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CHAPTER 3.  METHODS FOR EVALUATING DATA

3.1. INTRODUCTION

Once data have been collected, it is necessary
to statistically summarize and analyze the data. 
EPA recommends that the data analysis
methods be selected before collecting the first
sample.  Many statistical methods have been
computerized in easy-to-use software that is
available for use on personal computers. 
Inclusion or exclusion in this section does not
imply an endorsement or lack thereof by the
U.S. Environmental Protection Agency. 
Commercial-off-the-shelf software that covers
a wide range of statistical and graphical
support includes SAS, Statistica, Statgraphics,
Systat, Data Desk (Macintosh only), BMDP,
and JMP.  Numerous spreadsheets, database
management packages, and other graphics
software can also be used to perform many of
the needed analyses.  In addition, the
following programs, written specifically for
environmental analyses, are also available:

SCOUT: A Data Analysis Program,
EPA, NTIS Order Number PB93-
505303.

WQHYDRO (WATER
QUALITY/HYDROLOGY
GRAPHICS/ANALYSIS SYSTEM),
Eric R. Aroner, Environmental
Engineer, P.O. Box 18149, Portland,
OR 97218.

WQSTAT, Jim C. Loftis, Department of
Chemical and Bioresource Engineering,
Colorado State University, Fort Collins,
CO 80524.

Computing the proportion of sites
implementing a certain BMP or the average

number of acres that are under a certain BMP
follows directly from the equations presented
in Section 2.3 and is not repeated.  The
remainder of this section is focused on
evaluating changes in BMP implementation. 
The methods provided in this section provide
only a cursory overview of the type of
analyses that might be of interest.  For a more
thorough discussion on these methods, the
reader is referred to Gilbert (1987), Snedecor
and Cochran (1980), and Helsel and Hirsch
(1995).   Typically the data collected for
evaluating changes will typically come as two
or more sets of random samples.  In this case,
the analyst will test for a shift or step change.  

Depending on the objective, it is appropriate
to select a one- or two-sided test.  For
example, if the analyst knows that BMP
implementation will only go up as a result of
an operator education program, a one-sided
test could be formulated.  Alternatively, if the
analyst does not know whether
implementation will go up or down, a two-
sided test is necessary.  To simply compare
two random samples to decide whether they
are significantly different, a two-sided test is
used.  Typical null hypotheses (Ho) and
alternative hypotheses (Ha) for one- and two-
sided tests are provided below:

One-sided test
Ho:  BMP Implementation (Post education) 

# BMP Implementation (Pre education)
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Tests for Two Independent Random Samples

Test* Key Assumptions

Two-sample t •  Both data sets must be
    normally distributed
•  Data sets should have
    equal variances†

Mann-Whitney •  None

* The standard forms of these tests require
independent random samples.

† The variance homogeneity assumption can be
relaxed.
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Ha:  BMP Implementation (Post education) >
BMP Implementation (Pre education)

Two-sided test
Ho:  BMP Implementation (Post education) =

BMP Implementation (Pre education)

Ha:  BMP Implementation (Post education) 
… BMP Implementation (Pre education)

Selecting a one-sided test instead of a two-
sided test results in an increased power for the
same significance level (Winer, 1971).  That
is, if the conditions are appropriate, a
corresponding one-sided test is more desirable
than a two-sided test given the same " and
sample size.  The manager and analyst should
take great care in choosing one- or two-sided
tests.

3.2. COMPARING THE MEANS FROM TWO

INDEPENDENT RANDOM SAMPLES

The Student's t test for two samples and the
Mann-Whitney test are the most appropriate
tests for these types of data.  Assuming the
data meet the assumptions of the t test, the
two-sample t statistic with n1+n2-2 degrees of
freedom is (Remington and Schork, 1970)

where n1 and n2 are the sample sizes of the
first and second data sets, respectively, and x

_
1

and x
_

2 are the estimated means from the first
and second data sets, respectively.  The
pooled standard deviation, sp, is defined by

where s1
2 and s2

2 correspond to the estimated
variances of the first and second data sets,
respectively.  The difference quantity ()o) can
be any value, but here it is set to zero.  )o can
be set to a non-zero value to test whether the
difference between the two data sets is greater
than a selected value.  If the variances are not
equal, Snedecor and Cochran (1980) can be
used as a source for methods for computing
the t statistic.  In a two-sided test, the value
from Equation 2-18 is compared to the t value
from Table A2 with "/2 and n1+n2-2 degrees
of freedom.

The Mann-Whitney test can also be used to
compare two independent random samples. 
This test is very flexible since there are no
assumptions about the distribution of either
sample or whether the distributions have to be
the same (Helsel and Hirsch, 1995).  Wilcoxon
(1945) first introduced this test for equal-sized
samples.  Mann and Whitney (1947) modified
the original Wilcoxon's test to apply it to
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different sample sizes.  Here, it is determined
whether one data set tends to have larger
observations than the other.  

If the distributions of the two samples are
similar except for location (i.e., similar spread
and skew), Ha can be refined to imply that the
median concentration from one sample is
“greater than,” “less than,” or “not equal to”
the median concentration from the second
sample.  To achieve this greater detail in Ha,
transformations such as logs can be used.

Tables of Mann-Whitney test statistics (e.g.,
Conover, 1980) can be consulted to determine
whether to reject Ho for small sample sizes.  If
n1 and n2 are greater than or equal to 10
observations, the test statistic can be
computed from the following equation
(Conover, 1980):

(3-3)

where

n1 = number of observations in sample with
fewer observations, 

n2 = number of observations in sample with
more observations,

n  = n1 + n2,
T  = sum of ranks for sample with fewer

observations, and
Ri = rank for the ith ordered observation

used in both samples.

T1 is normally distributed and Table A1 can be
used to determine the appropriate quantile. 
Helsel and Hirsch (1995) and USEPA (1996)

provide detailed examples for both of these
tests.

3.3. COMPARING THE PROPORTIONS

FROM TWO INDEPENDENT SAMPLES

Consider the example in which the proportion
of waterbars that effectively divert water from
the skid trail has been estimated during two
time periods to be p1 and p2 using sample sizes
of n1 and n2, respectively.  Assuming a normal
approximation is valid, the test statistic under
a null hypothesis of equivalent proportions (no
change) is

where p is a pooled estimate of proportion and
is equal to (x1+x2)/(n1+n2) and x1 and x2 are
the number of successes during the two time
periods.  An estimator for the difference in
proportions is simply p1-p2.

In an earlier example, it was determined that
129 observations in each sample were needed
to detect a difference in proportions of 0.20
with a two-sided test, " equal to 0.05, 1-$
equal to 0.90.  Assuming that 130 samples
were taken and p1 and p2 were estimated from
the data as 0.6 and 0.4, the test statistic would
be estimated as

(3-5)
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Comparing this value to the t value from Table
A2 ("/2 = 0.025, df=258) of 1.96, Ho is
rejected.  

3.4. COMPARING MORE THAN TWO

INDEPENDENT RANDOM SAMPLES

The analysis of variance (ANOVA) and
Kruskal-Wallis are extensions of the
two-sample t and Mann-Whitney tests,
respectively, and can be used for analyzing
more than two independent random samples
when the data are continuous (e.g., average
SMA width).  Unlike the t test described
earlier, the ANOVA can have more than one
factor or explanatory variable.  The Kruskal-
Wallis test accommodates only one factor,
whereas the Friedman test can be used for two
factors.  In addition to applying one of the
above tests to determine if one of the samples
is significantly different from the others, it is
also necessary to perform postevaluations to
determine which of the samples is different. 
This section recommends Tukey's method to
analyze the raw or rank-transformed data only
if one of the previous tests (ANOVA, rank-
transformed ANOVA, Kruskal-Wallis,
Friedman) indicates a significant difference
between groups.  Tukey’s method can be used
for equal or unequal sample sizes (Helsel and
Hirsch, 1995).  The reader is cautioned, when
performing an ANOVA using standard
software, to be sure that the ANOVA test
used matches the data.  USEPA (1996)
provides a more detailed discussion on
comparing more than two independent random
samples.

3.5.  COMPARING CATEGORICAL DATA

In comparing categorical data it is important
to distinguish between whether the categories
are nominal (e.g., land ownership, county
location, type of BMP) or ordinal (e.g., BMP
implementation rankings, low-medium-high
scales).  

The starting point for all evaluations is the
development of a contingency table.  In Table
3-1, the preference of three BMPs is
compared to harvest site type in a contingency
table.  In this case both categorical variables
are nominal.  In this example, 45 of the 102
observations on federal lands used BMP1. 
There were a total of 174 observations.

To test for independence, the sum of the
squared differences between the expected (Eij)
and observed (Oij) count summed over all cells
is computed as (Helsel and Hirsch, 1995) 

where Eij is equal to AiCj /N.  Pct is compared
to the 1-" quantile of the P2 distribution with
(m-1)(k-1) degrees of freedom (see Table A3).

In the example presented in Table 3-1, the
symbols listed in the parentheses correspond
to the above equation.  Note that k
corresponds to the three types of BMPs and m
corresponds to the three different types of
harvest site.   Table 3-2 shows computed
values of Eij and (Oij-Eij)

2/Eij in parentheses for
the example data. Pct is equal to 14.60.  
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Table 3-1.  Contingency table of harvest site type and implemented BMP.

Harvest Site Type BMP1 BMP2 BMP3 
Row Total,

Ai

Private 10 (O11) 30 (O12) 17 (O13) 57 (A1)

Federal 45 (O21) 32 (O22) 25 (O23) 102 (A2)

State 8 (O31) 3 (O32) 4 (O33) 15 (A3)

Column Total, Cj 63 (C1) 65 (C2) 46 (C3) 174 (N)

Key to Symbols:
Oij = number of observations for the ith harvest site and jth BMP type
Ai = row total for the ith harvest site type (total number of observations for a given harvest site type)
Cj = column total for the jth BMP type (total number of observations for a given BMP type)
N = total number of observations
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From Table A3, the 0.95 quantile of the P2

distribution with 4 degrees of freedom is
9.488.  Ho is rejected; the selection of BMP is
not random among the different harvest site
types.  The largest values in the parentheses in
Table 3-2 give an idea as to which
combinations of harvest site type and BMP are
noteworthy.  In this example, it appears that
BMP2 is preferred to BMP1 in comparison to
federal and state harvest sites.

Now consider that in addition to evaluating
information regarding the harvest site and
BMP type, we also recorded a value from 1 to
5 indicating how well the BMP was installed
and maintained, with 5 indicating the best
results.  In this case, the BMP implementation
rating is ordinal.  Using the same notation as
before, the average rank of observations in
row x, Rx, is equal to (Helsel and Hirsch,
1995)

where Ai corresponds to the row total.  The
average rank of observations in column j, Dj,
is equal to

where Cj corresponds to the column total. 
The Kruskal-Wallis test statistic is then
computed as

(3-9)

where K is compared to the P2 distribution
with k-1 degrees of freedom.  This is the most
general form of the Kruskal-Wallis test since it
is a comparison of distribution shifts rather
than shifts in the median (Helsel and Hirsch, 1995).
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Table 3-2.  Contingency table of expected harvest site type and implemented BMP. (Values
in parentheses correspond to (Oij-Eij)

2/Eij.)

Harvest Site Type BMP1 BMP2 BMP3 Row Total

Private 20.64
(5.48)

21.29
(3.56)

15.07
(0.25)

57

Federal 36.93
(1.76)

38.10
(0.98)

26.97
(0.14)

102

State 5.43
(1.22)

5.60
(1.21)

3.97
(0.00)

15

Column Total 63 65 46 174

Jb '
S

1
2

(N 2&SSa)(N
2&SSb)

(3-10)

S ' j
allx y

j
i>x

j
j>y

OxyOij & j
i<x

j
j<y

OxyOij

SSa ' j
m

i'1

A 2
i (3-12)

SSc ' j
k

j'1

C 2
j (3-13)

ZS '

S&1
FS

if S>0

S%1
FS

if S<0
(3-14)

Table 3-3 is a continuation of the previous
example indicating the BMP implementation
rating for each BMP type.  For example, 29 of
the 70 observations that were given a rating of
4 are associated with BMP2.  The terms inside
the parentheses of Table 3-3 correspond to the
terms used in Equations 3-7 to 3-9.  Note that
k corresponds to the three types of BMPs and
m corresponds to the five different levels of
BMP implementation.  Using Equation 3-9 for
the data in Table 3-3, K is equal to 14.86. 
Comparing this value to 5.991 obtained from
Table A3, there is a significant difference in
the quality of implementation between the
three BMPs.

The last type of categorical data evaluation
considered in this chapter is that in which both
variables are ordinal.  The Kendall Jb for tied
data can be used for this analysis.  The statistic
Jb is calculated as (Helsel and Hirsch, 1995)

where S, SSa, and SSc are computed as

(3-11)

To determine whether Jb is significant, S is
modified to a normal statistic, using
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Table 3-3.  Contingency table of implemented BMP and rating of installation and
maintenance.

BMP
Implementation

 Rating BMP1 BMP2 BMP3 
Row Total,

Ai

1 1 (O11) 2 (O12) 2 (O13) 5 (A1)

2 7 (O21) 3 (O22) 5 (O23) 15 (A2)

3 15 (O31) 16 (O32) 26 (O33) 57 (A3)

4 32 (O41) 29 (O42) 9 (O43) 70 (A4)

5 8 (O51) 15 (O52) 4 (O53) 27 (A5)

Column Total, Cj 63 (C1) 65 (C2) 46 (C3) 174 (N)

Key to Symbols:
Oij = number of observations for the ith BMP implementation rating and jth BMP type
Ai = row total for the ith BMP implementation rating (total number of observations for a given BMP implementation rating)
Cj = column total for the jth BMP type (total number of observations for a given BMP type)
N = total number of observations

where
 

(3-15)

where ZS is zero if S is zero.  The values of ai

and ci are compute as Ai /N and Ci /N,
respectively.

Table 3-4 presents the BMP implementation
ratings that were taken in three separate years. 
For example, 15 of the 57 observations that
were given a rating of 3 are associated with
Year 2.  Using Equations 3-11 and 3-15, S
and Fs are equal to 2,509 and 679.75,
respectively.  Therefore, Zs is equal to 

(2509-1)/679.75 or 3.69.  Comparing this
value to a value of 1.96, obtained from Table
A1 ("/2=0.025), indicates that BMP
implementation is improving with time.
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Table 3-4.  Contingency table of implemented BMP and sample year.

BMP
Implementation

 Rating Year 1 Year 2 Year 3
Row Total,

Ai ai

1 2 (O11) 1 (O12) 2 (O13) 5 (A1) 0.029

2 5 (O21) 7 (O22) 3 (O23) 15 (A2) 0.086

3 26 (O31) 15 (O32) 16 (O33) 57 (A3) 0.328

4 9 (O41) 32 (O42) 29 (O43) 70 (A4) 0.402

5 4 (O51) 8 (O52) 15 (O53) 27 (A5) 0.155

Column Total, Cj 46 (C1) 63 (C2) 65 (C3) 174 (N)

cj 0.264 0.362 0.374

Key to Symbols:
Oij = number of observations for the ith BMP implementation rating and jth year
Ai = row total for the ith BMP implementation rating (total number of observations for a given harvest type)
Cj = column total for the jth BMP type (total number of observations for a given year)
N = total number of observations
ai = Ai /N
cj = Cj /N


