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ABSTRACT 

 This document summarizes the first year of work on the project Measuring Nutrient 

Reduction Benefits for Policy Analysis Using Linked Non-Market Valuation and Environmental 

Assessment Models. The project's overall objective is to provide an integrated protocol that will 

assist state water quality managers in one aspect of their efforts to set numeric ambient nutrient 

pollution standards for surface water. The specific focus is on measuring the dollar-denominated 

benefits of nutrient reductions as they pertain to recreation and aesthetic services. To accomplish 

this task a mechanism is needed that links measured nutrient pollution (i.e. ambient nitrogen, 

phosphorous, etc.) to a qualitative ranking of water quality, which can then be tied to an 

economic model of valuation. In this technical document we describe Module 1 in our project, 

which centers on 1) estimating a function that maps measures of nutrient pollution to an ordinal 

ranking of water quality, and 2) using this function to predict surface water rankings in 

individual lakes across our study area.  

 To characterize the relationship between objectively measured water quality parameters 

and a subjective ordinal ranking we rely on expert elicitation. Specifically, a panel of water 

quality experts was presented with values for an array of water quality parameters and were 

asked to judge how water bodies with given measures would rank according to a predefined 

scale. Multiple responses to different parameter values were then used to quantify the mapping 

from objective measures to subjective ranking. We investigate two different statistical models for 

fitting a functional relationship, and find robustness in model performance and predictions across 

the two methods. We find that chlorophyll a and Secchi depth are the strongest predictors of 

eutrophication levels, followed by total phosphorus and total nitrogen.  

 We use our models to predict water quality rankings (trophic state levels) at 

representative lakes and reservoirs in North Carolina and South Carolina. Our demonstrations 
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suggest the research completed in Module 1 is quite successful and is on track for use in the 

general protocol proposed in our project. This statement, however, is contingent on the 

availability of sufficient monitoring station measurements for the reservoirs of interest - 

particularly for Secchi depth and chlorophyll a, which we found to be particularly sparse in our 

South Carolina demonstrations.  

 We close our discussion by providing comments on our models' spatial transferability, 

general limitations and sources of uncertainty, and further research and data gathering that could 

enhance the overall protocol that we are proposing in this project.  
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1) INTRODUCTION 

 This document summarizes the first year of work on the project Measuring Nutrient 

Reduction Benefits for Policy Analysis Using Linked Non-Market Valuation and Environmental 

Assessment Models. The project's overall objective is to provide an integrated protocol for 

assisting state water quality managers in one aspect of their efforts to set numeric ambient 

nutrient pollution standards for surface water. The specific focus is on measuring the dollar-

denominated benefits of nutrient reductions as they pertain to recreation and aesthetic services. 

For this a mechanism is needed that links measured nutrient pollution (i.e. ambient nitrogen, 

phosphorous, etc.) to a qualitative ranking of water quality, which can then be tied to an 

economic model of valuation. Our objective in this technical document is to describe research 

(module 1 in our project) centered on the first part of this: estimation of a function mapping 

measures of nutrient pollution to an ordinal ranking of quality, and its use for predicting surface 

water rankings across our study area.  

 To provide context for this effort we first describe the motivation for the project and its 

overall structure. In 2007 EPA's Office of Water solicited proposals for research that would 

"...aid States in their attempts to estimate monetary benefits associated with nutrient reductions 

as they strive to adopt numeric nutrient criteria into their State water quality standards" (EPA-

OW, 2007, p.2). The solicitation was motivated by the desire among state and federal managers 

to establish numeric (as opposed to narrative) quality criteria, and the realization that the costs of 

achieving such criteria are more readily measurable than the benefits. The request for proposals 

goes on to state: 

"However, State agencies charged with developing standards and facilitating their 

adoption into state regulations, often lack the staff time and funding required to do a 
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complete analysis of benefits. To assist State lawmakers and the general public in being 

better informed, State environmental agencies need to be able to accurately characterize 

the economic value of environmental benefits associated with achieving water quality 

standards for nutrients. A thorough assessment of these benefits associated with numeric 

nutrient standards would apply a production function approach, documenting the direct 

linkage between excess nitrogen and phosphorus in the water and a loss of ecological 

goods and services provided to society, and provide a monetary estimate of benefits from 

restoring these services" (EPA-OW, 2007, p. 3, emphasis added). 

 In response to this solicitation we submitted a project that included three main 

components or modules among its objectives. These include: 

i. Development of a eutrophication production function whereby quantitative measures of 

ambient nutrient levels can be mapped to qualitative indicators of water body quality as 

reflected by its trophic state.  

ii. Development of a revealed and stated preference framework for non-market valuation of 

the benefits of nutrient reductions that: (a) links to the eutrophication production 

function; (b) is general in that the software, data sources, and analytical techniques are 

transferable to any region and scalable for any policy question; and (c) is location-

specific in that the parameters of the benefit function can be calibrated based on local 

conditions and the local policy question of interest.  

iii. Transfer of knowledge on how the framework can be applied for regulatory analysis via: 

(a) a training workshop targeted at state level water quality regulators and analysts; and 

(b) distribution of software, data sources, and educational materials necessary for 

implementing the framework.  
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Our proposal was selected for funding and work began April 2008. In this technical document 

we summarize work to date on the first of these objectives. In the next section we begin by 

describing the general goals and strategies for our production function approach. This is followed 

in Section 3 by a detailed discussion of the data available for fitting our empirical models. 

Section 4 describes our analytical approach and reports estimation results from the various 

models we examined. Section 5 provides a summary of the ambient water quality database we 

have assembled in order to demonstrate the use of our production function approach, and Section 

6 provides a summary of illustrative predictions from across our study region. Section 7 

concludes the document with a discussion of limitations to our approach, future research 

opportunities, and a roadmap for the remainder of the project.  

2) GENERAL FRAMEWORK 

 Module 1 of our project focuses on developing a link between measured water quality 

variables and the qualitative trophic state of a given water body. Eutrophication is a process 

fueled by nutrients such as nitrogen and phosphorus, and it results in problems that include 

increased algal growth, reduced water clarity, coloration of surface water, unpleasant odors, and 

impacts on aquatic life. It is these problems that are perceptible to users and ultimately condition 

the suitability of lakes for recreation and aesthetic purposes. For this reason we seek a function 

that relates measured water quality to an index of trophic state, which reflects these perceptible 

impacts. There is, however, no single variable that is always the best predictor of eutrophication 

or the water body’s trophic state. What is needed is a mapping between several objectively 

measured variables (such as total nitrogen and phosphorous, chlorophyll, turbidity, etc.) and an 

index reflecting trophic state and perceptible impacts. To this end we develop a statistical water 

quality production function relating data on measured water quality and trophic state. To fix 
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ideas, consider the following general specification of a water quality production function: 

 1( ,..., ),k k kMr f q q=  (1) 

where qk1,…,qkM denotes measurements of M different measured water quality variables (e.g. 

nitrogen, phosphorous, chlorophyll a, etc.) at water body k, f(·) is a function that takes the 

measured water quality variables as inputs, and rk is an ordinal ranking (rk=1,2,...,R) reflecting 

the qualitative trophic state of the water body. Furthermore define ek1,…,ekL as a collection of L 

perceptible indicators of trophic state such as algal growth, water clarity, water color and smell, 

and the health of aquatic populations. Finally, suppose that the ordinal rankings are defined such 

that there is a known, a priori given mapping g(·), where: 

 1( ,..., ).k k kLr g e e=  (2) 

 Equations (1) and (2) suggest an operational strategy for estimation of a function that 

meets our applied needs. First, the relationship illustrated by (2) needs to be defined for the 

specific application. In the example we examine below for lakes and reservoirs in the inland 

Southeast, we use a definition for g(·) that is illustrated in Table 1 below. The specifics of this 

definition are discussed in greater detail in the following section. Second, expert elicitation can 

be used to relate observations on measured water quality to the rankings 1,...,R. Expert elicitation 

is a systematic process of interviewing experts to quantify their judgments on the relationships 

between measured variables and unmeasured outcomes (Meyer and Booker, 2001). In this 

instance experts first familiarize themselves with the relationship illustrated by equation (2). 

Then they are presented with experimentally designed data rows corresponding to values of the 

measured variables q1,...,qM. For each data row, the expert is asked to judge which ranking 

(1,...,R) they would assign, based on the given water quality values. Multiple experts provide 

assessments for multiple data rows that vary in the levels of the measured water quality variables  
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Category Water 
clarity Color Algae Nutrient 

levels Oxygen Odor Aquatic life

1 Excellent None Very little Very low Very high No Very healthy, abundant

2 Good Little Little Low High Little Healthy, abundant

3 Fair Some Moderate Moderate Moderate Little Somewhat healthy, 
abundant

4 Poor Noticeable High High Low Noticeable Unhealthy, scarce

5 Poor Considerable Very high Very high Low to no Strong 
offensive

Unhealthy, scarce or 
none present

Table 1: Trophic Status Categories

 

presented. In this way, we can obtain a dataset suitable for estimating an empirical version of 

equation (1). With these two steps the process is completed. For observed values q01,…,q0M 

obtained from a water body indexed by 0 we can predict the trophic state ranking, denoted  

which in turn reflects the perceptible water quality conditions at the water body that matter to 

people. Hypothesized or actual changes in measured nutrient pollution outcomes can then be 

used to measure the change in the ranking attributable to the change in measured nutrient levels.  

0̂ ,r

 This strategy for estimating a production function clearly requires interviews with experts 

in the region specific to the policy analysis. In what follows we describe such an exercise for 

lakes and reservoirs in North Carolina, conducted by project co-PIs Melissa Kenney and Ken 

Reckhow.  

3) EXPERT ELICITATION DATA FOR NORTH CAROLINA 

 As part of previous research co-PIs Kenney and Reckhow (see Kenney et al., 2007) 

undertook a detailed study of eutrophication conditions at nearly 140 lakes and reservoirs in 

North Carolina. This research included a rigorous expert elicitation component during which 14 

experts familiar with NC hydrology considered how seven water quality parameters map into 

five levels of trophic state. In this section we review this protocol and the resulting data, which 

will be used for our statistical analysis. We first describe the general approach that was taken,  
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Table 2: Example Data Row 

Photic Total 
Nitrogen

Photic Total 
Inorganic 
Nitrogen

Photic Total 
Phosphorus

Photic 
Chlorophyll a

Surface 
Dissolved 
Oxygen

Secchi 
Depth

Photic 
Turbidity

0.46 mg/l 0.02 mg/l 0.03mg/l 38 μg/l 6.3 mg/l 1.3 m 3.9 NTU  

and then provide additional detail on how the elicitation was carried out. The section concludes 

with a presentation of summary statistics from the data.  

Expert Elicitation Approach 

 Experts were asked to consider how total nitrogen, total inorganic nitrogen, total 

phosphorous, chlorophyll a, Secchi depth measure, dissolved oxygen, and turbidity map into five 

pre-defined trophic state levels. The categories were defined on an ordinal scale from j=1 to 5, 

with 1 being the least eutrophic. The five levels were attached to the descriptive criteria arrayed 

across the columns in Table 1. Each of the 14 experts was presented with 100 rows of data in a 

form illustrated by Table 2. For each row of data the expert responded to the following question:  

• Imagine 100 different lakes in the (named NC) eco-region with the characteristics 

specified by the given data row. Of the 100 lakes, how many of the lakes would you 

expect to fall into each of the (five categories of eutrophication)? 

Each expert answered this question for the specific NC eco-region in which they were most 

familiar. The eco-regions include Coastal (4 experts), Southeastern Plains (1 expert), Piedmont 

(6 experts), and Blue Ridge (3 experts). The 100 rows of data were designed to reflect realistic 

combinations of parameter measurements. Indeed, a large majority of the data rows are actual 

observations taken from North Carolina reservoirs and lakes, while for a small number of rows 

actual measurements were adjusted to provide greater variability in the most common scenarios. 

Each expert responded to 50 data rows that were the same across eco-regions ("statewide" rows) 

and 50 data rows that were specific to the eco-region ("region" rows). Appendix Table A1 shows 
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the 50 data rows that were common across all experts, and Appendix Tables A2-A5 show the 

rows that are specific to the Piedmont, Coastal, Southeastern Plains, and Blue Ridge eco-regions, 

respectively. 

Expert Elicitation Process 

 The actual elicitation process unfolded in three steps. Each step was presented separately 

and all parts were conducted for all the experts who completed the exercise. The first part 

(approximately two hours) included a discussion about eutrophication processes and designated 

use impairment, as well as the use of expert judgments in the project. In the second part 

(approximately one hour training and two to three hours on the expert’s own time), the expert 

provided their judgments on the data rows described above. The elicitor worked through the first 

few cases with the expert until they felt comfortable working through the remaining cases 

individually. The third step involved follow up and debriefing. In total, this process took 

approximately six to eight hours of the expert’s time. We briefly describe the main features of 

these steps. Additional details are found in Kenney et al. (2007) and Kenney (2007).  

The first part of the elicitation process occurred during a face-to-face meeting with the 

expert, at which time the elicitor directed a discussion about eutrophication processes and 

designated use impairment, as well as the use of expert judgments in this project. A description 

of the project, why expert assessments were necessary, the protocol for the elicitation, and how 

the judgments would be used for analysis were provided. An open-ended discussion guided by 

the following two questions then occurred: 

• What are the mechanisms leading to eutrophication (both natural and human-caused)? 

• What other variables (non-eutrophication) affect a water body’s attainment of 

designated use? 
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Table 3: Example of an Expert's Response

parameter TN TIN TP Chla DO Secchi Turbidity

value 0.46 0.02 0.03 38 6.3 1.3 3.9
Ranking 1 2 3 4 5
# Lakes 0 10 50 40 0  

This component of the protocol provided perspective on how the expert viewed eutrophication 

issues, particularly as regards the similarities and differences between eco-regions in North 

Carolina. Clues as to how different experts might emphasize different measured variables upon 

making assessments were also gleaned and recorded.  

The second step in the process was the most important and involved responding to a 

workbook of probabilistic questions. Experts viewed the data rows described above and provided 

answers in the form of probabilistic measures (expressed via the division of 100 hypothetical 

lakes into the five categories). This allowed the experts to acknowledge both scientific 

uncertainty and natural variability, and it reflects the realistic notion that the relationship between 

measured water quality parameters and trophic state is fundamentally stochastic. An example of 

how a single expert responded to a single row of data is shown in Table 3.  

The final step in the protocol involved examining the elicitation data, identifying answers 

that seemed odd or contradictory, and following up with the expert on these rows. Experts were 

asked to look at a subset of their data rows and describe why they made a particular assessment. 

If the experts saw an error in their assessment, they were encouraged to make a correction that 

more accurately reflects their belief about the trophic state category. This process provided 

additional perspective on which variables a particular expert thought were important or not 

important. For straight-forward rows experts tended to rely on three or fewer variables, while for 

more difficult decisions more of the information was used. Also, experts seemed to ignore 

dissolved oxygen, since it was measured at the surface rather than via a photic-zone depth  
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Table 4: Summary of Expert Elicitation Data

Mean Std. Error Median
Full Data Set (N =1400)

Expect Rank 2.97 0.96 3
Mode Rank 2.91 1.08 3

50 Common Rows (N =700)
Expect Rank 2.96 0.90 3.10
Mode Rank 3.01 1.02 3

50 Common Rows Collapsed (N =50)
Expect Rank 2.96 0.69 3.10  

integrated sample.  

 This process provided 1400 rows of explanatory and response variables as shown in 

Table 3, and these data provide the basis for our analysis. Table 4 provides summaries of the key 

features of the data. The first set of statistics describes the full dataset, including all 1400 rows. 

The expected rank is the row-specific weighted average of the five categories, where the weights 

are given by the experts' responses. The mode rank is the row-specific category that received the 

highest weight from the expert. The mean and median are approximately three in the dataset, 

suggesting the typical lake in NC according to these experts would receive a rank of 3. The 

second set of statistics presents this same information, but limits the calculations to the 50 data 

rows that were common across the 14 experts (700 total rows). The final set of statistics presents 

a summary for our collapsed data. Here, the 14 exerts' answers for each of the 50 common rows 

are first averaged, resulting in a 50 (as opposed to 700) row data set. The summaries presented 

are over these 50 rows. While the measures of central tendency are similar to the non-collapsed 

data, the smaller standard error is consistent with the idea that heterogeneity among experts is 

minimized by first collapsing the data.  

4) ANALYSIS 

 The data gathered via the expert elicitation exercise are our primary source for estimating 
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empirical versions of equation (1). We have investigated several modeling strategies for fitting 

our production functions. Here we describe our two preferred approaches, which differ primarily 

in the way we configure the data for analysis. The first, which we refer to as our ordered logit 

regression model, uses disaggregate configurations of the data. The second, which we call our 

binomial regression model, aggregates judgments from the experts before proceeding with the 

analysis. We describe these two analyses approaches and a number of model estimates in this 

section. 

Ordered Logit Regression 

 Recall that our basic modeling objective is to relate measured water quality variables to 

our j=1,...,5 trophic state rankings. These rankings are an example of ordinal data. Ordinal data is 

characterized by discrete outcomes that have a natural ranking but for which there is no 

meaningful scale. The best examples are responses to opinion questions that ask people to rate 

something using scales such as {very poor, poor, average, good, very good}. In this case there is 

a natural progression from very poor to very good, but the common labeling device of using {1, 

2, 3, 4, 5} to denote the categories is devoid of quantitative meaning. Statistical models are 

needed that predict the probability of particular outcomes while recognizing this progression. A 

commonly applied approach for statistical modeling of ordinal data is the ordered logit model. 

 Ordinal outcomes can be modeled as discrete outcomes that occur sequentially as values 

for an unobserved (or "latent") continuous variable pass specific thresholds. Denote the data 

generating process for the latent variable for an observation i on decision occasion t by 

  (3) * ,it it itr q uβ ′= +

where qit is a vector of covariates (absent an intercept term) thought to influence the ordinal 

outcome, β is a vector of parameters, and uit is a random variable. In our model, qit is a vector 
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holding row t of measured water quality outcomes examined by expert i. The unobserved latent 

variable is linked to the observed ordinal outcome by the relationship 

 
*

11 if 

0 otherwise,

j
it j it j

j
it

r r

r

α α−= < ≤

=
 (4) 

where j=1,...,R denotes the R possible ordered outcomes, the αj's are threshold values, and 

α0=െ∞ and αJ=∞. From this setup we can state the probability of observing rank j as 

 
*

1

1

Pr( | ) Pr( )

Pr( ).
it j it j

j it it j

j q r

q u

α α

α β α
−

−

= < ≤

′= < + ≤
 (5) 

From this some rearranging makes clear that the probability of observing a particular outcome 

depends on the probability distribution function for ui:  

 1

1

Pr( | ) Pr( )

( ) ( ),
it j it i j it

j it j it

j q q u q

F q F q

α β α β

α β α β
−

−

′ ′= − < ≤ −

′ ′= − − −
 (6) 

where F(·) is the cumulative distribution function for uit. Equation (6) makes clear that the 

probability of an outcome is a function of observed covariates, a known distribution, and the 

unknown parameters (β,α2,...,αJ-1), which are estimated via maximum likelihood.  

 The ordered logit model arises when we assume that uit is logistically distributed such 

that the cumulative distribution function F(·) is 

 exp( )( ) .
1 exp( )

zF z
z

=
+

 (7) 

From equations (6) and (7) we can construct the log-likelihood function for a sample of I experts 

assigning each of T data rows to the R categories as  

 1
1 1

1 1 1 1

exp( ) exp( )
( ,... , ) ln .

1 exp( ) 1 exp( )

I T R
j it j itj

J it
i t j j it j it

q q
LL r

q q
α β α β

α α β
α β α β

−
−

= = = −

⎡ ⎤′ ′− −
= × −⎢ ⎥′+ − + − ′⎢ ⎥⎣ ⎦
∑∑∑  (8) 

Standard numerical search methods are used to find values of the unknown parameters that 
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maximize (8), which are the maximum likelihood parameter estimates for the ordered logit 

model. 

 Once the parameters are estimated, predictions for the probabilities of the different 

categories conditional on values for q are straightforward to compute using (4) and (5). In 

particular, the predicted rank for some value of water quality q0 obtained from a water body 

indexed 0 is calculated as 

 0
1

ˆ ( | ) .
R

j
r pr j q

=
0 j= ×∑  (9) 

Predicted rankings for specific water bodies can be obtained using equation (9) and actual 

observations from the water body's quality monitoring stations.  

 To estimate our ordered logit models, a transformation of the raw data is needed. Recall 

that our experts provided a distribution (i.e. the proportion of lakes that would fall into each 

category) of ordinal ranks, rather than a single rank, as is needed for this model. To assign a 

single ordinal rank to each of our 1400 observations (100 from each of 14 experts) we selected 

the rank that received the highest proportion of the expert's distribution, which is the mode rank 

as described in Table 4. The average mode rank is 2.91, and the standard error of over one 

suggests there is usable variability in the data among experts' mode rank responses.  

 We examined several ordered logit specifications, and we report here sets of results that 

are useful for predictions in different contexts. Our baseline model includes all 100 answers from 

each of the 14 experts. This is consistent with the notion that there is a single function that is 

appropriate for predicting the trophic state in lakes and reservoirs across all four of the North 

Carolina eco-regions included among our data. Table 5 presents results from three specifications 

of this model. In all instances the standard errors shown in parenthesis are clustered to reflect the 

likely correlation among judgments from the same expert.  
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Table 5: Full Sample Ordered Logit Model Results
VARIABLE Model 1 Model 2 Model 3

Total Nitrogen 0.436 (0.301) 0.603 (0.269) 1.335 (0.275)
Total Inorganic Nitrogen 0.873 (0.494) - -
Total Phosporous 9.792 (2.463) 10.402 (2.606) 11.729 (2.774)
Chlorophyll a 0.076 (0.012) 0.075 (0.011) 0.072 (0.01)
Dissolved Oxygen -0.004 (0.05) - -
Secchi Depth -0.73 (0.139) -0.705 (0.137) -
Turbidity 0.017 (0.009) 0.02 (0.008) 0.035 (0.01)
Cut 2 -1.112 (0.764) -1.007 (0.593) 0.61 (0.403)
Cut 3 0.535 (0.546) 0.639 (0.396) 2.146 (0.351)
Cut 4 3.044 (0.394) 3.152 (0.404) 4.505 (0.451)
Cut 5 6.264 (0.561) 6.351 (0.483) 7.695 (0.578)
Log-likelihood Value -1,542.50 -1,544.37 -1,597.41  

 Model 1 contains all the water quality variables that were presented to the experts. The 

coefficient estimates are not meaningful in magnitude, but their signs do have a direct 

interpretation. A positive sign suggests that a higher level of the variable pushes the ranking 

higher (i.e. towards a worse trophic state), and a negative coefficient means that higher levels of 

the variable are associated with a better (lower index number) trophic state. Based on this 

interpretation all of the estimated coefficients have sensible signs. Higher levels of nitrogen, 

phosphorous, chlorophyll a, and turbidity are associated with higher index numbers, and higher 

levels of positive indicators such as dissolved oxygen and clarity are associated with lower index 

numbers. In this qualitative sense the model works quite well. As regards statistical performance, 

with some exceptions, coefficient estimates are generally significant at a 5% level (estimates 

greater than twice standard the errors). However, both nitrogen types are individually 

insignificant, as is surface dissolved oxygen. The former likely suggests total nitrogen and total 

inorganic nitrogen were redundant sources of information for the experts. The latter reflects the 

fact that surface dissolved oxygen is less relevant than other oxygen measures for predicting 
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trophic state. These observations motivate model 2, which examines coefficient estimates when 

inorganic nitrogen and dissolved oxygen are excluded. We find that all remaining coefficients 

are now significant, and a log-likelihood test between models 1 and 2 suggests no loss of 

statistical fit from the exclusions. Model 3 is motivated by the practical observation that many 

water bodies in our study region lack measurements for particular variables. For example, in our 

data for South Carolina reservoirs discussed below, Secchi depth is infrequently observed. In this 

and similar instances, prediction of the water quality ranking may require use of a model that 

excludes particular variables. The remaining variables in this model - total nitrogen, total 

phosphorous, chlorophyll a, and turbidity - are perhaps more commonly available. We find all 

four coefficients are intuitively signed and significant, though a log-likelihood ratio tests 

suggests a statistically significant loss of explanatory power from their exclusion. The extent to 

which this has practical implications will be discussed in section 6. Based on analysis of the full 

sample we conclude that model 2 represents our best specification.  

 While the individual coefficient magnitudes are not directly interpretable, they can be 

used to compute elasticity measures, which provide unit-free comparisons between the different 

variables. Specifically, the model estimates can be used to compute the probability for each 

trophic level, conditional on values for the water quality variables. An elasticity is the percent by 

which one of these probabilities changes due to a one percent change in a single explanatory 

variable. Using elasticities we can determine which variables have the largest relative influence 

on probability predictions. Elasticities from our preferred model (model 2) for each variable and 

each trophic level are shown in Table 6. For lower index levels (better quality) the pollution 

measures have negative signs, since higher pollution decreases the probability of a good index; 

the opposite holds for the higher index number (worse quality). In all instances we find that  
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Table 6: Elasticity Measures
VARIABLE Category 1 Category 2 Category 3 Category 4 Category 5

Total Nitrogen -0.289 -0.224 -0.004 0.231 0.301
Total Phosporous -0.556 -0.430 -0.008 0.444 0.578
Chlorophyll a -1.755 -1.358 -0.024 1.404 1.826
Secchi Depth 0.908 0.703 0.013 -0.727 -0.945
Turbidity -0.145 -0.112 -0.002 0.116 0.151  

chlorophyll a has largest elasticity, suggesting this was on average the most important variable 

driving experts' judgments. Secchi depth was also relatively important, followed by total 

phosphorous and total nitrogen.  

 The full models presented in Table 5 pool expert judgments from across the state, 

resulting in a single parameterization for use in subsequent predictions, regardless of the eco-

region in which a lake sits. Given the differing physical characteristics of lakes and reservoirs in 

different eco-regions, however, it may in some instances be desirable to use a model specific to 

an eco-region type. Because the experts were asked to make their judgments conditional on a 

specific eco-region, it is possible to use subsets of the data to estimate region-specific or lumped-

region models. This comes, of course, at a cost of fewer observations used for estimation. Table 

7 presents results for three disaggregate models as well as the state-wide model repeated from 

Table 5, each using the preferred specification. We have combined observations from the 

Piedmont and Southeastern Plains experts, since only one expert from the latter region 

participated. The Blue Ridge and Coastal models include only experts from their respective 

regions. We find some differences in coefficient estimates, the most notable being the size 

differences in the nitrogen and phosphorus coefficients between the Blue Ridge and Piedmont 

models. Elasticity estimates that we examined suggested that, while chlorophyll a and Secchi 

depth remain the most important predictors in the Blue Ridge as elsewhere, total nitrogen and 

total phosphorous are comparatively more important predictors of trophic state in this region  
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Table 7: Region-Specific Ordered Logit Results
VARIABLE Statewide Piedmont/SE Plains Blue Ridge Coastal

Total Nitrogen 0.603 (0.26) 0.907 (0.18) 1.381 (0.688) -0.169 (0.468)
Total Phosporous 10.402 (2.606) 7.192 (2.252) 16.289 (3.639) 14.322 (8.631)
Chlorophyll a 0.075 (0.011) 0.081 (0.016) 0.077 (0.015) 0.124 (0.014)
Secchi Depth -0.705 (0.137) -0.819 (0.22) -0.937 (0.353) -0.561 (0.142)
Turbidity 0.02 (0.008) 0.036 (0.004) 0.035 (0.03) 0.039 (0.008)
Cut 2 -1.007 (0.593) -1.519 (0.99) -2.093 (0.448) 1.622 (0.857)
Cut 3 0.639 (0.396) 0.426 (0.597) 0.053 (0.17) 2.964 (0.298)
Cut 4 3.152 (0.404) 3.196 (0.558) 3.301 (0.676) 5.386 (0.15)
Cut 5 6.351 (0.483) 6.413 (0.606) 7.329 (0.454) 8.807 (1.012)  

than elsewhere in the state.  

Binomial Regression 

 Our second analysis approach mirrors the models presented by Kenney (2008), and 

begins with some aggregation of the data to average out heterogeneity among the experts. 

Consider for example the t=1,...50 rows of data that were common for all 14 experts, and let wijt 

denote the proportion expert i assigned to category j for data row t. Define the average 

proportion assigned by the 14 experts as 
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1
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14jt ijt

i

w w j
=

= =∑  (10) 

and note that the wjt's can be interpreted as the derived consensus among the panel of experts as 

to how row t of quality measurements maps to a distribution for the five trophic state levels. 

With this we can define the expected rank for data row t as 

  (11) 
5

1
( ) .t

j
E r j w

=

= ×∑ jt

This is the statistic that was summarized in the last row of Table 4. For estimation it is 

convenient to normalize E(rt) such that 
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where zt is contained in the unit interval. Equation (12) completes the data manipulation needed 

for estimation. The estimating equation then is a simple linear regression 

 ln ,
1

t
t t
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z q
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θ ε
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 (13) 

where qt is the vector of water quality measures contained in row t. Equation (13) is estimated by 

least squares and estimates for the coefficient vector θ are obtained. The form of (13) suggests 

prediction of z for any value of water quality measurements q0 is given by 
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With the prediction for z, we can compute the implied probability of rank j conditional on water 

quality values q0 using the binomial distribution as 

 5
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and equation (9) can be used to compute the predicted trophic state.  

 We estimate five versions of equation (13). The first is a state-wide model that uses the 

50 data rows common to the 14 experts. We then estimate region-specific models, which use the 

100 rows of data that were common for the experts within the specific region. As described 

above, the experts' answers for common data rows were first averaged, and then the regression 

was estimated.  

 Table 8 presents results of estimation for our state-wide binomial regression models. 

These models are based on the average among the 14 experts over the 50 common data rows. 

Models 1 and 2 here are comparable to the corresponding ordered logit specifications presented 

in Table 5, and quite similar conclusions emerge from the estimates. The coefficient estimates  
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Table 8: Statewide Binomial Regression Results
VARIABLE Model 1 Model 2 Model 3

Total Nitrogen 0.142 (0.086) 0.139 (0.083) 0.422 (0.112)
Total Inorganic Nitrogen 0.295 (0.212) - -0.038 (0.302)
Total Phosporous 4.256 (0.496) 4.193 (0.47) 5.346 (0.691)
Chlorophyll a 0.027 (0.002) 0.028 (0.001) 0.025 (0.002)
Dissolved Oxygen 0.025 (0.016) - 0.051 (0.023)
Secchi Depth -0.201 (0.028) -0.202 (0.028) -
Turbidity 0.009 (0.003) 0.011 (0.003) 0.013 (0.004)
Constant -0.642 (0.159) -0.444 (0.079) -1.275 (0.192)  

Table 9: Region-Specific Binomial Regression Results
VARIABLE Piedmont/SE Plains Blue Ridge Coastal

Total Nitrogen 0.142 (0.086) 0.447 (0.115) -0.109 (0.115)
Total Inorganic Nitrogen 0.295 (0.212) 0.065 (0.196) 1.145 (0.284)
Total Phosporous 4.256 (0.496) 4.844 (0.708) 4.634 (0.667)
Chlorophyll a 0.027 (0.002) 0.02 (0.002) 0.04 (0.002)
Dissolved Oxygen 0.025 (0.016) -0.211 (0.027) -0.181 (0.038)
Secchi Depth -0.201 (0.028) 0.022 (0.015) 0.027 (0.022)
Turbidity 0.009 (0.003) 0.007 (0.004) 0.006 (0.004)
Constant -0.642 (0.159) -0.402 (0.169) -1.281 (0.216)  

are sensibly signed and generally significant at the 5% level, though as with the ordered logit 

model the two nitrogen variables seem redundant, and the dissolved oxygen variable provides 

little explanatory power. As with the ordered logit model a positive coefficient implies higher 

levels of the variable push the trophic state ranking higher (generally worse water quality), while 

the opposite holds for negative coefficients. Model 3 is included for use in our predictive 

exercises, where observations on Secchi depth are often missing. The region specific models 

shown in Table 9 also provide similar results as their ordered logit counterparts. We find that 

total nitrogen levels are more important in predicting trophic state for the Blue Ridge region than 

for others in the state.  

 Taken together the results from our two modeling approaches suggest a qualitative 
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robustness in how we quantify the role of the different water quality measures in predicting 

trophic state. We consistently find that chlorophyll a and Secchi depth are the most important 

factors in predicting quality outcomes, with total nitrogen and total phosphorus also playing a 

notable role. In Section 6 we examine the extent to which similar predictions from the models 

arise. In the next section we discuss the data needed to carry out predictions across our study 

region.  

5) WATER QUALITY DATA 

 Our objective is to use the models discussed above to predict the trophic state of water 

bodies throughout our study region. A necessary condition for this is the availability of ambient 

water quality measurements from the lakes and reservoirs of interest. Potential sources of quality 

measurements include federal, state, local, and private monitoring networks. The availability, 

completeness, and reliability of monitoring network data varies widely within and across states. 

As we discuss in greater detail below, the absence of sufficient water quality measurements is 

likely to be the main impediment to our ongoing efforts to make our approach operational. In this 

section we describe efforts to obtain water quality information for two states in our study region, 

which we use to demonstrate our methodology. We focus on and summarize information for 

North Carolina and South Carolina. In Section 6 this information is then used to provide a series 

of illustrative predictions of trophic state for lakes and reservoirs in the two states.  

 Water quality monitoring is primarily carried out by state and local agencies, and these 

agencies are responsible for the design and maintenance of the monitoring station network and 

resulting data. To provide a single repository for data generated by the myriad of agencies, EPA 

maintains the STORET system. This is a database of measurements deposited by government 

and private managers, and it is the primary vehicle through which information on water quality 
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across multiple regions and agencies can be obtained. Online queries allow users to download 

information for specific locations, hydrological units, or monitoring stations. Filters for water 

quality parameters of interest (e.g. phosphorous, dissolved oxygen) can be used, and the 

information arrives in spreadsheet readable form. Our intent was to rely primarily on the 

STORET system to obtain the water quality information needed for the demonstrations in this 

report, and for subsequent project-related analysis. A potential problem with this strategy is that 

the STORET system may not include all potentially useful information for a given region or 

water body. There is variability across agencies in the timing of data uploads, and some 

monitoring station information (particularly for non-government networks and ad hoc monitoring 

activities) may not be deposited. Thus any sparseness of data availability may be due to 

incomplete assembly of relevant information or an actual lack of information. The former is less 

worrying, because state managers who use this protocol will likely have better institutional 

knowledge of local data sources than we do. The latter is more of an issue, and we return to this 

point below.  

 To gather water quality measurements for lakes and reservoirs in our study region we 

began with a consistent STORET download protocol for each state. Searching by geographic 

region, the following fields were coded: 

• State - state name (North Carolina, South Carolina) 

• Station Type - lake and reservoir 

• Date - January 1, 2005 - April 10, 2009 

• Activity Medium - water 

• Activity Intent - select all 
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• Characteristic -  Secchi Disk Depth; Chlorophyll a (various measures); Phosphorus as 

P; Nitrogen, Kjeldahl; Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N; Nitrogen, ammonia 

as N or Nitrogen, ammonia as NH3; Turbidity; Dissolved oxygen. 

For North Carolina this protocol resulted in 4,119 data points among the eight characteristics 

included. For South Carolina 20,049 measurements were obtained. We discuss STORET and 

available auxiliary data, and subsequent formatting for each state in turn. 

 The downloaded data from North Carolina are based on samples taken from only 

fourteen unique stations that provided data for the years 2005-2007. Only a small fraction of 

lakes and reservoirs in the state are represented. Conspicuously absent are major water bodies 

such as Jordan Lake, Falls Lake, and Kerr Lake, among others. While monitoring stations 

associated with these lakes can be found via STORET text string searches, queries on these 

stations did not produce any actual data. Review of materials published by the NC Division of 

Water Quality suggests monitoring of, for example, Falls and Jordan Lakes has occurred in 

recent years, though the information is not obviously available for download. Given the paucity 

of information from STORET we have elected to use data from other sources for our North 

Carolina demonstrations. As part of the expert elicitation project co-PIs Kenney and Reckhow 

assembled a near census of lake and reservoir water quality measurements for North Carolina. 

This was obtained by direct contacts with NC Division of Water Quality personnel, and it seems 

to represent information that is not uploaded to STORET. Using the Kenney/Reckhow data for 

our NC demonstration we focus on a selection of lakes and reservoirs spread throughout the 

state. These water bodies are listed in Table 10, along with the number of complete observations 

available for each. A complete observation for a NC lake consists of observations for the seven 

relevant water quality parameters at a particular date/time and at the same location. The  
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Table 10: Demonstration Lakes and Data Summaries

North Carolina Obs. TN 
(mg/l)

TIN 
(mg/l)

TP 
(mg/l)

Chla 
(μg/l)

DO 
(mb/l)

Secchi 
(m)

Turbidity 
(NTU)

Belews Lake 15 0.11 0.02 0.02 2 6.6 3.2 2.20

High Rock Lake 34 0.895 0.245 0.065 37.5 9.05 0.6 12.50

Jordan Lake 22 0.82 0.04 0.075 33 7.9 0.6 12.0

Kerr Scott Reservoir 15 0.17 0.03 0.02 7 8.5 2.2 3.60

Lake Norman 24 0.12 0.02 0.02 4 7.9 2.3 2.30

Limestone Lake 13 1.57 0.15 0.18 23 5.1 0.3 12.00

Old Town Reservoir 12 0.395 0.02 0.015 5 7.75 1.95 2.45

South Carolina
Lake Greenwood 37 0.63 0.37 0.03 9.01 9.52 - 7.05

Lake Hartwell 69 0.47 0.31 0.05 4.11 8.40 - 2.50

Lake Keowee 37 0.59 0.25 0.04 1.43 8.39 - 1.25

Lake Marion 151 0.67 0.49 0.06 6.30 8.10 0.94 5.45

Lake Moultrie 49 0.58 0.37 0.03 6.10 9.20 1.37 2.75

Lake Murray 60 0.51 0.26 0.04 8.51 8.63 - 3.53

Lake Wateree 32 0.73 0.50 0.04 10.40 8.65 - 4.55

Lake Wylie 35 0.57 0.42 0.03 5.60 9.26 - 4.05  

observations are literal measurements in that no averaging or other combining was undertaken. A 

summary of the median water quality parameter values for each of the seven variables entering 

our models is also shown in Table 10.  

 The measurements from the South Carolina STORET query are nominally more 

complete. Over 20,000 records were obtained for the years 2005-2009. For our demonstration we 

focus on data for the eight lakes that are listed in Table 10. Data records were assigned to the 

eight lakes based on manually matching station names. The matching process produced over 

11,000 data points for the nutrient measures of interest for our analysis (the majority from Lake 

Marion). Even here, however, there are data thinness challenges. Most of the lakes are regularly 

(i.e. monthly or bi-monthly) measured for dissolved oxygen, phosphorus, turbidity, and the 

various nitrogen types. Often absent, however, are regular measurements for Secchi disk and 

chlorophyll a - the parameters our analyses suggests have the greatest importance for predicting 
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trophic state. Furthermore the different parameters are typically not measured simultaneously at 

the same monitoring station. Because of this we have collapsed the data into lake/sample date 

groupings for summary purposes. Specifically, for each water quality variable of interest we 

have selected all data points available for a particular lake on a given date. We then assign the 

median among the measurements as the measure of interest. Thus a characterization of a lake's 

water quality on a given day is potentially obtained from multiple stations and measurements. A 

complete observation for a SC lake includes measures of all seven variables obtained this way. 

While we have undertaken this aggregation largely out of pragmatism, it may have other virtues 

for our purposes. Via this collapsing strategy we have assembled 470 data rows for the eight SC 

lakes, but very few are complete and may not be useable for prediction exercises. Table 10 

provides a summary of the medians over these data rows for the lakes of interest.  

6) ILLUSTRATIVE PREDICTIONS 

 In this section we examine predictions for trophic state at the focus lakes listed in Table 

10, using the model estimates presented in Section 4 and the data summarized in Section 5. We 

present estimates at baseline (current) conditions, and then discuss predictions for counterfactual 

situations involving improvements (defined by hypothetical levels of the variables that would 

reduce eutrophication) in water quality measurements.  

 With both the ordered logit and binomial regression models there are two approaches we 

can take for computing predicted trophic state. The first simply uses the median of the all the 

observed water quality parameters available for a particular lake, and with these computes a 

single prediction. This approach would, for example, directly use the values presented in Table 

10 to compute baseline predictions for the NC and SC focus lakes. This strategy is 

computationally straight-forward, and eliminates much of the noise in the water quality 
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measurements ex ante. We refer to this as the median strategy. The second strategy computes 

trophic state predictions for the individually observed quality measurements, thereby producing a 

distribution of predictions for a particular lake. This approach would, for example, use the 15 

observations available for North Carolina's Bellows Lake to produce 15 predictions for its 

trophic state. Summaries (i.e. mean, median, spread) over the distribution of predictions can then 

be used to characterize the water quality at the water body. The advantages of this approach are 

that it provides a better sense of the precision with which we can characterize a lake, and it better 

reflects natural variability. However, these advantages can only be realized when data is 

reasonably complete and representative of the median and range of conditions. We refer to this 

as the distribution strategy. In what follows we examine both approaches. In all instances the 

actual predictions are carried out using the methods discussed in Section 4. We rely on our state-

wide models to provide the cleanest comparison across and within the different approaches.  

 Tables 11 and 12 contain our predictions, where the former focuses on the median 

strategy and the latter on the distribution strategy. Except where noted the ordered logit 

predictions come from the state-wide model with our preferred specification (model 2 in Table 

5), and the binomial predictions are from the state-wide, complete model shown in Table 8. The 

exceptions are for lakes in South Carolina for which no measurements on Secchi depth are 

available (all lakes aside from Lakes Marion and Moultrie). In these instances we have used 

model 3 in Table 5 for the ordered logit predictions, and model 3 in Table 9 for the binomial 

regression, which includes all parameters aside from Secchi depth. The predictions for the 

distribution strategy include point estimates and the inter-quartile range, which is the distance 

between the 25th and 75 percentiles of the empirical distribution of predictions. Because the 

South Carolina lakes outside of Lakes Marion and Moultrie lacked any substantial chlorophyll a  

24 
 



Table 11: Trophic State Predictions - Median Strategy

North Carolina Logit Binomial Logit Binomial Logit Binomial
Belews Lake 1.40 1.60 1.26 1.51 1.70 1.78
High Rock Lake 3.70 3.72 3.36 3.41 2.46 2.60
Jordan Lake 3.60 3.54 3.27 3.24 2.48 2.53
Kerr Scott Reservoir 1.83 1.95 1.63 1.84 1.74 1.91
Lake Norman 1.68 1.82 1.51 1.73 1.70 1.85
Limestone Lake 3.93 3.83 3.60 3.50 3.09 3.04
Old Town Reservoir 1.87 1.93 1.68 1.84 1.73 1.93

South Carolina
Lake Greenwood 2.38 2.46 2.21 2.41 2.04 2.25
Lake Hartwell 2.13 2.22 1.99 2.19 2.09 2.14
Lake Keowee 2.04 2.14 1.92 2.12 2.05 2.14
Lake Marion 2.53 2.61 2.34 2.45 2.25 2.28
Lake Moultrie 2.21 2.32 2.02 2.20 1.98 2.15
Lake Murray 2.29 2.35 2.12 2.30 2.07 2.16
Lake Wateree 2.52 2.53 2.31 2.44 2.16 2.27
Lake Wylie 2.15 2.25 2.01 2.23 1.95 2.14

20% Improvement Eutromod PredictionsBaseline Predictions

 

Table 12: Trophic State Predictions - Distribution Strategy

North Carolina logit Binomial
Belews Lake 1.41 (0.09) 1.61 (0.06)
High Rock Lake 3.71 (0.65) 3.72 (0.72)
Jordan Lake 3.73 (0.72) 3.68 (0.77)
Kerr Scott Reservoir 1.83 (0.37) 1.94 (0.29)
Lake Norman 1.67 (0.35) 1.82 (0.23)
Limestone Lake 4.08 (1.47) 3.97 (1.38)
Old Town Reservoir 1.9 (0.3) 1.95 (0.24)
South Carolina
Lake Marion 2.5 (0.36) 2.57 (0.28)
Lake Moultrie 2.34 (0.41) 2.44 (0.36)

Baseline Median (quartile range)

 

measurements, we only examine estimates from the distribution approach for these two lakes.  

 Consider first the baseline predictions that are contained in the first two columns of 

results in both tables. For both the ordered logit and binomial regression models the point 
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estimates from the two approaches are virtually identical. This suggests the value added from the 

predictions using the distribution method lies in summarizing the inherent uncertainty in how the 

collection of water quality measurements taken at different points in time and space map into a 

single water quality index. The extent to which this provides a good measure of uncertainty 

depends, of course, on having sufficient observations to characterize the range of water quality 

parameter values a lake might take. For many of our focus lakes - particularly in South Carolina - 

the number of available data points is likely too small to provide much resolution on this 

statistic. For this reason we focus primarily on the results generated from the median strategy. A 

comparison between baseline estimates from the ordered logit and binomial regression 

predictions suggest qualitatively similar outcomes, though there are some quantitative 

differences. It seems that when there is a comparatively large difference between the two, the 

binomial model predicts a higher (worse quality) index.  

 Our model is also designed for use in predicting the extent to which decreases in nutrient 

pollution will lead to qualitative improvements in trophic state. As a demonstration of this 

capability of the model we examine two types of counterfactual scenarios. The first is purely 

illustrative and examines how our predictions change when all quality measures improve by 20% 

(i.e. total nitrogen, total phosphorous, chlorophyll a, and turbidity decrease, and Secchi depth 

and dissolved oxygen increase). The second and third columns of Table 11 provide predictions 

for the lakes' trophic state under these changed conditions. For the ordered logit model the 

change in the predicted trophic state for the lakes ranges from 8-11% of the initial prediction 

among the NC lakes, and 6-9% for the SC lakes. The size of the predicted change is 

comparatively smaller for the binomial model. Here we find changes that range from 4-8% for 

the NC lakes, and 1-6% for the SC lakes. These examples suggest there is perhaps more potential 
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for movement along the range of trophic state predictions with the ordered logit model relative to 

the binomial model. This, however, would need to be confirmed with a larger sample of lakes.  

 Our final analysis is designed to provide a more realistic demonstration of the models' 

counterfactual prediction capabilities. The seven water quality parameters that enter our model 

are correlated, and changes in nutrient source loadings will lead to a (partially) predictable but 

non-uniform change in the parameters' values away from baseline. Existing models provide 

quantifications of these relationships, and we describe the well-known Eutromod model for 

Southeastern lakes based on Reckhow (1988) and Reckhow et al. (1993) here. Our objective is to 

observe the baseline measurements of parameters at a water body, postulate a reduction in 

nutrient loadings into the water body, and compute the predicted change in parameter values. 

The latter will then be used to predict the change in trophic state resulting from the nutrient 

loadings reduction.  

 We focus on predicting changes in four variables: total nitrogen, total phosphorus, Secchi 

depth, and chlorophyll a. To this end define the concentration of total nitrogen and total 

phosphorus from the watershed inflow waters to the lake of interest by TPf and TNf, respectively. 

In Eutromod in-lake concentration predictions TP1 and TN1 are based on mechanistic 

descriptions given by 

 
1

1

log10( ) log10 / (1 )

log10( ) log10 / (1 ) ,

f TP

f TN

TP TP g t

TN TN g t

⎡ ⎤= +⎣ ⎦
⎡ ⎤= +⎣ ⎦

 (16) 

where t is the hydraulic detention time, and gTN and gTP are the trapping parameters for nitrogen 

and phosphorus, respectively. Reckhow (1988) estimates equations for the trapping parameters 

in the Southeastern region as 
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where d is the mean depth. Based on the predicted values for TP1 and TN1, Reckhow et al. (1993) 

and Reckhow (1988) present predictive equations for chlorophyll a and Secchi depth, 

respectively, as 
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where Chla1 and Secchi1 are the respective predictions. With observation of TNf and TPf, 

equations (16) - (18) can be used to predict either the baseline or counterfactual values of the 

four water quality measures.  

 In instances where TPf and TNf are not observed, for the baseline conditions the nutrient 

inflow can be approximated using retention coefficients. In particular,  
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= −
 (19) 

where RP and RN are the retention coefficients for nitrogen and phosphorus, respectively. 

 For our application we consider a hypothetical decrease in nutrient loadings that leads to 

a 30% reduction in lake in-flow concentrations of total nitrogen and total phosphorus. Based on 

this we predict new levels of ambient total nitrogen, total phosphorus, chlorophyll a, and Secchi 

depth in the lake, which are then used to predict the new trophic state. To make this operational 

we need to set values for lake depth, detention time, and phosphorus and nitrogen retention. We 

follow Reckhow (1988) and set values tailored to the Southeast based on the USEPA National 

Eutrophication Survey. We use the retention levels and observed total nitrogen and total 

phosphorus to set baseline concentration inflows, and scale this by 0.70 to simulate the 
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improvement. We assume the values for turbidity, inorganic nitrogen, and dissolved oxygen 

remain constant in the counterfactual scenario, since models have not been developed that allow 

us to predict their changes.  

 Predictions for our North Carolina and South Carolina focus lakes are shown in the last 

two columns of Table 11. In a few instances the predictions for the improved trophic state are 

actually worse than the baseline. This is due to imperfect predictions from eutromod, which is 

most apparent when the baseline condition is relatively non-eutrophic. In these cases the 

improved predictions for chlorophyll a and Secchi depth tend to be worse than their baseline, 

leading to the counter intuitive result. Focusing on the predictions that show an actual 

improvement, the logit model has a median percentage improvement in the trophic ranking of 

around 11%, while the binomial model produces a median improvement among all the lakes of 

9%. There is variability in the size of improvement among the different lakes, however. Perhaps 

not surprisingly, the lakes with a higher trophic state at baseline (i.e. the more eutrophic lakes) 

have a better percentage improvement than those that are less eutrophic at baseline. For example, 

for North Carolina's High Rock Lake we predict a 30-33% improvement in trophic ranking 

resulting from the 30% decrease input loading. This contrasts with the 2-4% rank improvement 

for South Carolina's Lake Hartwell, which has a baseline ranking of 2.13 on our scale. From this 

exercise we conclude that the more eutrophic lakes will improve their rankings to a greater 

extent from reduced nutrient loading than their less eutrophic counterparts, perhaps because the 

cleaner lakes have less distance to move. We see this as additional evidence that our model 

predictions are working as expected.  
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7) DISCUSSION AND CONCLUSION 

 Our objective in writing this report has been to report on the first year of our project 

team's efforts to provide a water quality production function that is capable of predicting 

qualitative nutrient pollution rankings at lakes and reservoirs as a function of measured water 

quality. We have relied on an expert elicitation protocol to obtain data relating measured water 

quality parameters to qualitative rankings of a water body's trophic state. Two different modeling 

approaches applied to our data provide similar characterizations of how water quality parameters 

such as total nitrogen, total phosphorus, chlorophyll a, Secchi depth, dissolved oxygen, and 

turbidity map to nutrient-pollution quality rankings. Our sense is that this aspect of the project 

has been quite successful. Our mapping provides a robust means by which observations on a 

lake's objectively measured quality can be used to construct a prediction of the lake's subjective 

or qualitative nutrient pollution index. Ultimately, however, the reliability of predictions depends 

on the availability of sufficient monitoring network measurements from the water body. In our 

demonstrations using lakes and reservoirs in North Carolina and South Carolina we have shown 

the range of capabilities of our models and their limitations. Our illustrative predictions for North 

Carolina, where we had access to a wider range of quality data, are arguably more reliable than 

those for South Carolina, where we were constrained by limited observations for Secchi depth 

and chlorophyll a. Because these two parameters are the strongest predictors of trophic state, our 

ability to characterize lakes that lack these measurements will be much more limited. 

Nonetheless constrained versions of our models that eliminate missing quality variables may be 

useful, in some instances, for providing rough predictions when certain quality measurements are 

limited or absent.  
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 To conclude the report we discuss additional limitations and uncertainties inherent in 

using our model for predictive exercises and describe the next steps in our research. Perhaps 

most importantly, the expert elicitation data we have used focused on North Carolina, and the 

experts were asked to consider rankings in the specific context of the eco-region in which they 

were most expert. Because of this, there are limits to how far our production function can be 

geographically moved away from North Carolina and still produce meaningful predictions. Our 

sense is that the inland Southeast Piedmont regions and reservoirs are suitable for transferring 

our function, but that the coastal and mountainous regions (and natural lake areas) are less so. 

We have relied on our state-wide models for our prediction demonstrations because previous 

work (see Kenney, 200x) has suggested these models perform better. It may be, however, that 

the Blue Ridge regional model would be better for analysis of lakes and reservoirs in higher 

elevation areas, while the state-wide model is preferred for all else. In all cases we have little 

confidence in the models' ability to predict outcomes for natural lakes and coastal areas. We 

stress that these statements are hard to evaluate quantitatively because out of sample predictions 

cannot be examined for accuracy. Thus, applications of our models beyond similar reservoir 

systems and the associated hydrogeomorphology that one might find in South Carolina and 

Virginia requires additional judgment, and the usefulness of predictions will depend on the 

specific needs of the application. 

 Judgments on the use of sparse monitoring station data will also be necessary, and the 

usefulness of predictions from areas with little available data will also depend on the specific 

needs of the application. For our South Carolina example we have pooled measurements taken 

from multiple stations on the same day to produce 'observations' for use in our predictions. 

Further data aggregation, such as pooling all measurements from all stations in a given month for 
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a lake, might also be sensible in some instances. In all cases prediction results should be reported 

with discussion of how the input data was obtained and formatted, and it should be explicitly 

noted that pooled measure will reflect central tendencies rather than possible (and possibly 

interesting) extreme outcomes. Finally, care must be taken to recognize that water quality 

parameters can be differently measured - both in terms of the depth of sample and laboratory 

procedures used. If measurement methods are substantially different than those explained during 

the expert elicitation process, the results may be inaccurate.  

 While acknowledging these limitations, our sense is that the water quality modeling work 

we've done is suitably rigorous, transparent, and reliable enough to begin merging predictions 

into our economic models for valuation purposes. To this end, we will begin working on a more 

complete suite of predictions for the various water bodies we are likely to consider as part of our 

economic analysis. This will proceed simultaneously with the continued development of our 

economic modeling approach.  
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Table A1: Common Data Rows

Photic 
Total 

Nitrogen 
mg/L

Photic 
Total 

Inorganic 
Nitrogen 

mg/L

Photic 
Total 

Phosphorus 
mg/L

Photic 
Chlorophyll a 

µg/L

Surface 
Dissolved 
Oxygen 
mg/L

Secchi 
Depth 
meters

Photic 
Turbidity 

NTU
0.46 0.02 0.03 38 6.3 1.3 3.9
0.40 0.01 0.01 16 8.2 0.9 10.0
0.79 0.24 0.03 26 7.6 0.8 7.2
0.41 0.02 0.04 40 11.8 1.4 3.3
0.61 0.19 0.04 34 10.3 1.5 2.8
0.21 0.06 0.04 1 6.0 1.9 6.8
0.63 0.02 0.05 24 8.9 0.4 11.0
0.46 0.09 0.06 7 6.2 1.1 15.0
1.06 0.72 0.19 4 6.9 0.6 60.0
0.21 0.05 0.01 1 7.7 3.0 0.4
0.39 0.14 0.02 9 7.9 1.1 1.1
0.61 0.06 0.18 11 8.5 0.5 6.6
0.21 0.01 0.02 38 7.6 0.8 4.7
0.57 0.02 0.04 51 9.0 1.2 11.0
0.39 0.02 0.02 25 7.5 1.0 2.1
0.41 0.07 0.03 10 8.2 2.1 2.1
0.41 0.02 0.08 24 9.4 0.5 18.0
0.45 0.03 0.05 16 7.2 0.4 18.0
0.31 0.06 0.02 36 7.7 2.4 5.2
1.41 0.03 0.01 23 8.7 0.3 23.0
0.21 0.08 0.03 40 7.7 2.2 5.4
0.25 0.01 0.02 50 14.1 0.7 10.0
0.91 0.05 0.15 31 5.8 0.4 7.8
0.33 0.05 0.01 16 8.5 2.9 2.0
0.71 0.02 0.08 34 7.8 0.5 6.2
0.31 0.05 0.01 36 8.0 3.5 1.0
0.32 0.06 0.05 25 9.4 1.4 2.5
0.06 0.04 0.03 1 7.5 1.3 1.7
0.11 0.02 0.02 32 8.0 3.0 1.1
0.53 0.06 0.11 30 8.9 0.5 8.0
0.41 0.04 0.03 39 8.3 0.4 8.3
0.21 0.04 0.05 3 7.2 1.9 2.2
0.31 0.06 0.02 38 8.2 1.7 9.8
0.21 0.02 0.01 10 9.0 2.3 3.0
0.30 0.01 0.03 46 9.3 0.6 16.0
0.31 0.04 0.07 20 7.2 1.8 15.0
0.61 0.02 0.04 57 7.5 1.9 7.2
0.40 0.11 0.04 44 8.3 1.2 7.8
0.51 0.02 0.11 42 8.2 0.5 9.3
1.42 0.15 0.18 30 4.4 0.3 11.0
0.86 0.18 0.25 29 7.0 0.5 5.2
0.69 0.20 0.03 1 6.1 0.5 5.2
1.22 0.56 0.07 40 7.9 0.3 7.5
0.51 0.03 0.02 40 10.0 0.8 4.7
0.33 0.07 0.03 32 10.5 1.6 5.0
0.21 0.01 0.05 26 8.3 2.6 4.7
0.21 0.10 0.02 56 8.0 4.8 3.8
1.71 0.03 0.02 26 8.7 0.3 25.0
0.37 0.02 0.02 20 8.0 0.8 10.0
0.11 0.02 0.02 1 7.3 1.9 1.7  



Table A2: Piedmont-Specific Data Rows

Photic 
Total 

Nitrogen 
mg/L

Photic 
Total 

Inorganic 
Nitrogen 

mg/L

Photic 
Total 

Phosphorus 
mg/L

Photic 
Chlorophyll 

a µg/L

Surface 
Dissolved 
Oxygen 

mg/L

Secchi 
Depth 
meters

Photic 
Turbidity 

NTU
0.47 0.02 0.02 12 8.1 2.3 3.7
0.28 0.01 0.04 10 7.8 1.0 4.2
0.41 0.03 0.01 18 9.0 3.4 6.2
0.55 0.02 0.04 16 9.4 2.0 2.2
0.24 0.09 0.02 18 8.3 1.7 12.0
1.14 0.57 0.18 44 9.3 0.3 12.0
0.91 0.51 0.18 28 7.7 0.6 9.2
0.11 0.04 0.01 7 7.8 1.8 2.3
0.61 0.04 0.01 7 8.6 0.8 2.1
0.11 0.02 0.02 9 7.5 2.1 3.2
0.62 0.02 0.05 36 8.0 1.1 9.7
0.21 0.03 0.02 6 6.9 3.2 4.2
0.31 0.02 0.02 5 7.2 2.4 2.6
0.42 0.05 0.04 27 7.7 2.0 3.2
0.21 0.01 0.03 3 8.0 2.5 1.0
0.42 0.09 0.03 16 4.9 1.0 2.0
0.67 0.03 0.05 40 8.4 0.8 5.4
0.71 0.02 0.08 34 7.8 0.5 6.2
0.81 0.04 0.05 95 11.8 0.6 14.0
0.41 0.03 0.05 68 7.7 1.5 3.3
0.31 0.03 0.03 5 7.7 1.6 2.0
0.41 0.06 0.03 7 8.2 1.9 1.6
0.48 0.02 0.03 11 8.4 1.6 3.2
0.13 0.05 0.01 9 8.4 2.7 3.1
0.40 0.01 0.01 5 8.0 2.2 4.3
0.63 0.02 0.09 27 8.3 1.2 7.0
0.53 0.01 0.03 19 8.3 1.9 1.6
1.03 0.35 0.21 33 8.4 0.5 11.0
0.71 0.17 0.12 34 7.2 0.7 3.3
1.01 0.10 0.09 39 9.0 0.3 9.2
0.63 0.10 0.03 23 5.5 1.9 2.1
0.86 0.09 0.14 39 9.2 0.3 18.0
0.21 0.03 0.01 3 7.8 2.0 1.6
1.90 1.23 0.26 39 12.0 0.3 7.9
0.41 0.05 0.03 27 8.5 3.0 1.8
1.11 0.09 0.31 17 11.9 0.4 25.0
0.51 0.15 0.05 51 9.6 0.6 7.6
0.97 0.69 0.20 40 10.0 0.4 22.0
0.55 0.15 0.04 31 5.6 0.7 5.2
0.53 0.22 0.39 3 6.5 2.0 1.4
0.36 0.09 0.03 17 8.7 0.7 16.0
0.62 0.02 0.05 45 9.2 0.9 6.8
0.31 0.01 0.04 21 7.3 1.3 5.7
0.76 0.13 0.05 32 7.4 0.9 6.5
0.43 0.05 0.29 50 14.6 0.7 4.7
0.31 0.01 0.04 6 7.0 1.4 6.3
0.21 0.02 0.11 3 8.5 2.0 1.8
0.11 0.01 0.01 11 9.5 1.7 3.1
0.61 0.03 0.02 8 8.5 2.6 1.6
0.15 0.11 0.02 15 8.3 2.1 4.4  
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Table A3: Coastal-Specific Data Rows

Photic 
Total 

Nitrogen 
mg/L

Photic 
Total 

Inorganic 
Nitrogen 

mg/L

Photic 
Total 

Phosphorus 
mg/L

Photic 
Chlorophyll 

a µg/L

Surface 
Dissolved 
Oxygen 

mg/L

Secchi 
Depth 
meters

Photic 
Turbidity 

NTU
0.21 0.10 0.02 56 8.0 4.8 3.8
0.32 0.06 0.05 25 9.4 1.4 2.5
0.11 0.02 0.02 32 8.0 3.0 1.1
0.40 0.11 0.04 44 8.3 1.2 7.8
1.06 0.72 0.19 4 6.9 0.6 60.0
0.31 0.06 0.02 38 8.2 1.7 9.8
0.21 0.01 0.02 38 7.6 0.8 4.7
0.37 0.02 0.02 20 8.0 0.8 10.0
0.51 0.03 0.02 40 10.0 0.8 4.7
0.33 0.07 0.03 32 10.5 1.6 5.0
0.33 0.05 0.01 16 8.5 2.9 2.0
0.61 0.19 0.04 34 10.3 1.5 2.8
0.41 0.02 0.04 40 11.8 1.4 3.3
0.46 0.09 0.06 7 6.2 1.1 15.0
0.25 0.01 0.02 50 14.1 0.7 10.0
1.22 0.56 0.07 40 7.9 0.3 7.5
0.41 0.04 0.03 39 8.3 0.4 8.3
0.39 0.02 0.02 25 7.5 1.0 2.1
0.69 0.20 0.03 1 6.1 0.5 5.2
0.61 0.02 0.04 57 7.5 1.9 7.2
0.21 0.04 0.05 3 7.2 1.9 2.2
0.30 0.01 0.03 46 9.3 0.6 16.0
0.57 0.02 0.04 51 9.0 1.2 11.0
0.41 0.07 0.03 10 8.2 2.1 2.1
0.21 0.08 0.03 40 7.7 2.2 5.4
0.61 0.06 0.18 11 8.5 0.5 6.6
0.53 0.06 0.11 30 8.9 0.5 8.0
1.42 0.15 0.18 30 4.4 0.3 11.0
1.41 0.03 0.01 23 8.7 0.3 23.0
0.39 0.14 0.02 9 7.9 1.1 1.1
0.41 0.02 0.08 24 9.4 0.5 18.0
0.21 0.01 0.05 26 8.3 2.6 4.7
0.21 0.05 0.01 1 7.7 3.0 0.4
0.06 0.04 0.03 1 7.5 1.3 1.7
0.51 0.02 0.11 42 8.2 0.5 9.3
0.40 0.01 0.01 16 8.2 0.9 10.0
0.21 0.06 0.04 1 6.0 1.9 6.8
0.46 0.02 0.03 38 6.3 1.3 3.9
0.21 0.02 0.01 10 9.0 2.3 3.0
0.79 0.24 0.03 26 7.6 0.8 7.2
0.31 0.05 0.01 36 8.0 3.5 1.0
0.11 0.02 0.02 1 7.3 1.9 1.7
0.91 0.05 0.15 31 5.8 0.4 7.8
0.31 0.06 0.02 36 7.7 2.4 5.2
0.45 0.03 0.05 16 7.2 0.4 18.0
0.86 0.18 0.25 29 7.0 0.5 5.2
1.71 0.03 0.02 26 8.7 0.3 25.0
0.63 0.02 0.05 24 8.9 0.4 11.0
0.31 0.04 0.07 20 7.2 1.8 15.0
0.71 0.02 0.08 34 7.8 0.5 6.2  
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Table A4: Southeastern Plain-Specific Data Rows

Photic 
Total 

Nitrogen 
mg/L

Photic 
Total 

Inorganic 
Nitrogen 

mg/L

Photic 
Total 

Phosphorus 
mg/L

Photic 
Chlorophyll 

a µg/L

Surface 
Dissolved 
Oxygen 

mg/L

Secchi 
Depth 
meters

Photic 
Turbidity 

NTU
0.11 0.01 0.01 5 8.0 2.1 1.7
0.21 0.02 0.05 1 5.9 1.6 3.5
0.21 0.02 0.03 5 7.1 1.5 5.9
0.21 0.02 0.01 10 9.0 2.3 3.0
0.21 0.03 0.03 3 7.8 2.0 2.3
0.21 0.03 0.05 11 7.7 1.1 1.8
0.21 0.05 0.01 9 8.1 2.5 1.7
0.21 0.06 0.01 3 7.7 1.7 4.2
0.21 0.06 0.01 48 6.7 1.1 15.0
0.29 0.02 0.02 5 7.7 1.9 1.8
0.31 0.02 0.03 23 8.2 0.5 16.0
0.31 0.03 0.03 6 7.1 2.0 2.0
0.31 0.03 0.02 13 5.6 1.5 1.6
0.32 0.13 0.01 4 5.2 2.0 2.0
0.35 0.02 0.02 15 7.9 1.3 6.6
0.35 0.07 0.05 30 8.0 1.0 7.3
0.36 0.08 0.07 9 6.7 1.0 2.7
0.36 0.09 0.03 9 5.6 1.5 2.6
0.38 0.07 0.04 5 4.5 1.0 8.5
0.39 0.01 0.04 24 8.1 0.4 26.0
0.40 0.02 0.02 7 7.6 2.1 3.5
0.40 0.27 0.01 3 4.8 1.0 1.3
0.41 0.03 0.03 4 3.3 1.3 2.7
0.41 0.03 0.05 8 6.7 1.5 3.2
0.41 0.04 0.03 39 8.3 0.4 8.3
0.42 0.07 0.02 23 7.6 2.7 5.8
0.43 0.04 0.05 53 8.8 0.8 9.2
0.44 0.29 0.01 8 7.8 1.6 1.0
0.45 0.03 0.04 8 4.7 1.1 4.2
0.46 0.30 0.08 44 7.8 0.7 14.0
0.47 0.06 0.06 20 6.8 0.7 20.0
0.51 0.03 0.07 51 7.0 0.8 6.4
0.51 0.05 0.02 8 8.2 0.9 3.4
0.51 0.06 0.08 14 5.2 1.0 4.7
0.51 0.06 0.08 76 7.1 0.7 6.0
0.52 0.07 0.02 3 5.3 1.7 2.1
0.53 0.04 0.04 19 5.0 1.0 6.1
0.53 0.06 0.02 12 6.6 1.0 3.5
0.54 0.02 0.06 31 4.7 0.6 11.0
0.54 0.08 0.06 12 9.2 0.9 7.9
0.56 0.13 0.07 5 3.3 0.7 4.8
0.58 0.11 0.08 4 2.5 1.2 5.0
0.59 0.13 0.11 4 3.5 0.8 1.8
0.61 0.02 0.12 10 7.4 0.8 3.6
0.61 0.06 0.13 38 6.2 0.8 4.6
0.66 0.20 0.12 50 8.8 0.6 16.0
0.67 0.35 0.04 12 10.2 0.5 12.0
0.81 0.03 0.05 23 8.7 1.9 2.1
0.81 0.25 0.23 21 4.9 0.4 12.0
0.83 0.10 0.24 82 3.1 0.5 15.0
0.86 0.07 0.03 13 8.6 1.6 2.5  
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Table A5: Blue Ridge-Specific Data Rows

Photic 
Total 

Nitrogen 
mg/L

Photic 
Total 

Inorganic 
Nitrogen 

mg/L

Photic 
Total 

Phosphorus 
mg/L

Photic 
Chlorophyll 

a µg/L

Surface 
Dissolved 
Oxygen 

mg/L

Secchi 
Depth 
meters

Photic 
Turbidity 

NTU
0.46 0.43 0.10 2 7.9 0.5 15.0
0.15 0.07 0.04 16 11.5 1.3 5.3
0.21 0.05 0.06 15 10.0 1.2 2.4
0.74 0.01 0.06 27 8.2 0.8 1.0
0.24 0.08 0.05 7 9.4 1.0 3.2
0.51 0.05 0.05 81 8.5 1.1 6.2
0.40 0.02 0.02 22 10.7 0.6 5.3
0.60 0.02 0.03 34 7.3 0.9 8.9
0.52 0.02 0.03 23 7.6 1.0 6.3
0.61 0.02 0.03 22 8.4 0.9 11.0
0.61 0.05 0.05 58 8.3 1.0 7.7
0.93 0.58 0.10 21 11.1 1.1 3.6
0.33 0.02 0.05 34 13.0 1.0 4.9
0.21 0.03 0.02 19 7.9 3.1 2.2
0.51 0.03 0.02 13 9.5 1.3 2.2
0.11 0.02 0.01 5 6.9 2.3 1.5
1.51 0.96 0.18 62 10.5 0.4 5.9
0.51 0.03 0.05 20 9.1 0.6 4.0
0.21 0.02 0.04 11 9.9 1.0 3.6
0.24 0.17 0.02 5 6.9 5.6 2.0
0.90 0.54 0.08 14 10.8 1.2 3.2
0.12 0.03 0.03 12 10.6 1.5 4.7
0.51 0.08 0.03 35 10.0 0.7 5.7
0.73 0.55 0.15 7 7.6 0.4 4.4
0.42 0.01 0.01 21 8.4 1.1 6.4
0.43 0.20 0.04 21 5.8 0.4 10.0
0.24 0.07 0.04 4 7.3 1.9 2.7
0.21 0.19 0.03 4 7.7 7.5 1.0
0.72 0.02 0.05 31 8.2 1.9 8.2
0.19 0.10 0.02 15 10.4 1.3 8.1
0.54 0.36 0.08 7 8.3 0.6 8.6
0.40 0.22 0.02 3 5.9 2.2 1.1
0.28 0.04 0.04 20 9.5 0.8 5.8
0.26 0.01 0.03 27 14.4 1.0 7.8
0.79 0.09 0.17 23 11.2 0.9 5.6
0.43 0.05 0.07 9 11.8 0.5 6.9
0.47 0.08 0.03 17 9.2 1.0 2.4
0.41 0.03 0.02 12 9.5 1.1 4.2
0.21 0.02 0.01 13 9.1 1.8 2.6
0.91 0.02 0.06 48 14.0 0.9 8.0
0.82 0.15 0.04 24 9.8 0.7 6.9
0.36 0.03 0.03 8 10.0 1.0 1.8
0.50 0.41 0.01 7 9.1 1.8 8.4
0.31 0.02 0.05 13 10.7 1.0 3.3
0.29 0.12 0.01 3 8.5 5.1 1.0
0.69 0.37 0.09 2 8.0 0.4 8.3
0.69 0.01 0.04 6 8.2 1.2 1.0
0.73 0.06 0.04 28 10.2 0.6 9.3
0.89 0.22 0.03 14 8.4 1.2 3.8
0.28 0.10 0.02 4 7.7 3.1 2.8  
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STATA CODE USED FOR ANALYSIS 

 
/* This program carries out the estimation and prediction routines for the */ 
/* technical report. Analysis steps follow the order of the report.    */ 
 
clear 
# delimit; 
set memory 500m; 
set more off; 
set maxvar 5000; 
capture log close; 
log using .out, text replace;  
log off; 
 
/* SUMMARY STATISTICS */ 
use excedata; 
gen Ecat = (1*cat1 + 2*cat2 + 3*cat3 + 4*cat4 + 5*cat5)/100; 
summ Ecat loutcome, detail; 
summ Ecat loutcome if row < 51, detail; 
collapse (mean) Ecat loutcome, by(row); 
summ Ecat loutcome if row < 51, detail; 
clear; 
 
/* ORDERED LOGIT ESTIMATION */ 
use excedata; 
 
* Full State Models  
ologit loutcome tn tin tp chla do secchi turbid, vce(cluster expid);  
ologit loutcome tn tp chla turbid, vce(cluster expid);  
ologit loutcome tn tp chla secchi turbid, vce(cluster expid);  
 
mfx, predict(p outcome(1)) eyex; 
mfx, predict(p outcome(2)) eyex; 
mfx, predict(p outcome(3)) eyex; 
mfx, predict(p outcome(4)) eyex; 
mfx, predict(p outcome(5)) eyex; 
 
* Piedmont Model 
ologit loutcome tn tp chla secchi turbid if expid<7|expid == 14, vce(cluster 
expid); 
mfx, predict(p outcome(1)) eyex; 
mfx, predict(p outcome(2)) eyex; 
mfx, predict(p outcome(3)) eyex; 
mfx, predict(p outcome(4)) eyex; 
mfx, predict(p outcome(5)) eyex; 
 
* Blue Ridge Model 
ologit loutcome tn tp chla secchi turbid if expid>6 & expid<10, vce(cluster 
expid); /* blue ridge */ 
mfx, predict(p outcome(1)) eyex; 
mfx, predict(p outcome(2)) eyex; 
mfx, predict(p outcome(3)) eyex; 
mfx, predict(p outcome(4)) eyex; 
mfx, predict(p outcome(5)) eyex; 
 
* Coastal Model 
ologit loutcome tn tp chla secchi turbid if expid>10 & expid<14, vce(cluster 
expid); /* Coastal */ 
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mfx, predict(p outcome(1)) eyex; 
mfx, predict(p outcome(2)) eyex; 
mfx, predict(p outcome(3)) eyex; 
mfx, predict(p outcome(4)) eyex; 
mfx, predict(p outcome(5)) eyex; 
 
/* BINOMIAL ESTIMATION */ 
clear; 
use excedata; 
 
* Statewide Models 
collapse (mean) tn tin tp chla secchi do turbid cat1 cat2 cat3 cat4 cat5, 
by(row); 
keep if row < 51; 
gen z = (1*cat1 + 2*cat2 + 3*cat3 + 4*cat4 + 5*cat5)/500; 
gen lhs = log(z/(1-z)); 
reg lhs tn tin tp chla do secchi turbid; 
reg lhs tn tp chla secchi turbid; 
reg lhs tn tin tp chla do turbid; 
reg lhs tn tp chla turbid; 
clear; 
use excedata; 
 
* Peidmont and Plains Model 
keep if expid<7|expid == 14; 
collapse (mean) tn tin tp chla secchi do turbid cat1 cat2 cat3 cat4 cat5, 
by(row); 
gen z = (1*cat1 + 2*cat2 + 3*cat3 + 4*cat4 + 5*cat5)/500; 
gen lhs = log(z/(1-z)); 
reg lhs tn tin tp chla secchi do turbid; 
clear; 
use excedata; 
 
* Blue Ridge Model 
keep if expid>6 & expid<10; 
collapse (mean) tn tin tp chla secchi do turbid cat1 cat2 cat3 cat4 cat5, 
by(row); 
gen z = (1*cat1 + 2*cat2 + 3*cat3 + 4*cat4 + 5*cat5)/500; 
gen lhs = log(z/(1-z)); 
reg lhs tn tin tp chla secchi do turbid; 
clear; 
use excedata; 
 
* Coastal Model 
keep if expid>10 & expid<14; 
collapse (mean) tn tp chla secchi turbid cat1 cat2 cat3 cat4 cat5, by(row); 
gen z = (1*cat1 + 2*cat2 + 3*cat3 + 4*cat4 + 5*cat5)/500; 
gen lhs = log(z/(1-z)); 
reg lhs tn tp chla secchi turbid; 
clear; 
 
/* SUMMARY STATISTICS FOR FOCUS LAKES */ 
use nc_readings; 
 
* North Carolina 
collapse (median) tn tin tp chla secchi do turbidity (count) cnt=tn, 
by(lake); 
clear; 
use sc_readings; 
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* South Carolina  
collapse (median) tn tin tp chla secchi do turbidity (count) cnt=do, 
by(lake); 
clear; 
 
/* BASELINE PREDICTIONS - ORDERED LOGIT MODEL  */ 
 
use excedata; 
ologit loutcome tn tp chla secchi turbid, vce(cluster expid); 
clear; 
use nc_readings; 
  
* NC median 
collapse (median) tn tp tin chla do secchi turbidity, by(lake);  
predict p1 p2 p3 p4 p5; 
gen rhat = 1*p1 + 2*p2 + 3*p3 + 4*p4 + 5*p5; 
save nc_median, replace;  
clear; 
use nc_readings; 
 
/* NC distribution */ 
predict p1 p2 p3 p4 p5; 
gen rhat = 1*p1 + 2*p2 + 3*p3 + 4*p4 + 5*p5; 
collapse (mean) r_mean=rhat (median) r_median=rhat (count) r_count=rhat (iqr) 
r_iqr=rhat, by(lake); 
save nc_dist, replace;  
clear; 
use sc_readings; 
 
/* SC distribution */ 
predict p1 p2 p3 p4 p5; 
gen rhat = 1*p1 + 2*p2 + 3*p3 + 4*p4 + 5*p5; 
collapse (mean) r_mean=rhat (median) r_median=rhat (count) r_count=rhat (iqr) 
r_iqr=rhat, by(lake); 
save sc_dist, replace;  
clear; 
use sc_readings; 
 
* SC median 
collapse (median) tn tp tin chla do secchi turbidity, by(lake);  
predict p1 p2 p3 p4 p5; 
gen rhat = 1*p1 + 2*p2 + 3*p3 + 4*p4 + 5*p5; 
save sc_median, replace;  
clear; 
 
use excedata; 
ologit loutcome tn tp chla turbid, vce(cluster expid); 
clear;  
use sc_readings; 
 
collapse (median) tn tp tin chla do secchi turbidity, by(lake);  
predict p1 p2 p3 p4 p5; 
gen rhat = 1*p1 + 2*p2 + 3*p3 + 4*p4 + 5*p5; 
save sc_median_r, replace;  
clear; 
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/* BASELINE PREDICTIONS BINOMIAL MODEL */ 
 
clear; 
use excedata; 
collapse (mean) tn tin tp chla secchi do turbid cat1 cat2 cat3 cat4 cat5, 
by(row); 
keep if row < 51; 
gen z = (1*cat1 + 2*cat2 + 3*cat3 + 4*cat4 + 5*cat5)/500; 
gen lhs = log(z/(1-z)); 
reg lhs tn tin tp chla do secchi turbid; 
clear; 
 
/* NC distribution */ 
use nc_readings; 
predict zhat; 
replace zhat = exp(zhat)/(1+exp(zhat)); 
gen p1 = binomial(5,1,zhat); 
gen p2 = binomial(5,2,zhat) - p1; 
gen p3 = binomial(5,3,zhat) - p1 - p2; 
gen p4 = binomial(5,4,zhat) - p1 - p2 - p3; 
gen p5 = binomial(5,5,zhat) - p1 - p2 - p3 - p4; 
gen rhat = 1*p1 + 2*p2 + 3*p3 + 4*p4 + 5*p5; 
collapse (mean) r_mean=rhat (median) r_median=rhat (count) r_count=rhat (iqr) 
r_iqr=rhat, by(lake); 
save nc_dist_MK, replace;  
clear; 
 
/* NC median */ 
use nc_readings; 
collapse (median) tn tp tin chla do secchi turbidity, by(lake);  
predict zhat; 
replace zhat = exp(zhat)/(1+exp(zhat)); 
gen p1 = binomial(5,1,zhat); 
gen p2 = binomial(5,2,zhat) - p1; 
gen p3 = binomial(5,3,zhat) - p1 - p2; 
gen p4 = binomial(5,4,zhat) - p1 - p2 - p3; 
gen p5 = binomial(5,5,zhat) - p1 - p2 - p3 - p4; 
gen rhat = 1*p1 + 2*p2 + 3*p3 + 4*p4 + 5*p5; 
save nc_median_MK, replace;  
clear; 
 
/* SC distribution*/ 
use sc_readings; 
predict zhat; 
replace zhat = exp(zhat)/(1+exp(zhat)); 
gen p1 = binomial(5,1,zhat); 
gen p2 = binomial(5,2,zhat) - p1; 
gen p3 = binomial(5,3,zhat) - p1 - p2; 
gen p4 = binomial(5,4,zhat) - p1 - p2 - p3; 
gen p5 = binomial(5,5,zhat) - p1 - p2 - p3 - p4; 
gen rhat = 1*p1 + 2*p2 + 3*p3 + 4*p4 + 5*p5; 
 
collapse (mean) r_mean=rhat (median) r_median=rhat (count) r_count=rhat (iqr) 
r_iqr=rhat, by(lake); 
save sc_dist_MK, replace;  
clear; 
 
/* SC median */ 
use sc_readings; 
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collapse (median) tn tp tin chla do secchi turbidity, by(lake);  
predict zhat; 
replace zhat = exp(zhat)/(1+exp(zhat)); 
gen p1 = binomial(5,1,zhat); 
gen p2 = binomial(5,2,zhat) - p1; 
gen p3 = binomial(5,3,zhat) - p1 - p2; 
gen p4 = binomial(5,4,zhat) - p1 - p2 - p3; 
gen p5 = binomial(5,5,zhat) - p1 - p2 - p3 - p4; 
gen rhat = 1*p1 + 2*p2 + 3*p3 + 4*p4 + 5*p5; 
save sc_median_MK, replace;  
clear; 
 
use excedata; 
collapse (mean) tn tin tp chla secchi do turbid cat1 cat2 cat3 cat4 cat5, 
by(row); 
keep if row < 51; 
gen z = (1*cat1 + 2*cat2 + 3*cat3 + 4*cat4 + 5*cat5)/500; 
gen lhs = log(z/(1-z)); 
reg lhs tn tin tp chla do turbid; 
clear; 
 
use sc_readings; 
collapse (median) tn tp tin chla do secchi turbidity, by(lake);  
predict zhat; 
replace zhat = exp(zhat)/(1+exp(zhat)); 
gen p1 = binomial(5,1,zhat); 
gen p2 = binomial(5,2,zhat) - p1; 
gen p3 = binomial(5,3,zhat) - p1 - p2; 
gen p4 = binomial(5,4,zhat) - p1 - p2 - p3; 
gen p5 = binomial(5,5,zhat) - p1 - p2 - p3 - p4; 
gen rhat = 1*p1 + 2*p2 + 3*p3 + 4*p4 + 5*p5; 
save sc_median_MK_r, replace;  
clear; 
 
/* 20% IMMPROVEMENT PREDICTIONS - ORDERED LOGIT MODEL  */ 
 
use excedata; 
ologit loutcome tn tp chla secchi turbid, vce(cluster expid); 
clear; 
use nc_readings; 
replace tn = tn*.8; 
replace tp = tp*.8; 
replace tin = tin*.8; 
replace chla = chla*.8; 
replace do   = do*1.2; 
replace secchi = secchi*1.2; 
replace turbidity = turbidity*.8; 
 
* NC median 
collapse (median) tn tp tin chla do secchi turbidity, by(lake);  
predict p1 p2 p3 p4 p5; 
gen rhat = 1*p1 + 2*p2 + 3*p3 + 4*p4 + 5*p5; 
save nc_median_20, replace;  
clear; 
use sc_readings; 
replace tn = tn*.8; 
replace tp = tp*.8; 
replace tin = tin*.8; 
replace chla = chla*.8; 
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replace do   = do*1.2; 
replace secchi = secchi*1.2; 
replace turbidity = turbidity*.8; 
 
* SC median 
collapse (median) tn tp tin chla do secchi turbidity, by(lake);  
predict p1 p2 p3 p4 p5; 
gen rhat = 1*p1 + 2*p2 + 3*p3 + 4*p4 + 5*p5; 
save sc_median_20, replace;  
clear; 
 
use excedata; 
ologit loutcome tn tp chla turbid, vce(cluster expid); 
clear;  
use sc_readings; 
replace tn = tn*.8; 
replace tp = tp*.8; 
replace tin = tin*.8; 
replace chla = chla*.8; 
replace do   = do*1.2; 
replace secchi = secchi*1.2; 
replace turbidity = turbidity*.8; 
 
collapse (median) tn tp tin chla do secchi turbidity, by(lake);  
predict p1 p2 p3 p4 p5; 
gen rhat = 1*p1 + 2*p2 + 3*p3 + 4*p4 + 5*p5; 
save sc_median_r_20, replace;  
clear; 
 
/* 20% IMPROVEMENT PREDICTIONS BINOMIAL MODEL */ 
 
clear; 
use excedata; 
collapse (mean) tn tin tp chla secchi do turbid cat1 cat2 cat3 cat4 cat5, 
by(row); 
keep if row < 51; 
gen z = (1*cat1 + 2*cat2 + 3*cat3 + 4*cat4 + 5*cat5)/500; 
gen lhs = log(z/(1-z)); 
reg lhs tn tin tp chla do secchi turbid; 
clear; 
 
/* NC median */ 
use nc_readings; 
replace tn = tn*.8; 
replace tp = tp*.8; 
replace tin = tin*.8; 
replace chla = chla*.8; 
replace do   = do*1.2; 
replace secchi = secchi*1.2; 
replace turbidity = turbidity*.8; 
collapse (median) tn tp tin chla do secchi turbidity, by(lake);  
predict zhat; 
replace zhat = exp(zhat)/(1+exp(zhat)); 
gen p1 = binomial(5,1,zhat); 
gen p2 = binomial(5,2,zhat) - p1; 
gen p3 = binomial(5,3,zhat) - p1 - p2; 
gen p4 = binomial(5,4,zhat) - p1 - p2 - p3; 
gen p5 = binomial(5,5,zhat) - p1 - p2 - p3 - p4; 
gen rhat = 1*p1 + 2*p2 + 3*p3 + 4*p4 + 5*p5; 
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save nc_median_MK_20, replace;  
clear; 
 
/* SC median */ 
use sc_readings; 
replace tn = tn*.8; 
replace tp = tp*.8; 
replace tin = tin*.8; 
replace chla = chla*.8; 
replace do   = do*1.2; 
replace secchi = secchi*1.2; 
replace turbidity = turbidity*.8; 
collapse (median) tn tp tin chla do secchi turbidity, by(lake);  
predict zhat; 
replace zhat = exp(zhat)/(1+exp(zhat)); 
gen p1 = binomial(5,1,zhat); 
gen p2 = binomial(5,2,zhat) - p1; 
gen p3 = binomial(5,3,zhat) - p1 - p2; 
gen p4 = binomial(5,4,zhat) - p1 - p2 - p3; 
gen p5 = binomial(5,5,zhat) - p1 - p2 - p3 - p4; 
gen rhat = 1*p1 + 2*p2 + 3*p3 + 4*p4 + 5*p5; 
save sc_median_MK_20, replace;  
clear; 
 
use excedata; 
collapse (mean) tn tin tp chla secchi do turbid cat1 cat2 cat3 cat4 cat5, 
by(row); 
keep if row < 51; 
gen z = (1*cat1 + 2*cat2 + 3*cat3 + 4*cat4 + 5*cat5)/500; 
gen lhs = log(z/(1-z)); 
reg lhs tn tin tp chla do turbid; 
clear; 
 
use sc_readings; 
replace tn = tn*.8; 
replace tp = tp*.8; 
replace tin = tin*.8; 
replace chla = chla*.8; 
replace do   = do*1.2; 
replace secchi = secchi*1.2; 
replace turbidity = turbidity*.8; 
collapse (median) tn tp tin chla do secchi turbidity, by(lake);  
predict zhat; 
replace zhat = exp(zhat)/(1+exp(zhat)); 
gen p1 = binomial(5,1,zhat); 
gen p2 = binomial(5,2,zhat) - p1; 
gen p3 = binomial(5,3,zhat) - p1 - p2; 
gen p4 = binomial(5,4,zhat) - p1 - p2 - p3; 
gen p5 = binomial(5,5,zhat) - p1 - p2 - p3 - p4; 
gen rhat = 1*p1 + 2*p2 + 3*p3 + 4*p4 + 5*p5; 
save sc_median_MK_r_20, replace;  
clear; 
 
/* EUTROMOD IMPROVEMENTS - ORDERED LOGIT MODEL  */ 
use excedata; 
ologit loutcome tn tp chla secchi turbid, vce(cluster expid); 
clear; 
use eutro; 
predict p1 p2 p3 p4 p5; 
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gen rhat = 1*p1 + 2*p2 + 3*p3 + 4*p4 + 5*p5; 
 
/* EUTROMOD IMPROVEMENTS - BINOMIAL MODEL  */ 
clear; 
use excedata; 
collapse (mean) tn tin tp chla secchi do turbid cat1 cat2 cat3 cat4 cat5, 
by(row); 
keep if row < 51; 
gen z = (1*cat1 + 2*cat2 + 3*cat3 + 4*cat4 + 5*cat5)/500; 
gen lhs = log(z/(1-z)); 
reg lhs tn tin tp chla do turbid; 
clear; 
use eutro; 
predict zhat; 
replace zhat = exp(zhat)/(1+exp(zhat)); 
gen p1 = binomial(5,1,zhat); 
gen p2 = binomial(5,2,zhat) - p1; 
gen p3 = binomial(5,3,zhat) - p1 - p2; 
gen p4 = binomial(5,4,zhat) - p1 - p2 - p3; 
gen p5 = binomial(5,5,zhat) - p1 - p2 - p3 - p4; 
gen rhat = 1*p1 + 2*p2 + 3*p3 + 4*p4 + 5*p5; 
 
log close; 
 


