Overview of Current Disinfection Hierarchy Models

William A. Rutala, PhD, MPH

Director, Hospital Epidemiology, Occupational Health and Safety at UNC Health Care; Research Professor of Medicine and Director, Statewide Program for Infection Control and Epidemiology at University of North Carolina School of Medicine at Chapel Hill, USA

Spaulding Classification Scheme

- Disinfection and sterilization (D/S) is a cornerstone of infection prevention
- D/S considered a horizontal control measure as it prevents transmission of all healthcare-associated pathogens
- Spaulding scheme for D/S used for over 50 years (since 1957) throughout the world
- EH Spaulding believed that how an object will be disinfected depended on the object's intended use. It uses the microbiological disinfectant hierarchy model.

Microbiological Disinfectant Hierarchy

Microbes Exhibit a Wide Variation in Intrinsic Resistance to Disinfectants Rutala WA, Weber DJ, HICPAC. www.cdc.gov

Most Resistant

Spores (C. difficile)

Mycobacteria (M. tuberculosis)

Non-Enveloped Viruses (norovirus, HAV, polio)

Fungi (Candida, Trichophyton)

Bacteria (MRSA, VRE, Acinetobacter)

Most Susceptible Enveloped Viruses (HIV, HSV, Flu)

Disinfection and Sterilization

Rutala, Weber, HICPAC. November 2008. www.cdc.gov

- EH Spaulding believed that how an object will be disinfected depended on the object's intended use.
- CRITICAL objects which enter normally sterile tissue or the vascular system or through which blood flows should be sterile.
- SEMICRITICAL objects that touch mucous membranes or skin that is not intact require a disinfection process (high-level disinfection [HLD]) that kills all microorganisms and some bacterial spores.
- NONCRITICAL -objects that touch only intact skin require low-level disinfection (or non-germicidal detergent).

Microbiological Disinfectant Hierarchy

Microbes Exhibit a Wide Variation in Intrinsic Resistance to Disinfectants Rutala WA, Weber DJ, HICPAC. www.cdc.gov

Most Resistant

Sterilization

Spores (C. difficile)

Mycobacteria (M. tuberculosis)

Non-Enveloped Viruses (norovirus, HAV, polio)

Fungi (Candida, Trichophyton)

Bacteria (MRSA, VRE, Acinetobacter)

Most Susceptible Enveloped Viruses (HIV, HSV, Flu)

Microbiological Disinfectant Hierarchy Decreasing Order of Resistance of Microorganisms to Disinfectants Rutala WA, Weber DJ, HICPAC. www.cdc.gov

Hand Contamination after Touching a Contaminated Environmental Surface

Susceptibility Order Could be Horizontal (Within) or Vertical (Between) ClassesRutala WA, Weber DJ, HICPAC. www.cdc.gov

Vertical

Spores (C. difficile)

Mycobacteria (M. terrae)

Non-Enveloped Viruses (norovirus, HAV, polio)

Fungi (Candida, Trichophyton)

Bacteria (MRSA, VRE, Pseudomonas)

Enveloped Viruses (HIV, HSV, Flu) Horizontal

Microbiological Disinfectant Hierarchy **Decreasing Order of Resistance of Microorganisms to Disinfectants** Rutala WA, Weber DJ, HICPAC. www.cdc.gov

Most Resistant

Spores (C. difficile)

Mycobacteria (M. tuberculosis)

Non-Enveloped Viruses (norovirus, HAV, polio)

Fungi (Candida, Trichophyton)

Bacteria (MRSA, VRE, Acinetobacter)

Most Susceptible Enveloped Viruses (HIV, HSV, Flu)

Expanding the Use of the Disinfection Hierarchy

Vertical-Applied Down Rutala WA, Weber DJ. ICHE 2004;25:331-341

- The vertical method is a logical method for assessing the efficacy of a disinfectant and would test the disinfectant's activity against a higher-class microbe, mycobacteria, and efficacy data would support ability to kill lower-class microbes (bacteria, fungi and viruses). The test microbe may have the following characteristics:
 - Microbiologically well characterized
 - A clinically important human pathogen or a validated surrogate for a human pathogen
 - Standardized stock strains available from commercial sources

Expanding the Use of the Disinfection Hierarchy

Vertical Expansion-Applied Down Rutala WA, Weber DJ. ICHE 2004;25:331-341

- The test microbe may have the following characteristics (cont)
 - Require only biosafety level 1 or 2 for propagation and evaluation
 - More resistant (or comparable resistance) to disinfectants than other members of the class or lower classes
 - Standard methods available for propagation (sufficiently high numbers to allow a 4 to 6-log₁₀ reduction), assay, and storage.

Expanding the Use of the Disinfection Hierarchy Horizontal Expansion-Applied to One Class Rutala WA, Weber DJ. ICHE 2004;25:331-341

- A horizontal expansion is logical method for assessing the efficacy of a disinfectant and would be to test the disinfectant's activity against an appropriate member of a class of microbes in the hierarchy (e.g., *P. aeruginosa* or *S. aureus* for all bacteria)
- Representative of the class would have following characteristics
 - Microbiologically well characterized
 - A clinically important human pathogen or a validated surrogate for a human pathogen
 - Standardized stock strains available from commercial sources

Expanding the Use of the Disinfection Hierarchy Horizontal Expansion-Applied to One Class Rutala WA, Weber DJ. ICHE 2004;25:331-341

- Representative of the class have characteristics (cont)
 - Require only biosafety level 1 or 2 for propagation and evaluation
 - More resistant (or comparable resistance) to disinfectants than other members of the class
 - Standard methods available for propagation (sufficiently high numbers to allow a 4 to 6-log₁₀ reduction), assay, and storage.

Expanding the Use of the Disinfection Hierarchy Hierarchy Is Only a Guide and May Vary by Factors Rutala WA, Weber DJ. ICHE 2014;35:855-865

- Need to consider microbes that may deviate from the hierarchyparvovirus, HPV, nontuberculous mycobacteria, prions, protozoa
- Test method may affect ranking of pathogens (carrier /dry vs suspension; alcohol, chlorine less effective in protein than glut)
- Susceptibility of microbes may vary by specific disinfectants (alcohol inactivate mycobacteria but not some viruses)
- Numerous factors affect antimicrobial activity: soil load, exposure time, temperature, concentration, surface type, pH, test method, clumping (e.g., virus), biofilms, culture prep, level of microbial contamination, nature of the object, delivery method (e.g., cotton)

Susceptibility Order Could be Horizontal (Within) or Vertical (Between) ClassesRutala WA, Weber DJ, HICPAC. www.cdc.gov

Vertical

Spores (C. difficile)

Mycobacteria (M. terrae)

Non-Enveloped Viruses (norovirus, HAV, polio)

Fungi (Candida, Trichophyton)

Bacteria (MRSA, VRE, Pseudomonas)

Enveloped Viruses (HIV, HSV, Flu) Horizontal

THANK YOU! www.disinfectionandsterilization.org

