Using 106 and 319 Programs for Lake Restoration on the Fond du Lac Reservation

Kari Jacobson Hedin
Fond du Lac Environmental Program
Office of Water Protection
Fond du Lac’s Water Resources:
- 23 lakes
- 6 streams
- St. Louis River
- 47% of land base is wetland

Legend
Lake Type
- Green: Other Lakes
- Blue: Primary Fisheries Lakes
- Pink: Secondary Fisheries Lakes
- Yellow: Wild Rice Lakes

Roads
- Brown

Fond du Lac Boundary
- Gray

Streams
- Blue

St. Louis River
- Blue

Lake monitoring point
- Circle

Stream monitoring point
- Black

Third Lake
- Marked on the map
<table>
<thead>
<tr>
<th>StationName</th>
<th>SampleDate</th>
<th>Parameter</th>
<th>Matrix</th>
<th>Result</th>
<th>Units</th>
<th>Qualifier</th>
<th>AnalysisDate</th>
<th>Lab</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third Lake</td>
<td>8/12/2004</td>
<td>Nitrogen, Total Kjel</td>
<td>Surface water</td>
<td>0.7</td>
<td>mg/L</td>
<td>ND</td>
<td>8/25/2004</td>
<td>Era</td>
<td>EPA 351:</td>
</tr>
<tr>
<td>Third Lake</td>
<td>8/12/2004</td>
<td>Phosphorus, Ortho</td>
<td>Surface water</td>
<td>0.001</td>
<td>mg/L</td>
<td>ND</td>
<td>8/13/2004</td>
<td>Era</td>
<td>EPA 365:6</td>
</tr>
<tr>
<td>Third Lake</td>
<td>8/12/2004</td>
<td>Selenium, Total</td>
<td>Surface water</td>
<td>5</td>
<td>mg/L</td>
<td>ND</td>
<td>8/23/2004</td>
<td>Era</td>
<td>EPA 200.6</td>
</tr>
<tr>
<td>Third Lake</td>
<td>8/12/2004</td>
<td>Solids, Total Suspend</td>
<td>Surface water</td>
<td>3</td>
<td>mg/L</td>
<td>J</td>
<td>8/18/2004</td>
<td>USGS</td>
<td>USGS 131</td>
</tr>
<tr>
<td>Third Lake</td>
<td>8/12/2004</td>
<td>Sulfate</td>
<td>Surface water</td>
<td>2</td>
<td>mg/L</td>
<td>J</td>
<td>8/18/2004</td>
<td>USGS</td>
<td>USGS 131</td>
</tr>
<tr>
<td>Third Lake</td>
<td>8/12/2004</td>
<td>Total Hardness</td>
<td>Surface Water</td>
<td>26.2</td>
<td>mg/L as CaCO3</td>
<td>ND</td>
<td>8/12/2004</td>
<td>On-site</td>
<td>SM 2340</td>
</tr>
<tr>
<td>Third Lake</td>
<td>8/12/2004</td>
<td>True Color</td>
<td>Water</td>
<td>8</td>
<td>Pt-Co</td>
<td>ND</td>
<td>8/12/2004</td>
<td>On-site</td>
<td>SM 2340</td>
</tr>
<tr>
<td>Third Lake</td>
<td>10/7/2004</td>
<td>Alkalinity</td>
<td>Surface water</td>
<td>22.4</td>
<td>mg as CaCO3</td>
<td>NRI</td>
<td>10/7/2004</td>
<td>On-site</td>
<td>SM 2320</td>
</tr>
<tr>
<td>Third Lake</td>
<td>10/7/2004</td>
<td>Apparent Color</td>
<td>Surface Water</td>
<td>91</td>
<td>Pt-Co</td>
<td>ND</td>
<td>10/7/2004</td>
<td>On-site</td>
<td>SM 2320</td>
</tr>
<tr>
<td>Third Lake</td>
<td>10/7/2004</td>
<td>Chlorophyll alpha</td>
<td>Surface Water</td>
<td>16.8</td>
<td>mg/L</td>
<td>NRI</td>
<td>10/7/2004</td>
<td>NRI</td>
<td>SM 10200</td>
</tr>
<tr>
<td>Third Lake</td>
<td>10/7/2004</td>
<td>Dissolved organic C</td>
<td>Surface water</td>
<td>0.02</td>
<td>mg/L</td>
<td>ND</td>
<td>10/26/2004</td>
<td>Era</td>
<td>EPA 200.7</td>
</tr>
<tr>
<td>Third Lake</td>
<td>10/7/2004</td>
<td>Nitrogen, Ammonia</td>
<td>Surface water</td>
<td>0.01</td>
<td>mg/L</td>
<td>ND</td>
<td>10/26/2004</td>
<td>Era</td>
<td>EPA 200.7</td>
</tr>
<tr>
<td>Third Lake</td>
<td>10/7/2004</td>
<td>Nitrogen, Total Kjel</td>
<td>Surface water</td>
<td>0.7</td>
<td>mg/L</td>
<td>ND</td>
<td>10/20/2004</td>
<td>Era</td>
<td>EPA 351:</td>
</tr>
<tr>
<td>Third Lake</td>
<td>10/7/2004</td>
<td>Phosphorus, Ortho</td>
<td>Surface water</td>
<td>0.001</td>
<td>mg/L</td>
<td>ND</td>
<td>10/18/2004</td>
<td>Era</td>
<td>EPA 365:6</td>
</tr>
<tr>
<td>Third Lake</td>
<td>10/7/2004</td>
<td>Solids, Total Suspend</td>
<td>Surface water</td>
<td>0.035</td>
<td>mg/L as CaCO3</td>
<td>ND</td>
<td>10/24/2004</td>
<td>Era</td>
<td>EPA 365:6</td>
</tr>
<tr>
<td>Third Lake</td>
<td>10/7/2004</td>
<td>Total Hardness</td>
<td>Surface Water</td>
<td>31.2</td>
<td>mg/L as CaCO3</td>
<td>ND</td>
<td>10/7/2004</td>
<td>On-site</td>
<td>SM 2340</td>
</tr>
<tr>
<td>Third Lake</td>
<td>10/7/2004</td>
<td>True Color</td>
<td>Water</td>
<td>27</td>
<td>Pt-Co</td>
<td>ND</td>
<td>10/7/2004</td>
<td>On-site</td>
<td>SM 2320</td>
</tr>
<tr>
<td>Third Lake</td>
<td>5/4/2005</td>
<td>Cadmium, Total</td>
<td>Surface water</td>
<td>1</td>
<td>mg/L</td>
<td>ND</td>
<td>5/5/2005</td>
<td>Era</td>
<td>EPA 200.7</td>
</tr>
<tr>
<td>Third Lake</td>
<td>5/4/2005</td>
<td>Copper, Total</td>
<td>Surface water</td>
<td>1</td>
<td>mg/L</td>
<td>ND</td>
<td>5/5/2005</td>
<td>Era</td>
<td>EPA 200.7</td>
</tr>
<tr>
<td>Third Lake</td>
<td>5/4/2005</td>
<td>Nitrogen, Ammonia</td>
<td>Surface water</td>
<td>0.02</td>
<td>mg/L</td>
<td>ND</td>
<td>5/15/2005</td>
<td>Era</td>
<td>EPA 200.7</td>
</tr>
<tr>
<td>Third Lake</td>
<td>5/4/2005</td>
<td>Nitrogen, Nitrate +</td>
<td>Surface water</td>
<td>0.01</td>
<td>mg/L</td>
<td>ND</td>
<td>5/20/2005</td>
<td>Era</td>
<td>EPA 353:</td>
</tr>
<tr>
<td>Third Lake</td>
<td>5/4/2005</td>
<td>Nitrogen, Total Kjel</td>
<td>Surface water</td>
<td>0.8</td>
<td>mg/L</td>
<td>ND</td>
<td>5/18/2005</td>
<td>Era</td>
<td>EPA 351:</td>
</tr>
<tr>
<td>Third Lake</td>
<td>5/4/2005</td>
<td>Phosphorus, Ortho</td>
<td>Surface water</td>
<td>0.001</td>
<td>mg/L</td>
<td>ND</td>
<td>5/5/2005</td>
<td>Era</td>
<td>EPA 365:6</td>
</tr>
<tr>
<td>Third Lake</td>
<td>5/4/2005</td>
<td>Phosphorus, Total</td>
<td>Surface water</td>
<td>0.028</td>
<td>mg/L</td>
<td>ND</td>
<td>5/16/2005</td>
<td>Era</td>
<td>EPA 365:6</td>
</tr>
</tbody>
</table>
True Color for FDL Fisheries Lakes

- Big Lake
- Joe Martin Lake
- Lac Lake
- Lost Lake
- Perch Lake N
- Pat Martin Lake
- Second Lake
- Spruce Lake
- Cedar Lake
- First Lake
- East Twin Lake
- Simian Lake
- Sofie Lake
- West Twin Lake
- Third Lake

True Color (Pt-Co Units)
Zooplankton Species Diversity vs Trophic State Index for FDL Fisheries Lakes

$y = -0.0102x + 1.0867$

$R^2 = 0.5212$

$P = 0.002$
Zooplankton Abundance vs Trophic State Index in FDL Fisheries Lakes

\[y = 0.8944x - 12.282 \]

\[R^2 = 0.3655 \]

\[P = 0.02 \]
2 PCs explain 86% of variance in the data

Total Phosphorus explains most of the difference between lakes
319 Competitive Grant

- Relies heavily on FDL’s Tribal Non-Point Source Assessment and Management Report
- Made possible by 10 years of monitoring data on Third Lake
- Addresses both watershed and in-lake nutrient sources
- Education component
- Isolated basin
Project Goals

• Educate Band members and Third Lake homeowners and learn what they know about the lake
• Work with horse farm owner to reduce external nutrient inputs
• Apply alum to reduce internal nutrient recycling
• Targeted monitoring to note effects of nutrient reduction
• 90% reduction of phosphorus in the water column due to external and internal nutrient load reductions
First Year (2011)

• Public meeting
• Lake sediment coring
• Targeted monitoring
• Working with owner of horse farm
• Surveys
Lake Coring
Targeted Monitoring

• **Physical**: Secchi depth, general chemistry, color, alkalinity/hardness, nutrients, vertical profile of DO, temp, turbidity, and conductivity

• **Biological**: algae, zooplankton, aquatic vegetation, fish
Site Visit

Fond du Lac Reservation

Natural Resources Conservation Service

Horse Farmer
Next Year

• Alum treatment
• Continued monitoring
• Fish and aquatic plant assessments
• Brochure on our lake restoration efforts

Long-Term Goals

• Remove impairments
• Meet lake-specific nutrient criteria
• Fisheries management
Questions?