

Rare Earth Element Interferences in Collision Cell and Standard Mode ICP-MS Analyses of Arsenic and Selenium



#### **Disclaimer of Endorsement:**

Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government, and shall not be used for advertising or product endorsement purposes. Ernest Walton USEPA Region 4 SESD/ASB ICS Athens, Ga. 30605 walton.ernest@epa.gov 706 355-8810 Chemist

Terri White USEPA Region 4 SESD/ASB ICS Athens, Ga 30605 white.terri@epa.gov 706 355-8817 Physical Scientist

# **Overview:**

**1.Dispel the idea that Rare Earth Elements are rare** 

2.Look at the extent of the Rare Earth Element interference in collision cell and standard mode ICP-MS on As and Se

3.Show ways to effectively recognize and handle this interference challenge



**Key Industrial Consumers and Products:** 

Automobile and petroleum industry

Glass industry, optics, high-quality lenses, crystal production, luminous fiber optics

High-performance electronics, high-tech weapons, satellite technology and telecommunications

Metallurgy, ceramics industry, and laser industry

Water treatment, alternative energies, marine biology

Paint and lacquer production, laboratories, drying technology, fluxing agents

Manufacture of magnets, batteries, spare parts industries

Shieldings against radioactivity

| Rare Earth Technology                               | Application(s)                                                                                                                                                                                                                  | REE required                                                                                                   |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Catalysts                                           | •Oil production<br>•Gasoline and hybrids, diesel<br>fuel additive<br>•Fluid cracking<br>•Ethane polymerization                                                                                                                  | La, Ce, Pr, Nd, Lu, Y, Sm                                                                                      |
| Rare Earth permanent magnets<br>and ceramic magnets | •Wind and hydro power<br>generation<br>•Cordless power tools<br>•Generators<br>•Hybrids, plug-in and electric<br>vehicles<br>•Electric assist motors<br>•Medical imaging<br>•Computer disc drives<br>•Handheld wireless devices | Nd, Pr, Dy, Tb, Sm, Tm                                                                                         |
| Phosphors                                           | •LCD TVs and monitors<br>•Plasma TVs and displays<br>•Energy efficient fluorescent<br>lights & LEDs                                                                                                                             | Y, Eu, Tb, Gd, Ce, La, Dy, Pr, Sc                                                                              |
| Energy storage                                      | •NiMH batteries                                                                                                                                                                                                                 | La, Ce, Pr, Nd                                                                                                 |
| Glass additives                                     | •Fiber optics<br>•Optical glass for digital<br>camera                                                                                                                                                                           | Ce, La, Nd, Er, Gd, Yb                                                                                         |
| Polishing powders                                   | •LCD and Plasma TVs and<br>monitors<br>•Silicon wafers and chips                                                                                                                                                                | Ce, La, Pr                                                                                                     |
| Others                                              | •Lasers<br>•Superconductors<br>•Nuclear applications<br>•Fertilizers<br>•High tech alloys                                                                                                                                       | •Yb, Y, Dy, Tb, Eu, Sm, Nd<br>•Gd<br>•Ce, Er<br>•various REE<br>•Yb, Lu, Er, Tb, Gd, Eu, Sm, Nd,<br>Pr, Ho, Sc |

# **Rare Earth Elements are not rare**



Image 3







Region 4 Rare Earth Element deposits

Taken from USGS publication-

"Unconventional Resources of Rare Elements:

The Bearing of Source and Process on the Genesis of Residual Deposits"





# Data Review Request

| Monitoring<br>Well | Arsenic<br>Method<br>6010<br>ICP | Arsenic<br>Method 6020<br>ICP-MS<br>Collision Cell | Arsenic<br>Method 7062<br>Hydride | Arsenic<br>Speciation | Arsenic<br>Triple Quad |
|--------------------|----------------------------------|----------------------------------------------------|-----------------------------------|-----------------------|------------------------|
| Sample 1<br>Total  | 27.8 ppb                         | 15.4 ppb                                           | <0.4 ppb                          | 0.12 ppb              | <1.0 ppb               |
| Sample 2<br>Total  | 188 ppb                          | 72 ppb                                             | <0.4 ppb                          | 0.38 ppb              | <1.0 ppb               |

The method quality control results were all acceptable.



Lanthanum is a direct spectral overlap on arsenic at ICP-OES wavelength 189

PE ICP-OES 8300 USEPA Region 4 SESD ICS Brittany Stuart, Chemist

| Mbat could                                              | Element  | Mass | %<br>Abundance | Dimer                                                                                            | Chlorides/<br>Hydrides                                                                                                                                                                                                                                                                      | Doubly<br>Charged                                                  |  |
|---------------------------------------------------------|----------|------|----------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|
| nterfere with<br>As and Se in<br>CP-MS?                 | Arsenic  | 75   | 100            |                                                                                                  | ${}^{40}\text{Ar}{}^{35}\text{Cl}{}^{+}$ ${}^{40}\text{Ca}{}^{35}\text{Cl}{}^{+}$ ${}^{43}\text{Ca}{}^{16}\text{O}{}_{2}{}^{+}$ ${}^{23}\text{Na}{}^{12}\text{C}{}^{40}\text{Ar}{}^{+}$ ${}^{12}\text{C}{}^{31}\text{P}{}^{16}\text{O}{}_{2}{}^{+}$ ${}^{36}\text{Ar}{}^{39}\text{K}{}^{+}$ | <sup>150</sup> Sm <sup>++</sup><br><sup>150</sup> Nd <sup>++</sup> |  |
| What doesn't<br>nterfere with<br>As and Se in<br>CP-MS? | Selenium | 77   | 7.63           |                                                                                                  | <sup>40</sup> Ar <sup>37</sup> Cl <sup>+</sup><br><sup>40</sup> Ca <sup>37</sup> Cl <sup>+</sup>                                                                                                                                                                                            | <sup>154</sup> Sm <sup>++</sup><br><sup>154</sup> Gd <sup>++</sup> |  |
|                                                         |          | 78   | 23.77          | <sup>38</sup> Ar <sup>40</sup> Ar <sup>+</sup><br><sup>39</sup> K <sup>39</sup> K <sup>+</sup>   | <sup>41</sup> K <sup>37</sup> Cl <sup>+</sup>                                                                                                                                                                                                                                               | <sup>156</sup> Gd <sup>++</sup><br><sup>156</sup> Dy <sup>++</sup> |  |
|                                                         |          | 80   | 49.61          | <sup>40</sup> Ar <sup>40</sup> Ar <sup>+</sup><br><sup>40</sup> Ca <sup>40</sup> Ca <sup>+</sup> | <sup>45</sup> Sc <sup>35</sup> Cl <sup>+</sup>                                                                                                                                                                                                                                              | <sup>160</sup> Gd <sup>++</sup><br><sup>160</sup> Dy <sup>++</sup> |  |
|                                                         |          | 82   | 8.73           |                                                                                                  | <sup>45</sup> Sc <sup>37</sup> Cl <sup>+</sup><br><sup>81</sup> BrH <sup>+</sup>                                                                                                                                                                                                            | <sup>164</sup> Dy <sup>++</sup><br><sup>164</sup> Er <sup>++</sup> |  |

If an ion is singly charged, its position in the mass spectrum corresponds to its mass. If an ion is doubly charged, it will appear in the spectrum at half its mass. At this mass it will interfere with isotopes of different elements. **For Example:** <sup>150</sup> Nd<sup>++</sup> on <sup>75</sup>As<sup>+</sup> or <sup>156</sup> Gd<sup>++</sup> on <sup>78</sup>Se<sup>+</sup>

"Oxides (MO<sup>+</sup>) and doubly charged species (M2<sup>+</sup>) can be significantly reduced through proper tuning of the plasma and torch conditions and by good plasma design. Oxides are far more problematic in ICP-MS than doubly charged species since there are very few elements that generate significant levels of doubly charged species and these can be easily avoided.."

Taken from ICP-MS Inductively Coupled Plasma Mass Spectrometry A Primer from Agilent Technologies

**Double charged ions are detected by the instrument as** apparent isobars at half their actual mass.....There are no software corrections for this type of spectral interference, but optimization procedures used to set instrument operating conditions attempt to set double-charge formation to be a low fraction (less than 3 percent) of the single-charge ions present. Double-charge formation effects tend to be small or non existent when determining higher mass element concentrations, such as <sup>75</sup>As<sup>+</sup>. Natural abundance of double charged ions of the Lanthanide elements are low (Ryabchikov et al, 1959).

Taken from "Arsenic and Thallium Data in Environmental Samples: Fact or Fiction?" Susan D. Chapnick, Leonard C. Pitts, Nancy C. Rothman Remediation Autumn 2010.

A doubly charged ion will cause a spectral interference at half the m/z of the singly charged ion, e.g. <sup>138</sup> Ba<sup>++</sup> on <sup>69</sup>Ga<sup>+</sup> or <sup>208</sup> Pb<sup>++</sup> on <sup>104</sup>Ru<sup>+</sup>. <u>These interferences are few</u> <u>and can be considerably minimized, or effectively</u> <u>eliminated, by optimizing the system before proceeding</u> <u>with the analysis.</u>

Taken from ICP-MS, or ICP-AES and AAS?-a comparison Varian, ICP-MS-1 April 1994

"Associated with oxide-based spectral overlaps are doubly charged spectral interferences. These are species that are formed when an ion is generated with a double positive charge, as opposed to a normal single charge, and produces a peak at half its mass. Like the formation of oxides, the level of doubly charged species is related to the ionization conditions in the plasma and can usually be minimized by careful optimization of the nebulizer gas flow, rf power, and sampling position within the plasma."

Taken from A Beginner's Guide to ICP-MS, Part XII-A Review of Interferences Spectroscopy 17(10) October 2002

|                                       | Rare Earth  | <sup>75</sup> As | <sup>78</sup> Se |  |
|---------------------------------------|-------------|------------------|------------------|--|
|                                       | Element     | Uncorr           | Uncorr           |  |
|                                       | 1000 ppb Eu | 0.171            | -0.050           |  |
| Initial Look at Rare<br>Farth Element | 1000 ppb Nd | <u>44.009</u>    | -0.075           |  |
| Interference on As                    | 1000 ppb Sm | <u>29.079</u>    | -0.074           |  |
| and Se in ICP-MS                      | 1000 ppb Gd | 0.097            | <u>618.118</u>   |  |
|                                       | 1000 ppb Dy | 0.074            | <u>1.534</u>     |  |

PE NexION 300D ICP-MS KED Mode USEPA Region 4 SESD ICS Ernie Walton, Chemist

| Rare Earth | Standard | <sup>75</sup> As | <sup>78</sup> Se |
|------------|----------|------------------|------------------|
| Element    | Source   | Uncorr           | Uncorr           |
| Nd 200 ppb | HPS      | 6.299            | 0.155            |
| Nd 200 ppb | SPEX     | 6.639            | 0.034            |
| Sm 50 ppb  | HPS      | 1.171            | 0.166            |
| Sm 50 ppb  | SPEX     | 1.175            | -0.170           |
| Gd 20 ppb  | HPS      | 0.011            | 10.638           |
| Gd 20 ppb  | SPEX     | 0.006            | 10.836           |
| Dy 10 ppb  | HPS      | 0.011            | 0.158            |
| Dy 10 ppb  | SPEX     | 0.0003           | 0.124            |
| Eu 200 ppb | HPS      | 0.152            | -0.025           |
| Eu 200 ppb | SPEX     | 0.146            | -0.123           |
| Er 200 ppb | HPS      | -0.014           | 0.070            |
| Er 200 ppb | SPEX     | 0.008            | 0.109            |





**High Purity Standards** 

PE NexION 300D ICP-MS KED Mode USEPA Region 4 SESD ICS Ernie Walton, Chemist

# What can we do to minimize this problem?

Determine a correction by empirically measuring the signals and mathematically calculating the ratios.

These corrections are similar to an IEC calculation for optical ICP. You must have a clean source for the interfering element.

Analyze at levels you are likely to see in the samples of concern.

#### Sample ID: 500ppb Nd

Sample Date/Time: Tuesday, March 03, 2015 16:03:17 Method File: C:NexIONData\Method\EPA NexION KED-FAST As Se.mth Dataset File: C:NexIONData\DataSet\030315\500ppb Nd.017

Tuning File: c:\nexiondata\masscal\epa\_default.tun

Optimization File: c:\nexiondata\conditions\epa\_default.dac

Sample Description: 1X

Sample File: C1/NexIONData/Sample/022315.sam

Batch ID: 030315

Autosampler Position: 104

|   |   | AnalyteM | ass | Blank Intensity | Meas. Intensity | Intens, RSD | Conc. Mean | onc. SD | CORC. RSD |
|---|---|----------|-----|-----------------|-----------------|-------------|------------|---------|-----------|
| ſ |   | Ge       | 72  | 64928.598       | 81836.450       | 1.8 %       |            |         | %         |
| I |   | Ge       | 74  | 99700.860       | 101268.135      | 1.9 %       |            |         | %         |
| I | > | In-1     | 115 | 379108.891      | 359212.670      | 4.1 %       |            |         | %         |
| I |   | As       | 75  | 3.667           | 5536.406        | 2.6 %       | 17.709864  | 1.1907  | 6.7 %     |
| I |   | 2010_As  | 75  | 3.659           | 31.005          | 295.1 %     | 0.095979   | 0.3032  | 315.9 %   |
| I |   | Se       | 76  | 23619.185       | 22786.841       | 3.5 %       |            |         | %         |
| I |   | Se       | 77  | -3.716          | -1.050          | 1.7 %       |            |         | %         |
|   |   | Se       | 78  | 37.333          | 30.333          | 8.3 %       | -0.157345  | 0.0616  | 39.2 %    |
| I |   | 2070_Se  | 78  | 37.328          | 30.293          | 8.3 %       | -0.158463  | 0.0615  | 38.8 %    |
| I |   | Br       | 79  | 20.333          | 26.667          | 4.3 %       |            |         | %         |
|   |   | Se       | 82  | 3.667           | 6.000           | 44.1 %      | 0.152486   | 0.1554  | 101.9 %   |
| I |   | Se-1     | 82  | 3.600           | 4.536           | 58.6 %      | 0.066976   | 0.1576  | 235.3 %   |
| I |   | Br       | 81  | 37.000          | 36.333          | 4.2 %       |            |         | %         |
|   |   | Kr       | 83  | 6.333           | 6.333           | 36.5 %      |            |         | %         |
| I |   | Nd       | 146 | 1.667           | 1928143.675     | 1.3 %       |            |         | %         |
| I |   | Nd       | 143 | 3.000           | 1221979.124     | 2.2 %       |            |         | %         |
|   |   | Nd       | 145 | 1.000           | 900358.476      | 1.6 %       |            |         | %         |
|   |   | Sm       | 147 | 1.000           | 28.000          | 18.9 %      |            |         | %         |
| I |   | Sm       | 149 | 0.667           | 17.667          | 18.2 %      |            |         | %         |
|   |   | Eu       | 151 | 0.667           | 2.667           | 57.3 %      |            |         | %         |
|   |   | Eu       | 153 | 1.000           | 1.667           | 34.6 %      |            |         | %         |
|   |   | Gđ       | 155 | 0.333           | 6.000           | 28.9 %      |            |         | %         |
|   |   | Gđ       | 157 | 1.333           | 9.667           | 15.8 %      |            |         | %         |
| I |   | Dy       | 161 | 6.667           | 4888.170        | 3.4 %       |            |         | %         |
|   |   | Dy       | 163 | 12.333          | 131.334         | 6.4 %       |            |         | %         |
| L |   | Er       | 166 | 11.333          | 3884.862        | 3.6 %       |            |         | %         |

PE NexION 300D ICP-MS

**KED Mode** 

**USEPA Region 4 SESD ICS** 

Ernie Walton, Chemist

#### As75/Nd146 = (5536.406-3.667) / (1928143.675-1.667)

= 5532.739 / 1928143.008

= 0.0028695

#### As75corr=As75uncorr-0.0028695\*Nd146

| Rare Earth<br>Element     | <sup>75</sup> As<br>Uncorr | <sup>75</sup> As<br>Corr | <sup>78</sup> Se<br>Uncorr |
|---------------------------|----------------------------|--------------------------|----------------------------|
| 10 ppb Nd                 | 0.374                      | 0.007                    | -0.293                     |
| 100 ppb Nd                | 3.493                      | -0.016                   | -0.089                     |
| 500 ppb Nd                | 17.709                     | 0.095                    | -0.157                     |
| 1000 ppb Nd               | 33.466                     | -0.361                   | -0.159                     |
| 500 ppb Nd<br>+20 ppb ICV | 35.6<br>178%<br>Recovery   | 18.3<br>92%<br>Recovery  | 17.7<br>89%<br>Recovery    |

PE NexION 300D ICP-MS

KED Mode

USEPA Region 4 SESD ICS

| Rare Earth<br>Element | <sup>75</sup> As<br>Uncorr | <sup>75</sup> As<br>Corr | <sup>78</sup> Se<br>Uncorr |
|-----------------------|----------------------------|--------------------------|----------------------------|
| 10 ppb Sm             | 0.220                      | -0.025                   | -0.181                     |
| 100 ppb<br>Sm         | 2.509                      | -0.027                   | -0.273                     |
| 500 ppb<br>Sm         | 12.171                     | 0.130                    | -0.156                     |
| 1000 ppb<br>Sm        | 24.187                     | 1.062                    | -0.210                     |
| 500 ppb<br>Sm         | 30.7<br>154%               | 18.7<br>94%              | 17.7<br>89%                |
| +20 ppb<br>ICV        | Recovery                   | Recovery                 | Recovery                   |

PE NexION 300D ICP-MS

KED Mode

USEPA Region 4 SESD ICS

| Rare Earth     | <sup>75</sup> As | <sup>75</sup> As | <sup>78</sup> Se | <sup>78</sup> Se |
|----------------|------------------|------------------|------------------|------------------|
| Element        | Uncorr           | Corr             | Uncorr           | Corr             |
| 10 ppb Gd      | 0.007            | 0.007            | 5.670            | -0.242           |
| 100 ppb Gd     | 0.010            | 0.010            | 55.232           | 0.077            |
| 500 ppb Gd     | 0.000            | 0.000            | 281.728          | 5.126            |
| 1000 ppb<br>Gd | 0.013            | 0.009            | 566.691          | 6.850            |
| 500 ppb Gd     | 19.5             | 19.5             | 305.852          | 18.4             |
| +20 ppb        | 98%              | 98%              | 1529%            | 92%              |
| ICV            | Recovery         | Recovery         | Recovery         | Recovery         |

PE NexION 300D ICP-MS

KED Mode

USEPA Region 4 SESD ICS

| Rare Earth                | <sup>75</sup> As        | <sup>75</sup> As        | <sup>78</sup> Se        |
|---------------------------|-------------------------|-------------------------|-------------------------|
| Element                   | Uncorr                  | Corr                    | Uncorr                  |
| 10 ppb Dy                 | -0.000                  | -0.000                  | -0.077                  |
| 100 ppb Dy                | -0.003                  | -0.003                  | -0.018                  |
| 500 ppb Dy                | -0.002                  | -0.002                  | 0.569                   |
| 1000 ppb Dy               | -0.002                  | -0.002                  | 1.697                   |
| 500 ppb Dy<br>+20 ppb ICV | 18.5<br>93%<br>Recovery | 18.5<br>93%<br>Recovery | 19.7<br>99%<br>Recovery |

PE NexION 300D ICP-MS KED Mode

USEPA Region 4 SESD ICS

| Rare Earth<br>Element | <sup>75</sup> As<br>Uncorr | <sup>75</sup> As<br>Corr | <sup>78</sup> Se<br>Uncorr |
|-----------------------|----------------------------|--------------------------|----------------------------|
| 10 ppb Er             | 0.005                      | 0.005                    | -0.278                     |
| 100 ppb Er            | 0.003                      | 0.003                    | -0.300                     |
| 500 ppb Er            | 0.005                      | 0.005                    | -0.073                     |
| 1000 ppb<br>Er        | 0.009                      | 0.009                    | -0.166                     |
| 500 ppb Er            | 19.2                       | 19.2                     | 18.9                       |
| +20 ppb               | 96%                        | 96%                      | 95%                        |
| ICV                   | Recovery                   | Recovery                 | Recovery                   |

PE NexION 300D ICP-MS KED Mode USEPA Region 4 SESD ICS Ernie Walton, Chemist

|                                                              | Rare Earth  | <sup>75</sup> As | <sup>75</sup> As | <sup>78</sup> Se |
|--------------------------------------------------------------|-------------|------------------|------------------|------------------|
|                                                              | Element     | Uncorr           | Corr             | Uncorr           |
|                                                              | 10 ppb Eu   | 0.000            | 0.000            | -0.137           |
|                                                              | 100 ppb Eu  | 0.013            | 0.013            | -0.170           |
|                                                              | 500 ppb Eu  | 0.064            | 0.063            | -0.171           |
|                                                              | 1000 ppb Eu | 0.126            | 0.126            | -0.395           |
|                                                              | 500 ppb Eu  | 19.1             | 19.1             | 19.3             |
|                                                              | +20 ppb ICV | 96%              | 96%              | 97%              |
|                                                              |             | Recovery         | Recovery         | Recovery         |
| PE NexION 300D ICP-MS<br>KED Mode<br>USEPA Region 4 SESD ICS |             |                  |                  |                  |
| Ernie Walton, Chemist                                        |             |                  |                  |                  |

|                                                              | Rare Earth                                 | <sup>75</sup> As         | <sup>75</sup> As         | <sup>78</sup> Se          | <sup>78</sup> Se        |
|--------------------------------------------------------------|--------------------------------------------|--------------------------|--------------------------|---------------------------|-------------------------|
|                                                              | Element                                    | Uncorr                   | Corr                     | Uncorr                    | Corr                    |
|                                                              | 10 ppb<br>Mixed<br>REEs                    | 0.619                    | 0.007                    | 5.957                     | 0.149                   |
|                                                              | 100 ppb<br>Mixed<br>REEs                   | 6.203                    | 0.283                    | 56.638                    | 0.720                   |
| PE NexION 300D ICP-MS                                        | 500 ppb<br>Mixed<br>REEs<br>+20 ppb<br>ICV | 50.4<br>130%<br>Recovery | 21.2<br>106%<br>Recovery | 301.0<br>565%<br>Recovery | 15.3<br>77%<br>Recovery |
| KED Mode<br>USEPA Region 4 SESD ICS<br>Ernie Walton, Chemist |                                            |                          |                          |                           |                         |

### ICP-MS Normal Mode Default Interference Correction Equations for Arsenic and Selenium

Mass 72 <sup>144</sup>Nd<sup>++</sup>, <sup>144</sup>Sm<sup>++</sup> Mass 75 <sup>150</sup>Nd<sup>++</sup>, <sup>150</sup>Sm<sup>++</sup> Mass 77 <sup>154</sup>Gd<sup>++</sup>, <sup>154</sup>Sm<sup>++</sup> Mass 81 <sup>162</sup>Er<sup>++</sup>, <sup>162</sup>Dy<sup>++</sup> Mass 82 <sup>164</sup>Er<sup>++</sup>, <sup>164</sup>Dy<sup>++</sup> Mass 83 <sup>166</sup>Er<sup>++</sup>

| Rare Earth  | <sup>75</sup> As | <sup>75</sup> As | <sup>82</sup> Se | <sup>82</sup> Se |
|-------------|------------------|------------------|------------------|------------------|
| Element     | Uncorr           | Corr             | Uncorr           | Corr             |
|             |                  |                  |                  |                  |
|             |                  |                  |                  |                  |
| 10 ppb Nd   | 0.118            | 0.099            | -0.012           | -0.019           |
| 100 ppb Nd  | 0.953            | 0.842            | 0.011            | -0.005           |
|             |                  |                  |                  |                  |
| 500 ppb Nd  | 4.604            | 4.040            | -0.005           | -0.019           |
| 1000 ppb Nd | 9.230            | 8.081            | -0.016           | -0.009           |
| 500 ppb Nd  | 22.9             | 21.2             | 18.2             | 18.3             |
| +20 ppb ICV | 115%%            | 106%             | 91%              | 91%              |
|             | Recovery         | Recovery         | Recovery         | Recovery         |
|             |                  |                  |                  |                  |
|             |                  |                  |                  |                  |

<sup>75</sup>As<sup>+</sup><sub>corr</sub>=<sup>75</sup>As<sup>+</sup>-3.127\*(<sup>40</sup>Ar<sup>37</sup>Cl<sup>+</sup>-(0.874\*<sup>82</sup>Se<sup>+</sup>))

PE NexION 300D ICP-MS Standard Mode

**USEPA Region 4 SESD ICS** 

Ernie Walton, Chemist

<sup>82</sup>Se<sup>+</sup><sub>corr</sub>=<sup>82</sup>Se<sup>+</sup>-1.00869<sup>\*83</sup>Kr<sup>+</sup>- (0.000468659<sup>\*81</sup>Br<sup>+</sup>)

| Rare Earth                | <sup>75</sup> As | <sup>75</sup> As | <sup>82</sup> Se | <sup>82</sup> Se |
|---------------------------|------------------|------------------|------------------|------------------|
| Element                   | Uncorr           | Corr             | Uncorr           | Corr             |
| 10 ppb Sm                 | 0.074            | -0.452           | 0.000            | 0.038            |
| 100 ppb Sm                | 0.593            | -4.663           | -0.021           | -0.037           |
| 500 ppb Sm                | 2.998            | -23.442          | -0.007           | 0.009            |
| 1000 ppb Sm               | 5.967            | -45.672          | -0.028           | -0.028           |
| 500 ppb Sm<br>+20 ppb ICV | 22.3<br>112%     | -6.094421        | 19.2<br>96%      | 19.2<br>96%      |
|                           | Recovery         | Recovery         | Recovery         | Recovery         |
|                           |                  |                  |                  |                  |

PE NexION 300D ICP-MS Standard Mode USEPA Region 4 SESD ICS Ernie Walton, Chemist <sup>75</sup>As<sub>corr</sub>=<sup>75</sup>As<sup>+</sup>-3.127\*(<sup>40</sup>Ar<sup>37</sup>Cl<sup>+</sup>-(0.874\*<sup>82</sup>Se<sup>+</sup>))

<sup>82</sup>Se<sup>+</sup><sub>corr</sub>=<sup>82</sup>Se<sup>+</sup>-1.00869<sup>\*83</sup>Kr<sup>+</sup>- (0.000468659<sup>\*81</sup>Br<sup>+</sup>)

| Rare Earth Element | <sup>75</sup> As | <sup>75</sup> As | <sup>82</sup> Se | <sup>82</sup> Se |
|--------------------|------------------|------------------|------------------|------------------|
|                    | Uncorr           | Corr             | Uncorr           | Corr             |
| 10 ppb Gd          | 0.025            | -0.019           | 0.033            | 0.029            |
| 100 ppb Gd         | 0.017            | -0.345           | 0.010            | 0.009            |
| 500 ppb Gd         | 0.018            | -1.680           | -0.003           | -0.023           |
| 1000 ppb Gd        | 0.005            | -3.613           | -0.026           | -0.068           |
| 500 ppb Gd         | 20.0             | 16.7             | 19.3             | 19.3             |
| +20 ppb ICV        | Recovery         | 84%<br>Recovery  | 97%<br>Recovery  | 97%<br>Recovery  |

<sup>75</sup>As<sub>corr</sub>=<sup>75</sup>As<sup>+</sup>-3.127\*(<sup>40</sup>Ar<sup>37</sup>Cl<sup>+</sup>-(0.874\*<sup>82</sup>Se<sup>+</sup>))

<sup>82</sup>Se<sup>+</sup><sub>corr</sub>=<sup>82</sup>Se<sup>+</sup>-1.00869<sup>\*83</sup>Kr<sup>+</sup>- (0.000468659<sup>\*81</sup>Br<sup>+</sup>)

PE NexION 300D ICP-MS Standard Mode USEPA Region 4 SESD ICS

| Rare Earth Element        | <sup>75</sup> As<br>Uncorr | <sup>75</sup> As<br>Corr | <sup>82</sup> Se<br>Uncorr | <sup>82</sup> Se<br>Corr  |
|---------------------------|----------------------------|--------------------------|----------------------------|---------------------------|
| 10 ppb Dy                 | 0.003                      | 0.518                    | 1.889                      | 1.890                     |
| 100 ppb Dy                | 0.003                      | 4.837                    | 18.293                     | 18.282                    |
| 500 ppb Dy                | 0.005                      | 23.972                   | 90.938                     | 90.922                    |
| 1000 ppb Dy               | 0.002                      | 47.653                   | 180.738                    | 180.766                   |
| 500 ppb Dy<br>+20 ppb ICV | 19.9<br>100%<br>Recovery   | 42.4<br>212%<br>Recovery | 111.4<br>555%<br>Recovery  | 111.4<br>555%<br>Recovery |

<sup>75</sup>As<sub>corr</sub>=<sup>75</sup>As<sup>+</sup>-3.127\*(<sup>40</sup>Ar<sup>37</sup>Cl<sup>+</sup>-(0.874\*<sup>82</sup>Se<sup>+</sup>))

PE NexION 300D ICP-MS Standard Mode USEPA Region 4 SESD ICS

Ernie Walton, Chemist

<sup>82</sup>Se<sup>+</sup><sub>corr</sub>=<sup>82</sup>Se<sup>+</sup>-1.00869<sup>\*83</sup>Kr<sup>+</sup>- (0.000468659<sup>\*81</sup>Br<sup>+</sup>)

| Rare Earth           | <sup>75</sup> As                  | <sup>75</sup> As                                                              | <sup>82</sup> Se                     | <sup>82</sup> Se |
|----------------------|-----------------------------------|-------------------------------------------------------------------------------|--------------------------------------|------------------|
| Element              | Uncorr                            | Corr                                                                          | Uncorr                               | Corr             |
|                      |                                   |                                                                               |                                      |                  |
| 10 ppb Er            | 0.011                             | 0.0487                                                                        | 0.106                                | -1.944           |
| 100 ppb Er           | -0.004                            | 0.248                                                                         | 0.891                                | -20.055          |
|                      |                                   |                                                                               |                                      |                  |
| 500 ppb Er           | -0.000                            | 1.233                                                                         | 4.663                                | -100.545         |
| 1000 ppb Er          | 0.001                             | 2.489                                                                         | 9.466                                | -205.387         |
| 500 ppb Er           | 19.7                              | 19.7                                                                          | 24.4                                 | -79.7            |
| +20 ppb ICV          | 99%                               | 99%                                                                           | 122%                                 |                  |
|                      | Recovery                          | Recovery                                                                      | Recovery                             | Recovery         |
|                      |                                   |                                                                               |                                      |                  |
|                      |                                   |                                                                               |                                      |                  |
| E NexION 300D ICP-MS |                                   |                                                                               |                                      |                  |
| tandard Mode         | $^{75}As_{corr} = ^{75}As_{corr}$ | s <sup>+</sup> -3.127*( <sup>40</sup> Ar <sup>37</sup> Cl <sup>+</sup> -(0.87 | 74* <sup>82</sup> Se <sup>+</sup> )) |                  |

<sup>82</sup>Se<sup>+</sup><sub>corr</sub>=<sup>82</sup>Se<sup>+</sup>-1.00869<sup>\*83</sup>Kr<sup>+</sup>- (0.000468659<sup>\*81</sup>Br<sup>+</sup>)

**USEPA Region 4 SESD ICS** 

| Lanthanide                | <sup>75</sup> As        | <sup>75</sup> As        | <sup>82</sup> Se         | <sup>82</sup> Se         |
|---------------------------|-------------------------|-------------------------|--------------------------|--------------------------|
| Element                   | Uncorr                  | Corr                    | Uncorr                   | Corr                     |
| 10 ppb Eu                 | 0.000                   | 0.007                   | -0.053                   | -0.059                   |
| 100 ppb Eu                | 0.008                   | 0.033                   | 0.020                    | -0.040                   |
| 500 ppb Eu                | 0.020                   | 0.035                   | -0.014                   | 0.000                    |
| 1000 ppb Eu               | 0.043                   | 0.060                   | -0.010                   | -0.042                   |
| 500 ppb Eu<br>+20 ppb ICV | 19.6<br>98%<br>Recovery | 18.4<br>92%<br>Recovery | 20.0<br>100%<br>Recovery | 20.0<br>100%<br>Recovery |

<sup>75</sup>As<sub>corr</sub>=<sup>75</sup>As<sup>+</sup>-3.127\*(<sup>40</sup>Ar<sup>37</sup>Cl<sup>+</sup>-(0.874\*<sup>82</sup>Se<sup>+</sup>))

PE NexION 300D ICP-MS Standard Mode USEPA Region 4 SESD ICS Ernie Walton, Chemist

<sup>82</sup>Se<sup>+</sup><sub>corr</sub>=<sup>82</sup>Se<sup>+</sup>-1.00869<sup>\*83</sup>Kr<sup>+</sup>- (0.000468659<sup>\*81</sup>Br<sup>+</sup>)

|                            | Rare Earth                                                                      | <sup>75</sup> As                | <sup>75</sup> As                                                                                                   | <sup>82</sup> Se                                                                                                         | <sup>82</sup> Se                        |
|----------------------------|---------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|                            | Element                                                                         | Uncorr                          | Corr                                                                                                               | Uncorr                                                                                                                   | Corr                                    |
|                            | 10 ppb<br>Mixed REEs                                                            | 0.175                           | 0.129                                                                                                              | 1.93                                                                                                                     | -0.182                                  |
|                            | 100 ppb<br>Mixed REEs                                                           | 1.560                           | 0.940                                                                                                              | 18.794                                                                                                                   | -1.171                                  |
|                            | 500 ppb<br>Mixed REEs                                                           | 7.712                           | 4.387                                                                                                              | 93.587                                                                                                                   | -8.595                                  |
|                            | 500 ppb                                                                         | 25.9                            | 22.2                                                                                                               | 113.4                                                                                                                    | 10.4                                    |
|                            | Mixed REEs                                                                      | 130%                            | 111%                                                                                                               | 565%                                                                                                                     | 52%                                     |
|                            | +20 ppb ICV                                                                     | Recovery                        | Recovery                                                                                                           | Recovery                                                                                                                 | Recovery                                |
| PE I<br>Stai<br>USE<br>Ern | NexION 300D ICP-MS<br>ndard Mode<br>EPA Region 4 SESD ICS<br>ie Walton, Chemist | <sup>75</sup> As <sub>cor</sub> | = <sup>75</sup> As <sup>+</sup> -3.127*( <sup>40</sup> A<br>= <sup>82</sup> Se <sup>+</sup> -1.00869* <sup>8</sup> | s <sup>37</sup> Cl <sup>+</sup> -(0.874 <sup>*82</sup> Se <sup>+</sup> )<br><sup>33</sup> Kr <sup>+</sup> - (0.000468659 | ))<br>* <sup>81</sup> Br <sup>+</sup> ) |
|                            |                                                                                 | co                              |                                                                                                                    |                                                                                                                          |                                         |

| Rare Earth<br>Element<br>Collision Cell   | <sup>75</sup> As<br>Uncorr | <sup>75</sup> As with<br>correctio  | n <sup>78</sup> SE<br>on Uncorr                             | <sup>78</sup> Se with<br>correction |
|-------------------------------------------|----------------------------|-------------------------------------|-------------------------------------------------------------|-------------------------------------|
| Sample<br>4x dilution                     | 3.75mg/kg                  | <u>1.81 mg/</u>                     | ′ <u>kg</u> 8.9 mg/kg                                       | <u>2.39 mg/kg</u>                   |
| Rare Earth<br>Element<br>Standard<br>Mode | <sup>75</sup> As<br>Uncorr | <sup>75</sup> As with<br>correction | <sup>82</sup> Se<br>Uncorr                                  | <sup>82</sup> Se with<br>correction |
| Sample<br>4x dilution                     | 8.87 mg/kg                 | <u>1.71 mg/k</u>                    | kg 3.62 mg/kg                                               | <u>2.61 mg/kg</u>                   |
|                                           | Collision<br>Uncorr        | Cell (<br>L<br>C                    | Collision Cell<br>Lanthanide<br>Doubly Charged<br>Corrected | Standard Mode<br>Corrected          |
| Arsenic                                   | 3.7 mg/k                   | <b>g</b> 1                          | L.81 mg/kg                                                  | 1.7 mg/kg                           |
| Selenium                                  | 8.9 mg/k                   | g 2                                 | 2.39 mg/kg                                                  | 2.6 mg/kg                           |

|    | Sample Matrix |
|----|---------------|
| AI | 15400 mg/kg   |
| Са | 6500 mg/kg    |
| Fe | 3700 mg/kg    |
| Mg | 450 mg/kg     |
| Na | 50 mg/kg      |
| S  | 5200 mg/kg    |
| La | 38 mg/kg      |
| Nd | 12 mg/kg      |
| Sm | 2.5 mg/kg     |
| Gd | 3.3 mg/kg     |
| Dy | 2.3 mg/kg     |
| Er | 1.0 mg/kg     |
| Cu | 100 mg/kg     |
| Ва | 270 mg/kg     |
| Pb | 140 mg/kg     |
| Sr | 1000 mg/kg    |
| Zn | 90 mg/kg      |

Soil sample from a military base

$$^{75}As_{corr} = ^{75}As^{+} - 3.127 * (^{40}Ar^{37}Cl^{+} - (0.874 * ^{82}Se^{+}))$$

### <u>Mass</u> <u>Possible Interferences</u>

<sup>75</sup>As<sup>+</sup> <sup>40</sup>Ar<sup>35</sup>Cl<sup>+</sup>, <sup>150</sup>Dy<sup>++</sup>, <sup>150</sup>Sm<sup>++</sup>

**40Ar<sup>37</sup>Cl<sup>+</sup>** 77**Se**<sup>+</sup>, <sup>154</sup>**Gd**<sup>++</sup>, <sup>154</sup>**Sm**<sup>++</sup>

<sup>82</sup>Se<sup>+</sup> <sup>82</sup>Kr<sup>+</sup>, <sup>164</sup>Er<sup>++</sup>, <sup>164</sup>Dy<sup>++</sup>, <sup>81</sup>BrH<sup>+</sup>

 $^{75}As_{corr} = ^{75}As^{+} - 3.1005 * ((^{40}Ar^{37}Cl^{+} - 0.0045721 * ^{147}Sm147^{+} - 0.00032621 * ^{157}Gd^{+}) - (0.874 * (^{82}Se^{+} - 0.0029296 * ^{163}Dy^{+}))) - 0.0017728 * ^{146}Nd^{+} - 0.0014422 * ^{147}Sm^{+}$ 

## <u>Mass</u> <u>Possible Interferences</u>

<sup>82</sup>Se<sup>+</sup> <sup>82</sup>Kr<sup>+</sup>, <sup>81</sup>Br<sup>1</sup>H<sup>+</sup>, <sup>164</sup>Er<sup>++</sup>, <sup>164</sup>Dy<sup>++</sup>

<sup>83</sup>Kr<sup>+</sup> <sup>166</sup>Er<sup>++</sup>

<sup>81</sup>Br<sup>+</sup> <sup>162</sup>Er<sup>++</sup>, <sup>162</sup>Dy<sup>++</sup>

 ${}^{82}Se^{+}_{corr} = {}^{82}Se^{+} - (1.0087 * ({}^{83}Kr^{+} - 0.0024829 * {}^{166}Er^{+})) - (0.00046866 * ({}^{81}Br^{+} - 0.0023575 * {}^{163}Dy^{+})) - (0.002926 * {}^{163}Dy^{+}) - (0.00010935 * {}^{166}Er^{+})$ 

An alternate calculation for As if elevated Br is present.

# Mass Possible Interferences

<sup>75</sup>AS<sup>+</sup> <sup>40</sup>Ar<sup>35</sup>Cl<sup>+</sup>, <sup>150</sup>Dy<sup>++</sup>, <sup>150</sup>Sm<sup>++</sup>

**40**Ar<sup>37</sup>Cl<sup>+</sup> <sup>77</sup>Se<sup>+</sup>, <sup>154</sup>Gd<sup>++</sup>, <sup>154</sup>Sm<sup>++</sup>

<sup>78</sup>Se<sup>+</sup>  ${}^{38}Ar^{40}Ar^{+}, {}^{156}Gd^{++}, {}^{156}Dy^{++}$ 

$$^{75}As_{corr} = ^{75}As^{+} - 3.127 * (^{40}Ar^{37}Cl^{+} - (0.322 * ^{78}Se^{+}))$$

 ${}^{75}\text{As}_{corr} = {}^{75}\text{As}^{+} - 3.1005 * (({}^{40}\text{Ar}{}^{37}\text{Cl}^{+} - 0.0045721 * {}^{147}\text{Sm}^{+} - 0.00032621 * {}^{157}\text{Gd}^{+}) - (0.322 * ({}^{78}\text{Se}^{+} - 0.0030692 * {}^{157}\text{Gd}^{+}))) - 0.0017728 * {}^{146}\text{Nd}^{+} - 0.0014422 * {}^{147}\text{Sm}^{+})$ 

**Ocean Dredging Dump Sites Battery Dump Sites Plating Sites** Mills **Transformer Sites Chemical Sites Mountain Top Mining** Sites **Pesticide Sites** Phosphate Mines

Military Bases Fertilizer Sites













## **Conclusions:**

- -Rare Earth Elements are not rare in environmental samples.
- -Arsenic and selenium are subject to interferences from Rare Earth Element doubly charged formation when analyzed by Collision Cell and Standard Mode ICP-MS.
- -The analytical community should be informed of this challenge that could lead to false positive/high bias results or false negative/low bias results on As and Se.

- **Procedures Region 4 SESD/ASB/ICS has initiated to address this challenge:**
- -Monitoring all samples for Rare Earth Elements matrix presence
- -Creating correction factors that will work with collision cell ICP-MS and Standard Mode ICP-MS
- -Working /talking with Perkin Elmer, Agilent, LTIG, and other EPA analysts to address this problem
- -Talking with project managers to let them know what we are doing and what they should be asking for from ICP-MS/ICP analyses.