mental retardation), conduct disorders, cerebral palsy, and 
impairments in vision and hearing. Children with neurodevelopmental disorders can experience 
difficulties with language and speech, motor skills, behavior, memory, learning, or other 
neurological functions. While the symptoms and behaviors of neurodevelopmental disabilities 
often change or evolve as a child grows older, some disabilities are permanent. Diagnosis and 
treatment of these disorders can be difficult; treatment often involves a combination of 
professional therapy, pharmaceuticals, and home- and school-based programs. 

Based on parental responses to survey questions, approximately 15% of children in the United 
States ages 3 to 17 years were affected by neurodevelopmental disorders, including ADHD, 
learning disabilities, intellectual disability, cerebral palsy, autism, seizures, stuttering or 
stammering, moderate to profound hearing loss, blindness, and other developmental delays, in 
2006–2008.1

 Among these conditions, ADHD and learning disabilities had the greatest 
prevalence. Many children affected by neurodevelopmental disorders have more than one of 
these conditions: for example, about 4% of U.S. children have both ADHD and a learning 
disability.2 Some researchers have stated that the prevalence of certain neurodevelopmental 
disorders, specifically autism and ADHD, has been increasing over the last four decades.3-7

 Long-
term trends in these conditions are difficult to detect with certainty, due to a lack of data to 
track prevalence over many years as well as changes in awareness and diagnostic criteria. 
However, some detailed reviews of historical data have concluded that the actual prevalence of 
autism seems to be rising.4,8-10

 Surveys of educators and pediatricians have reported a rise in 
the number of children seen in classrooms and exam rooms with behavioral and learning 
disorders.11-13 

Genetics can play an important role in many neurodevelopmental disorders, and some cases of 
certain conditions such as intellectual disability are associated with specific genes. However, 
most neurodevelopmental disorders have complex and multiple contributors rather than any 
one clear cause. These disorders likely result from a combination of genetic, biological, 
psychosocial and environmental risk factors. A broad range of environmental risk factors may 
affect neurodevelopment, including (but not limited to) maternal use of alcohol, tobacco, or 
illicit drugs during pregnancy; lower socioeconomic status; preterm birth; low birthweight; the 
physical environment; and prenatal or childhood exposure to certain environmental 
contaminants.14-21  

Lead, methylmercury, and PCBs are widespread environmental contaminants associated with 
adverse effects on a child’s developing brain and nervous system in multiple studies. The 
National Toxicology Program (NTP) has concluded that childhood lead exposure is associated 
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with reduced cognitive function, including lower intelligence quotient (IQ) and reduced 
academic achievement.22

 The NTP has also concluded that childhood lead exposure is 
associated with attention-related behavioral problems (including inattention, hyperactivity, and 
diagnosed attention-deficit/hyperactivity disorder) and increased incidence of problem 
behaviors (including delinquent, criminal, or antisocial behavior).22  

EPA has determined that methylmercury is known to have neurotoxic and developmental 
effects in humans.23 Extreme cases of such effects were seen in people prenatally exposed 
during two high-dose mercury poisoning events in Japan and Iraq, who experienced severe 
adverse health effects such as cerebral palsy, mental retardation, deafness, and blindness.24-26 
Prospective cohort studies have been conducted in island populations where frequent fish 
consumption leads to methylmercury exposure in pregnant women at levels much lower than 
in the poisoning incidents but much greater than those typically observed in the United States. 
Results from such studies in New Zealand and the Faroe Islands suggest that increased prenatal 
mercury exposure due to maternal fish consumption was associated with adverse effects on 
intelligence and decreased functioning in the areas of language, attention, and memory.26-32 
These associations were not seen in initial results reported from a similar study in the 
Seychelles Islands.33 However, further studies in the Seychelles found associations between 
prenatal mercury exposure and some neurodevelopmental deficits after researchers had 
accounted for the developmental benefits of fish consumption.34-36 More recent studies 
conducted in the United States have found associations between neurodevelopmental effects 
and blood mercury levels within the range typical for U.S. women, after accounting for the 
beneficial effects of fish consumption during pregnancy.32,37,38  

Several studies of children who were prenatally exposed to elevated levels of polychlorinated 
biphenyls (PCBs) have suggested linkages between these contaminants and 
neurodevelopmental effects, including lowered intelligence and behavioral deficits such as 
inattention and impulsive behavior.39-44

 Studies have also reported associations between PCB 
exposure and deficits in learning and memory.39,45 Most of these studies found that the effects 
are associated with exposure in the womb resulting from the mother having eaten food 
contaminated with PCBs,46-51 although some studies have reported relationships between 
adverse effects and PCB exposure during infancy and childhood.45,51-53 Although there is some 
inconsistency in the epidemiological literature, several reviews of the literature have found that 
the overall evidence supports a concern for effects of PCBs on children’s neurological 
development.52,54-58 The Agency for Toxic Substances and Disease Registry has determined that 
“Substantial data suggest that PCBs play a role in neurobehavioral alterations observed in 
newborns and young children of women with PCB burdens near background levels.”59 In 
addition, adverse effects on intelligence and behavior have been found in children of women 
who were highly exposed to mixtures of PCBs, chlorinated dibenzofurans, and other pollutants 
prior to conception.60-63

  

A wide variety of other environmental chemicals have been identified as potential concerns for 
childhood neurological development, but have not been as well studied for these effects as 
lead, mercury, and PCBs. Concerns for these additional chemicals are based on both laboratory 
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animal studies and human epidemiological research; in most cases, the epidemiological studies 
are relatively new and the literature is just beginning to develop. Among the chemicals being 
studied for potential effects on childhood neurological development are organophosphate 
pesticides, polybrominated diphenyl ether flame retardants (PBDEs), phthalates, bisphenol A 
(BPA), polycyclic aromatic hydrocarbons (PAHs), arsenic, and perchlorate. Exposure to all of 
these chemicals is widespread in the United States for both children and adults.64  

Organophosphate pesticides can interfere with the proper function of the nervous system when 
exposure is sufficiently high.65 Many children may have low capacity to detoxify organophosphate 
pesticides through age 7 years.66 In addition, recent studies have reported an association 
between prenatal organophosphate exposure and childhood ADHD in a U.S. community with 
relatively high exposures to organophosphate pesticides,67 as well as with exposures found within 
the general U.S. population.68 Other recent studies have described associations between prenatal 
organophosphate pesticide exposures and a variety of neurodevelopmental deficits in childhood, 
including reduced IQ, perceptual reasoning, and memory.69-71  

Studies of certain PBDEs have found adverse effects on behavior, learning, and memory in 
laboratory animals.72-74 A recent epidemiological study in New York City reported significant 
associations between children’s prenatal exposure to PBDEs and reduced performance on IQ 
tests and other tests of neurological development in 6-year-old children.75 Another study in the 
Netherlands reported significant associations between children’s prenatal exposure to PBDEs 
and reduced performance on some neurodevelopmental tests in 5- and 6-year-old children, 
while associations with improved performance were observed for other tests.76 

Two studies of a group of New York City children ages 4 to 9 years reported associations 
between prenatal exposure to certain phthalates and behavioral deficits, including effects on 
attention, conduct, and social behaviors.77,78 Some of the behavioral deficits observed in these 
studies are similar to those commonly displayed in children with ADHD and conduct disorder. 
Studies conducted in South Korea of children ages 8 to 11 years reported that children with 
higher levels of certain phthalate metabolites in their urine were more inattentive and 
hyperactive, displayed more symptoms of ADHD, and had lower IQ compared with those who 
had lower levels.79,80 The exposure levels in these studies are comparable to typical exposures 
in the U.S. population. 

In 2008, the NTP concluded that there is “some concern” for effects of early-life (including 
prenatal) BPA exposure on brain development and behavior, based on findings of animal 
studies conducted at relatively low doses.81 An epidemiological study conducted in Ohio 
reported an association between prenatal exposure to BPA and effects on children’s behavior 
(increased hyperactivity and aggression) at age 2 years.82 Another study of prenatal BPA 
exposure in New York City reported no association between prenatal BPA exposure and social 
behavior deficits in testing conducted at ages 7 to 9 years.78 

A series of recent studies conducted in New York City has reported that children of women who 
were exposed to increased levels of polycyclic aromatic hydrocarbons (PAHs, produced when   
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gasoline and other materials are burned) during pregnancy are more likely to have experienced 
adverse effects on neurological development (for example, reduced IQ and behavioral 
problems).83,84  

Early-life exposure to arsenic has been associated with measures of reduced cognitive function, 
including lower scores on tests that measure neurobehavioral and intellectual development, in 
four studies conducted in Asia; however there are some inconsistencies in the findings of these 
studies.85 These findings are from countries where arsenic levels in drinking water are generally 
much higher than in the United States due to high levels of naturally occurring arsenic in 
groundwater.86 

Perchlorate is a naturally occurring and man-made chemical that has been found in drinking 
water87 and foods88,89 in the United States. Exposure to elevated levels of perchlorate inhibits 
iodide uptake into the thyroid gland, thus possibly disrupting the function of the thyroid and 
potentially leading to a reduction in the production of thyroid hormone.90,91 Moderate deficits 
in maternal thyroid hormone levels during early pregnancy have been linked to reduced 
childhood IQ scores and other neurodevelopmental effects.92-94 

Interactions of environmental contaminants and other environmental factors may combine to 
increase the risk of neurodevelopmental disorders. For example, exposure to lead may have 
stronger effects on neurodevelopment among children with lower socioeconomic status.21,95  

A child’s brain and nervous system are vulnerable to adverse impacts from pollutants because 
they go through a long developmental process beginning shortly after conception and 
continuing through adolescence.96,97 This complex developmental process requires the precise 
coordination of cell growth and movement, and may be disrupted by even short-term 
exposures to environmental contaminants if they occur at critical stages of development. This 
disruption can lead to neurodevelopmental deficits that may have an effect on the child’s 
achievements and behavior even when they do not result in a diagnosable disorder. 

Attention-Deficit/Hyperactivity Disorder (ADHD) 

Attention-deficit/hyperactivity disorder (ADHD) is a disruptive behavior disorder characterized 
by symptoms of inattention and/or hyperactivity-impulsivity, occurring in several settings and 
more frequently and severely than is typical for other individuals in the same stage of 
development.98 ADHD can make family and peer relationships difficult, diminish academic 
performance, and reduce vocational achievement. 

As the medical profession has developed a greater understanding of ADHD through the years, 
the name of this condition has changed. The American Psychiatric Association adopted the 
name “attention deficit disorder” in the early 1980s and revised it to “attention-
deficit/hyperactivity disorder” in 1987.99 Many children with ADHD have a mix of inattention 
and hyperactivity/impulsivity behaviors, while some may display primarily hyperactive behavior 
traits, and others display primarily inattentive traits. It is possible for an individual’s primary 
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symptoms of ADHD to change over time.20 Children with ADHD frequently have other disorders, 
with parents reporting that about half of children with ADHD have a learning disability and 
about one in four have a conduct disorder.2,100  

Other disorders, including anxiety disorders, depression, and learning disabilities, can be 
expressed with signs and symptoms that resemble those of ADHD. A diagnosis of ADHD 
requires a certain amount of judgment on the part of a doctor, similar to diagnosis of other 
mental disorders. Despite the variability among children diagnosed with the disorder and the 
challenges involved in diagnosis, ADHD has good clinical validity, meaning that impaired 
children share similarities, exhibit symptoms, respond to treatment, and are recognized with 
general consistency across clinicians.20 

A great deal of research on ADHD has focused on aspects of brain functioning that are related 
to the behaviors associated with ADHD. Although this research is not definitive, it has found 
that children with ADHD generally have trouble with certain skills involved in problem-solving 
(referred to collectively as executive function). These skills include working memory (keeping 
information in mind while briefly doing something else), planning (organizing a sequence of 
activities to complete a task), response inhibition (suppressing immediate responses when they 
are inappropriate), and cognitive flexibility (changing an approach when a situation changes). 
Children with ADHD also generally have problems in maintaining sustained attention to a task 
(referred to as vigilance), and/or maintaining readiness to respond to new information 
(referred to as alertness).20,101,102 

While uncertainties remain, findings to date indicate that ADHD is caused by combinations of 
genetic and environmental factors. 20,103-106 Much of the research on environmental factors has 
focused on the fetal environment. Maternal smoking during pregnancy has been associated 
with increased risk of ADHD in the child in numerous studies, however, this continues to be an 
active area of research as scientists consider whether other factors related to smoking (e.g., 
genetic factors, maternal mental health, stress, alcohol use, and low birth weight) may be 
responsible for associations attributed to smoking.17,19,107 Findings regarding ADHD and 
maternal consumption of alcohol during pregnancy are considered more limited and 
inconsistent.19,20 Preterm birth and low birth weight have also been found to increase the 
likelihood that a child will have ADHD.16,18,20 Psychosocial adversity (representing factors such 
as low socioeconomic status and in-home conflict) in childhood may also play a role in ADHD.108  

The potential role of environmental contaminants in contributing to ADHD, either alone or in 
conjunction with certain genetic susceptibilities or other environmental factors, is becoming 
better understood as a growing number of studies look explicitly at the relationship between 
ADHD and exposures to environmental contaminants.  

Among environmental contaminants known or suspected to be developmental neurotoxicants, 
lead has the most extensive evidence of a potential contribution to ADHD. A number of recent 
epidemiological studies (all published since 2006, with data gathered beginning in 1999 or more 
recently) conducted in the United States and Asia have reported relationships between 
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increased levels of lead in a child’s blood and increased likelihood of ADHD.55,109-115 In most of 
these studies, blood lead levels were comparable to levels observed currently in the United 
States. The potential contribution of childhood lead exposure to the risk of ADHD may be 
amplified in children of women who smoked cigarettes during pregnancy.110 In addition, several 
studies have reported relationships between blood lead levels and the aspects of brain 
functioning that are most affected in children with ADHD, including sustained attention, 
alertness, and problem-solving skills (executive functions, specifically cognitive flexibility, 
working memory, planning, and response inhibition).22,44,55,116-119

 Similar results have been 
observed in laboratory animal studies.55,96,120-122 The NTP has concluded that childhood lead 
exposure is “associated with increased diagnosis of attention-related behavioral problems.”22  

Although no studies evaluating a potential association between PCBs and ADHD itself have been 
published, a study in Massachusetts reported a relationship between levels of PCBs measured in 
cord blood and increased ADHD-like behaviors observed by teachers in children at ages 7 to 11 
years. PCB levels in this study were generally lower than those measured in other epidemiological 
studies of PCBs and childhood neurological development.40 Other research findings also suggest 
that PCBs may play a role in contributing to ADHD. Several studies in U.S. and European 
populations, most having elevated exposure to PCBs through the diet, have found generally 
consistent associations with aspects of brain function that are most affected in children with 
ADHD, including alertness and problem-solving skills (executive functions, specifically response 
inhibition, working memory, cognitive flexibility, and planning).54,55 Studies in laboratory animals 
have similar findings regarding the mental functions affected by PCB exposure.55,96  

Studies of other environmental chemicals reporting associations with ADHD or related 
outcomes have been published in recent years, but findings tend to be much more limited than 
for lead and PCBs. Findings for phthalates and organophosphate pesticides were noted above. 
In addition, three studies have reported associations between ADHD or impulsivity and 
concentrations of certain perfluorinated chemicals measured in the blood of children.123-125 
Studies of mercury have produced generally mixed findings of associations with ADHD or 
related symptoms and mental functions.29,111,118,126-128  

Learning Disability  

Learning disability (or learning disorder) is a general term for a neurological disorder that 
affects the way in which a child’s brain can receive, process, retain, and respond to information. 
A child with a learning disability may have trouble learning and using certain skills, including 
reading, writing, listening, speaking, reasoning, and doing math, although learning disabilities 
vary from child to child. Children with learning disabilities usually have average or above-
average intelligence, but there are differences in the way their brains process information.129  

As with many other neurodevelopmental disorders, the causes of learning disabilities are not 
well understood. Often learning disabilities run in the family, suggesting that heredity may play 
a role in their development. Problems during pregnancy and birth, such as drug or alcohol use 
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during pregnancy, low birth weight, lack of oxygen, or premature or prolonged labor, may also 
lead to learning disabilities.130  

As is the case with other neurodevelopmental outcomes, there are generally many more 
studies of lead exposure that are relevant to learning disabilities than for other environmental 
contaminants. Several studies have found associations between lead exposure and learning 
disabilities or reduced classroom performance that are independent of IQ.119,120,131-133 
Exposures to lead have been associated with impaired memory and difficulties or impairments 
in rule learning, following directions, planning, verbal abilities, speech processing, and 
classroom performance in children.22,119,131,134-137 Other findings that may indicate contributions 
from environmental contaminants to learning disabilities include a study that found 
associations of both maternal smoking during pregnancy and childhood exposure to 
environmental tobacco smoke with parent report of a child with a learning disability 
diagnosis;138 associations of prenatal mercury exposure with dysfunctions in children’s language 
abilities and memory,29,30 and associations of prenatal PCB exposure with poorer concentration 
and memory deficits compared with unexposed children.39,45  

Autism Spectrum Disorders 

Autism spectrum disorders (ASDs) are a group of developmental disabilities defined by 
significant social, communication, and behavioral impairments. The term “spectrum disorders” 
refers to the fact that although people with ASDs share some common symptoms, ASDs affect 
different people in different ways, with some experiencing very mild symptoms and others 
experiencing severe symptoms. ASDs encompass autistic disorder and the generally less severe 
forms, Asperger’s syndrome and pervasive developmental disorder-not otherwise specified 
(PDD-NOS). Children with ASDs may lack interest in other people, have trouble showing or 
talking about feelings, and avoid or resist physical contact. A range of communication problems 
are seen in children with ASDs: some speak very well, while many children with an ASD do not 
speak at all. Another hallmark characteristic of ASDs is the demonstration of restrictive or 
repetitive interests or behaviors, such as lining up toys, flapping hands, rocking his or her body, 
or spinning in circles.139  

To date, no single risk factor sufficient to cause ASD has been identified; rather each case is 
likely to be caused by the combination of multiple genetic and environmental risk factors.140-

142 Several ASD research findings and hypotheses may imply an important role for 
environmental contaminants. First, there has been a sharp upward trend in reported 
prevalence that cannot be fully explained by factors such as younger ages at diagnosis, 
migration patterns, changes in diagnostic criteria, inclusion of milder cases, or increased 
parental age.8,9,143-146 Also, the neurological signaling systems that are impaired in children 
with ASDs can be affected by certain environmental chemicals. For example, several 
pesticides are known to interfere with acetylcholine (Ach) and γ-aminobutyric acid (GABA) 
neurotransmission, chemical messenger systems that have been altered in certain subsets of 
autistic individuals.147 Some studies have reported associations between certain 
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pharmaceuticals taken by pregnant women and increased incidence of autism, which may 
suggest that there are biological pathways by which other chemical exposures during 
pregnancy could increase the risk of autism.148 

Furthermore, some of the identified genetic risk factors for autism are de novo mutations, 
meaning that the genetic defect is not present in either of the parents’ genes, yet can be found 
in the genes of the child when a new genetic mutation forms in a parent’s germ cells (egg or 
sperm), potentially from exposure to contaminants.140,142,149,150

 Many environmental 
contaminants have been identified as agents capable of causing mutations in DNA, by leading 
to oxidative DNA damage and by inhibiting the body’s normal ability to repair DNA damage.151 
Some children with autism have been shown to display markers of increased oxidative stress, 
which may strengthen this line of reasoning.152-154 Many studies have linked increasing paternal 
and maternal age with increased risk of ASDs.144,146,155-157 The role of parental age in increased 
autism risk might be explained by evidence that shows advanced parental age can contribute 
significantly to the frequency of de novo mutations in a parent’s germ cells.151,158,159 Advanced 
parental age signifies a longer period of time when environmental exposures may act on germ 
cells and cause DNA damage and de novo mutations. Finally, a recent study concluded that the 
role of genetic factors in ASDs has been overestimated, and that environmental factors play a 
greater role than genetic factors in contributing to autism.141 This study did not evaluate the 
role of any particular environmental factors, and in this context “environmental factors” are 
defined broadly to include any influence that is not genetic. 

Studies, limited in number and often limited in research design, have examined the possible 
role that certain environmental contaminants may play in the development of ASDs. A number 
of these studies have focused on mercury exposures. Earlier studies reported higher levels of 
mercury in the blood, baby teeth, and urine of children with ASDs compared with control 
children;160-162 however, another more recent study reported no difference in the blood 
mercury levels of children with autism and typically developing children.163 Proximity to 
industrial and power plant sources of environmental mercury was reported to be associated 
with increased autism prevalence in a study conducted in Texas.164  

Thimerosal is a mercury-containing preservative that is used in some vaccines to prevent 
contamination and growth of harmful bacteria in vaccine vials. Since 2001, thimerosal has not 
been used in routinely administered childhood vaccines, with the exception of some influenza 
vaccines.165 The Institute of Medicine has rejected the hypothesis of a causal relationship 
between thimerosal-containing vaccines and autism.166  

Some studies have also considered air pollutants as possible contributors to autism. A study 
conducted in the San Francisco Bay Area reported an association between the amount of 
certain airborne pollutants at a child’s place of birth (mercury, cadmium, nickel, 
trichloroethylene, and vinyl chloride) and the risk for autism, but a similar study in North 
Carolina and West Virginia did not find such a relationship.167,168 Another study in California 
reported that mothers who lived near a freeway at the time of delivery were more likely to 
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have children diagnosed with autism, suggesting that exposure to traffic-related air pollutants 
may play a role in contributing to ASDs.169  

Finally, a study in Sweden reported an increased risk of ASDs in children born to families living 
in homes with polyvinyl chloride (PVC) flooring, which is a source of certain phthalates in 
indoor environments.170 

Intellectual Disability (Mental Retardation) 

The most commonly used definitions of intellectual disability (also referred to as mental 
retardation) emphasize subaverage intellectual functioning before the age of 18, usually 
defined as an IQ less than 70 and impairments in life skills such as communication, self-care, 
home living, and social or interpersonal skills. Different severity categories, ranging from mild to 
severe retardation, are defined on the basis of IQ scores.171,172  

“Intellectual disability” is used as the preferred term for this condition in the disabilities sector, 
but the term “mental retardation” continues to be used in the contexts of law and public policy 
when designating eligibility for state and federal programs.171  

Researchers have identified some causes of intellectual disability, including genetic disorders, 
traumatic injuries, and prenatal events such as maternal infection or exposure to alcohol.172,173 
However, the causes of intellectual disability are unknown in 30–50% of all cases.173 The causes 
are more frequently identified for cases of severe retardation (IQ less than 50), whereas the 
cause of mild retardation (IQ between 50 and 70) is unknown in more than 75% of cases.174,175 
Exposures to environmental contaminants could be a contributing factor to the cases of mild 
retardation where the cause is unknown. Exposure to high levels of lead and mercury have 
been associated with intellectual disability.23,176-178 Furthermore, lead, mercury, and PCBs all 
have been found to have adverse effects on intelligence and cognitive functioning in 
children,22,26,43,52,179 and recent studies have reported associations of a number of other 
environmental contaminants with childhood IQ deficits, including organophosphate 
pesticides,69-71 PBDEs,75 phthalates,79 and PAHs.83,180 Exposure to environmental contaminants 
that reduce IQ has the potential to increase the proportion of the population with IQ less than 
70, thus increasing the incidence of intellectual disability in an exposed population.181-183 

Indicators in this Section 

The four indicators that follow provide the best nationally representative data available on the 
prevalence of neurodevelopmental disorders among U.S. children over time. The indicators 
present the number of children ages 5 to 17 years reported to have ever been diagnosed with 
ADHD (Indicator H6), learning disabilities (Indicator H7), autism (Indicator H8), and intellectual 
disability (Indicator H9). These four conditions are examples of neurodevelopmental disorders 
that may be influenced by exposures to environmental contaminants. Intellectual disability and 
learning disabilities are disorders in which a child’s cognitive or intellectual development is 
affected, and ADHD is a disorder in which a child’s behavioral development is affected. Autism 
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spectrum disorders are disorders in which a child’s behavior, communication, and social skills 
are affected. Indicators H6 to H9 have been updated since the publication of the America’s 
Children and the Environment, Third Edition (January 2013) to include data through 2013. 
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Indicator H6: Percentage of children ages 5 to 17 years reported to have attention-
deficit/hyperactivity disorder, by sex, 1997–2013  

Indicator H7: Percentage of children ages 5 to 17 years reported to have a learning 
disability, by sex, 1997–2013 

Indicator H8: Percentage of children ages 5 to 17 years reported to have autism,  
1997–2013 

Indicator H9: Percentage of children ages 5 to 17 years reported to have intellectual 
disability (mental retardation), 1997–2013 

 

National Health Interview Survey 

The National Health Interview Survey (NHIS) provides nationally representative data on the 
prevalence of ADHD, learning disabilities, autism, and intellectual disability (mental retardation) 
in the United States each year. NHIS is a large-scale household interview survey of a 
representative sample of the civilian noninstitutionalized U.S. population, conducted by the 
National Center for Health Statistics (NCHS). The interviews are conducted in person at the 
participants’ homes. From 1997–2005, interviews were conducted for approximately 12,000–
14,000 children annually. From 2006–2008, interviews were conducted for approximately 
9,000–10,000 children per year. From 2011–2013, interviews were conducted for 
approximately 11,000–13,000 children per year. The data are obtained by asking a parent or 
other knowledgeable household adult questions regarding the child’s health status. NHIS asks 
“Has a doctor or health professional ever told you that <child’s name> had Attention 
Deficit/Hyperactivity Disorder (ADHD) or Attention Deficit Disorder (ADD)? Autism? Mental 
Retardation?”i Another question on the NHIS survey asks “Has a representative from a school 
or a health professional ever told you that <child’s name> had a learning disability?”  

                                                           
i Starting in 2011, the survey question on mental retardation was revised to ask whether the child had ever been 
diagnosed with “an intellectual disability, also known as mental retardation.” 

About the Indicators: Indicators H6, H7, H8, and H9 present information about the number of 
children who are reported to have ever been diagnosed with four different neurodevelopmental 
disorders: attention-deficit/hyperactivity disorder (ADHD), learning disabilities, autism, and 
intellectual disability. The data come from a national survey that collects health information from a 
representative sample of the population each year. The four indicators show how the prevalence of 
children’s neurodevelopmental disorders has changed over time, and, when possible, how the 
prevalence differs between boys and girls. 
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Data Presented in the Indicators 

The following indicators display the prevalence of ADHD, learning disabilities, autism, and 
intellectual disability among U.S. children, for the years 1997–2013. Diagnosing 
neurodevelopmental disorders in young children can be difficult: many affected children may 
not receive a diagnosis until they enter preschool or kindergarten. For this reason, the 
indicators here show children ages 5 to 17 years. Where data are sufficiently reliable, the 
indicators provide separate prevalence estimates for boys and girls.  

Although the NHIS provides national-level data on the prevalence of neurodevelopmental 
disorders over a span of many years, NHIS data could underestimate the prevalence of 
neurodevelopmental disorders. Reasons for underestimation may include late identification of 
affected children and the exclusion of institutionalized children from the NHIS survey 
population. A diagnosis of a neurodevelopmental disorder depends not only on the presence of 
particular symptoms and behaviors in a child, but on concerns being raised by a parent or 
teacher about the child’s behavior, as well as the child’s access to a doctor and the accuracy of 
the doctor’s diagnosis. Further, the NHIS relies on parents reporting that their child has been 
diagnosed with a neurodevelopmental disorder, and the accuracy of parental responses could 
be affected by cultural and other factors.  

Long-term trends in these conditions are difficult to detect with certainty due to a lack of data 
to track prevalence over many years, as well as changes in awareness and diagnostic criteria, 
which could explain at least part of the observed increasing trends.184-186 The NHIS questions 
also do not assess whether a child currently has a disorder; instead, they provide data on 
whether a child has ever been diagnosed with a disorder, regardless of their current status.  

Survey responses for learning disabilities may be more uncertain than for the other three 
disorders presented. Whereas survey respondents are asked whether the child has been 
diagnosed with ADHD, autism, or intellectual disability (mental retardation) by a health 
professional, for learning disabilities an affirmative response may also include a school 
representative. It is possible that some parents may respond “yes” to the question regarding 
learning disabilities based on informal comments made at school, rather than a formal 
evaluation to determine whether the child has any specific learning disability; similarly, they 
may give a “yes” answer for children with diagnosed disorders that are not learning disabilities. 
For example, parents of children with intellectual disability might also respond “yes” to the 
learning disability question, thinking that any learning problems may apply, even though 
intellectual disability and learning disabilities are distinct conditions.2  

Because autism is the only autism spectrum disorder (ASD) referred to in the survey, it is not 
clear how parents of children with other ASDs, i.e., Asperger’s syndrome and PDD-NOS, may 
have responded. The estimates shown by Indicator H8 could represent underestimates of ASD 
prevalence if parents of children with Asperger’s syndrome and PDD-NOS did not answer yes to 
the NHIS questions about autism.  
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In addition to the data shown in the indicator graphs, supplemental tables provide information 
regarding the prevalence of neurodevelopmental disorders for different age groups and 
prevalence by race/ethnicity, sex, and family income. These comparisons use the most current 
four years of data available. The data from four years are combined to increase the statistical 
reliability of the estimates for each race/ethnicity, sex, and family income group. The tables 
include prevalence estimates for the following race/ethnicity groups: White non-Hispanic, Black 
non-Hispanic, Asian non-Hispanic, Hispanic, and “All Other Races.” The “All Others Races” 
category includes all other races not specified, together with those individuals who report more 
than one race. The limits of the sample design and sample size often prevent statistically 
reliable estimates for smaller race/ethnicity groups. The data are also tabulated for three 
income groups: all incomes, income below the poverty level, and greater than or equal to the 
poverty level. 

Please see the Introduction to the Health section for discussion of statistical significance testing 
applied to these indicators. 

Other Estimates of ADHD and Autism Prevalence 

In addition to NHIS, other NCHS studies provide data on prevalence of ADHD and ASDs among 
children. The National Survey of Children’s Health (NSCH), conducted in 2003 by NCHS, found 
that 7.8% of children ages 4 to 17 years had ever been diagnosed with ADHD. The same survey, 
when conducted again in 2007, found that 9.5% of children ages 4 to 17 years had ever been 
diagnosed with ADHD.7 Both estimates are somewhat higher than the ADHD prevalence 
estimates from the NHIS for those years. The 2007 NSCH also estimates that 7.2% of children 
ages 4 to 17 years currently have ADHD. The 2007 NSCH also provides information at the state 
level: North Carolina had the highest rate, with 15.6% of children ages 4 to 17 years having ever 
been diagnosed with ADHD; the rate was lowest in Nevada, at 5.6%.7  

In 2002 and 2006, the Centers for Disease Control and Prevention performed thorough data 
gathering in selected areas to examine the prevalence of ASDs in eight-year-old children. The 
ASD prevalence estimate for 2002 was 0.66%, or 1 in 152 eight-year-old children, and the 
estimate for 2006 was 0.9%, or 1 in 110 eight-year-old children.8,187 The 2007 NSCH also provides 
an estimate of 1.1% of children ages 3 to 17 years reported to have ASDs, or about 1 in 90.188  
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 From 1997 to 2013, the proportion of children ages 5 to 17 years reported to have ever 
been diagnosed with attention-deficit/hyperactivity disorder (ADHD) increased from 6.3% in 
1993 to 10.7% in 2012 and 9.9% in 2013.  

Data characterization 
- Data for this indicator are obtained from an ongoing annual survey conducted by the National Center for 

Health Statistics. 
- Survey data are representative of the U.S. civilian noninstitutionalized population. 
- A parent or other knowledgeable adult in each sampled household is asked questions regarding the child’s 

health status, including if they have ever been told the child has Attention Deficit/Hyperactivity Disorder 
(ADHD). 
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 The increasing trend was statistically significant for children overall, and for both boys 
and girls considered separately.  

 For the years 2010–2013, the percentage of boys reported to have ADHD (13.7%) was 
higher than the rate for girls (6.0%). This difference was statistically significant. (See Table 
H6a.) 

 In 2010–2013, 11.9% of White non-Hispanic children, 11.8% of children of “All Other Races,” 
10.1% of Black non-Hispanic children, 6.2% of Hispanic children, and 2.1% of Asian non-
Hispanic children were reported to have ADHD. (See Table H6b.) 

 These differences were statistically significant, with two exceptions: there was no 
statistically significant difference between children of “All Other Races” and White non-
Hispanic children, or between children of “All Other Races” and Black non-Hispanic 
children. 

 In 2010–2013, 13.1% of children from families living below the poverty level were reported 
to have ADHD compared with 9.1% of children from families living at or above the poverty 
level. This difference was statistically significant. (See Table H6b.) 
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 In 2013, 8.2% of children ages 5 to 17 years had ever been diagnosed with a learning 
disability. There was little change in this percentage between 1997 and 2013. 

 For the years 2010–2013, the percentage of boys reported to have a learning disability 
(10.4%) was higher than for girls (6.6%). This difference was statistically significant. (See 
Table H7a.) 

Data characterization 
- Data for this indicator are obtained from an ongoing annual survey conducted by the National Center for 

Health Statistics. 
- Survey data are representative of the U.S. civilian noninstitutionalized population. 
- A parent or other knowledgeable adult in each sampled household is asked questions regarding the child’s 

health status, including if they have ever been told the child has a learning disability. 
 



Health | Neurodevelopmental Disorders 

America’s Children and the Environment | Third Edition, Updated October 2015   17 

 The reported prevalence of learning disability varies by race and ethnicity. The highest 
percentages of learning disability are reported for American Indian or Alaska Native non-
Hispanic children (12.7%), Black non-Hispanic children (9.8%), children of “All Other Races” 
(9.6%), and White non-Hispanic children (8.9%). By comparison, 7.6% of Hispanic children 
are reported to have a learning disability, and Asian non-Hispanic children have the lowest 
prevalence of learning disability, at 3.0%. (See Table H7b.) 

 The prevalence of learning disability reported for Hispanic children and for Asian non-
Hispanic children were lower than for the remaining race/ethnicity groups, and these 
differences were statistically significant. The difference in prevalence between Hispanic 
and Asian non-Hispanic children was also statistically significant.  

 For the years 2010–2013, the percentage of children reported to have a learning disability 
was higher for children living below the poverty level (12.8%) compared with those living at 
or above the poverty level (7.4%), a statistically significant difference. (See Table H7b.) 
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* The estimate should be interpreted with caution because the standard error of the estimate is relatively large: the relative 
standard error, RSE, is at least 30% but is less than 40% (RSE = standard error divided by the estimate). 

 

 The percentage of children ages 5 to 17 years reported to have ever been diagnosed with 
autism rose from 0.1% in 1997 to 1.2% in 2013. This increasing trend was statistically 
significant. 

Data characterization 
- Data for this indicator are obtained from an ongoing annual survey conducted by the National Center for 

Health Statistics. 
- Survey data are representative of the U.S. civilian noninstitutionalized population. 
- A parent or other knowledgeable adult in each sampled household is asked questions regarding the child’s 

health status, including if they have ever been told the child has autism. 
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 For the years 2010–2013, the rate of reported autism was more than four times higher in 
boys than in girls, 1.9% and 0.4%, respectively. This difference was statistically significant. 
(See Table H8a.) 

 The reported prevalence of autism varies by race/ethnicity. The highest prevalence of 
autism is for children of “All Other Races” (1.7%) and White non-Hispanic children (1.4%). 
Autism prevalence was lower among Asian non-Hispanic children (1.1%), Black non-Hispanic 
children (0.8%), and Hispanic children (0.9%). (See Table H8b.) 

 The prevalence of autism for both White non-Hispanic children and children of “All 
Other Races” was statistically significantly different from the prevalence for both Black 
non-Hispanic children and Hispanic children. 

 For the years 2010–2013, the prevalence of autism was similar for children living below the 
poverty level and those living at or above the poverty level. (See Table H8b.) 
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 In 2013, 1.4% of children ages 5 to 17 years were reported to have ever been diagnosed 
with intellectual disability (mental retardation). This percentage fluctuated between 0.6% 
and 0.9% from 1997 to 2010, and was between 1.3% and 1.4% from 2011 to 2013. 

Data characterization 
- Data for this indicator are obtained from an ongoing annual survey conducted by the National Center for 

Health Statistics. 
- Survey data are representative of the U.S. civilian noninstitutionalized population. 
- A parent or other knowledgeable adult in each sampled household is asked questions regarding the child’s 

health status, including if they have ever been told the child has mental retardation. Starting in 2011, the 
term “mental retardation” in the question was revised to “an intellectual disability, otherwise known as 
mental retardation.” 
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 In 2010–2013, the percentage of boys reported to have intellectual disability (1.6%) was 
higher than for girls (0.8%). This difference was statistically significant. (See Table H9a.) 

 In 2010–2013, there was little difference by race/ethnicity in the reported prevalence of 
intellectual disability. (See Table H9b.) 

 In 2010–2013, 17% of children from families with incomes below the poverty level were 
reported to have intellectual disability, compared with 1.1% of children from families at or 
above the poverty level, a statistically significant difference. (See Table H9b.) 
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