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PREFACE

Integrated Approaches to Testing and Assessment (IATA) and
(Q)SAR

Pesticide regulatory agencies have traditionally relied on extensive in vivo and in
vitro testing to support regulatory decisions on human health and environmental
risks. While this approach has provided strong support for risk management
decisions, there is a clear recognition that it can often require a large number of
laboratory animal studies which can consume significant amounts of resources in
terms of time for testing and evaluation. Even with the significant amounts of
information from standard in vivo and in vitro testing, pesticide regulators are
often faced with questions and issues relating to modes of action for toxicity,
novel toxicities, susceptible populations, and other factors that can be
challenging to address using traditional approaches.

Recognizing the limitations of current testing approaches and the rapid
development of new biochemical and cellular assay systems and computational
predictive methods, pesticide and other regulatory agencies have initiated the
long-term investigation of Integrated Approaches to Testing and Assessment
(IATA). IATA integrate existing knowledge bases on classes of chemicals with
the results of biochemical and cellular assays, computational predictive methods,
exposure studies, and other sources of information to identify requirements for
targeted testing or develop assessment conclusions. In some cases, the
application of IATA could lead to the refinement, reduction, and/or replacement of
selected conventional tests (e.g., animal toxicity tests). IATA also have the
potential to further enhance the understanding of mode/mechanism of action’
including the consideration of relevant adverse outcome pathways (AOPs) that
provide biological linkages between molecular initiating events to adverse

" In this context, mode of action for toxicity is the description of key events and processes,
starting with interaction of an agent with the cell through functional and anatomical changes,
resulting in cancer or other health endpoints. Mechanism of action for toxicity is the detailed
molecular description of key events in the induction of cancer or other health endpoints and
represents a more detailed understanding and description of events than is meant by mode of
action. Mode of action for toxicity can also be differentiated from the pesticidal mode of action
which is the specific biochemical or physical effect(s) by which the pesticide Kkills, inactivates or
otherwise controls pests. Mechanism and mode of action for toxicity are important components of
adverse outcome pathways (AOPs).
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outcomes in individual organisms and populations that are the bases for risk
assessments.

The subject of this guidance document, (Quantitative) Structure Activity
Relationships [(Q)SAR], is an important set of predictive tools that can be
considered when applying IATA to pesticide assessments. (Q)SAR represents a
variety of techniques for predicting activities and properties of untested chemicals
based on their structural similarity to chemicals with known activities and
properties.? (Q)SAR methods have a long history of use both for the industrial
design and regulatory assessment of pharmaceuticals, pesticides, and other
chemicals. While historical and current applications of (Q)SAR methods have
focused on the prediction of physical-chemical properties and apical endpoints
(e.g., toxicity, ecotoxicity), as IATA are developed and applied to pesticides, a
greater emphasis will be placed on using (Q)SAR to predict key events along the
cascade of obligatory steps toward the adverse outcome in modes of
toxicological action and AOPs (e.g., receptor binding potential, enzyme
activation/inhibition, DNA/protein binding).

The development and application of IATA and (Q)SAR methods to pesticide
assessments is consistent with the United States Environmental Protection
Agency (US EPA) commissioned National Research Council (NRC) report,
Toxicity Testing in the 21 Century: A Vision and a Strategy (NRC, 2007). The
NRC’s vision emphasizes moving away from checklists of conventional toxicity
studies towards integrated approaches using existing knowledge of chemicals
and the results of alternative testing methods, including computational tools such
as (Q)SAR, to identify toxicity pathways and streamline data requirements for
more efficient, and effective, targeted toxicity testing. (Q)SAR has also been
highlighted as an important IATA tool in the report, Integrating Emerging
Technologies into Chemical Safety Assessment, sponsored by Health Canada
and prepared by the Expert Panel on the Integrated Testing of Pesticides of the
Canadian Council of Academies (CCA) (CCA, 2012). The CCA report provides
an update on the status of IATA and IATA tools, and a vision for the evolution of
IATA in the regulatory context.

2 (Q)SAR is the study of the correlation between chemical structure and associated biological
activity, with the ultimate goal of predicting the activity of untested chemicals based on structurally
related compounds with known activity. The parentheses around the “Q” in (Q)SAR indicates that
the term refers to both qualitative predictive tools (i.e., structure-activity relationships (SARs)) and
quantitative predictive methods (quantitative structure-activity relationships (QSARs)). Although
the term (Q)SAR is often used to refer to predictive models, especially computer-based models, it
should be noted that (Q)SAR is actually inclusive of a wide variety of computerized and non-
computerized tools and approaches.
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Moving IATA from a long-term vision into mainstream practice for pesticide
assessments will require the development and application of biochemical and
cellular assays, along with the further development and broader application of
existing tools such as (Q)SAR. Towards that end, the United States
Environmental Protection Agency Office of Pesticide Programs (US EPA OPP)
has partnered with the Pest Management Regulatory Agency (PMRA) of Health
Canada to develop common approaches to IATA for the human health and
ecological risk assessment of pesticides. The formalized framework for this
partnership is a North American Free Trade Agreement (NAFTA) Joint Project on
“21%' Century Toxicology: Integrated Approaches to Testing and Assessment”.
While this project is intended to cover a broad array of computational toxicity
tools, a key current activity is the development of this NAFTA (Q)SAR guidance
document for pesticide risk assessors.

The primary purpose of this guidance document is to help pesticide evaluators to
evaluate (Q)SAR predictions and to identify the important issues that may be
involved when incorporating predictions in the risk assessment process. The
document is not intended to reproduce or replace the ever-expanding volume of
journal articles, reports, documents, and textbooks on the development and
application of (Q)SAR, but to provide an introduction to the evaluation of (Q)SAR
tools and their application to pesticide regulatory risk assessments. While the
focus of this document is on the application of (Q)SAR to pesticide risk
assessments, the principles and issues described in this document are general
and may also be used for other types of chemical assessments. Regardless of
the scenario to which (Q)SAR is being applied, the peer review process is critical
and relevant to the consistent application of this tool. To that end, appropriate
(Q)SAR experts should be consulted and peer review procedures used to ensure
scientific excellence and rigor.
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GLOSSARY

This Glossary section is intended to provide additional explanation for common
scientific terms which are presented in order to enhance communication between
(Q)SAR experts and users of (Q)SAR models, particularly in the field of
pesticides.

There are two portions in the glossary — abbreviations (acronyms) and terms
with more detailed explanations.

ABBREVIATIONS

A/l ratio Ratio of active to inactive chemicals

ACC American Chemistry Council

ADME Absorption, distribution, metabolism, and elimination
AOP Adverse Outcome Pathway

BCF Bioconcentration Factor

CAS Chemical Abstract Service

CCA Council of Canadian Academies

CEPA Canadian Environmental Protection Act

CFR Code of Federal Regulations

DER Data evaluation record

DSL Domestic Substances List (Canada)

EC European Commission

ECHA European Chemicals Agency

EDSP Endocrine Disruptor Screening Program (US EPA)
EEC European Economic Community

EFSA European Food Safety Authority

ER Estrogen Receptor

EU European Union

FAO Food and Agriculture Organization (of the United Nations)
FDA (US) Food and Drug Administration

FQPA Food Quality Protection Act
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HPV
IATA
ILSI
InChI™
IPCS
IUPAC
JRC
kNN
Kow

Ko

LMO
LOAEL
Log P
LOO
MED
MIE
MOA
NAFTA
NAS
NHEERL
NOAEL
NRC
OECD
OFAS
OPP
OPPT
ORD
PBT
PCKOC

PMN

High Production Volume Chemicals Program (US EPA)
Integrated Approaches to Testing and Assessment
International Life Sciences Institute

IUPAC International Chemical Identifier

International Program on Chemical Safety

International Union of Pure and Applied Chemistry

Joint Research Centre (European Commission)

k Nearest Neighbor

Octanol-water partition coefficient

Permeability coefficient through the skin for a chemical in water
Leave many out

Lowest Observed Adverse Effect Level

Logarithm to the base 10 of the 1-octanol/water partition coefficient, also Log Ko
Leave one out

Mid-Continent Ecology Division (US EPA ORD)

Molecular initiating event

Mode of (toxicological) Action

North American Free Trade Agreement

(US) National Academy of Sciences

National Health and Environmental Effects Research Laboratory (US EPA ORD)
No Observed Adverse Effect Level

(US) National Research Council

Organization for Economic Co-operation and Development
Office of Food Additive Safety (US FDA)

US EPA Office of Pesticide Programs

US EPA Office of Pollution Prevention and Toxics

US EPA Office of Research and Development

Persistent, bioaccumulative and toxic

Organic Carbon Partition Coefficient model components within the EPI Suite
(US EPA)

Premanufacturing notification
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PMRA Pest Management Regulatory Agency (Health Canada)

Q Cross-validated correlation coefficient

Qzext External correlation coefficient

(Q)SAR Quantitative structure-activity relationship or structure-activity relationship

QSAR Quantitative structure-activity relationship

QMRF QSAR Model Reporting Format (European Commission)

QPRF QSAR Prediction Reporting Format (European Commission)

QSPR Quantitative structure-property relationship

R? Coefficient of determination

REACH Registration, Evaluation, Authorization (and Restriction) of Chemicals legislation

(European Union)

SAR Structure-activity relationship

SDF Structure Data Format

SEE Standard error of the estimate

Spress Cross-validated standard error of prediction

TSCA US Toxic Substances Control Act

TTC Threshold of Toxicological Concern

WHO World Health Organization

TERMS

Adverse outcome A conceptual construct that portrays existing knowledge concerning the

pathway (AOP) linkage between a direct molecular initiating event and an adverse
outcome at a biological level of organization relevant to risk assessment.

Algorithm A sequence of instructions for carrying out a defined task. Typically the
instructions are mathematical equations or computer code.

Analog A chemical compound that has a similar structure and similar chemical

Apical endpoint

properties to those of another compound, but differs from it by one or a
few atoms or functional groups.

Observable effects of exposure to a toxic chemical in a test animal. The
effects reflect relatively gross changes in animals after substantial
durations of exposure.

Chemical category A group of chemicals with similar physicochemical, human health, or

ecotoxicological properties usually resulting from structural similarity.

Congeneric series A group of chemicals with a common base structure (e.g. aliphatic

alcohols) but differing in the arrangement of common substituents. The
polychlorinated biphenyls are considered a congeneric series.
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Cross-validation

Data mining

Descriptor

Domain of Applicability

ECso

Endpoint

Expert system

A statistical technique for assessing the predictive ability of a QSAR by
the removal of different proportions of the chemicals from the training
set, developing a QSAR on the remaining chemicals and using that
QSAR to predict the activity of those removed. This procedure is
repeated a number of times, so that a number of statistics can be derived
from the comparison of predicted data with the known data.

A collective term that refers to all procedures (informatic and statistical)
that are applied to large heterogeneous data sets, in order to develop a
data matrix amenable to statistical methods.

A quantifiable physical, chemical, or structural property specific to a
chemical that can be correlated with an endpoint under investigation.
There are three main categories of descriptors: hydrophobic, steric, and
electronic. Steric descriptors are those relating to molecular size or
shape. Electronic descriptors are those concerning molecular
interactions such as hydrogen bonding and dipole forces and they
include quantum mechanical and quantum chemical descriptors such as
atomic charge. Hydrophobic descriptors such as Log P are those relating
to the tendencies of chemical to partition between hydrophilic (aqueous)
and hydrophobic/lipophilic (lipid) phases.

The domain of applicability of a (Q)SAR model is the chemical structure
and response space in which the model makes predictions with a given
reliability. It can be thought of as a theoretical region in multi-dimensional
space in which the model is expected to make reliable predictions. It
depends on the nature of the chemicals in the training set, and the
method used to develop the model and helps the user of the model to
judge whether the prediction for a new chemical is reliable or not.

Half Maximal Effective Concentration. Statistically derived concentration
of a substance expected to induce a response halfway between baseline
and maximum effect.

The measure of a biological effect, e.g., LCso or ECso. A large number of
endpoints are used in regulatory assessments of chemicals. These
include lethality, carcinogenicity, immunological responses, organ
effects, developmental and reproductive effects, etc. In (Q)SAR analysis,
it is important to develop models for individual toxic endpoints.

A formalized system (often computer based) that utilizes a
knowledgebase of structure-activity relationships accumulated from
human experts. The knowledgebase is applied using a set of expert rules
to derive predictions of biological activity for chemicals of interest based
on the presence of specific chemical structures.
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External validation

Functional group

Genetic algorithm

In silico

LCs

LDso

Lipinski’s rule of 5

Mechanism of Action
(Toxicity)

A validation exercise in which the chemical structures selected for
inclusion in the test set are different from those included in the training
set, but which should be representative of the same chemical domain.
The QSAR model developed by using the training set chemicals is then
applied to the test set chemicals in order to assess the predictive ability
of the model.

A molecular moiety that imparts certain characteristics to a molecule,
e.g., hydroxyl (OH™), amino (NH,"), or nitro (NO,"). When only a limited
number of functional groups are present, they may be the primary basis
for the specific chemical, physical or biological characteristics of a
chemical. However, for complex chemicals with many functional groups,
the simple interactions associated with individual functional groups may
not be reliable predictors of chemical behavior unless one functional
group predominates for the particular activity.

A statistical method that selects the best combination of descriptors to
describe a given property, modeled on the principle of the survival of the
fittest (best) in the breeding of organisms.

An expression that means “performed on computer or via computer
simulation.”

Median Lethal Concentration. Statistically derived concentration of a
substance expected to cause death in 50% of test animals, usually
expressed as the weight of substance per weight or volume of water, air
or feed, e.g., mg/l, mg/kg or ppm.

Median Lethal Dose. Statistically derived single dose causing death in
50% of test animals when administered by the route indicated (oral,
dermal, inhalation), expressed as a weight of substance per unit weight
of animal, e.g., mg/kg.

A rule of thumb developed by Christopher Lipinski for evaluating whether
the properties of a chemical are likely to make it an orally active drug in
humans. The rule states that, in general, an orally active drug has no
more than one violation of the following criteria: not more than 5
hydrogen bond donors, not more than 10 hydrogen bond acceptors, a
molecular weight under 500, and an octanol-water partition coefficient
less than 5.

The detailed molecular description of key events in the induction of
cancer or other health endpoints. Mechanism of action for toxicity
represents a more detailed understanding and description of events than
is meant by mode of action. Mechanism of action of toxicity is an
important component of an adverse outcome pathway (AOP).
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Mode of Action
(Pesticide)

Mode of Action
(Toxicity)

OECD QSAR Toolbox

Outlier

Partition coefficient

Point of Departure

Predictivity

Read-across

QSAR

The mode of action of a pesticide refers to the specific biochemical or
physical effect(s) by which the pesticide kills, inactivates, or otherwise
controls pests.

The description of key events and processes, starting with interaction of
an agent with the cell through functional and anatomical changes,
resulting in cancer or other health endpoints. Mode of action for toxicity is
an important component of an adverse outcome pathway (AOP).

The OECD QSAR Toolbox is a software application intended to be used
by governments, chemical industry, and other stakeholders in filling gaps
in (eco)toxicity data needed for assessing the hazards of chemicals. The
Toolbox incorporates information and tools from various sources in a
logical workflow. Crucial to this workflow is the grouping of chemicals into
chemical categories ( http://www.oecd.org/document/54/
0,3746,en_2649 34379 42923638 _1_1_1_1,00.html ).

A data point that is far removed from other members of the dataset.
Typically, the outlier of a (Q)SAR model has a cross-validated
standardized residual greater than three standard deviation units.

The ratio of equilibrium concentrations of a chemical distributed between
two immiscible solvents. Frequently octanol and water are used to mimic
a chemical distributing between lipid and aqueous phases in an
organism, normally expressed as a logarithm to base 10, i.e., Log K., or
Log P, a descriptor of hydrophobicity.

Commonly abbreviated POD, the point of departure is the dose-response
point that marks the beginning of a low dose extrapolation. This point is
often the lower bound on an observed incidence or on an estimated
incidence from a dose-response model.

A measure of a model’s ability to make reliable predictions for chemical
structures not included in the training set of the model.

Endpoint information for one or more chemicals (the source chemical(s))
is used to predict the same endpoint for another chemical (the target
chemical), which is considered to be “similar” in some way (usually on
the basis of structural similarity or similar mode or mechanisms of
action). Sometimes, it is also referred to as “data bridging.” In principle,
read-across can be used to estimate physicochemical properties,
toxicity, environmental fate, and ecotoxicity. For any of these endpoints,
it may be performed in a qualitative or quantitative manner.

Quantitative structure-activity relationship — a quantitative relationship
between an endpoint (biological activity, e.g., toxicity) and one or more
descriptors associated with the endpoint/activity.
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SAR

SMILES

Structural alert

Substructure

TDso

Test set

Toxicity pathway

Training set

Validation

Structure-activity relationship — a qualitative relationship (i.e., an
association) between a molecular (sub)structure and the presence or
absence of a biological activity, or the capacity to modulate a biological
activity imparted by another substructure.

Simplified Molecular Input Line Entry System — a computer-compatible,
standardized, two-dimensional description of chemical structure. The
SMILES string is written by following a small number of rules. In brief,
each non-hydrogen atom (hydrogen is only explicitly included in special
circumstances) is denoted by its symbol; double and triple bonds are
shown by “=" and “#” symbols, respectively; branches are shown in
parentheses; and rings are opened and closed by the use of numbers.
For example, CCO represents ethanol, and c1ccccc1N represents
aniline (the digits indicate the beginning and ending of ring, and lower

case “c” indicates aromatic carbon).

A molecular (sub)structure associated with the presence of a specific
(usually adverse) biological activity.

A portion of the overall structure of a chemical that may be associated or
correlated with a biological activity or property of the chemical.

The statistically derived median toxic dose of a drug or toxin at which
toxicity occurs in 50% of the test population.

A set of chemicals, not included in the training set used to develop a
QSAR, that is used to validate (assess the predictive ability of) the
QSAR. It is sometimes called an “independent” or “external” test set or
validation set. For the purpose of (Q)SAR validation, it is important that
the test set has the same domain of applicability as the training set, and
contains a sufficient number of chemical structures.

A cellular response pathway that, when sufficiently perturbed, is
expected to result in adverse health effects (NRC, 2007). Toxicity
pathways are important components of adverse outcome pathways
(AOPs).

A set of chemicals used to derive a QSAR. The data in a training set are
typically organized in the form of a matrix of chemicals and their
measured properties or effects observed in a toxicity test. A
homogeneous training set is a set of chemicals which belong to a
common chemical class or share a common chemical functionality or a
common mechanism of action. A heterogeneous training set is a set of
chemicals which belong to multiple chemical classes, or which do not
share a common chemical functionality or common mechanism of action.

The testing of a (Q)SAR tool to assess its reliability and relevance. The
OECD Guidance Document on the Validation of (Quantitative)Structure-
Activity Relationship (Q)SAR Models (OECD Series on Testing and
Assessment No. 69) defines validation as the process by which the
reliability and relevance of a particular approach, method, process or
assessment is established for a defined purpose.
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1. EXECUTIVE SUMMARY

While pesticide regulatory agencies have traditionally relied on extensive in vivo
and in vitro testing to support regulatory decisions on human health and
environmental risks, these and other agencies have initiated the long-term
investigation of Integrated Approaches to Testing and Assessment (IATA). The
application of IATA could lead to the refinements, reduction, and/or replacement
of conventional tests through the integration of existing knowledge bases on
chemicals, biochemical and cellular assays, computational predictive methods,
exposure studies, and other sources of information to identify targeted testing
requirements or develop assessment conclusions. (Quantitative) Structure
Activity Relationships represent an important set of predictive tools to be
considered when applying IATA to pesticide risk assessments.

Moving IATA from a long-term vision into mainstream practice for pesticide
assessments will require the development and application of new predictive tools
and the further development and broader application of existing tools such as
(Q)SAR. In recognition of these requirements and the need to develop common
approaches to IATA for the risk assessment of pesticides, the United States
Environmental Protection Agency (US EPA) Office of Pesticide Programs (OPP)
and the Pest Management Regulatory Agency (PMRA) of Health Canada have
established a North American Free Trade Agreement (NAFTA) Joint Project on
“21% Century Toxicology: Integrated Approaches to Testing and Assessment”.

(Q)SAR is the study of the correlation between chemical structure and
associated (biological) activity, with the ultimate goal of predicting the activity of
untested chemicals based on structurally related compounds with known activity.
The parentheses around the “Q” in (Q)SAR indicates that the term refers to both
qualitative predictive tools (i.e., structure-activity relationships (SARs)) and
quantitative predictive methods (i.e., quantitative structure-activity relationships
(QSARs)). Although the term (Q)SAR is often used to refer to predictive models,
especially computer-based models, (Q)SAR is actually inclusive of a wide variety
of computerized and non-computerized tools and approaches.

The development of this NAFTA (Q)SAR Guidance Document is a key activity
under the NAFTA Joint Project. The purpose of this guidance document is to help
pesticide evaluators to evaluate (Q)SAR related information and to identify the
important issues that may be involved when incorporating (Q)SAR information
into the risk assessment process. This document does not reproduce or replace
the ever-expanding volume of journal articles, reports, documents, and textbooks
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that provide guidance on the development and application of (Q)SAR, but
provides an introduction to the evaluation of (Q)SAR tools and their application to
pesticide regulatory risk assessments. While the focus of this document is on the
application of (Q)SAR to pesticide risk assessments, the principles and issues
are general enough to be applied to other types of chemicals. Regardless of the
type of risk assessment scenario, (Q)SAR experts should be consulted and peer
review procedures used to ensure scientific excellence and rigor.

The document is organized into eight sections including this executive summary.

Section 2 provides an introduction to some current applications of (Q)SAR to
pesticide risk assessments with an emphasis on the use of (Q)SAR by the US
EPA OPP and the PMRA. It also includes a brief discussion of other regulatory
applications of (Q)SAR at the US EPA, the US FDA, Health Canada and
Environment Canada, the OECD, and the European Commission. Finally the
overall purpose of the guidance document is discussed and a schematic is
provided as guide to the contents of the document.

The purpose of section 3 is to provide some brief background information on the
definition of (Q)SAR, types of (Q)SAR tools and approaches, and some key
issues associated with the development of (Q)SAR tools. In particular, the
importance of data quality and mode/mechanism of action for toxicity information
in the development of (Q)SAR models is highlighted. Also, while (computerized)
(Q)SAR models are frequently cited in examples in this document, section 3
illustrates that (Q)SAR actually consists of a range of tools and approaches.

Section 4 focuses on the preliminary analysis of (Q)SAR predictions as one of
the several potential sources of information to be integrated at the problem
formulation stage of a pesticide assessment. Problem formulation for (Q)SAR
essentially involves answering questions on the assessment context for (Q)SAR,
the characteristics of the pesticide, the characteristics of the (Q)SAR tool and
prediction, and what empirical data are available including any information on
mode/mechanism of action for toxicity.

The topic of section 5, evaluating whether a (Q)SAR prediction is adequate or “fit
for purpose”, is an important component of applying a prediction to a pesticide
assessment. Four key factors originally outlined by the European Commission:
the scientific validity of the model, the applicability of the model to the query
chemical, the reliability of the (Q)SAR result, and the relevance of the (Q)SAR
model for the regulatory purpose are used to guide pesticide evaluators through
the information to be considered when evaluating whether predictions from
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(Q)SAR tools are adequate for consideration in pesticide assessments. Section 5
also includes a discussion of the documentation of (Q)SAR tools and predictions.

Section 6 briefly discusses approaches to combining information from multiple
(Q)SAR predictions, advantages and disadvantages of combining predictions,
selecting (Q)SAR tools for multiple predictions, and the evaluation of multiple
predictions. Because different (Q)SAR tools may have different prediction
paradigms and different strengths and limitations, combining predictions has the
potential to increase the confidence in the overall prediction. It is also noted that
combining predictions from multiple (Q)SAR tools does not eliminate the need to
ensure that each prediction is adequate or fit for purpose and it is not always
necessary to combine predictions.

The National Academy of Sciences risk assessment paradigm (i.e., hazard
identification, dose response assessment, exposure assessment, and risk
characterization) provides the context for section 7 which emphasizes guidance
on the integration of (Q)SAR tools into the hazard identification component of the
risk assessment process for pesticides. Section 7 builds upon previous sections
and includes a consideration of the findings at the problem formulation stage,
evaluating empirical data versus (Q)SAR predictions, a consideration of mode of
action data, the overall weight of evidence, and hazard identification, and risk
communication.

Section 8 provides conclusions and perspectives on the future vision for (Q)SAR
and pesticides. It is noted that the conclusions of the NAS report on Toxicity
Testing in the 21 Century: A Vision and a Strategy with respect to increased
reliance on existing knowledge-bases for chemical classes and alternative testing
methods is especially relevant for pesticide regulatory authorities and will require
research on new testing technologies and integrated approaches to testing and
assessment (IATA) for more efficient and effective reviews that don’t compromise
public health and the environment. (Q)SAR tools are one example of an
alternative method that could be applicable to IATA and the increasing use of
these tools by pesticide authorities make it important to communicate a
systematic and transparent approach to using (Q)SAR in pesticide assessments.
This guidance document is consistent with the current hazard/risk assessment
paradigm with an overall emphasis on not using (Q)SAR in isolation. In addition
to the validity and relevance of the individual (Q)SAR tools and predictions, the
defensibility of predictions depends on biological consistency and plausibility
across all scientific lines of evidence in a holistic weight of evidence approach.
Future applications will involve anchoring (Q)SAR predictions with what is known
about chemical classes/categories, biological mode of action, toxicity pathways
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and population effects. Eventually, (Q)SAR predictions will be built into larger
conceptual frameworks or Adverse Outcome Pathways (AOPs) that delineate the
documented, biologically plausible, measurable, and testable processes by which
a chemical induces molecular perturbations and subsequent biological responses
that are relevant for risk assessment.

In addition to the eight sections discussed above, the document also includes an
appendix of the web pages for a number of national and international
organizations that may be useful to evaluators seeking additional information on
general (Q)SAR concepts, and the development, validation, and evaluation of
(Q)SAR tools and predictions (Appendix |), an appendix summarizing the content
of the European Commission’s (Q)SAR model and prediction reporting formats,
examples of detailed information templates that could be considered when
(Q)SAR predictions are used as critical sources of data in pesticide assessments
(Appendix 1), and an appendix of several examples of the application of (Q)SAR
tools and methods to pesticides and other chemicals (Appendix III).
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2. INTRODUCTION

INTRODUCTION
Topics Discussed in this Section:
= Current applications of (Q)SAR in pesticide risk assessments
= Other regulatory applications of (Q)SAR

» Purpose of the NAFTA (Q)SAR Guidance Document

2.0 Current Applications of (Q)SAR in Pesticide Risk
Assessments

In general, pesticide regulatory programs have extensive testing requirements as
part of the registration process and as a result, they have not had to rely heavily
on predictive methods such as (Q)SAR. However, this is changing over time as
pesticide agencies have begun to investigate alternative testing methods such as
(Q)SAR to help enhance the efficiency of their assessment processes. This is
particularly the case for the investigation and application of Integrated
Approaches to Testing and Assessment (IATA) to pesticide risk assessments.
IATA have the potential to integrate existing data on pesticides with the results of
alternative methods (e.g., biochemical/cellular assays, (Q)SAR) leading to the
refinement, reduction, and/or replacement of conventional test requirements.

Provided below is a brief overview of some of the current applications of (Q)SAR
by pesticide regulatory agencies.

2.0.1 United States Environmental Protection Agency, Office of Pesticide
Programs (US EPA OPP)

2011 Application of (Q)SAR to Pesticide Metabolites and Degradates

The United States Environmental Protection Agency, Office of Pesticide
Programs (US EPA OPP) generally considers that the toxicity and ecotoxicity
studies required to support the evaluation of pesticides adequately address the
mammalian and environmental hazard profiles. The agency does not typically
require separate toxicity testing of pesticide plant or livestock metabolites or
environmental degradates even though there may be much greater human and
non-human exposure to the metabolites and degradates than the parent
pesticides. Also, historically, the US EPA OPP has typically included only major
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(>10%) pesticide metabolites and degradates in human dietary and
environmental risk assessments.

The advent of the Food Quality Protection Act (FQPA) has necessitated an
increased refinement of pesticide risk assessments including a closer scrutiny of
all metabolites and degradates. In order to determine whether these metabolites
and degradates should be included in human dietary and environmental risk
assessments in the absence of detailed toxicity data, the US EPA OPP has relied
upon various types of structural similarity evaluations. Also, more recently, the
agency has explored the use of (Q)SAR models to predict the potential toxicity of
pesticide metabolites/ degradates in order to provide scientific rationales and
support for requiring additional toxicity testing, to substantiate the use of
metabolites/degradates in estimates of total toxic residues, or to exclude
metabolites/degradates from further testing based on a lack of toxicity concerns.
Similarly, the US EPA OPP has made sporadic use of bridging techniques and
structure activity relationships to identify whether additional ecotoxicity testing of
environmental degradates should be required and whether these residues should
be included in environmental exposure estimates for pesticides.

Since empirical data are typically available on the parent pesticide, one of the
key factors considered when determining whether (Q)SAR model predictions for
the toxicity or ecotoxicity of metabolites and degradates are reliable enough to be
used is how well predictions from the same model for the parent pesticide
compare to the empirical data for the parent pesticide.

2.0.1.2 Application of (Q)SAR to Antimicrobial Agents

The US EPA OPP has several on-going initiatives and projects related to the
application of (Q)SAR to antimicrobial pesticide agents and one of the most
important initiatives is the proposed revised testing requirements for antimicrobial
agents (40CFR158 subpart W). In this proposed rule, EPA has indicated that it
will consider any submission using appropriate SAR analyses and QSAR
modeling to supplement or fulfill data requirements for antimicrobial pesticide
chemicals.

Approaches with concepts similar to structure activity relationships (SARs) are
also being utilized in a pilot project on non-animal eye irritation tests for
antimicrobial products with cleaning claims. The purpose of this project is to
assess the predictive performance of registrant submitted non-animal eye
irritation studies for antimicrobial agents by having registrants include any
available Draize rabbit test results for structurally related compounds in their
submissions.
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There is also an ongoing threshold of toxicological concern (TTC) project that is
designed to determine a level of concern for various chemical classes of
antimicrobial pesticides. Human exposures below the TTC would not be
considered to be of concern and no additional toxicological data would be
required. SAR will be used to characterize the toxicity of all chemicals within
specific classes of antimicrobial chemicals. This is an American Chemistry
Council (ACC) Biocide Panel sponsored project conducted through the
International Life Sciences Institute (ILSI) with the US EPA participating on the
ILSI Steering Committee and Expert Working Group.

2.0.1.3 Application of (Q)SAR to Ecological Risks from Pesticides

The US EPA OPP estimates chemical properties, environmental fate parameters,
and ecological toxicity values for pesticides, inert compounds, and degradates
using the EPI Suite and the Assessment Tools for Ecological Risk (ASTER)
software on a case-by-case basis when measured values are not available from
studies submitted to the Agency or from the open literature. In EPI Suite, the
organic carbon partition coefficient (PCKOC) model is used to estimate soil
mobility, the KOWWIN model is used to estimate the octanol-water partition
coefficients, and the BCFWIN model is used to estimate bioconcentration factors.
The Ecological Structure Activity Relationships (ECOSAR) component of EPI
Suite and ASTER are used to estimate pesticide ecotoxicity values. These
estimates may be used to support human dietary and ecological risk
assessments although their use, at this time, is not uniform across the US EPA
OPP since formal guidance has not yet been developed. Also, in evaluations
against measured values, the organic carbon partition coefficient (PCKOC)
model component of EPI Suite has acceptable predictive performance for organic
pesticides, but does not perform well for ionic compounds, organometallics, and
highly fluorinated pesticides. In addition, while ASTER contains models for five
aquatic species (i.e., fathead minnow, bluegill sunfish, water fleas, rainbow trout,
and channel catfish), it does not support models for terrestrial species. Similar to
ASTER, ECOSAR only predicts toxicity for aquatic species and cannot be used
to profile inorganic or organometallic chemicals. In the case of environmental
degradates, since empirical data are typically available on the parent compound,
(Q)SAR-generated toxicity estimates for the parent compound are compared to
the available empirical data in order to decide on whether it is appropriate to use
(Q)SAR models to estimate the potential ecological toxicity of the environmental
degradates. When determining which (Q)SAR model to use, consideration is also
given as to which model(s) has the best predictive performance. (Q)SARs have
been used by the US EPA OPP to address data gaps in ecological risk
assessments on an ad hoc basis.
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For ecological risk assessments, OPP has made increasing use of bridging
techniques and structure activity relationships (SARs) to identify whether
additional testing of degradates/transformation products should be required and
whether these residues should be included in modeling exposure estimates.

2.0.2 Pest Management Regulatory Agency (PMRA), Health Canada

The Pest Management Regulatory Agency (PMRA) of Health Canada takes into
account the same kinds of considerations as the US EPA OPP when addressing
the potential toxicity of pesticide metabolites/degradates of chemical pesticides. If
metabolites or degradates of a pesticide are identified in plants or soil, but not in
rat metabolism studies, the agency will require the submission of available
toxicity data on those metabolites. Also, toxicity data on metabolites/degradates
are sometimes voluntarily submitted to the PMRA by applicants. In terms of the
application of (Q)SAR, the PMRA can include a request for (Q)SAR predictions
on metabolites/degradates when requiring the submission of existing data and
can also generate (Q)SAR predictions to help identify potential concerns.

2.1 Other Regulatory Applications of (Q)SAR

Unlike pesticide regulatory agencies, programs involved in the regulatory
assessment of industrial chemicals, food additives, and other chemicals often
only have a limited amount of data available to support their assessments.
Consequently, many of these programs have a longer history with the
development and use of (Q)SAR tools and approaches.

Several examples of non-pesticidal regulatory applications of (Q)SAR at the US
EPA, the US FDA, Health Canada and Environment Canada, the OECD, and the
European Commission are summarized below. This is not intended as an
exhaustive listing of the uses of (Q)SAR by regulatory agencies, but it should
give the reader some context on the development and application of (Q)SAR
tools and approaches by a number of prominent national and international
agencies. For further information on current developments and applications of
(Q)SAR by various national and international agencies, the reader is directed to
the various websites listed in Appendix I.
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2.1.1 US EPA, Office of Pollution Prevention and Toxics (OPPT)

(Q)SAR methods have been used for identification of potential mutagenic,
carcinogenic and other potential health and ecotoxicological hazards and
subsequent regulation of new industrial chemicals (premanufacturing notification,
or PMN, chemicals) for more than two decades by the US EPA’s Office of
Pollution Prevention and Toxics (OPPT) under the Toxic Substances Control Act
(TSCA) which regulates all industrial chemicals in US commerce. Under TSCA,
OPPT is charged with assessing, and if necessary, regulating all phases of the
life cycle of industrial chemicals including manufacturing, processing, use and
disposal (OECD 2007b).

OPPT has also developed a number of publicly available (Q)SAR tools that are
used in regulating substances under TSCA. Examples include the EPI Suite
program which includes several models for estimating physical-chemical
properties and environmental fate parameters. EPI Suite also contains the
ECOSAR model for predicting ecotoxicity. Other tools developed by OPPT
include Oncologic, an expert system for predicting carcinogenicity, and an analog
identification tool (AIM) for identifying structural analogs.

2.1.2 US EPA, Office of Research and Development

The US EPA Office of Research and Development (ORD), National Health and
Environmental Effects Laboratory (NHEERL), Mid-Continent Ecology Division
(MED) has been developing (Q)SAR models and related databases since the
1980s. Examples include a database of ecotoxicity information (ECOTOX) as
well as ASTER?, a collection of databases and (Q)SAR models for toxicity to
aquatic species. ASTER also includes models to estimate physical-chemical
properties, bioconcentration, and environmental fate.

Research at ORD on receptor based toxicity mechanisms in aquatic species has
led to the development of a QSAR based expert system for predicting the
estrogen receptor binding potential of data poor pesticidal inerts and
antimicrobial pesticide active ingredients. The system is designed to prioritize
chemicals for further testing in the US EPA Endocrine Disruptor Screening
Program (EDSP) and it has been incorporated into the OECD QSAR Toolbox.

® ASTER is a US EPA intranet application only accessible to US EPA staff and contractors.
http://www.epa.gov/med/Prods_Pubs/aster.htm
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2.1.3 US FDA, Office of Food Additive Safety

The US Food and Drug Administration’s (FDA) Office of Food Additive Safety
(OFAS) has utilized (Q)SAR analysis in the pre-market review of food contact
substances for many years and has recently implemented the use of multiple
commercial and publicly available (Q)SAR software models (Lo Piparo et al.,
2011; Arvidson et al., 2010; Bailey et al., 2005). OFAS is also investigating the
potential application of metabolism prediction software to the review of food
contact substances. OFAS uses (Q)SAR analysis as a decision support tool in
conjunction with open literature data and submitted test results, and (Q)SAR may
also be used to identify the need for additional toxicity testing during pre-
submission consultations for food contact substances.

2.1.4 Health Canada and Environment Canada

Health Canada and Environment Canada have extensive experience with the
use of (Q)SAR to address selected data requirements for new substances under
the Canadian Environmental Protection Act (CEPA). Adequately validated
(Q)SAR predictions may be submitted by notifiers or in some cases generated by
government evaluators to address physical-chemical properties,
persistence/bioaccumulation, human health effects, ecotoxicity endpoints and
other endpoints included in the New Substances notification requirements under
CEPA. For instance, predictions are sometimes used for assessing substances
with low production volumes and in cases where the substance cannot be
isolated in pure enough form to provide meaningful test results. (Q)SAR data are
generally combined with empirical data and expert judgment in a weight of
evidence approach. (Q)SAR was also utilized by both departments for the
categorization (prioritization) of existing substances on the Domestic Substances
List (DSL) for further assessment. Environment Canada used (Q)SAR predictions
to assist with determinations of persistence, bioaccumulation and inherent
toxicity to non-human organisms from existing substances while Health Canada
used (Q)SAR to generate physical-chemical data to support determinations of
greatest potential for human exposure and as part of the hazard tools used to
prioritize chemicals for inherent toxicity to humans when data for specific
endpoints were not available. (Q)SAR can also be used by both departments as
supporting information in screening level risk assessments for DSL substances
when experimental data are not available.

2.1.5 Organization for Economic Cooperation and Development (OECD)
Starting in the 1990s, the Organization for Economic Cooperation and

Development (OECD) began the investigation of various (Q)SAR methodologies
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with the aim of facilitating the application of (Q)SAR approaches in regulatory
settings and their regulatory acceptance. One of the most important products
from the OECD (Q)SAR project has been the principles for the validation of
(Q)SAR models (OECD, 2004). Comprehensive guidance has also been
produced on the development and application of grouping methods for chemicals
including chemical categories, read-across and trend-analysis (OECD, 2007a).

The OECD has also done extensive work on software for identifying structural
characteristics and mode/mechanism of action data on chemicals, systematically
grouping them into chemical categories and applying read-across, trend analysis
and (Q)SARs to fill data gaps. The end result of these efforts, the OECD QSAR
Toolbox, is intended for use by government agencies and stakeholders for
addressing gaps in the toxicity and ecotoxicity databases used in the hazard and
risk assessment of chemicals and is freely available (OECD, 2011a).

2.1.6 European Commission Joint Research Centre

The European Union's Registration, Evaluation, and Authorization of Chemicals
(REACH) legislation is designed to improve the protection of human health and
the environment while maintaining competitiveness and increasing innovation in
the European chemicals industry. Under the REACH legislation there is a strong
emphasis on the use of alternative testing methods to refine, reduce or replace
conventional animal testing. The European Commission Joint Research Centre
(JRC) Computational Toxicology Group is involved in projects to promote the
availability for regulatory application of validated computational methods for
assessing environmental distribution and fate, and the effects on human health
and the environment in support of the REACH legislation, the European
Cosmetics Directive and the assessment of food safety (Mostrag-Szlichtyng et
al., 2010). The group conducts research on the development of freely available
(Q)SAR tools (e.g., Toxtree, DART, Toxmatch), regulatory applications of
(Q)SARs and grouping approaches, the use of computational methods to assess
the properties of nanomaterials, and the consideration of molecular interactions
in the assessment of toxicity. The JRC has also developed templates for
documenting the application of the OECD (Q)SAR validation principles to
(Q)SAR models including the (Q)SAR Model Reporting Format (QMRF) (EC
2008a) and (Q)SAR Prediction Reporting Format (QPRF) (EC 2008b), and is
leading the development of a reporting format for describing key
events/intermediate effects in AOPs (OHT 201) in collaboration with the OECD
and the European Chemicals Agency (ECHA). The Joint Research Centre has
also established a database of (Q)SAR models.
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2.2 Purpose of the NAFTA (Q)SAR Guidance Document

The purpose of this guidance document is to help pesticide evaluators to
evaluate the (Q)SAR-related information and to identify the important issues that
may be involved when incorporating (Q)SAR information into the risk assessment
process. It is recognized that there is an ever-expanding volume of journal
articles, national and international reports and guidance documents, and
academic textbooks on the subject of (Q)SAR. This document does not
reproduce or replace these journal articles, reports, guidance documents, and
textbooks on (Q)SAR, but provides an introduction to the evaluation of (Q)SAR
tools and their application to pesticide regulatory risk assessments.

(Q)SAR predictions can be considered as one of the many potential sources of
data for the weight of evidence approaches used in the risk assessment of
pesticides. Similar to other sources of data considered, the defensibility of the
use of (Q)SAR predictions can be related to the consistency of the predictions
generated from the various (Q)SAR tools used as well as the consistency
between the predictions and the results of other lines of evidence considered in
the weight of evidence approaches.

While many of the illustrative examples in this document involve the application
of (Q)SAR to the prediction of toxicity in pesticide hazard assessments, the
general principles discussed can also be applied to (Q)SAR predictions for
ecotoxicity, physical chemical parameters, and other activities and properties of
relevance to pesticide assessments. Similarly, although many issues are raised
in the context of the prediction of apical endpoints, pesticide evaluators should
recognize that most of these issues will also apply when (Q)SAR is eventually
used in IATA to predict key events related to mechanism/mode of action for
toxicity and AOPs such as receptor binding, gene activation, enzyme
inhibition/activation, etc.

Although this document focuses primarily on (Q)SAR in the context of pesticide
risk assessments, the principles and issues discussed are general enough to
also be broadly applicable to the use of (Q)SAR in risk assessments for other
types of chemicals. Regardless of the type of assessment that (Q)SAR is being
applied to, it is recommended that experts in the (Q)SAR field be consulted and
that adequate peer review procedures be in place to ensure overall scientific
excellence and rigor.

The overall structure of this guidance document is presented in schematic form in
Figure 2-0. The document is organized to navigate the pesticide evaluator
through sections that provide an introduction to (Q)SAR and (Q)SAR tools, and
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information on problem formulation and (Q)SAR, evaluating the adequacy of
(Q)SAR predictions, combining information from multiple predictions, and
incorporating predictions into weight of evidence assessments. Each section can
also be considered as stand-alone guidance on its particular subject area.

As mentioned previously, Appendix | provides a listing of the websites of a
number of national and international agencies involved in the development and
application of (Q)SAR tools and approaches. These websites could be a useful
starting point for those who are interested in learning more about (Q)SAR and
obtaining more guidance on its use beyond what is presented in this document.
Appendix || summarizes the key features of the European Commission’s (Q)SAR
model and reporting formats, and Appendix Ill provides several case study
examples of the application of (Q)SAR to pesticides and other chemicals.
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Figure 2-0: (Q)SAR Guidance Document Schematic
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3. BACKGROUND INFORMATION ON (Q)SAR

BACKGROUND INFORMATION ON (Q)SAR
Topics Discussed in this Section:
= Definition of (Q)SAR
= Types of (Q)SAR tools and approaches
= Importance of data quality in (Q)SAR model development

» Importance of mode/mechanism of action in (Q)SAR model
development

= Examples of (Q)SAR tools and their applications

3.0 Introduction

The purpose of this section is to provide some brief background information on
the definition of (Q)SAR, types of (Q)SAR tools and approaches and some key
issues associated with the development of (Q)SAR tools. In particular, the
importance of data quality and mode/mechanism of action in the development of
(Q)SAR models is highlighted. Also, while (computerized) (Q)SAR models are
frequently cited in examples elsewhere in this document, this section illustrates
that (Q)SAR actually consists of a range of tools and approaches.

3.1 Definition of (Q)SAR

(Q)SAR is the study of the correlation between chemical structure and
associated biological activity, with the ultimate goal of predicting the activity of
untested chemicals based on structurally related compounds with known activity
(Cronin, 2010). Structure-activity relationships (SARs) are qualitative
relationships, often in the form of structural alerts that incorporate molecular
substructures or fragments related to the presence or absence of activity
(Dearden et al., 2009). Quantitative structure-activity relationships (QSARSs)
attempt to quantify the relationship between an aspect of chemical structure and
an activity or property imparted by that structure. Chemical structure is often
described by descriptors (e.qg., electrophilicity, hydrogen bonding, molecular
fragments) or physical-chemical properties (e.g., Log P) which are then used to
develop a mathematical correlation between a group of structures and a defined
activity or endpoint. The mathematical correlations usually take the form of
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statistical algorithms developed through a variety of techniques (e.g., univariate
regression, multiple linear regression, partial least squares analysis).

3.1.1 Defining Similarity

Structurally similar chemicals or structural analogs usually have similar chemical
structures but with one or more atoms or groups of atoms replaced with other
atoms or groups of atoms. Figure 3-1 lists the chemical structures of two
pyrethroid insecticides, deltamethrin and cypermethrin. These two structural
analogs share a cyclopropane carboxylic acid substructure that is common to
most pyrethoid structures.

Figure 3—1: Example of Structural Analogs

Deltamethrin Cypermethrin

Listed below are some common criteria used to identify structurally similar
substances. Many of these have been proposed by the OECD and the US EPA
as a basis for building chemical categories (OECD, 2007a; US EPA, 1999).

e a common functional group or sub-structure (e.g., phenols, aldehydes)

e a common precursor or break-down product, which can result from
structurally-similar chemicals; this approach can be used to examine related
chemicals such as acids/esters/salts. (e.g., short-chained alkyl-methacrylate
esters which are metabolized to methacrylic acid)

e an incremental or constant change in a chemical structure (e.g., increased
carbon chain lengths; typically used for physicochemical properties such as
boiling point)

e common constituents or chemical classes, such as similar carbon range
numbers, often used with “substances of unknown or variable composition,
complex reaction products or biological material” (UVCBs)

e functionally similar chemicals or functional analogs that have similar biological

activities (e.g., toxicity endpoints, pesticidal mode of action) or physical-
chemical properties (e.g., Log P, solubility, vapour pressure). Note that
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functional analogs are not necessarily structural analogs and vice versa
(Saliner et al., 2005; Russom et al., 1997).

Table 3—1 lists examples of pesticidal modes of action for several examples of
insecticides. Most pesticidal modes of action include more than one chemical
class. Consequently, ‘similarity’ can be based on at least three aspects of a
pesticide, (i) pesticidal mode of action (e.g., acetylcholinesterase inhibition),
(i) pesticide classification (e.g., insecticide) and (iii) chemical

classification/common functional group (e.g., carbamate, organophosphate, etc.).

Therefore, a weight of evidence approach can be important when defining
similarity for the purpose of developing (Q)SAR tools and approaches. As
discussed in example 5, Appendix Ill, information on the pesticidal mode of
action and structural similarity can be combined with pharmacokinetic and
empirical animal study results in a weight of evidence approach in pesticide

assessments.

Table 3-1: Pesticidal Mode of Action and Associated Chemical Class for a
Select Group of insecticides (adapted from Insecticide Resistance
Action Committee (IRAC); http://eclassification.irac-online.org/)

Pesticidal Mode of Action

Chemical Class

Acetylcholine esterase inhibitor

Carbamates

Organophosphates

GABA-gated chloride channel antagonists

Cyclodiene organochlorines

Phenylpyrazoles (Fiproles)

Sodium channel modulators

Pyrethroids

Organochlorines

Nicotinic acetylcholine receptor agonists

Neonicotinoids

Juvenile hormone mimics

Juvenile hormone analog

Carbamates

Pyridine insect growth regulator

A common mathematical approach to defining structural similarity is the use of
algorithms or similarity indices that calculate similarity based on pattern
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matching. These estimation tools rank chemicals based on (structural)
characteristics or features of each chemical that are similar (match/overlap), and
features that are dissimilar (mismatch/difference) (Saliner et al., 2005; Moneyv,
2004.). Figure 3-2 provides a schematic of the measures that can be described
in similarity indices. Similarity indices can utilize two- or three-dimensional
structural information and examples include correlation-type indices (e.g.,
Tanimoto Index (also known as Jaccard coefficient), Hodgkin Ricards Index,
Cosine-similarity index), dissimilarity measures (e.g., Euclidean distance index,
Hamming distance), and composite measures of similarity and dissimilarity (e.g.,
Hamann measure, Yule measure). For an overview of these approaches see
Saliner et al., 2005; Monev, 2004; and Urbano-Cuadrado et al., 2008. It is also
important to know that a high degree of similarity based on mathematical
similarity indices does not necessary indicate there are similarities in the mode of
action (MOA) for the concerned effects.

Figure 3-2: Measures that can be Described in Similarity Indices

Comparing Chemicals A and B

* a = number of features present in A and absent in B
* b = number of features present in B and absent in A
* ¢ = number of features common to both A and B

* d = number of features absent from both A and B

Chemical A Chemical B

3.2 Types of (Q)SAR Approaches

Although the term (Q)SAR is often used to refer to predictive models, especially
computer-based models, it should be noted that (Q)SAR is actually inclusive of a
wide variety of tools and approaches such as analogs, chemical categories and
computer-based or non-computer based SAR/QSAR models. A brief overview of
these tools and approaches is provided below.
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3.2.1 Analogs

Analog approaches have traditionally involved predicting an endpoint or property
of one chemical based on the available data for the same endpoint or property of
a similarly structured chemical (OECD, 2007a). An example of an analog
technique is bridging or extrapolating the results of toxicological studies on a
parent pesticide compound to a metabolite or transformation product of that
same parent pesticide. When using an analog approach for bridging from a
parent pesticide to metabolites or transformation products, it is important to have
sufficient evidence to link a particular substructure or substructures to the toxicity
endpoint of interest, and that the substructure is conserved from the parent
pesticide to the metabolite or transformation product.

3.2.2 Chemical Categories

A chemical category is defined as a group of substances with physical-chemical,
human health, or ecotoxicological attributes that are similar or follow a pattern as
a result of structural similarity (OECD, 2007a). As discussed in section 3.1.1, the
US EPA and the OECD have identified a number of ways of identifying similar
chemicals for the purpose of building categories. Both agencies have also
developed a consistent approach for defining chemical categories (OECD,
2007a; OECD, 2009; US EPA, 1999). Chemicals within a category are not
required to be similar with respect to all properties, and a substance can belong
to more than one chemical category. In most instances, chemical category
approaches are based on a weight of evidence, considering multiple lines of
information from many tested chemicals and inferring information for an untested
substance.

When using the chemical category approach, it is common to construct a matrix
table as depicted in Figure 3—3. The matrix consists of chemical category
members in each of the columns and corresponding sets of properties and/or
activities in each of the rows. The solid dots are properties/activities for which
reliable data exist and the hollow dots are data gaps. Data gap filling in
categories can be done using techniques such as read-across, interpolation,
extrapolation, and trend analysis (see examples in Figure 3-3). Read-across is
estimating the activity/property for one untested chemical from a tested chemical
or chemicals. Read-across can be qualitative or quantitative. Interpolation is the
estimation of a property/activity for a data poor category member based on
existing data from other category members on both sides of the data poor
chemical in the matrix. Extrapolation is estimating an activity/property for a
chemical that is near or at the boundary of the category based on data for other
category members. Extrapolation is more prone to error than interpolation,
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especially when the boundary of the category is difficult to define. The
observation of a quantitative trend (increasing, decreasing, or constant) in the
experimental data for a given endpoint across chemicals in a category can also
be used as the basis for interpolation or extrapolation (i.e., trend analysis). In
addition, it is possible to develop a QSAR within a chemical category by plotting
the activities versus the properties of chemicals with empirical data. By using a
combination of tools, i.e., read-across, trend analysis and (Q)SAR, the matrix of
properties/activities for chemicals under consideration can be rendered less
uncertain through the greater use of existing data (OECD, 2007a).

Figure 3—-3: A Schematic of a Chemical Category Matrix Table
(modified from van Leeuwen et al., 2009)

Chemical 1 Chemical 2 Chemical 3 Chemical 4

a7 = a7 S

Property 1 0 O O O SAR / read-across
m@

Property 2 0 O 0 Interpolation
= a7 =

Property 3 0 0 0 0 Extrapolation

Property 4 0 0 0 0 l

Activity 1 0 0 0 0 Trend analysm / QSAR
a7 S

Activity 2 0 0 0 0

() Empirical data

~= a7 = o

Activity 3 0 0 0 0 () Missing data
a7 = a7 =S

Activity 4 0 0 0 0

Chemical category approaches have been used for assessing chemicals with
data gaps by the US EPA’s OPPT, in the US EPA HPV Challenge Program,
under the REACH legislation, and in OECD SIDS program (van Leeuwen et al.,
2009). Additional examples of categories can be found in Enoch, 2010; Enoch et
al., 2009; US EPA, 1999; and Worth and Patlewicz, 2007.

3.2.3 (Q)SAR Models

(Q)SAR models generally refer to computerized systems developed to predict
activities or properties of chemicals using SAR or (Q)SAR methods. There are
numerous commercial (i.e., available for a fee) and non-commercial (i.e.,
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freeware) models available for predicting human health related and
environmental activities, physical-chemical properties, and other parameters.

SAR models generally follow a process of identifying active and inactive
chemicals based on the presence or absence of specific structural features. For
example, SAR/expert systems use decision logic to categorize potential activity
of untested chemicals based on expert knowledge gathered from the analysis of
data on tested chemicals. Some systems use a series of questions that the user
responds to or the system automatically responds to. The questions may be
based on databases of structural alerts or chemical parameters known to be
associated with biological activity and can capture multiple types of interactions
within a specific biological system.

(Q)SAR models usually consist of computerized mathematical correlations (i.e.,
algorithms) that relate descriptors of chemical structure or physical-chemical
properties to an activity or property to be predicted. The descriptors or physical-
chemical properties for a chemical of interest may be input by the user or
generated by the model and then used in the algorithm to make a prediction. For
example, in a QSAR model developed to use the octanol and water partition
coefficient (Kow) to estimate the permeability coefficient through the skin for a
chemical in water (Kp), the Koy, is the descriptor which can be a measured value
or estimated by the model (US EPA, 2007). QSAR models can produce
qualitative predictions of activity/inactivity or quantitative (continuous) values
related to biological activity (e.g., receptor binding affinity, acute oral LDs in rats,
etc.) or other parameters (e.g., bioconcentration factor). QSAR models generally
rely on data for many chemicals (i.e., training sets) for the development of the
algorithms used to predict the activity of a single chemical lacking data.

In addition to classifying (Q)SAR models as relying on SAR versus QSAR
approaches, they can also be considered in terms of statistical versus
mechanistic approaches and global versus local approaches. In general,
statistically-based (Q)SAR models rely on a statistical association between
structure and activity, can be developed objectively with little mechanism of
action expertise, are useful for detecting structural features/molecular descriptors
predictive of toxicity, but may be noisier and tend to perform poorer for endpoints
with multiple mechanisms. Mechanistically-based models can focus on key
features that provide more clear-cut relationships and mechanistic backing but
generally require considerable expert knowledge of the relationship between
mechanism of action and descriptors of chemical structure, may be subjective,
and could have high levels of uncertainty if the mechanism is unclear or
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presumptive. ldeally, (Q)SAR models should strive to achieve statistical
association but have a mechanistic foundation.

Local QSAR models are generally developed for individual classes of chemicals.
Their training sets usually consist of highly structurally homogeneous or
congeneric chemicals or classes of chemicals with similar known biological
activity/function (e.g., peroxisome proliferators). Local models require fewer
training set chemicals and tend to perform better, presumably because they are
more likely to focus on a single mechanism of action. However, they are often
limited in scope to a small subset of narrowly defined chemicals. Global models
are generally derived using training sets of structurally heterogeneous or non-
congeneric chemicals. Due to the diversity of the training set chemicals, these
models often cover a range of different mechanisms of action, usually resulting in
poorer predictive performance than local models, unless the training sets are
subdivided based on mechanism of action. Global predictive models tend to be
more adept in discovering new insights, but may be more likely to yield incorrect
results if the predicted chemical structure is not well-represented in the training
set. Several publications have investigated the ability of global and local (Q)SAR
approaches to fulfill regulatory requirements (e.g., EC , 2010; Yuan et al., 2007;
and Worth et al., 2011).

3.3 Importance of Data Quality in (Q)SAR Model Development

Developing (Q)SAR models depends on experimental data, molecular
representation (2-D or 3-D structures), availability of chemical descriptor or
parameter data (measured or calculated) associated with structure, and fitting
relationships (e.g., algorithms) to the data (Bradbury et al., 2003; Perkins et al.,
2003; Tong et al., 2003; Walker et al., 2003). Among these factors, experimental
data are generally the most important determinants of the accuracy of the
predictions from (Q)SAR models as the confidence in a model can be no greater
than the understanding of, and confidence in, the underlying data.

In (Q)SAR model development, usually a set of chemicals with reliable data are
collected for a particular biological/chemical activity. Typically the original test
data are randomly separated into a training set and a validation set, with the
training data set used to develop a model and the validation data set used to test
the assumptions that the model works for chemicals not involved in the
development of the original model (Leonard and Roy, 2006).

Model training sets can be assembled prospectively or retrospectively. In the
prospective approach bioassays are developed and optimized for testing the type
of chemicals for which the (Q)SAR predictions are needed. Mechanistic

Page 39 of 186



information on the training set chemicals can also be obtained prospectively. In
the more commonly used retrospective approach data are collected from readily
available sources (e.g., the open literature). This often results in noisier
predictions because of the lack of control or consistency in study protocols,
interpretation criteria, etc., although this can be compensated for by evaluating
the available data and selecting only consistent higher quality studies (i.e.,
chemical identity/form confirmed, concentrations/purity measured, standard test
protocols, assays optimized for the type of chemicals, etc.). Also, it is important
to verify that the identities of the chemicals in the training set correspond to their
structural representations used in the predictions. Sometimes information on the
metabolism of the chemicals tested and mechanisms of action can also be
obtained retrospectively to help enhance the interpretability of the predictions.

The importance of data quality in (Q)SAR model development is also discussed
further in section 5.1.1 of this document.

3.4 Importance of Mode/Mechanism of Action in (Q)SAR Model
Development

An understanding of a chemical’'s mode/mechanism of action is highly sought
when developing (Q)SARs. Mode/mechanism of action considerations can help
in the selection of appropriate molecular descriptors or physicochemical
properties that are associated with activity, determination of whether the training
set is applicable to the chemicals to be predicted, separation of the training set
into more mechanistically homogenous groups to help improve predictive
performance, and the interpretation of model outliers. An understanding of
mode/mechanism of action can also provide support for predictions, help in the
assessment of the human significance of predictions of toxicity in laboratory
animals, and help to identify and prioritize additional testing to fill data gaps.

One example of the utility of mode/mechanism of action data in (Q)SAR model
development is a study by Russom et al. (1997). A diverse dataset of more than
600 chemicals was divided into mechanistic groups prior to developing (Q)SARs
for fathead minnow acute toxicity. Combining all of the chemicals into a single
training set would have resulted in a much poorer correlation of the LCs values
to the chemical parameter, log Koy, which in turn, would have resulted in much
poorer predictive performance.

An understanding of mechanistic considerations is especially important for
complex biological systems which may have metabolism and chemical kinetics
adding to the complexity. In general, the less complex the biological system, the
greater the confidence that the structure of the chemical is directly related to the
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observed activity and that the relationship can be reliably modeled. For example,
in vitro systems (e.g., Ames mutagenicity) are often less complex and more
reliably modeled than many in vivo systems (e.g., carcinogenicity, teratogenicity).
However, this is not always the case as in vivo fish acute toxicity LCso values are
well predicted for several modes of action because chemical concentration in
water is a good surrogate for chemical activity in the blood (MacKay et al., 1983).
Also, if in vitro systems include metabolic components, their complexity for
(Q)SAR development will increase.

The importance of mode/mechanism of action information in (Q)SAR model
development is also discussed further in section 5.1.1.5 of this document.

3.5 Examples of (Q)SAR Tools and their Applications

This section is not intended to provide an exhaustive overview of computational
tools available via government, open access, or commercial sources, but rather
an overview of the types of tools that currently exist.

Several reviews have been written on the types of tools available (EC, 1995a,b;
Hulzebos et al., 1999; Jensen et al., 2008; Pavan et al., 2005a,b; Rorije and
Hulzebos, 2005; Tsakovska et al., 2005, 2008), but it should be kept in mind that
the inventories of available tools is constantly changing with emerging research
in this area.

With the development of Simplified Molecular Input Line Entry System (SMILES)
notation (Weininger, 1988) as a means to identify structure information in a
computer readable format, and the advancement of desk top computing in the
1970’s, (Q)SAR tools have become more readily accessible to risk assessors
(Benfenati, 2007). Although initially (Q)SAR approaches were primarily used in
the drug and pesticide discovery and development fields, these techniques
became especially important to regulatory risk assessment after the promulgation
of the Toxic Substances Control Act (TSCA) (Zeeman et al., 1995). The use of
QSARs in assessing potential toxic effects of organic chemicals on ecologically
relevant species and humans evolved as computational efficiency and
toxicological understanding advanced, and in many cases has proved to be
scientifically-credible for use in estimating toxicity for substances with little or no
available empirical data (OECD, 2007b).

(Q)SAR models also exist for specific endpoints such as skin sensitization
(Patlewicz et al., 2008), eye irritation (Tsakovska et al., 2005), acute toxicity and
repeated-dose endpoints for mammalian species (Tsakovska et al., 2008),
bioaccumulation (Arnot and Gobas, 2004), mutagenicity and carcinogenicity
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(Benfenati et al., 2009; Benigni et al., 2007a,b), estimating physical chemical
properties (EC, 1995a,b; Deardon and Worth, 2007), toxicity to aquatic species
(EC, 1995a,b; Netzeva et al., 2007; Pavan et al., 2005a,b), and reproductive
toxicity (Jensen et al., 2008).

Software applications are available for assisting in the identification of chemical
similarity (Gallegos-Saliner et al., 2008; Patlewicz et al., 2005). In addition, the
availability of state-of-the-art software programs for use in the development of
QSAR models from any data set allows one to generate models at their desk top
for endpoints/applicability domains not covered by existing models (see the
series of FDA papers as an example: Matthews et al., 2009 a, b; Matthews et al.,
2007 a,b; Ursem et al., 2009). Key to this type of analysis is a high quality,
structurally-annotated data set for use in the development of models (Judson et
al., 2009; Richard et al. 2006, 2008; Williams et al., 2009). Another important
aspect of many risk assessments is metabolism/degradation products, and
(Q)SAR tools to simulate metabolism have been developed to assist in
identifying these products (Dimitrov et al., 2005a,b; Mekenyan et al., 2006;
Ringeissen, et al., 2010).

(Q)SAR approaches can be used to better inform testing strategies via
screening, prioritization, and ranking of large chemical inventories based on
receptor binding (Jensen et al., 2008; Klopman and Chakravarti, 2003 a,b;
Schmieder et al., 2004), human health endpoints (Demchuk et al., 2008;
Klopman et al., 2003; Ruggeri, 2009), and environmental toxicity, fate, and
persistence (Brown and Wania, 2008; Daginnus et al., 2009; Walker et al., 2004).
These rankings can be used for a variety of risk assessment purposes including
developing chemical categories, identification of PBT (persistent,
bioaccumulative and toxic) substances, and risk characterization (Pavan and
Worth, 2008). Similarly, (Q)SAR tools have been investigated in combination with
physical-chemical data and read-across to improve the application of TTC
methods (Bassan et al., 2011; Worth et al., 2011).

Under REACH, information on models that meet the OECD validation principles
and are proposed for use in filling data gaps are currently being gathered. A
searchable catalog of all models including background information required to
validate the models, authors/source of model, related publications, endpoint
estimated and related experimental protocol, algorithm with training set and
validation set, including all input variables for the models can be found at the
following website: http://gsardb.jrc.ec.europa.eu/gmrf/index.jsp. Some actual
example cases are listed in Appendix Ill.
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3.6 Summary

(Q)SAR tools and approaches involve the study of correlations between chemical
structure and associated biological activity, physical-chemical properties or other
properties, with the ultimate goal of predicting the activity or properties of
untested chemicals using available data from structurally-related compounds.
While frequently associated with computerized models, (Q)SAR tools actually
encompass a wide range of approaches such as analogs, chemical categories,
and computer or non-computer based SAR and (Q)SAR. The development of
reliable (Q)SAR models depends upon a number of factors, among which,
experimental data are probably the most important. In particular, data quality and
a good understanding of the available information on mode/mechanism of action
can contribute to the confidence in (Q)SAR model predictions. Types of
endpoints or properties from a pesticide context that can be predicted using
(Q)SAR and related methods include in vivo ecotoxicity and human health-
related toxicity endpoints, specialized in vitro endpoints, metabolism, physical-
chemical parameters, and environmental fate parameters. While this document is
not intended to recommend or endorse individual (Q)SAR tools, it is recognized
that there are currently a variety of computerized and non-computerized,
commercial and non-commercial (Q)SAR tools for predicting the endpoints or
properties described above. Sections 2 and 3 of this document were designed to
provide a brief introduction and background information on (Q)SAR tools and
approaches. The subsequent sections of this document (4, 5, 6, and 7) focus on
issues associated with applying (Q)SAR predictions to pesticides including
problem formulation and (Q)SAR (section 4), evaluating the adequacy of (Q)SAR
predictions (section 5), combining information from multiple predictions (section
6) and incorporating (Q)SAR into weight of evidence assessments (section 7).
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4. Problem Formulation and (Q)SAR

PROBLEM FORMULATION AND (Q)SAR
Topics Discussed in this Section:
= Assessment context that (Q)SAR is being applied to
= Characteristics of the pesticide that is the subject of the prediction
= Characteristics of the (Q)SAR tool and the prediction

= Available empirical data including information on mode of action

4.0 Introduction

Problem formulation is an important initial step for framing the specific
question(s) to be addressed in assessments of human health and environmental
risks from pesticides. In its Guidelines for Ecological Risk Assessment, the US
EPA has indicated that problem formulation involves the on-going integration of
the available information that eventually leads to three products: assessment
endpoints, a conceptual model of the risk to be investigated, and an analysis plan
(US EPA, 1998).

Since guidance on the general problem formulation process for the risk
assessment of chemicals such as pesticides has been outlined in other published
documents (e.g., US EPA, 1998; Doull et al., 2007), the details of that guidance
will not be discussed here. Instead, this section will focus on the preliminary
analysis of (Q)SAR predictions as one of the several potential sources of
information to be integrated at the problem formulation stage. Preliminary
analysis of (Q)SAR prediction for a pesticide at the problem formulation
essentially involves answering the following questions:

= What is the assessment context that the (Q)SAR prediction is being
applied to?

= What are the characteristics of the pesticide that is the subject of the
prediction?

= What are the characteristics of the (Q)SAR tool and the prediction?
=  What empirical data are available including any information on mode of

action?
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Answering these questions at the problem formulation stage may enable an
evaluator to immediately determine that a prediction is not suitable or relevant for
addressing the specific pesticide risk assessment question. Alternatively, these
questions may lead to a more in-depth evaluation of whether the (Q)SAR
prediction is adequate or “fit for purpose” (see section 5) and eventually to the
consideration of how the results of a fit for purpose prediction could be
incorporated into an overall weight of evidence decision (see section 7).

4.1 Assessment Context that (Q)SAR is being Applied to

Identifying the assessment context for a (Q)SAR prediction involves
understanding why the prediction is being considered for the assessment of a
pesticide and the specific endpoint or property that the prediction is intended to
address. Both of these points will assist the evaluator in determining whether a
(Q)SAR prediction should be considered in a pesticide assessment and if yes,
what will be an acceptable level of reliability and uncertainty associated with the
use of (Q)SAR.

(Q)SAR predictions are generally used to try to gain some insights into the
toxicity, ecotoxicity, behavior in the environment or other aspects of a pesticide in
the absence of empirical data. Consideration of a (Q)SAR prediction for the
premarket assessment of a pesticide would likely involve one of the following
scenarios: 1) submission of a (Q)SAR prediction by a registrant to address a data
requirement or as supporting evidence for a data requirement for pesticide, a
metabolite or a transformation product, or 2) use of a prediction by an evaluator
to identify or support a data requirement for a pesticide, metabolite or
transformation product.

In the first scenario, an applicant would likely submit a (Q)SAR prediction or
predictions as a replacement for or as supporting evidence to waive a
requirement for a specific type of empirical data (e.g., to address a requirement
for acute irritation toxicity data). In most cases, using a (Q)SAR prediction as a
stand alone replacement for a data requirement is not likely to be acceptable
depending on the nature of the endpoint and the specific policies of the pesticide
regulatory agency. Combining a (Q)SAR prediction with other types of data to
support a waiver request may be more acceptable depending on what other
types of data are available, the reliability and level of uncertainty for the (Q)SAR
prediction, the overall scientific defensibility of the rationale, and regulatory
agency policies.

The second scenario could involve using a (Q)SAR prediction to justify a
requirement for a study not normally included in regulatory data requirements for
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pesticides or to justify a requirement for a study on a metabolite or transformation
product for which no data have been submitted. This would also include cases in
which (Q)SAR predictions are used as supporting information when questioning
the reliability of experimental data, leading to a requirement for the submission of
more reliable studies. Criteria for what constitutes a reliable (Q)SAR prediction
and acceptable levels of uncertainty would likely be less stringent for scenarios in
which (Q)SAR predictions are used to drive data requirements compared to
cases where (Q)SAR is used to support waiving data requirements.

While these premarket scenarios are likely to be the most frequent applications
of (Q)SAR, there may also be instances where (Q)SAR tools could be used post-
market such as the toxicity characterization of a novel impurity (e.g.,
leachable/extractable) not originally characterized during the pre-market approval
process.

Endpoints or properties that can be predicted by (Q)SAR and could be relevant
to pesticide assessments include toxicity (e.g., carcinogenicity, developmental
toxicity), metabolism, ecotoxicity (e.g., fat head minnow LCsp, longer-term toxicity
in terrestrial species), other biological activities (e.g., estrogen receptor binding),
and physical-chemical properties (e.g., Log Ko, partition coefficients,
bioaccumulation factor). The type of endpoint and whether it is a critical data
point for a pesticide assessment (e.g., used for a point of departure analysis) will
have an influence on how reliable a (Q)SAR prediction should be (see section
5.4). For example, it may be possible to accept a less reliable prediction for an
acute toxicity endpoint used as supporting information for labeling requirements
compared to a predicted NOAEL for chronic toxicity that is to be considered in a
point of departure analysis. Furthermore, the use (Q)SAR predictions to address
critical endpoints in pesticide risk assessments would likely require much more
detailed analyses of whether the predictions are fit for purpose compared to
predictions generated for non-critical endpoints.

4.2 Characteristics of the Pesticide that is the Subject of the
Prediction

Understanding the characteristics of the pesticide that is the subject of the
(Q)SAR prediction is critical to determining whether the pesticide is correctly
identified; whether the prediction is to be made for an active ingredient, a
metabolite or a transformation product; whether an accurate structural
representation is available; or whether it is even possible to generate a prediction
for the pesticide in question.
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4.2.1 Chemical Identifiers and Mixtures

Examples of the types of pesticides for which a (Q)SAR prediction may be
required include discrete substances; individual isomers or mixtures of isomers;
crystalline structures (e.g., minerals); substances with unknown or variable
composition, complex reaction products and biological materials; polymers; other
mixtures or formulations; and complex salts and metal-containing compounds.
Therefore, accurate information on the identity, composition and structure of a
pesticide is critical to determining whether a prediction was based on a correct
structure. Confusion can result when common or trade names are applied to
multiple isomers of a pesticide, salt forms, acid/base forms or polymeric and
monomeric forms. The use of more precise chemical nomenclature (e.g.,
International Union of Pure and Applied Chemistry (IUPAC)) can assist with more
accurate identification (IUPAC, 2010). While Chemical Abstract Service (CAS)
numbers (American Chemical Society, 2010) are frequently used as unique
identifiers for pesticides, in some cases they may actually represent isomer
mixtures, polymers, and unknown or variable composition substances rather than
discrete, single chemicals, so it may be necessary to review the CAS number to
clearly determine which structure(s) it actually represents.

In general, mixtures cannot be run through (Q)SAR models, nor can synergistic
or antagonistic effects of chemicals in mixtures be accounted for because models
typically use single, discrete chemical structures as input. For mixtures of
discrete organic chemicals, one option may be to make separate predictions for
each chemical and compare and contrast the results. Alternatively, if one
component of a mixture is predominant, in some cases that component may be
used to represent the entire mixture. However, for pesticides with variable
compositions, (i.e., oligomers, natural fats, or mixtures that change composition
depending on reaction conditions) evaluators should be aware that (Q)SAR
predictions generated using a representative structure may not accurately reflect
the true nature of the material used in the pesticide application.

4.2.2 Transformation, Degradation, and Metabolism

A number of pesticides are reactive chemicals that can be readily transformed in
the environment or in the body (e.g., hydrolyzable acid halides, isocyanates,
etc.). Transformation products may have dramatically different toxicity profiles
than the original pesticides and need to be considered when identifying the
correct structures for (Q)SAR predictions. Similarly, information on potential
environmental degradates and metabolic by-products of pesticides in livestock,
food plants or the body should also be considered as the toxicity may not reflect
the parent pesticide, but rather a reactive intermediate, degradate or metabolite.
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Information on degradates and metabolites may be available from empirical
pharmaco/toxicokinetic studies or from in silico models of potential metabolic or
degradation pathways. If degradates and metabolites are identified, it will also be
important to consider their stability and in the case of (Q)SAR predictions of
metabolites, the likelihood that they could occur in vivo. Individual pesticide
regulatory agencies have specific criteria they use to identify probable, stable
metabolites.

When (Q)SAR models are developed, available information on the metabolism of
the training set compounds should be taken into consideration whenever
possible. Training set compounds that require metabolic transformation prior to
inducing a specific endpoint are likely to generate models that are unreliable if
those models are constructed based on the parent structures alone. Failure to
consider the structure of a metabolite could lead to an inaccurate assessment of
the chemical features or properties associated with the predicted endpoint, errors
in analog selection, problems with characterization of similarity based on mode of
action, errors in inter-species extrapolation when metabolic differences exist
between species, and ultimately poor predictive performance. Another aspect of
metabolism that may need to be considered during (Q)SAR model development
is differences in metabolism from different routes of exposure. While the
industrial chemical, bis-(chloromethyl) ether is one of the most potent human and
animal respiratory carcinogens, it is not expected to be carcinogenic via the oral
route because it hydrolyses in seconds upon contact with aqueous solution (Woo
and Lai, 2010; ATSDR, 1989). Consequently, (Q)SAR predictions for direct
acting reactive pesticides that are used to support data requirements for
inhalation toxicity should be treated with caution if they come from (Q)SAR tools
whose training sets only include analog substances tested via the oral route.
Finally, the results of in vitro tests can also be impacted by metabolic
transformations, so information on the degree to which metabolic capability is
incorporated into in vitro toxicity tests should be considered when constructing
models for those tests.

4.2.3 Isomers and Structural Representations for (Q)SAR

A pesticide’s three-dimensional molecular structure or shape and its molecular
conformation can influence properties such as absorption, distribution, and
excretion, as well as enzyme or receptor binding, and the resulting differences
can readily impact toxicity profiles. Consequently, the isomeric form of a pesticide
is another important piece of information to consider when determining whether a
prediction is based on the correct structure and whether the (Q)SAR tool is
applicable to the structure in question.
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Examples of isomeric forms to consider include stereocisomers that differ in their
spatial orientation of atoms. The pyrethroid insecticide fenvalerate is a racemic
mixture of stereoisomers (i.e., R/S enantiomers) of a chiral active ingredient,
although the S-isomer in the mixture (esfenvalerate) has the greatest insecticidal
activity (WHO/FAO, 1996) (see Figure 4—1). Because these different isomers
have the same molecular formula, molecular weight, and physical-chemical
properties, it can be difficult for some (Q)SAR models to distinguish them,
especially models that do not take sterecisomerism into account.

Many regulatory agencies make the conservative assumption that stereoisomers
will have similar mammalian toxicity and ecotoxicity, unless data are available to
demonstrate the contrary. In addition to isomeric forms, the position of flexible
groups in a molecule can also be important as relatively free rotation of attached
groups about single bonds can influence the conformation of a molecule and
determine the overall molecular size, especially in complex molecules with
multiple rotation points. More advanced (Q)SAR techniques may employ three-
dimensional molecular descriptors to account for rotation of flexible groups and
other characteristics, but calculating these descriptors can be complex and time
consuming.

Figure 4-1: Fenvalerate Racemic Mixture

Fenvalerate Esfenvalerate

(RS)-alpha-Cyano-3-phenoxybenzyl (RS)-2-(4-
chlorophenyl)-3-methylbutyrate

CAS No. 51630-58-1

(S)-alpha-Cyano-3-phenoxybenzyl (S)-2-(4-
chlorophenyl)-3-methylbutyrate

CAS No. 66230-04-4

In addition to understanding a pesticide's three dimensional structure and
conformation, the method of entering structures into a (Q)SAR model should also
be taken into consideration. Some of the more common structural entry options
that have been historically employed for single structure entries include the
SMILES (simplified molecular input line entry system), International Chemical
Identifier (INChI™) codes, the MDL Mol file (MOL), and various drawing applets
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and molecular editors (Daylight Chemical Information Systems, 2008; IUPAC,
2010b; Dalby et al., 1992). For multiple (batch) chemical entries, the Structure
Data Format (SDF) file and SMILES (SMI) file formats are commonly used
(Dalby et al., 1992). These structural entry methods have strengths and
limitations, and in some cases, it may be necessary to verify the accuracy of the
structural representations from these methods to ensure that correct structures
are used for predictions.

4.3 Characteristics of the (Q)SAR Tool and the Prediction

Prior to considering and weighting the results of an empirical study in the
assessment of a pesticide, it is necessary to obtain and evaluate the details of
the study protocol and how the study was conducted, as well as the results of the
study and how they were interpreted. Similar concepts apply to the use of
(Q)SAR predictions in pesticide assessments, as the characteristics of the tools
used to make the predictions and the predictions themselves need to be
understood and evaluated before weighting the predictions in an assessment.

Many of the concepts discussed in this section overlap with the evaluation of the
scientific validity of a (Q)SAR tool as discussed in section 5.1. However, at the
problem formulation stage, it is intended that the evaluator will gain a basic
understanding of these issues. This may enable an immediate decision that the
(Q)SAR prediction is not adequate for the assessment context or it could lead to
a more detailed evaluation as discussed in section 5.1, especially with respect to
the application of the OECD (Q)SAR validation principles (section 5.1.1).

A starting point for characterizing a (Q)SAR tool at the problem formulation stage
is a sufficient understanding of the general methodology behind the tool. Is the
tool based on simple analog extrapolations, read-across or trend-analysis
approaches using chemical categories, a structural alert/rule based SAR/expert
system, a statistical (e.g., regression based) QSAR derived from a specific
database of chemicals and their descriptors or some other method? Each of
these methods has strengths and limitations that can influence how they should
be interpreted and the reliability of predictions from them. For instance,
SAR/expert systems based on structural alerts may be supported by expert
reviews of relevant research, and can include a mechanistic rationale to support
predictions. However, in some cases these systems do not include structural
alerts associated with inactivity, may have limited databases of alerts, and may
not have a clearly defined domain of applicability. Statistical QSAR models based
on training sets of active/inactive chemicals and descriptors of chemical structure
may provide insights into associations between specific structures and activity
that were not previously investigated, help to identify structures that modify or
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eliminate specific activities, and may be capable of generating quantitative
predictions (e.g., probabilities or specific numerical values) rather than
dichotomous active/inactive (yes/no) predictions. However, in some cases QSAR
models may overemphasize statistical associations in the absence of
mechanistic rationales, their domains may be restricted by the structural diversity
in their training sets, and their training sets may include chemicals with a variety
of different mechanisms which can result in poor predictive performance and/or
considerable uncertainty in their predictions. A number of reviews of the
strengths and limitations of (Q)SAR models are available in the scientific
literature (e.g., Hulzebos et al., 2001; Greene, 2002).

Gaining an understanding of the empirical data from which the (Q)SAR tool was
derived is another important starting point for determining whether a (Q)SAR
prediction is likely to be relevant to a pesticide assessment. It may be possible to
quickly discount (Q)SAR tools derived from studies based on outdated protocols
not conducted according to GLP standards, based on endpoints that are vague
or inconsistent, interpreted according to non-standard criteria, involving
chemicals significantly structurally dissimilar to the pesticide of interest, and/or
obtained from non-peer reviewed sources. On the other hand, (Q)SAR tools
based on higher quality empirical data may be subjected to a more detailed
evaluation and potentially included in a weight of evidence assessment.

As discussed in section 4.1, information on the endpoint on which a (Q)SAR tool
is based can be one of the important factors to consider at the problem
formulation stage for determining whether a (Q)SAR prediction will be relevant to
the specific pesticide assessment context. In particular, because many pesticide
assessment questions involve quantitative toxicity values (e.g., LDso, ECsp,
NOAEL, etc.) for identifying labeling requirements, and calculating margins of
exposure, reference doses, etc., it is important to determine whether a (Q)SAR
tool can generate quantitative or qualitative predictions, and if quantitative, the
type of value predicted. A qualitative yes/no prediction for chronic toxicity will not
be particularly useful if a prediction of a NOAEL is required to derive a regulatory
point of departure for a pesticide. Alternatively, a (Q)SAR model that only
predicts quantitative LOAELSs for short-term endpoints may also have limited
applicability. As mentioned above, predicted endpoints that are somewhat vague
such as general developmental toxicity potential may not be specific enough to
address questions about endpoints such as post implantation loss,
developmental delays, fetal dysmorphogenesis, etc. An overall point to consider
is whether there is likely to be sufficient, high quality empirical data available on
an endpoint of interest so that (Q)SAR tools could be developed that are relevant
to a particular assessment context.
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Investigating other details of the (Q)SAR tool used may also assist in determining
the relevance of a (Q)SAR prediction to a pesticide assessment during problem
formulation. For example, details on a (Q)SAR model such as the specific name
of the model, version number, date it was developed, and contact information for
the developer can be important for determining the relevance of a (Q)SAR
prediction. Model developers can make significant changes from one version to
another such as increasing the number and diversity of the chemicals in the
training set, modifying the library of descriptors or structural alerts, and modifying
model algorithms. As a result, predictions from a newer version of a model may
not be comparable to predictions from previous versions. Model developers can
even discontinue support for older versions making it difficult to obtain additional
information on training sets, interpretation criteria, etc.

Information on the prediction output should also be considered including the
actual prediction and information on the structural or other features of the test
pesticide that influenced the prediction. For dichotomous endpoints, predictions
may take the form of a positive/negative or active/inactive result, but often a
dichotomous result will be expressed as a numerical probability (i.e., 0 — 1) by
QSAR models or as a semi-quantitative probability (e.g., probable, likely, not
likely) by SAR/expert systems which can then be interpreted as positive or
negative according to various interpretation criteria. Information on the predicted
probability, and the interpretation criteria and the rationale for their use may
assist an evaluator to determine whether a prediction is relevant at the problem
formulation stage and/or can be considered when determining the reliability of a
prediction during a more detailed evaluation (see section 5.4). Numerical
endpoints (e.g., NOAEL, LDsy, BCF) predicted from QSAR models may be taken
at face value, but in some cases specific criteria may be recommended by the
model developer or by the regulatory agency if the predictions are used to
support labeling requirements or hazard classifications (e.g., specific
classification/label statement when predicted value is within an order of
magnitude of value X). It should also be remembered that some numeric
predictions will need to be converted before application to a weight of evidence
assessment (e.g., conversion of a predicted LOAEL in units of mmoles/kg bw/day
to mg/kg bw/day).

Other information that can be important to consider at the problem formulation
stage includes the structural or other features of the test pesticide that have
influenced the (Q)SAR prediction including structural fragments, specialized
descriptors of structure (e.g., molecular size, shape and electronic parameters),
and physical-chemical properties (e.g., molecular weight, Log Koy, boiling point)
that are used as variables in QSAR model algorithms, and structural alerts that
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are used by SAR/expert systems to identify potentially active compounds.
Information on how these features influenced the overall prediction either
quantitatively or qualitatively can impact on the level of reliability assigned to a
(Q)SAR prediction (see section 5.4). In particular, it can be important to
investigate whether the structural fragments, descriptors, and/or physical-
chemical properties that drive a prediction are consistent with available
information on mechanism of action or not.

When using QSAR models, it can be important to review the identities of the
compounds similar to the test pesticide that influenced the prediction. This would
likely be obtained from an analysis of the training set compounds that formed the
basis for the model algorithm. Similarly, for SAR/expert systems, the compounds
that were utilized to support the development of any structural alerts identified in
the test pesticide could be reviewed. The compounds that make up a category or
group used in a read-across or trend analysis approach can also be considered
as compounds that are similar to the test pesticide and that directly influenced
the (Q)SAR prediction from that approach. Regardless of the type of tool used,
the identities of the compounds that influenced the prediction, how their similarity
to the test pesticide was assessed and the degree of similarity, how they
influenced the prediction, the nature of the empirical data for them that is related
to the predicted endpoint, how well they are predicted by the (Q)SAR tool (i.e.,
internal validation), and whether a mode and/or mechanism of action has been
established are all important considerations when determining the reliability of
the (Q)SAR prediction for a test pesticide (see section 5.4).

4.4 Empirical Data Including Information on Mode of Action

Although this section is intended to focus on the preliminary analysis of (Q)SAR
predictions as one of the sources of information in a problem formulation for
pesticide risk assessment, it must be remembered that the empirical database for
a pesticide can impact on the determination of relevance of a (Q)SAR tool for a
particular regulatory application (see section 5.3) and the reliability of predictions
obtained from that tool (see section 5.4). Empirical data that may influence the
use of (Q)SAR predictions includes not only the results of conventional toxicity
tests, but also information on mode (and mechanism) of action.

As indicated previously, it is likely that in most pesticide assessment scenarios,
(Q)SAR will not be used in a stand alone manner, but will represent only one of
multiple lines of evidence considered. Therefore, understanding what relevant
empirical data are available, the strengths and limitations of these data, and any
gaps that need to be addressed will facilitate the determination of whether there
are any (Q)SAR tools relevant for those gaps. Integrating existing empirical data
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on a pesticide with relevant and reliable (Q)SAR predictions could also help build
defensible rationales for requiring additional empirical studies on specific
endpoints, mode of action, etc. (e.g., targeted testing).

The integration of the empirical database with (Q)SAR predictions at the problem
formulation stage could also be important for more detailed evaluations of the
reliability of the (Q)SAR predictions at a later stage in the assessment (see
section 5.4). Questions to consider include whether a predicted endpoint for a
pesticide is consistent with and supported by empirical data for related endpoints
for the same pesticide or whether the prediction contradicts these data. Empirical
data for similar compounds, metabolites and degradation products can be
particularly important to consider when assessing the reliability of a (Q)SAR
prediction. Knowledge of the toxicity database for a parent pesticide compound
could impact on the level of confidence assigned to a (Q)SAR prediction for a
metabolite. In some cases, the consistency of the results of (Q)SAR predictions
for a parent pesticide versus a metabolite may be useful in determining the
confidence in the prediction for the metabolite, especially if the parent compound
contains structural alerts known to be associated with specific mechanisms of
toxicity and those alerts are preserved or activated following metabolic
transformation (e.g., substructures associated with DNA/protein binding). Also,
an evaluation of the existing empirical data for a pesticide may provide
justification for using more or less conservative criteria to interpret a (Q)SAR
prediction for that same pesticide.

As mentioned previously, information on mode of action for toxicity is one type of
empirical data that could impact on the consideration of (Q)SAR predictions at
the problem formulation stage of a pesticide assessment. A consideration of
mode of action can also include the pesticidal mode of action against the target
species, and any postulated modes of action of toxicity in non-target species
(e.g., humans) which could be used to support the results of existing (Q)SAR
predictions or rationales for generating additional (Q)SAR predictions and/or
obtaining additional empirical data.

If a pesticidal mode of action is not species specific (e.g., acetylcholinesterase
inhibition), information on this mode of action may support the need to investigate
related endpoints (e.g., neurotoxicity, developmental neurotoxicity) using (Q)SAR
predictions for various taxa, which could, in turn, lead to requirements for
additional in vivo studies of those endpoints in the relevant organisms. A
common pesticidal mode of action may also be a means of identifying groups of
similar pesticides from which to build categories and support data bridging
through read-across or other types of predictions.
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For a postulated (eco)toxicological mode of action, the extent to which the initial
chemical-biological system relationship is understood and how well the cascade
of key events leading to the adverse outcome is understood (i.e., mode of action,
mechanism of action, adverse outcome pathway) in taxa under consideration
could directly influence the level of confidence in (Q)SAR predictions for
endpoints associated with this mode of action. For instance, when a
(eco)toxicological mode of action has already been established for a structurally
similar compound, or for a chemical class in which the pesticide in question
resides, this mode of action could be used at the problem formulation stage to
focus (Q)SAR predictions on particular endpoints and taxa, bridge from the
structurally similar compound to inform dose selection for any study required for
the pesticide in question, provide support for waiving the need for specific studies
based on the current pesticide dataset, and/or help to rule out the relevance of
the observed or predicted effect to humans or other species, so that additional
studies are unlikely to be required.

Although information on postulated modes of toxicological action can provide
support for (Q)SAR predictions at the problem formulation stage and during
weight of evidence assessments, it should be noted that, mode of action
determinations are generally data rich decisions that must be made on a case-
by-case basis. The International Program on Chemical Safety (IPCS) has
developed an extensive framework for mode of action analysis based on the
Bradford Hill criteria which can be used for cancer and non-cancer endpoints in
the context of human health, and for ecological endpoints (Boobis et al., 2008). In
most situations, information on toxicological mode of action will not be readily
available for a majority of pesticides.

In some cases, comprehensive toxicological mode of action data for pesticide
may not be available, but it may be possible to use information on the chemical
structure of a pesticide and/or selected (Q)SAR tools (e.g., OECD QSAR
Toolbox) to identify potential (chemical) mechanisms of action of pesticides (e.qg.,
mechanisms of protein or DNA binding) to assist in identifying analogs, grouping
chemicals into categories and supporting read-across extrapolations (OECD,
2011b; 2009; 2007a).
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4.5 Summary

The initial step in framing the questions to be addressed in the human health or
environmental assessment of a pesticide is problem formulation. Although the
questions to be addressed in pesticide risk assessments have traditionally been
framed in terms of the available empirical data, (Q)SAR predictions are another
source of information that can be considered during the problem formulation
process. The assessment context in which (Q)SAR is being applied, the
characteristics of the pesticide that is the subject of the prediction, the
characteristics of the (Q)SAR tool and the prediction, and the available empirical
data including mode of action data that could impact on the application of
(Q)SAR are all important factors to consider when integrating (Q)SAR into a
problem formulation. This type of preliminary analysis of the (Q)SAR information
on a pesticide could lead to an immediate conclusion that (Q)SAR is not suitable
for the particular pesticide assessment question or it could set the stage for a
more in depth evaluation of whether a (Q)SAR prediction is fit for purpose for
integrating into a weight of evidence decision (see section 5).
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5. Evaluating the Adequacy of (Q)SAR Predictions

EVALUATING THE ADEQUACY OF (Q)SAR PREDICTIONS
Topics Discussed in this Section:
= Scientific validity of a (Q)SAR tool
= Applicability of the (Q)SAR tool to the pesticide
= Relevance of the (Q)SAR tool to the assessment context

= Reliability of the (Q)SAR prediction

= Documentation of (Q)SAR tools and predictions

5.0 Introduction

Evaluating whether a (Q)SAR prediction is adequate or “fit for purpose” is an
important component of applying the prediction to a pesticide assessment. The
European Commission Joint Research Centre (JRC) has noted that whether a
prediction from a (Q)SAR model is adequate or not depends upon four key
factors: the scientific validity of the model, the applicability of the model to the
query chemical, the reliability of the (Q)SAR result, and the relevance of the
(Q)SAR model for the regulatory purpose. The validity of the model was to be
established through the application of the OECD QSAR validation principles
(OECD, 2004), the applicability of the model relates to whether the chemical of
interest lies within the model domain of applicability, reliability is based on the
application of a valid (Q)SAR to a chemical within its domain of applicability, and
relevance involves considering whether a predicted endpoint can be directly
applied to a particular regulatory purpose (EC, 2008b). Similarly, the REACH
guidance for applying (Q)SARs provides a flexible framework for using (Q)SAR
models in lieu of experimental data that is based on four main conditions: the
scientific validity of the model used, the applicability of the model to the chemical
of interest, the relevancy of the prediction for the regulatory purpose, and
whether appropriate documentation on the (Q)SAR and the prediction is provided
(ECHA, 2008; ECHA, 2010; Worth et al., 2011).

In this section of the NAFTA (Q)SAR Guidance Document, the key factors noted
by the JRC for assessing the adequacy of (Q)SAR models and the REACH
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framework have have been adapted to guide pesticide evaluators through the
information to be considered when evaluating whether predictions from (Q)SAR
tools are adequate for use in pesticide assessments. A schematic for the
resulting modified framework is shown in Figure 5—1. Evaluating the adequacy of
(Q)SAR predictions relies on a lot of the same information initially considered at
the problem formulation stage (see section 4), but with a more focussed
consideration of validity, applicability, relevance, and reliability. This type of
evaluation can be done in advance of or at least independently of the process of
combining the prediction with other information in a weight of evidence
assessment (see section 7). Since clear and complete documentation of (Q)SAR
tools and predictions is important both to the evaluation of the adequacy of
predictions and their incorporation into weight of evidence assessments, this
section also includes a discussion of documentation.

The guidance provided here is not meant to be prescriptive, but is intended to
allow for case-by-case flexibility and the incorporation of expert scientific
judgment. As such, it is recognized that the level of detail and effort employed in
evaluating the adequacy of predictions and documenting them will vary
depending on a number of factors including the assessment context in which
(Q)SAR is being applied.

Although the evaluation of the adequacy of a (Q)SAR prediction may be a new
concept to many pesticide evaluators, the process can be thought of as parallel
to evaluating the adequacy of empirical studies. When evaluating traditional
animal toxicity studies, evaluators can generally rely on the existence of validated
test guidelines that are applicable to most pesticides, whereas for (Q)SAR
predictions, additional effort needs to be invested to assess the validity of the
(Q)SAR tool and its applicability to the pesticide in question.

Much of the discussion in this section focuses on (Q)SAR models. However, it
should be recognized that the key issues to consider when evaluating the
adequacy of (Q)SAR predictions are applicable to all types of (Q)SAR tools.
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Figure 5-1: Evaluating the Adequacy of a (Q)SAR Prediction for a Pesticide
(modified from ECHA, 2008 and Worth et al., 2011)

RELIABLITY OF
THE (Q)SAR
PREDICTION

APPLICABILITY OF
THE (Q)SAR TOOL TO
THE PESTICIDE

SCIENTIFIC VALIDITY OF
THE (Q)SAR TOOL

ADEQUACY OF
THE (Q)SAR
PREDICTION

RELEVANCE OF THE (Q)SAR TOOL
TO THE PESTICIDE
ASSESSMENT CONTEXT

5.1 Scientific Validity of the (Q)SAR Tool

The OECD has defined (Q)SAR validation as “the process by which the reliability
and relevance of a particular approach, method, process or assessment is
established for a defined purpose” (OECD, 2007c). In the context of (Q)SAR
model validation, the OECD considers that reliability focuses on the predictive
accuracy of the (Q)SAR tool for a range of different chemicals and relevance
refers to specific toxicological pathways and mechanisms that culminate in the
test endpoint. In particular, it is assumed that a (Q)SAR tool that has a
mechanistic basis for the predicted endpoint tends to be more relevant and

reliable for groups of chemicals acting via the mechanism in question (OECD,
2007c).

5.1.1 OECD (Q)SAR Validation Principles

The OECD previously noted that one of the critical challenges to the regulatory
acceptance of (Q)SAR predictions was the lack of an internationally harmonized
framework for assessing (Q)SARs. In particular, there was a need for an
internationally-agreed-upon set of principles for (Q)SAR validation to provide a
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scientific basis for making decisions on the acceptability of (Q)SAR predictions,
and to improve the transparency and consistency of (Q)SAR reporting leading to
a greater mutual acceptance of predictions (OECD, 2007c).

In response, the OECD developed the Principles for the Validation, for
Regulatory Purposes, of (Q)SAR Models which can be used as guidance for the
types of information to review when determining if a (Q)SAR model is acceptable
or not for use in a regulatory or decision-making framework. The principles
include “1) a defined endpoint, 2) an unambiguous algorithm, 3) a defined
domain of applicability, 4) appropriate measures of goodness-of-fit, robustness
and predictivity, and 5) a mechanistic interpretation, if possible.” (OECD, 2004).
The OECD also drafted and finalized a separate guidance document (Guidance
Document on the Validation of (Quantitative) Structure-Activity Relationships
[(Q)SAR] Models) that includes a discussion of the principles and information on
how to validate (Q)SARs for different applications (OECD, 2007c).

The five OECD (Q)SAR validation principles are presented in sections 5.1.1.1—
5.1.1.5 along with a summary of some of the key issues identified in the OECD
guidance document and other sources that should be considered in the context
of evaluating (Q)SAR tools for application to specific purposes in pesticide risk
assessments. For further details on the principles and their application,
evaluators should consult the OECD guidance document (OECD, 2007c).
Evaluators may also be interested in consulting a recent paper by Dearden et al.
(2009) which outlined 21 types of errors related to the OECD (Q)SAR validation
principles which were identified in various (Q)SAR analyses published in the
scientific literature.

Application of the principles is an important step in determining the adequacy of
(Q)SAR predictions for use in pesticide assessments. However, the OECD has
noted that because of the designs of many of the currently available (Q)SAR
models, it may not be possible to completely address all of the principles in every
case. Consequently, evaluators will need to be flexible and take into account the
available information on (Q)SAR tools and predictions, and individual regulatory
program requirements when applying the principles (OECD, 2007c). Also,
because of the range of (Q)SAR tools that could be used to make predictions for
pesticides and the varying levels of complexity of these tools, use of the OECD
(Q)SAR validation principles will require the application of expert scientific
judgment, in some cases from a multidisciplinary team.

Example No. 1 in Appendix Il provides a summarized version of a case study of
reliability and validation testing of a set of (Q)SAR models for predicting acute
toxicity to fish species.

Page 60 of 186



5.1.1.1 Principle 1 — Defined Endpoint

The purpose of this principle is to make sure that the endpoint being predicted by
a given (Q)SAR tool is transparent. According to the OECD a “defined endpoint”
can be considered as “any physicochemical, biological or environmental effect
that can be measured and therefore modeled.” (OECD 2007c).

Unlike empirical data derived from standardized guideline based studies
designed to meet regulatory requirements for pesticides, studies for chemicals in
(Q)SAR model training sets may be based on non-standardized, non-uniform,
experimental protocols and conditions. The variability induced by these
differences can affect predictive performance and may be a limitation for some
(Q)SAR models. However, this variability does not necessarily invalidate the data
or models derived from them, but the characteristics of the data and their
potential impacts on model predictions must be taken into account.

No (Q)SAR model can be better than the data upon which it is based. Optimally,
all of the training set data for a particular (Q)SAR model should correspond to the
specific regulatory endpoint of interest, have been generated using the same
experimental protocol (ideally a standardized guideline type protocol), and be
interpreted using evaluation criteria that correspond to those of the specific
pesticide regulatory program. While this type of approach would help to ensure
the reliability and relevance of (Q)SAR predictions, (Q)SAR model developers
often have to rely on studies conducted under different protocols and conditions
in order to ensure sufficient numbers and diversity of chemical structures in the
model training sets (OECD, 2007c).

Variability can also be induced by the nature of the regulatory endpoint.
Regulatory test guideline type endpoints such as developmental toxicity may
actually encompass a range of subendpoints (e.g., teratogenicity, fetal growth
retardation, fetal death). Attempting to model poorly defined endpoints may result
in the use of model training sets containing a variety of chemical structures
producing different subendpoints via different mechanisms of action in a variety
of study types. Failing to take this variability into account can result in poor
correlations between model parameters and predicted endpoints resulting in poor
predictive performance. Alternatively, building a model for a more defined
endpoint such as a 96-hour LCs in fish using a more mechanistically
homogeneous training set will likely produce better correlations and predictive
performance. Finally, in some cases, there may be uncertainties associated with
the model endpoint and training set data because information on study protocols
and evaluation criteria may not be readily available for some (Q)SAR models,
particularly certain commercial models. Pesticide evaluators should take these
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potential sources of variability and uncertainty into account when evaluating the
validity of a (Q)SAR tool.

5.1.1.2 Principle 2 — Unambiguous Algorithm

The second principle states that a (Q)SAR model should be associated with an
unambiguous algorithm. This means that the specifics of the relationship
between the chemical structures and the predicted endpoint or property (e.g., an
equation) should be clear and transparent. For a mathematically-based QSAR
model, the algorithm may take the form of a regression equation that relates
descriptors of the chemical structures to the predicted endpoint. Although it is
recognized that the unambiguous algorithm principle may be best applied to
statistical QSAR models, the OECD has extended the principles to other model
types, such as structural alert based SAR/expert system, where the algorithm
would take the form of expert-derived rules (OECD, 2007c).

Ideally, a (Q)SAR algorithm should be clear enough that an independent (Q)SAR
analyst should be able to explain how predictions were generated and reproduce
the results, if required. Although some (Q)SAR models that do not have
transparent algorithms may have equal or better predictive performance than
more transparent models, the lack of transparency of the former may negatively
impact their regulatory acceptance. While transparency is critical, the OECD has
stated that there is a difference between having a transparent algorithm and
being able to interpret the algorithm as a cause-and-effect relationship. The
descriptor values and equation for a QSAR model may be readily available, but a
mechanistic/causal link between the descriptors and the predicted endpoint may
not have been identified (OECD, 2007c).

In practice, the degree of transparency varies depending on the type of (Q)SAR
tool considered, as some non-commercial models have fully transparent
algorithms, while most commercial model developers consider specific algorithms
and how they were derived to be proprietary information. Also, what constitutes a
sufficient level of transparency for regulatory purposes will likely depend upon the
assessment context such that only limited information may suffice when (Q)SAR
predictions are used to prioritize inventories of chemicals for further
testing/assessment, whereas much more detail would likely be required for the
algorithm of a (Q)SAR model used to derive a quantitative prediction for a
regulatory point of departure estimate. In some cases, it may be possible to
compensate for less than complete transparency by analyzing a model’s
predictive performance for a set of chemicals similar to the test chemical, but not
used in the model training set, and for which empirical data are available (ECHA,
2008).
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5.1.1.3 Principle 3 — Defined Domain of Applicability

Netzeva et al. (2005) have defined the applicability domain of a (Q)SAR model as
“the response and chemical structure space in which the model makes
predictions with a given reliability.” This means the range of chemical structures,
physicochemical properties, mechanisms, and responses over which the (Q)SAR
tool can generate reliable predictions for the intended regulatory purpose. The
domain of applicability is dependent upon the set of chemicals on which the tool
is based (e.g., (Q)SAR model training set).

While it is possible to make predictions for chemicals outside of the applicability
domain of a (Q)SAR model, such predictions are extrapolations that are assumed
to be less reliable than predictions for chemicals within the domain of applicability
(i.e., interpolations). Also, because there are multiple ways of defining domain of
applicability (e.g., structures, physico-chemical properties, mechanisms), there
may be variations in the reliability of predictions even for chemicals within the
domain of applicability of a (Q)SAR tool. For instance, a prediction for a test
chemical that is structurally similar to chemicals in the training set of a (Q)SAR
model may still be unreliable if the test chemical has a different mechanism of
action compared to the chemicals in the training set (OECD, 2007c).

There is a balance between the overall range of the domain of applicability and
the predictivity of a (Q)SAR tool. Models with large training sets and diverse
domains of applicability may be capable of generating predictions for a wider
variety of chemical structures than smaller more structurally and mechanistically
homogeneous models, but there is a greater chance that many of those
predictions will be unreliable (OECD, 2007c; ECHA, 2008). Using information on
mechanisms, mode of action, and/or adverse outcome pathways to group
chemicals can improve predictive performance for large heterogeneous training
sets.

A number of existing commercial and non-commercial QSAR models have built-
in methods for determining whether a compound lies within the domain of
applicability. Examples include the univariate analysis (whether the training set
substructures include the substructures in the query chemical ) and multivariate
analysis (whether the query chemical’s descriptors are in the optimum prediction
space) in the TOPKAT program, the CAESAR models’ warnings for descriptor
values outside the range of the training set compounds and classes or groups of
compounds known to be less than optimally predicted, and the ASTER system’s
notification when a chemical is outside the predictive capability of a model
(Accelrys Inc., 2004; Benfenati, 2010; US EPA, 2011).
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The OECD guidance document on the validation of (Q)SAR models summarizes
a variety of different methods for defining domain of applicability including the use
of structural features that enhance (toxicophores) or modulate toxicity to define
the mechanistic domain, characterizing the descriptor or interpolation space by
graphing and distance (geometric) analysis, using Williams plots to visualize
outliers in descriptor and response space, comparing the structural and physical-
chemical similarity of the test chemical to the training set by fragment based
approaches, and other methods (OECD, 2007c). A number of reviews of different
methods for defining domain of applicability have also been published (Nikolova
and Jaworska, 2003; Dimitrov et al., 2005a; Jaworska et al., 2005; Netzeva et al.,
2005).

It should be noted that there is no single approach, or set of accepted
approaches, to assessing domain applicability. Consequently, whatever
approach is adopted should be transparently presented and documented.

In the context of (Q)SAR predictions for pesticide active ingredients, the need to
assess the domain of applicability cannot be over-emphasized. A long-standing
limitation of many commercial and non-commercial (Q)SAR models has been
domains of applicability that are not sufficiently representative of the structures
and mechanisms of action associated with pesticide active ingredients. This is in
part related to the nature of pesticide data (i.e., confidential unpublished studies
accessible only by regulatory agencies). Fortunately, this is changing over time
as resources such as the US EPA ToxRef database should it make it possible to
build models and other tools with domains of applicability that are more
encompassing of pesticide active ingredients.

5.1.1.4 Principle 4 — Appropriate Measures of Goodness-of-fit,
Robustness, and Predictivity

According to principle 4, a (Q)SAR should be associated with “appropriate
measures of goodness-of-fit, robustness and predictivity” which are obtained
through statistical validation of a (Q)SAR tool. For a QSAR model, goodness-of-
fit refers to how well the model accounts for the variability in the endpoint or
property measured for the training set chemicals. Robustness is a measure of
how much change will be induced in the coefficients, etc. in the model algorithm if
the training set chemicals are changed. Predictivity involves determining how well
the model can make predictions, generally for an external test set of data not
included in the training set (Eriksson et al., 2003).

Goodness-of-fit for regression-based QSAR models is usually expressed as a
multiple correlation coefficient (R2 value; range: 0 — 1) which is the amount of

Page 64 of 186



variation in the predicted values that can be explained by the regression
equation, and the standard error of the estimate (s) which measures the
dispersion of the predicted values around the regression line. Well-fitted models
have R? values close to 1 and low s values. Poorly-fitted models are not likely to
be too useful for regulatory applications. However, it should be noted that
deceptively high R? and low s values can be obtained by including a large
number of variables or descriptors in the regression equation (i.e., overfitting a
model). Generally, better predictive performance can be obtained when the ratio
of the number of chemicals in the training set to the number of descriptors in the
regression equation (i.e., the Topliss ratio) is 5:1 or more. Note that R%?and s
values alone are not enough to assess model validity as they do not provide
information on the predictive performance for chemicals not included in the
training set of a (Q)SAR model (OECD, 2007c; ECHA, 2008).

For (Q)SAR tools that make dichotomous classifications (i.e., active/inactive,
positive/negative), goodness-of-fit is usually expressed as Cooper statistics such
as sensitivity (fraction of true positive chemicals predicted as positive), specificity
(fraction of true negative chemicals predicted as negative), accuracy (fraction of
true positive and negative chemicals correctly predicted as positive and negative,
respectively), and positive and negative predictivities (probabilities that chemicals
predicted as positive and negative are actually positive and negative,
respectively). Some (Q)SAR models can be biased towards high specificity or
sensitivity depending on the specific application they are designed for. Because
the Cooper statistics are interrelated, designing a model for high specificity can
result in decreased sensitivity (i.e., high false negative prediction rate) and vice
versa. This can be an important consideration as there is generally a greater
emphasis on correctly predicting positive chemicals (i.e., high sensitivity) for
pesticides and other environmental chemicals. Cooper statistics can also be
influenced by the distribution of positive and negative chemicals in the test set
such that the predictive performance for the largest class of chemicals in the test
set (i.e., positive or negative) will impact on the accuracy of the model and the
proportion of positive chemicals in the test set will influence the positive and
negative predictivities. The OECD has recommended that the Cooper statistics
be significantly greater than 50% for classification models used in a stand-alone
manner, but there is no absolute value for differentiating good from poor
predictive performance and a (Q)SAR tool with poor performance for one Cooper
statistic may still be useful depending upon the application (OECD, 2007c;
ECHA, 2008). Also, as discussed in section 6, it may be possible to combine
predictions from multiple (Q)SAR tools to enhance overall predictive
performance.
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Predictivity can be assessed by external validation, either through the use of a
test set of chemicals separate from the (Q)SAR model training set or by
separating a set of chemicals into a training set and a test set at the design stage
(Gramatica, 2007). External validation is usually measured by an external
correlation coefficient (Q%). External test sets should be of sufficient size and
representative of the types of chemicals to be predicted using the (Q)SAR model.

In some cases, model developers may also present the results of internal
validation techniques such as leave-one-out (LOO) and leave-many-out (LMO)
methods. For these methods, one or more chemicals is removed from the
training set, the model is re-built, the removed chemicals are predicted, the
process is repeated, and the average predictivity across the various versions of
the model is estimated as a cross-validated regression coefficient (Q?). One of
the reasons internal validation statistics are presented is that there may be
limited data from which to construct an independent external test set because
(Q)SAR model developers generally want to maximize the number of training set
chemicals, leaving few chemicals for external validation testing.

Q? or Q% values of >0.5 and >0.9 are considered to represent good and
excellent performance, respectively, but it should be noted that predictivity is
dependent on the statistical method used and the composition of the test set.

Also, as stated previously, predictions outside the domain of the training set are
likely to be less reliable than predictions within the domain of applicability, so that
validation principle 4 is closely linked to validation principle 3 (OECD, 2007c;
ECHA, 2008).

It should be noted that not all elements of principle 4 are applicable to all (Q)SAR
tools, so the assessment of goodness-of-fit, robustness, and predictivity may
have to be made on a case by case basis. Rule-based SAR/Expert Systems that
use databases of structural alerts are one example in which there is generally no
training set and as such LOO, LMO, and other methods will not be applicable.
Also, when considering Cooper statistics for external validation testing, the
determination of specificity and negative predictivity may be difficult if the expert
system is only based on structural alerts for activity.
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5.1.1.5 Principle 5 — Defined Mechanism of Action, if Possible

The fifth validation principle states that a (Q)SAR model should be associated
with a mechanistic interpretation wherever possible. Although it is recognized that
mechanistic information is not always available for (Q)SAR models, whenever it
is available, it should be investigated and reported. A transparent mechanistic
interpretation can assist in the determination of whether the domain of
applicability of a model is suitable for predictions for the chemical of interest, help
with the interpretation of outliers, guide hypothesis testing, and provide support
for the biological plausibility (i.e., toxicological interpretation) and reliability of the
predictions from a model. However, the absence of a clearly identified
mechanistic basis for a model does not necessarily mean that the model is not
potentially useful for a given regulatory application (OECD, 2007c).

For QSAR models, a mechanistic interpretation represents the physical, chemical
and/or biological basis for the model descriptors and their relationship with the
endpoint or property to be predicted (ECHA, 2008). A mechanistic interpretation
can be associated with a QSAR model through the selection of mechanistically
relevant descriptors at the time of model development (i.e., a priori) or through
the investigation and delineation of the mechanistic basis for the descriptors in an
existing model (i.e., a posteriori) (OECD, 2007c).

As indicated previously using mechanistic similarity to group chemicals in the
training set of a (Q)SAR tool can provide a solid basis for QSAR model
development and interpretation. Consequently, when evaluating the mechanistic
basis of a (Q)SAR tool, it is important that the rationales for grouping training set
chemicals be presented, particularly with respect to any mechanistic hypotheses
that were applied (e.g., skin sensitization associated with protein binding
potential) and how the mechanistic hypotheses were translated into structural
inclusion/exclusion rules (e.g., grouping thiol compounds with potential for protein
binding via disulfide formation).

For knowledge-based SAR/expert systems and other related tools, the
mechanistic interpretation can be related to observed empirical data, expert
knowledge, and expert derived rules on the chemical reactivity and/or biological
activity of various chemical substructures (OECD, 2007c).
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5.2 Applicability of the (Q)SAR Tool to the Pesticide

Whether a (Q)SAR tool can be considered as applicable to a pesticide depends
upon the characteristics of the pesticide (see section 4.2) and the domain of
applicability of the (Q)SAR tool (see section 5.1.1.3).

In terms of the characteristics of a pesticide, accurate information on identity,
composition, and structure is necessary when determining whether a (Q)SAR
tool could be applicable. Many (Q)SAR models are limited to making predictions
for discrete organic chemicals and are incompatible with pesticides that are
mixtures, salts, or polymers. These incompatibilities may necessitate the use of
surrogate compounds such as monomers, uncharged acid forms, and single
mixture components to make predictions. Although surrogates may in some
cases be a useful approach to making predictions for pesticides that are
incompatible with available models, their use should be supported by rationales
that account for the potential impacts of molecular size and weight, ionization
state, variations in mixture composition, synergism/ antagonism between mixture
components, and other factors.

Similarly, if the isomeric form of a pesticide could have an impact on the endpoint
or property to be predicted, the (Q)SAR tool will need to be capable of
differentiating between isomers to be applicable. A QSAR model that uses 2-D
structural descriptors and only accepts 2-D structural representations of
chemicals to be predicted will not be very useful for predicting differences in
toxicity between stereoisomeric forms of a pesticide. A better approach would be
to use a QSAR model capable of recognizing structural representations of
isomers, that includes isomer specific descriptors, and whose training set is
sufficiently diversified with respect to data on different isomeric forms.

As discussed in section 4.2, for pesticides that can be transformed in the
environment or through metabolism in the body, the toxicity, ecotoxicity, physical-
chemical properties and other properties of the transformation products,
degradates or metabolites may differ from those of the parent pesticide. Whether
or not a (Q)SAR tool could be applicable to a pesticide that can be metabolized
or transformed would involve identifying metabolites or transformation products
(i.e., from empirical data or model predictions) and determining whether
predictions can be generated for them or not.

Section 5.1.1.3 outlines the concept of defining domain of applicability during the
evaluation of the validity of a (Q)SAR tool. While it is possible for some (Q)SAR
tools to make predictions for pesticides outside their domains of applicability,
those predictions are likely to be less reliable at best or in some cases the
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pesticides will be so far outside the domain of applicability that the (Q)SAR tools
should not be considered as applicable. As discussed, there are a number of
commercial and non-commercial (Q)SAR models that include automated
methods for assessing whether a chemical lies within their domain of applicability
based on limits on descriptor values, the presence of unrecognized structural
features, and other parameters. Also, a variety of different methods of defining
domain of applicability have been published (OECD 2007c; Nikolova and
Jaworska, 2003; Dimitrov et al., 2005a; Jaworska et al., 2005; Netzeva et al.,
2005).

5.3 Relevance of the (Q)SAR Tool to the Assessment Context

As noted by the JRC, the relevance of a (Q)SAR model involves considering
whether a predicted endpoint can be directly applied to a particular regulatory
purpose (EC, 2008b). This is based on the endpoint or property that the tool is
capable of predicting and the specific type of prediction information that the tool
can generate for a particular assessment context. The information obtained at the
problem formulation stage on the assessment context that (Q)SAR is being
applied to (section 4.1) and the characteristics of the (Q)SAR tool and the
prediction (section 4.3) can provide a useful starting point for assessing the
relevance of the (Q)SAR tool.

In order for a (Q)SAR tool to be relevant, the endpoint or property that it predicts
must correspond to the endpoint or property for which a data requirement exists
in a given pesticide assessment context. A (Q)SAR model, capable of generating
reliable predictions for the mutagenicity of chemicals in Salmonella typhimurium
TA1538 may provide useful information on the in vitro mutagenicity of a pesticide,
but it will not provide specific information to address a data requirement for an in
vivo clastogenicity study. Similarly, a positive prediction for general pre-natal
developmental toxicity for a pesticide may not be sufficient to address a question
about whether a pesticide can induce specific skeletal malformations.

Whether the endpoint or property predicted by a (Q)SAR tool could address a
specific pesticide data requirement involves a clear understanding of the data
from which the tool was derived. This corresponds to the OECD validation
principle of defined endpoint which was discussed in section 5.1.1 — i.e.,
understanding study protocols, data interpretation criteria, and other study
elements.

The type of information that a (Q)SAR tool can generate can also impact on its
relevance to a pesticide assessment question. In particular, (Q)SAR models are
usually designed to generate qualitative or quantitative predictions for particular
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endpoints. A model that can provide a qualitative (e.g., yes/no, positive/negative)
estimate of the toxicity of a pesticide to freshwater fish may provide some useful
information, but will be of limited relevance if a prediction of an acute LCsg in trout
is required for a particular assessment context.

5.4 Reliability of the (Q)SAR Prediction

In addition to considering the validity of a (Q)SAR tool for a particular pesticide
assessment context, the applicability of the tool to the pesticide, and the
relevance of the tool to the assessment context, it is also necessary to evaluate
the level of reliability (or confidence) in the individual prediction itself. Evaluating
the reliability of a prediction takes into account information gleaned from the
problem formulation process (see section 4) and information obtained when the
(Q)SAR tool is evaluated using the OECD validation principles (see section 5.1).

The pesticide assessment context is an overlying consideration when evaluating
the reliability of a (Q)SAR prediction. Moving from a less comprehensive to a
more comprehensive assessment context will likely require a higher level of
reliability from any (Q)SAR predictions used in the assessment. When rapidly
prioritizing chemicals for further assessment, it may be possible to take
predictions from validated (Q)SAR tools almost on face value. However, prior to
relying on a (Q)SAR prediction as a critical piece of information in a human
health or environmental risk assessment for a pesticide, the relationship of the
pesticide to the domain of applicability of the (Q)SAR tool, the strengths and
limitations of the tool, the prediction results and how they are interpreted, the
predictive performance of the tool for similar chemicals, and the potential impact
of other available information all have to be evaluated in more detail in order to
judge the reliability of the (Q)SAR prediction.

5.4.1 Relationship of the Pesticide to the Domain of Applicability of
the (Q)SAR Tool

The importance of considering the domain of applicability of the (Q)SAR tool has
already been mentioned with respect to the OECD validation principles (see
section 5.1.1.3) and the applicability of a (Q)SAR tool to a pesticide (see section
5.2), respectively. Section 5.1.1.3 also references a number of methods for
assessing domain of applicability.

Evaluating the relationship of the pesticide to the domain of applicability of the
(Q)SAR tool essentially involves determining whether the pesticide lies within the
domain of applicability or outside of it. As indicated previously, predictions for
pesticides outside of the domain of applicability of a (Q)SAR tool are not
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necessarily inaccurate, but are generally considered less reliable than predictions
for compounds falling with the domain of applicability.

As mentioned in section 5.1.1.3, domain of applicability may be defined in
different ways (e.g., descriptor, structural fragment, mechanistic, and metabolic
domains). Whether a pesticide is within the domain of a descriptor based QSAR
model is usually based on comparing the pesticide descriptor values to the range
of values for the chemicals in the training set. Structural fragment domain
analyses would involve ensuring that the pesticide doesn’t contain fragments that
are not present in the training set of the model. For the mechanism of action or
metabolic domain, the key question is whether the pesticide is likely to act via the
same mode/mechanism of action and/or be metabolized in the same manner as
other chemicals for which the (Q)SAR tool is applicable (EC, 2010). The OECD
has noted that because there are different ways of defining domain of
applicability, a prediction for a pesticide that is within the domain of applicability
of a (Q)SAR tool based on structural and physicochemical parameters may still
not be reliable if it has a unique mechanism of action not covered by the
mechanistic domain(s) of applicability of the (Q)SAR tool (OECD, 2007c).

The age of the QSAR model and its training set may also have impacts on the
consideration of the domain of applicability of the model and the reliability of the
prediction. An older, global type QSAR model may make a negative prediction for
a pesticide because its training set is populated with a limited number of
chemicals that contain the key structural elements in the pesticide and that all
tested negative in historical empirical studies. However, a more up-to-date
model, whose training set has been tested in more modern empirical studies, has
been segregated into groups according to mechanism of action, and contains a
larger number of compounds from the same chemical class as the pesticide of
interest, many of which have positive empirical test results, may generate a
positive prediction that is more reliable even though the pesticide falls within the
domains of applicability of both models. Consequently the use of the most up-to-
date versions of models and training sets is recommended and could be
particularly important when combining information from multiple predictions (see
section 6).

Finally, as discussed above, assessing the domain of applicability may be
particularly important for pesticides as (Q)SAR tool developers have not always
had access to proprietary pesticide empirical studies for incorporation into
training sets.
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5.4.2 Strengths and Limitations of the (Q)SAR Tool

The strengths and limitations of a (Q)SAR tool can impact on the evaluation of
the reliability of the predictions from that tool (Hulzebos et al., 2001; Greene,
2002). One source of strengths and limitations is the general methodologies on
which various (Q)SAR tools are based (e.g., analog approaches, chemical
categories, SAR and QSAR models, etc.) (see section 4.3). An example already
cited in this document is the lack of structural alerts linked to inactivity or negative
test results in some SAR/expert systems. If no structural alerts are identified for a
pesticide using this type of system and this is considered as equivalent to a
prediction of inactivity (negative), the prediction may be less reliable than a
positive prediction from the same system or a negative prediction from another
type of (Q)SAR tool that uses descriptors, alerts or other parameters directly
related to inactivity, depending on the assessment context. Similarly, the
overemphasis on statistical associations and lack of a mechanistic basis for
predictions may make some statistical QSAR models less reliable.

Built-in biases are another source of strengths and limitations of (Q)SAR tools
that could influence the reliability of predictions. For instance, some QSAR
models for pharmaceutical applications have training sets with distributions of
positive and negative compounds designed to generate higher specificity versus
sensitivity scores (Section 5.1.1.4). This type of bias needs to be taken into
account when models of this type are applied to pesticides as they may generate
a higher proportion of false negative predictions. The European Chemicals
Agency noted a potential source of bias for biodegradation models in their
guidance for the implementation of the REACH legislation. Because QSAR
models for biodegradation are often biased towards non-ready biodegradability,
predictions of biodegradability may be less reliable than predictions of non-ready
biodegradability (ECHA, 2008).

The sources of data for training set compounds, and the sources of data or
methods of calculation for descriptors (see section 5.1.1.1) can be another type
of strength or limitation of (Q)SAR model that could impact on the reliability of
predictions. While empirical datasets for registered pesticides usually consist of
peer reviewed guideline type studies, many model training sets are based on
open literature studies of varying quality. Also, as noted by Doull et al. (2007), for
some chemical classes, potential training set data may not be available from the
published literature. Similarly, the sources of the descriptor values and/or
methods used to estimate them may need to be scrutinized when evaluating the
reliability of a QSAR model prediction. Whether calculated descriptors, especially
obscure types, are reproducible or whether methods used to estimate descriptors

Page 72 of 186



for older versions of QSAR models have been supplanted by newer methods
could impact on the acceptability of predictions. These considerations also apply
to chemical category/read-across approaches. The methods used to identify
similar compounds, and the sources used for the endpoint related, physical-
chemical property, mechanistic and other data used to support chemical category
development and read-across predictions may need to be carefully considered
when determining the reliability of those predictions (OECD, 2007a).

5.4.3 Prediction Results and How They are Interpreted

Along with the basic qualitative (e.g., positive, negative, marginal) or quantitative
(e.g., LCso, LOAEL, TDsg, etc.) prediction results, additional information is
available from most (Q)SAR tools which can be used to assist in evaluating the
reliability of predictions. Many QSAR models provide information on the structural
fragments, descriptors or physical-chemical parameters used as variables in their
algorithms. Examination of the values of these variables and their coefficients in
the model algorithm can indicate whether they positively or negatively influenced
a (Q)SAR prediction and the magnitude of their impact. Combining information on
the influence of structural fragments or descriptors on a model prediction with
knowledge of their relationship to the mechanism of action for the predicted
endpoint can provide powerful evidence to support or question the reliability of
the prediction. For instance, an increased level of reliability could be assigned to
a QSAR model prediction for a toxicity endpoint directly related to a receptor
binding process if the model algorithm contains descriptors of molecular size and
shape known to be related to receptor binding affinity and the values of those
descriptors for the pesticide in question are similar to those for chemicals known
to bind to the receptor and produce the effect in question.

Other information generated by some (Q)SAR models includes calculated values
for molecular weight of the test chemical, and properties such as Log K,y and
bioavailability (e.g., based on Lipinski’s rule of 5) which can help with the
consideration of whether a prediction for an endpoint could reliably represent
what might occur following an in vivo exposure to a chemical. Similarly, some
SAR/expert systems have expert rules that can take into account physical-
chemical factors which can impact on absorption/bioavailability by discounting
the presence of a structural alert associated with toxicity in a pesticide if the
physical-chemical parameters of the pesticide are outside the range normally
associated with the end