Developing Nutrient Targets for TMDLs

Biological Thresholds and Predictive Modeling

US EPA Nutrient TMDL Workshop, Feb 15 – 17, New Orleans, LA

Sylvia Heaton Michigan Department of Natural Resources and Environment (aka Department of Environmental Quality)

Nutrient Impairment in Michigan Inland Lakes

- 46,000 inland lakes and reservoirs
- 730 inland lakes (SPAL >50 acres)
- Good-excellent water quality
- Supporting: oligotrophic, mesotrophic, or eutrophic
- Not Supporting: hypereutrophic (few)

Nutrient Impairment in Michigan Rivers and Streams

- 76,439 total miles
- 600 miles impaired
- Cladophora and/or *Rhizoclonium* >10-inches covering > 25% of a riffle.

- Rooted macrophytes present at densities that impair designated uses
- Presence of bacterial slimes.

Problems with Assessing Water bodies as Nutrient Impaired

- No numeric nutrient criteria
- Limited assessment methodology
- Consistency in BPJ
- A single nutrient criterion for a waterbody type is not appropriate

Setting Nutrient Targets (Criteria) (Soranno et al., 2008)

- Several approaches have been proposed
- Assumption: a given nutrient target or criterion acts as indicator of whether designated uses are being met
- Approaches can be considered either <u>implicit</u> or <u>explicit</u> when measuring "aquatic life" use as "biological integrity"

Setting Nutrient Targets, (Soranno et al., 2008)

- Implicit Approach biological integrity
 - assumed to be protected at minimal human disturbance levels
 - defined by some human disturbance gradient and associated nutrient value
 - biological integrity not measured

Setting Nutrient Targets, (Soranno et al., 2008; Stevenson et al., 2004)

- Explicit Approach biological response
- Changes in biological response are used as surrogate for designated use
- Biological response changes along a nutrient gradient
- Changes can be demonstrated through...
 - Analytical approaches
 - Expert judgment (BPJ)
 - Thresholds (non-linear biological responses along a nutrient gradient)

Integrating Biological Thresholds with Predictive Modeling (Soranno et al., 2008)

 Ecosystem – specific framework for developing nutrient targets (criteria) using biological thresholds and predictive modeling (BTPM)

Limnol. Oceanogr., 53(2), 2008, 773-787 © 2008, by the American Society of Limnology and Oceanography, Inc.

A framework for developing ecosystem-specific nutrient criteria: Integrating biological thresholds with predictive modeling

Patricia A. Soranno¹ Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824

Kendra Spence Cheruvelil,² R. Jan Stevenson, and Scott L. Rollins³ Department of Zoology, Michigan State University, East Lansing, Michigan 48824

Sarah W. Holden and Sylvia Heaton Water Bureau, Michigan Department of Environmental Quality, Lansing, Michigan 48909

Eric Torng Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan 48824

Application of the BTPM Framework to a Set of Michigan Lakes

Figure 2 from Soranno et al., 2008. Limnol. Oceanogr., 53(2), 773-787.

HGM Features and LULC Features

- Lake and Catchment Morphometry
 - Lake area
 - Mean depth
 - Maximum depth
 - Shoreline development factor
 - Lake basin slope
 - Catchment area
 - Drainage area
 - Stream length
 - Climate
 - Precipitation
- Bedrock geology
 - % carbonate
 - % clastic
 - % hard rock
 - % salt
 - % iron

- Surficial geology
 - % dune
 - %outwash
 - % moraine
 - % exposed bedrock
 - % peat and muck
 - % lacustrine
 - % glacial till
- LULC
 - % agriculture
 - % urban
 - % forest
 - % upland vegetation
 - % wetland
 - % open water
- Water Chemistry
 - color

Application of the BTPM Framework to a Set of Michigan Lakes

Figure 2 from Soranno et al., 2008. Limnol. Oceanogr., 53(2), 773-787.

Identify Biological Thresholds Along a Nutrient Gradient

- Biological Data:
 - Combined biological response from recent studies (1998 2004)
 - Phytoplankton biomass
 - Clarity metrics Identify biological thresholds along nutrient gradient
 - Phytoplankton community
 - Toxin metrics
 - Macrophyte cover metrics
- Identified critical thresholds (i.e., major changes in biology)

4. Derive <u>lake-specific</u> TP criteria using a set of "rules" of the BTPM algorithm by combining the expected TP (EXP_A), the BIO benchmarks (e.g., 8 and 18 ug/l), and the current TP (CUR) to derive lake-specific criteria (CUR).

Six Key Assumptions

- 1. Phosphorus is the main stressor to lakes in Michigan
- 2. HGM features can be modeled and are important in evaluating the natural variation of phosphorus
- Benchmarks should be established sustain desired levels of biological attributes, and which are related to designated uses

Six Key Assumptions

- 4. Biological responses should include integrative measures of lake biology from pelagic and littoral zones, and water clarity (related to lake biomass through phytoplankton biomass)
- 5. Human disturbance can be reasonable approximated as the proportion of human LULC in lake catchment
- 6. Chose the state as a spatial scale to build models since lakes in US are managed at the state level

Thresholds (BIO Benchmarks) Evaluated for Lakes

Zooplankton/foodweb

Cyclopoid biomass Cladoceran mean length Daphnia biomass Zooplankton biomass

<u>Lakes</u>

Low TP Thresholds found at around ~8 ug/l for these Response Factors

Clarity/1°Productivity

Chlorophyll *a* Extinction coefficient Phytoplankton dry mass Higher TP Thresholds found at around ~18 ug/l and ~27ug/l for these Response Factors

Thresholds (BIO Benchmarks) Evaluated for Streams

Diatoms/1° Productivity

Similarity to reference Sensitivity Release from grazing pressure Invert Taxa (tolerant, intolerant) Chlorophyll *a* Cladophera cover

Macroinvertebrates

EPT Metrics Tolerant Taxa

<u>Fish</u>

Coldwater fish metrics Warmwater fish metrics Darter/Sculpin metrics

Streams

Many TP thresholds found at variable concentrations 10 – 80 ug/l

Model Development-Equations for Predicting Expected Condition

Natural Lakes:

- LN(TP) = 1.867
 - 0.257 x In(mean depth)
 - 0.202 x (outwash)
 - + 0.344 x ln(color)

Artificial Lakes: LN(TP) = 1.834

- 0.463 x ln(mean depth) + 0.421 x ln(color)

Rivers and Streams: LN(TP) = 2.058 + 0.10 x (channel order) + 0.318 x (medium substrate) + 2.173 x ln(wooded wetlands)

Development of the TMDL

The following steps were used in developing the TMDL for Bear Lake:

- 1. Determination of a phosphorus concentration target for Bear Lake using BTPM framework
- 2. Determination of the allowable loading to meet the concentration
- 3. Determination of phosphorus load reductions necessary to meet the allowable loads

Biological Thresholds and Modeling Framework

$$TPN = [e^{(1.867 - 0.257(\ln a) - 0.202(b) + 0.344(\ln c))}] * (1.39)$$

a = arithmetic mean lake depth in meters

b = proportion of surficial geology-outwash within a 500 meter buffer around the lake

c = true color of lake in platinum - cobalt units measured as absorbance during the period July through September

Target Phosphorus Concentration Bear Lake

Growing Season Concentration (April to September) Monthly Average

Walker Model

$$P = \frac{P_a DT}{D_m} \left[\frac{1}{1 + .824 DT^{.454}} \right]$$

Where:

P = target in-lake phosphorus concentration (mg/l) = 0.03 mg/L

- Pa = annual phosphorus loading (g/m2/year)
- DT = hydraulic detention time (years) = 0.120 years

Dm = mean lake depth (meters) = 2.07 meters

Phosphorus Loading Source Contributions (lbs/yr) in the Bear Lake Watershed

Issues Yet to Resolve

- Natural variation in lake and stream data
- Number of samples that are necessary for assessment and compliance
- "Ground truth" model predictions with current data
- What to do with internal loading?

Contact Information

