Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

Mix Adeniyi, A. A. 1996. Determination of cadmium, copper, iron, lead, manganese, and zinc in water leaf (talinum triangulare) in dumpsites. Environment International 22[2], 259-262

Media Ahlberg, J., Ramel, C., and Wachtmeister, C. A. 1972. Organolead Compounds Shown to be Genetically Active. Ambio 1, 29-31

Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1; Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2; Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4; Wildlife TRV Literature Review, Data Extraction and Coding).

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No Control</td>
<td>Athalye, V. V., Ramachandran, V., and D'souza, T. J. 1995. Influence of Chelating Agents on Plant Uptake of 51Cr, 210Pb and 210Po. Environmental Pollution 89[1], 47-53</td>
</tr>
<tr>
<td>OM</td>
<td>Baldwin, N. A. and Bennett, J. R. 1990. Effect Of Calcined, Chelated And Liquid Formulations Containing Iron On Turfgrass Color, Acidity, Disease And Earthworm Casting. Z Vegetationstech 13[4], 140-143</td>
</tr>
</tbody>
</table>

Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

Media

OM, pH

pH, OM

No Toxicant
Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

Environ.Res.Center, Muscle Shoals, Al 527

No Toxicant

Media

Media

No ERE

Rev

No Dose

Media

FL

Media

Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

|-------|--|
Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

No Dur

Mix

Rev

Rev

Rev

Media
Brown, B. E. 1977. Uptake of Copper and Lead by a Metal Tolerant Isopod Asellus meridianus Rac. Freshwater Biol 7[3], 235-244

No Dur

Mix
Brown, G. 1995. The Effects of Lead and Zinc on the Distribution of Plant Species at Former Mining Areas of Western Europe. Flora (Jena) 190[3], 243-249

FL
Brown, Gary. 1990. Ecological study of the vegetation in the former lead-mining area near Mechemnich (Eifel Mountains). Angew.Bot. 64[5-6], 457-488

OM, pH
Cadmium, Copper, and Lead. Environ Sci & Technol 7[2], 131-135

Media
Buckles, V. P. 1999. Can the Pattern of the Leucage venusto Webs be Used to Indicate Environmental Contamination? Bull Environ Contam Toxicol 62[5], 563-569

Media

Media
Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

Media

Media

No Dose

Media

OM, pH

OM, pH

No ERE

Species

OM, pH

No Dose

Cataldo, D. A. and Wildung, R. E. 1978. Soil and Plant Factors Influencing the Accumulation of Heavy Metals by Plants. Environ.Health Perspect. 27, 149-159

FL

Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

No Dur

Abstract
Chaney, R. and Ryan, J. 1995. Risk Based Standards For Arsenic, Lead And Cadmium In Urban Soils. Summary Of Information And Methods Developed To Estimate Standards For Cd, Pb And As In Urban Soils 6615. Govt-Reports-Announcements-&-Index-(GRA&I) [19]

Media

Not Avail

No Dose

Media

No Dose

No Control

No Dose

Media
Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

No ERE Chlopecka, Anna. 1993. Forms of Trace Metals from Inorganic Sources in Soils and Amounts Found in Spring Barley. Water Air and Soil Pollution 69[1-2], 127-134

FL Chrenekova, Eva, Lahucky, Ladislav, and Vollmannova, Alena. 1991. Root absorption of lead and cadmium by spring barley. Pol'nohospodarstvo 37[2], 137-144

Mix Chukwuma, Chrysanthus. 1993. Comparison of the accumulation of cadmium, lead and zinc in cultivated and wild plant species in the derelict Enyigba lead-zinc mine. Toxicol.Environ.Chem. 38[3-4], 167-173

No Dur Chukwuma, Chrysanthus, Sr. 1994. Evaluating baseline data for lead (Pb) and cadmium (Cd) in rice, yam, cassava and guinea grass from cultivated soils in Nigeria. Toxicol.Environ.Chem. 45[1-2], 45-56

Mix Chumbley, C. G. and Unwin, R. J. 1982. Cadmium and Lead Content of Vegetable Crops
Interim Final Eco-SSL Guidance: Lead

Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

Grown on Land with a History of Sewage Sludge Application. Environ.Pollut. 4B, 231-237

Media

No Toxicant

Mix

Rev

No Dose

No Dose

Media

No COC

Species

Mix
Cunha Bustamante, M. Biomonitoring Of Heavy Metals Using Higher Plants Growing At Former Mining Sites. Govt-Reports-Announcements-&-Index-(GRA&I)-Issue-01,-1995

Mix
Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

| No Dur | Davies, B. E. 1992. Interrelationships between soil properties and the uptake of cadmium, copper, lead and zinc from contaminated soils by radish Raphanus-sativus L. Water Air Soil Pollut 63[3/4], 331-342 |
| Mix | Denduluri, S. 1994. Ameliorative effects of ethylenediamine tetraacetic acid and nitrilo triacetic acid on lead toxicity in okra (abelmoschus esculentus L) grown in sewage-irrigated soil. Bulletin of Environmental Contamination and Toxicology 52[4], 516-522 |
Interim Final Eco-SSL Guidance: Lead

Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

During Experimental Contamination and Decontamination of the Centipede Lithobius forficatus L. Arch. Environ. Contam. Toxicol. 31[3], 350-353

Devkota, B. and Schmidt, G. H. 1999. Effects of Heavy Metals (Hg2+, Cd2+, Pb2+) During the Embryonic Development of Acridid Grasshoppers (Insecta, Caelifera). Arch.Environ.Contam.Toxicol. 36[4], 405-414

Eco-SSL web site:http://www.epa.gov/ecotox/ecossl/index.html
Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

Mix
Dragland, S. 1996. Content of Cadmium and Lead in Chamomile (Chamomilla recutita L.) and Feverfew (Tanacetum parthenium L.) Grown in Different Parts of Norway (Innhold av Kadmium og bly i Kamille (Chamomilla recutita L.) og Matrem (Tanacetum parthenium L.) Dyrket på Ulike Steder i Norge). Norsk.Landbruksforsking 10[3/4], 181-188

Mix

No Dur

No Toxicant

Mix

Media

FL

FL

Media
Ebert, Georg and Dimerski, Christian. 1998. Influence of lead application to roots and shoots of 'Elsanta' strawberry plants on growth, gas exchange, and lead partitioning. Gesunde Pflanz. 50[6], 157-161

Meth
Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

- **No Dur** Eklund, Mats. 1995. Cadmium and lead deposition around a swedish battery plant as recorded in oak tree rings. Journal of Environmental Quality 24[1], 126-131
- **Media** Ensley, Burt D., Blaylock, Michael J., Dushenkov, Slavik, Kumar, Nanda P. B. A., Kapulnik, Yoram, and Huang, Jianwei. 1997. Hyperaccumulation of metals in plant shoots, useful for soil phytoremediation. 67
- **No Control** Entry, J. A. and Emmingham, W. H. 1996. Accumulation of lead and zinc in contaminated potting soil by tree seedlings. Abstracts of Papers American Chemical Society, AGRO
Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

No ERE

No Control

Media

No Dose

Mix

FL

Media

Media

Media

Rev

No Dur
Interim Final Eco-SSL Guidance: Lead

Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

No Dose

Media

No Dose

Species

Mix

Species
- Gintenreiter, S., Ortel, J., and Nopp, H. J. 1993. Effects of different dietary levels of cadmium, lead, copper, and zinc on the vitality of the forest pest insect Lymantria dispar L. (Lymantriidae, Lepid). Archives of Environmental Contamination and Toxicology, 62-66

Mix

No Dur

Media

Media

Media
Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition.). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

Toronto, Canada, May 12-17, 1985, Springer-Verlag, NY , 387-400

Media

No Dur

FL

Media

No Dur

Mix

Media
Gregory, R. P. G. and Bradshaw, A. D. 1965. Heavy Metal Tolerance in Populations of Agrostis tenuis Sibth. and Other Grasses. New Phytol 64, 131-143

No Dur
Grobecker, K. 1995. Schwermetallbelastung Durch Blei Und Quecksilber In Zwei Terrestrischen Und Einem Aquatischen Oekosystem. (Heavy Metal Pollution Of Two Terrestrial Ecosystems And One Aquatic System Through Lead And Mercury). Govt-Reports-Announcements-&-Index-(GRA&I) [17]

FL

No Dose
Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

FL

No Dose

No Control

No COC

FL

Mix

No Dur

OM

OM

Media

No ERE

Species
Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

42380. J Environ Qual 2[4], 444-450

Mix Han, D. H. and Lee, J. H. 1996. Effects of liming on uptake of lead and cadmium by Raphanus sativa. Archives Of Environmental Contamination And Toxicology. 31[4], 488-493

Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

Toxic Heavy Metals in Vegetables and Forage Grasses in the Missouri Lead Belt

No Control

Media

Mix

Media

Media

No Dur

No Dur
Hopkin, S. P. and Martin, M. H. 1982. The Distribution of Zinc, Cadmium, Lead and Copper Within the Woodlouse Oniscus asellus (Crustacea, Isopoda). Oecologia (Berlin) 54, 227

Mix

Mix

No Dur
Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

Mix

Media
Hopkin, S. P. and Hames, C. A. C. 1994. Zinc, among a 'cocktail' of metal pollutants, is responsible for the absence of the terrestrial isopod Porcellio scaber from the vicinity of a primary smelting works. Ecotoxicology 3[1], 68-78

Media

Media
Hsu, Fu Hsing and Lin, H. S Ed. 1993. Studies on seed germination of miscanthus species. <Book> taichung district agricultural improvement station special publication; crop genetics, breeding, physiology and cultivation. Taichung District Agricultural Improvement Station Special Publication , 205-217

OM, pH

Abstract

Media

Media

Rev

Abstract

No Control
Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

|-----|--|
Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

- **Media**
Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

Perennial Ryegrass and Its Relation to the to the Supply of an Essential Element (Sulphur). Plant Soil 38[3], 605-619

Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

OM, pH Keaton, C. M. 1937. The Influence of Lead Compounds on the Growth of Barley. Soil Sci. 43[6], 401-411

Dup Khan, S. and Khan, N. N. 1983. Influence of Lead and Cadmium on the Growth and Nutrient Concentration of Tomato (Lycopersicium esculentum) and Egg-Plant (Solanum melangena) 38390. Plant Soil 74, 387-394

No Dose Kim, N. D. and Fergusson, J. E. 1994. Seasonal variations in the concentrations of cadmium, copper, lead and zinc in leaves of the horse chestnut (Aesculus hippocastanum L.). Environmental Pollution. 86[1], 89-97

Rev Kiss, Tibor and Osipenko, Oleg. 1994. Metal ion-induced permeability changes in cell membranes: a minireview. Cellular and Molecular Neurobiology 14[6], 781-789

Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

Kd
Heat Shock Protein (Hsp 70) In Soil Invertebrates: A Possible Tool For Monitoring Environmental Toxicants. Arch.Environ.Contam.Toxicol. 22[3], 334-338

Rev

Rev

Rev

No Dose

No Toxicant

Mix

Mix

Mix
Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

Mix

FL

FL

FL

Media

No Dose

pH

No Dur

FL

Media

Media
Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

and the Worm Eisenia fetida: Comparison with the Fish Brachydanio rerio 43973. Arch.Environ.Contam.Toxicol. 36[2], 167-178

Mix Lamersdorf, Norbert P. 1989. The behavior of lead and cadmium in the intensive rooting zone of acid spruce forest soils. Toxicol.Environ.Chem. 18[4], 239-247

Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

Media
Lane, S. D., Martin, E. S., and Garrod, J. P. 1978. Lead Toxicity Effect on Indole-3-Ylacetic Acid-Induced Cell Elongation. Planta 144, 79-84

Media

Mix

Species

Media

Media

Media

FL
Lee, Yahn Chir and Wang, Yin Po. 1997. Relationships between extraction ratio of lead and concentrations in crops in contaminated soils. Huanjing Baohu (Taipei) (CHI) 20[2], 78-91

Media

No Dur

Media

Media
Lui, Donghua, Jiang, Wusheng, Wang, Wei, and Zhai, Lin. 1995. Evaluation of metal ion...
Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

toxicity on root tip cells by the allium test. Israel Journal of Plant Sciences 43, 125-133

Mix

Lutynski, R. 1996. The Role Of Lead As An Environmental Pollutant In The Period Of Growing Ecological Consciousness. Przegl-Lek 53[4], 371-374

No Toxicant

Media

Rev

FL

Mix

No Dose

OM, pH

Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

44578. Pedobiologia 24[3], 129-137

No Data

Species

No Dur

No Dur
Marino, F., Ligero, A., and Diaz, C. 1996. Heavy Metals In Earthworms And Soils Around To A Thermic Power Station At As Pontes (La Coruna, Nw Spain). Boletin De La Real Sociedad Espanola De Historia Natural Seccion Biologica 92[1-4], 65-73

No ERE

Mix

No Control

No Toxicant

Media

Media

Media
Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

Mix Merry, R. H., Tiller, K. G., and Alston, A. M. 1986. the Effects of Soil Contamination with Copper, Lead and Arsenic on the Growth and Composition of Plants. II. Effects of Source of Contamination, Varying soil pH, and Prior Waterlogging. Plant Soil 95, 255-269

OM, pH Mikula, W. and Indeka, L. 1997. Heavy metals in allotment gardens close to an oil refinery in plock. Water Air Soil Pollut. 96[1/4], 61-71

Interim Final Eco-SSL Guidance: Lead

Eco-SSL web site:http://www.epa.gov/ecotox/ecossl/index.html

September, 2002

32
Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

No Dur
Morgan, A. J. and Morris, B. 1982. The Accumulation And Intracellular Compartmentation Of Cadmium, Lead, Zinc And Calcium In 2 Earthworm Species (Dendrobaena rubida And Lumbricus rubellus) Living In Highly Contaminated Soil. Histochemistry 75[2], 269-286

Mix

OM

Media

No Dur

No Dur
Morgan, J. E. and Morgan, A. J. 1990. The Distribution Of Cadmium, Copper, Lead, Zinc And Calcium In The Tissues Of The Earthworm Lumbricus Rubellus Sampled From One Uncontaminated And Four Polluted Soils. Oecologia 84[4], 559-566

Mix
Morgan, J. E. and Morgan, A. J. 1993. Seasonal Changes In The Tissue-Metal (Cadmium, Zinc, And Lead) Concentrations In Two Ecophysiologically Dissimilar Earthworm Species: Pollution-Monitoring Implications. Environ Pollut 82[1], 1-7

No Dur

No Control
Mosbaek, Hans, Tjell, J. C., and Hovmand, Mads F. 1989. Atmospheric lead input to agricultural crops in Denmark. Chemosphere 19[10/11], 1787-1799

No Dose

Media
Mukherji, S. and Maitra, P. 1976. Toxic Effects of Lead on Growth & Metabolism of
Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

Pedobiologia 27, 89-97

Media

OM

FL

OM, pH

FL

FL

Mix

pH

Media

Media

OM
Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

Isomerization of Glutamate Dehydrogenase in Response to Lead Toxicity in Maize. Biol.Plant. 40[3], 389-398

Mix

Media

No Dur

Species

Media

No Dose

Mix

Species

Rev

No Dose

Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

<table>
<thead>
<tr>
<th>Type</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accumulation and translocation of lead in cucumber plants monitored by graphite furnace</td>
</tr>
<tr>
<td></td>
<td>atomic absorption spectrometry. Microchemical Journal 51[1/2], 145-150</td>
</tr>
<tr>
<td></td>
<td>in a metal-contaminated alluvial soil. Journal of Environmental Quality 22[2], 247-254</td>
</tr>
<tr>
<td></td>
<td>vegetation establishment on mine and coal ash wastes in semi-arid regions. I. Tin mine</td>
</tr>
<tr>
<td>Mix</td>
<td>Pilgrim, W. 1995. Lead, Cadmium, Arsenic, And Zinc In The Ecosystem Surrounding The</td>
</tr>
<tr>
<td></td>
<td>Belledune Lead Smelter. Govt-Reports-Announcements-&-Index-(GRA&I) [24]</td>
</tr>
<tr>
<td></td>
<td>of Lead Concentrations in the Agricultural Soils and Main Crop Plants in Poland. Sci.Total</td>
</tr>
<tr>
<td></td>
<td>Environ. 158[1-3], 147-155</td>
</tr>
<tr>
<td>FL</td>
<td>Piotrowska, Maria, Dudka, Stanislaw, and Bolibrzuch, Edward. 1992. Effect of different</td>
</tr>
<tr>
<td></td>
<td>doses of trace metals on yields and concentrations of these elements in corn (Zea mays L.).</td>
</tr>
<tr>
<td></td>
<td>Part II. Copper and lead. Arch.Ochr.Srodowiska [2], 145-152</td>
</tr>
<tr>
<td>No Control</td>
<td>Pizl, V. and Sterzynska, M. 1991. The Influence Of Urbanization On The Earthworm Infection</td>
</tr>
<tr>
<td></td>
<td>By Monocystid Gregarines. Fragm Faun (Warsaw) 35[9-14], 203-212</td>
</tr>
<tr>
<td>OM, pH</td>
<td>Polivka, J. B. 1951. Effect of Insecticides on Earthworm Populations. Ohio J Sci 51, 195-</td>
</tr>
<tr>
<td></td>
<td>196</td>
</tr>
<tr>
<td>Media</td>
<td>Popham, J. D. and Webster, J. M. 1976. Comparative toxicity of heavy metals with special</td>
</tr>
<tr>
<td></td>
<td>reference to cadmium on caenorhabditis-elegans. Proc Int Colloq Invertebr Pathol, 372-373</td>
</tr>
<tr>
<td>Species</td>
<td>Pouyat, Richard V., Mcdonnell, Mark J., and Pickett, S. T. A. 1995. Soil characteristics of</td>
</tr>
<tr>
<td></td>
<td>oak stands along an urban-rural land-use gradient. Journal of Environmental Quality 24[3],</td>
</tr>
<tr>
<td></td>
<td>516-526</td>
</tr>
<tr>
<td></td>
<td>Synthesis in Mung Bean Seedlings. Phytochemistry 26[4], 881-883</td>
</tr>
</tbody>
</table>
Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

Metal Ions by Lichens: A Modified Ion-Exchange Process. New Phytol 72, 329-342

Media

Media

No Control

No Dur

Rabitsch, W. B. 1995. Metal Accumulation In Arthropods Near A Lead/Zinc Smelter In Arnoldstein, Austria. I. Environ Pollut 90[2], 221-237

Mix

Rabitsch, W. B. 1995. Metal Accumulation in Arthropods near a Lead/Zinc Smelter in Arnoldstein, Austria. II. Formicidae. Environ Pollut 90[2], 239-247

No Dur

No Dose

FL

No Dur

No Control

No Dose

Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No Dur</td>
<td>Roberts, R. D., Johnson, M. S., and Hutton, M. 1978. Lead contamination of small mammals from abandoned metalliferous mines. Environ Pollut 15[1], 61-70</td>
</tr>
</tbody>
</table>
Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

OM, pH

pH

Mix

Species

No Dur

OM

Mix

Media
Schaeffer, H. J. and Walton, J. D. 1990. Aluminum Ions Induce Oat Protoplasts to Produce an Extracellular (1 Leads to 3) Beta-d-Glucan. Plant Physiology. 94[1], 13-19

Rev

FL
Schlote, F. 1990. Beteiligting Von Schwermetallen, Bes. Cadmium Und Blei, An Der Entstehung Der 'neuartigen' Waldschaeden. (Are Immitted Heavy Metals, Is Lead Another...
Interim Final Eco-SSL Guidance: Lead

Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

Reason For Forest Decline - Investigations By Means Of Multielement Analysis). Govt-Reports-Announcements-&-Index-(GRA&I) [24]

Media

Media

Media

OM, pH

No Dur

Mix

In Vit

Media

Media

No Control

OM, pH
Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

Mix

Media

Media

Rev

Media

Media

Media

Media

Media

Media

No Toxicant
Interim Final Eco-SSL Guidance: Lead

Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

Phosphate Ore and Phosphogypsum. Fresenius’ J.Anal.Chem. 354[1], 16-20

Species

Media

OM, pH

Mix

Species

No Dur

OM

Species

Tao, Shu. 1995. Spatial structures of copper, lead and mercury contents in surface soil in the shenzhen area. Water Air and Soil Pollution 82[3-4], 583-591

FL

FL

FL

Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

Feuilles et de Quelques Organes du cep de Vigne). Bull.O.I.V. 66, 843-854

Media

No Dose

No Dose

Not Avail

No ERE

Media

Mix

Media

Mix

OM
Triebkorn, R. and Kohler, H. R. 1996. The impact of heavy metals on the grey garden slug, Deroceras reticulatum (Muller): metal storage, cellular effects and semi-quantitative evaluation of metal toxicity 48094. Environmental Pollution. 93[3], 327-343

No COC
Tsao, R., Lee, S., Rice, P. J., Jensen, C., and Coats, J. R. Monoterpenoids and Their Synthetic Derivatives as Lead for New Insect Control Agents. To be Published in: ACS...
Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

Symp.Ser.No.584, Synthesis and Chemistry of Agrochemicals, Chapter 28, 15

Mix Turcsanyi, Gabor and Fangmeier, Andreas. 1990. Lead and cadmium content of beech (Fagus silvatica) roots in the stem and interstem areas. Z.Pflanzenernahr.Bodenkd. 153[3], 197-200

FL Uccelli, Raffaella, Angelone, Massimo, Cima, Maria Grazia, Ferrandi, Luigi, Pompei, Franco, Stronati, Laura, and Triolo, Lucio. 1992. Air pollution on the territory of the Tarquinia Agricultural University. Concentrations of nickel, chromium, lead, and cadmium in soil and in some plant and animal species. Inquinamento 34[10], 64-74

No Dur Van Saan, Beatrice, Krause, Katrin, and Emmerling, Christoph. 1995. Ferns, earthworms,
Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

and soils as indicators for heavy metals under varying distances to the lead smelter in Braubach, Germany. Verh.Ges.Oekol. 24, 653-656

Media

Media

Rev

Media

Mix

Media

No Control

Veavington, F. 1975. Heavy Metal Contamination of Vegetables and Soil in Domestic Gardens Around a Smelting Complex. Environ Pollut 9[3], 211-217

Mix

OM

Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

36[3], 77-80

FL Vogel, W. R. 1988. Lead and cadmium burden in arthropods from forest areas with different levels of exposure to airborne pollution. Mitt Schweiz Entomol Ges 61[3-4], 205-216

FL Von Scharrer, K. and Schropp, W. 1936. The Effect of Lead Upon Plant Growth (Uber die Wirkung des Bleis auf das Pflanzenwachstum.). Z.Pflanzenernaehr.Dung.Bodenkd. 43, 34-43

FL Wang, Y. P. and Chao, C. C. 1992. Effects of vesicular-arbuscular mycorrhizae and heavy metals on the growth of soybean and phosphate and heavy metal uptake by soybean in major soil groups of taiwan. J AGRIC ASSOC CHINA NEW SER [157], 6-20

Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

Agric. 13, 96-98

No Dur Watmough, S. A. and Dickinson, N. M. 1995. Dispersal and mobility of heavy metals in relation to tree survival in an aerially contaminated woodland soil. Environmental Pollution. 90[2], 135-142

No Dose Weatherford, Jason, Hammond, Angie, and Ratliff, Judy. 1997. Investigation of the ability of plants found in western Kentucky to hyperaccumulate lead and aluminum from soils. Microchemical Journal 56[1], 93-102

No Dur Weisenfeld, P. 1988. Cadmium And Lead In Earthworms (Lumbricidae) From Allotment Gardens And Similar Sites Influenced By Industrial Immissions In Berlin (West) (West Germany). Zool Beitr 32[2], 301-320

Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 "DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs" and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

Histochem Cytochem 17[2], 181-188

Media Wierzbicka, M. 1999. Comparison of Lead Tolerance in Allium cepa with Other Plant Species. Environ Pollut 104[1], 41-52

Media Wong, M. H. and Bradshaw, A. D. 1982. A Comparison of the Toxicity of Heavy Metals,
Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.) Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

Media

No Dose

Media

FL

Xi, Yuying, Guo, Dongsheng, Cheng, Jie, and Song, Yuxian. 1994. Effect of calcium and zinc on the contents of cadmium and lead in corn seedling. Shanxi Daxue Xuebao, Ziran Kexueban 17[1], 101-103

Mix

Xian, X. 1989. Response of kidney bean to concentration and chemical form of cadmium, zinc, and lead in polluted soils. Environmental Pollution. 57[2], 127-137

Mix

Media

FL

OM, pH

No Control

Lead Publications Rejected as Not Acceptable for Plants and Invertebrates

Published literature that reported soil toxicity to terrestrial invertebrates and plants was identified, retrieved and screened. Published literature was deemed Acceptable if it met all 11 study acceptance criteria (Fig. 3.3 in section 3 “DERIVATION OF PLANT AND SOIL INVERTEBRATE ECO-SSLs” and ATTACHMENT J in Standard Operating Procedure #1: Plant and Soil Invertebrate Literature Search and Acquisition). Each study was further screened through nine specific study evaluation criteria (Table 3.2 Summary of Nine Study Evaluation Criteria for Plant and Soil Invertebrate Eco-SSLs, also in section 3 and ATTACHMENT A in Standard Operating Procedure #2: Plant and Soil Invertebrate Literature Evaluation and Data Extraction, Eco-SSL Derivation, Quality Assurance Review, and Technical Write-up.). Publications identified as Not Acceptable did not meet one or more of these criteria. All Not Acceptable publications have been assigned one or more keywords categorizing the reasons for rejection (Table 1. Literature Rejection Categories in Standard Operating Procedure #4: Wildlife TRV Literature Review, Data Extraction and Coding).

Rev

No Control

Zimdahl, R. L. and Foster, J. M. 1976. The Influence of Applied Phosphorus, Manure, or Lime on Uptake of Lead from Soil. J.Environ.Qual. 5[1], 31-34

FL

Mix

No Dose