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PREFACE 

Integrated Approaches to Testing and Assessment (IATA) and 
(Q)SAR 

Pesticide regulatory agencies have traditionally relied on extensive in vivo and in 
vitro testing to support regulatory decisions on human health and environmental 
risks. While this approach has provided strong support for risk management 
decisions, there is a clear recognition that it can often require a large number of 
laboratory animal studies which can consume significant amounts of resources in 
terms of time for testing and evaluation. Even with the significant amounts of 
information from standard in vivo and in vitro testing, pesticide regulators are 
often faced with questions and issues relating to modes of action for toxicity, 
novel toxicities, susceptible populations, and other factors that can be 
challenging to address using traditional approaches. 

Recognizing the limitations of current testing approaches and the rapid 
development of new biochemical and cellular assay systems and computational 
predictive methods, pesticide and other regulatory agencies have initiated the 
long-term investigation of Integrated Approaches to Testing and Assessment 
(IATA). IATA integrate existing knowledge bases on classes of chemicals with 
the results of biochemical and cellular assays, computational predictive methods, 
exposure studies, and other sources of information to identify requirements for 
targeted testing or develop assessment conclusions. In some cases, the 
application of IATA could lead to the refinement, reduction, and/or replacement of 
selected conventional tests (e.g., animal toxicity tests). IATA also have the 
potential to further enhance the understanding of mode/mechanism of action1 
including the consideration of  relevant adverse outcome pathways (AOPs) that 
provide biological linkages between molecular initiating events to adverse 

                                            
1 In this context, mode of action for toxicity is the description of key events and processes, 
starting with interaction of an agent with the cell through functional and anatomical changes, 
resulting in cancer or other health endpoints. Mechanism of action for toxicity is the detailed 
molecular description of key events in the induction of cancer or other health endpoints and 
represents a more detailed understanding and description of events than is meant by mode of 
action. Mode of action for toxicity can also be differentiated from the pesticidal mode of action 
which is the specific biochemical or physical effect(s) by which the pesticide kills, inactivates or 
otherwise controls pests. Mechanism and mode of action for toxicity are important components of 
adverse outcome pathways (AOPs). 
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outcomes in individual organisms and populations that are the bases for risk 
assessments. 

The subject of this guidance document, (Quantitative) Structure Activity 
Relationships [(Q)SAR], is an important set of predictive tools that can be 
considered when applying IATA to pesticide assessments. (Q)SAR represents a 
variety of techniques for predicting activities and properties of untested chemicals 
based on their structural similarity to chemicals with known activities and 
properties.2 (Q)SAR methods have a long history of use both for the industrial 
design and regulatory assessment of pharmaceuticals, pesticides, and other 
chemicals. While historical and current applications of (Q)SAR methods have 
focused on the prediction of physical-chemical properties and apical endpoints 
(e.g., toxicity, ecotoxicity), as IATA are developed and applied to pesticides, a 
greater emphasis will be placed on using (Q)SAR to predict key events along the 
cascade of obligatory steps toward the adverse outcome in modes of 
toxicological action and AOPs (e.g., receptor binding potential, enzyme 
activation/inhibition, DNA/protein binding). 

The development and application of IATA and (Q)SAR methods to pesticide 
assessments is consistent with the  United States Environmental Protection 
Agency (US EPA) commissioned National Research Council (NRC) report, 
Toxicity Testing in the 21st Century: A Vision and a Strategy (NRC, 2007). The 
NRC’s vision emphasizes moving away from checklists of conventional toxicity 
studies towards integrated approaches using existing knowledge of chemicals 
and the results of alternative testing methods, including computational tools such 
as (Q)SAR, to identify toxicity pathways and streamline data requirements for 
more efficient, and effective, targeted toxicity testing. (Q)SAR has also been 
highlighted as an important IATA tool in the report, Integrating Emerging 
Technologies into Chemical Safety Assessment, sponsored by Health Canada 
and prepared by the Expert Panel on the Integrated Testing of Pesticides of the 
Canadian Council of Academies (CCA) (CCA, 2012). The CCA report provides 
an update on the status of IATA and IATA tools, and a vision for the evolution of 
IATA in the regulatory context. 

                                            
2 (Q)SAR is the study of the correlation between chemical structure and associated biological 
activity, with the ultimate goal of predicting the activity of untested chemicals based on structurally 
related compounds with known activity. The parentheses around the “Q” in (Q)SAR indicates that 
the term refers to both qualitative predictive tools (i.e., structure-activity relationships (SARs)) and 
quantitative predictive methods (quantitative structure-activity relationships (QSARs)). Although 
the term (Q)SAR is often used to refer to predictive models, especially computer-based models, it 
should be noted that (Q)SAR is actually inclusive of a wide variety of computerized and non-
computerized tools and approaches. 
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Moving IATA from a long-term vision into mainstream practice for pesticide 
assessments will require the development and application of biochemical and 
cellular assays, along with the further development and broader application of 
existing tools such as (Q)SAR. Towards that end, the United States 
Environmental Protection Agency Office of Pesticide Programs (US EPA OPP) 
has partnered with the Pest Management Regulatory Agency (PMRA) of Health 
Canada to develop common approaches to IATA for the human health and 
ecological risk assessment of pesticides. The formalized framework for this 
partnership is a North American Free Trade Agreement (NAFTA) Joint Project on 
“21st Century Toxicology: Integrated Approaches to Testing and Assessment”. 
While this project is intended to cover a broad array of computational toxicity 
tools, a key current activity is the development of this NAFTA (Q)SAR guidance 
document for pesticide risk assessors. 

The primary purpose of this guidance document is to help pesticide evaluators to 
evaluate (Q)SAR predictions and to identify the important issues that may be 
involved when incorporating predictions in the risk assessment process. The 
document is not intended to reproduce or replace the ever-expanding volume of 
journal articles, reports, documents, and textbooks on the development and 
application of (Q)SAR, but to provide an introduction to the evaluation of (Q)SAR 
tools and their application to pesticide regulatory risk assessments. While the 
focus of this document is on the application of (Q)SAR to pesticide risk 
assessments, the principles and issues described in this document are general 
and may also be used for other types of chemical assessments. Regardless of 
the scenario to which (Q)SAR is being applied, the peer review process is critical 
and relevant to the consistent application of this tool. To that end, appropriate 
(Q)SAR experts should be consulted and peer review procedures used to ensure 
scientific excellence and rigor. 
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GLOSSARY 

This Glossary section is intended to provide additional explanation for common 
scientific terms which are presented in order to enhance communication between 
(Q)SAR experts and users of (Q)SAR models, particularly in the field of 
pesticides. 

There are two portions in the glossary — abbreviations (acronyms) and terms 
with more detailed explanations. 

 
ABBREVIATIONS 

A/I ratio  Ratio of active to inactive chemicals 

ACC  American Chemistry Council 

ADME  Absorption, distribution, metabolism, and elimination 

AOP  Adverse Outcome Pathway 

BCF  Bioconcentration Factor 

CAS  Chemical Abstract Service 

CCA  Council of Canadian Academies 

CEPA  Canadian Environmental Protection Act 

CFR  Code of Federal Regulations 

DER  Data evaluation record 

DSL  Domestic Substances List (Canada) 

EC  European Commission 

ECHA  European Chemicals Agency 

EDSP  Endocrine Disruptor Screening Program (US EPA) 

EEC  European Economic Community 

EFSA  European Food Safety Authority 

ER  Estrogen Receptor 

EU  European Union 

FAO  Food and Agriculture Organization (of the United Nations) 

FDA  (US) Food and Drug Administration 

FQPA  Food Quality Protection Act 
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HPV  High Production Volume Chemicals Program (US EPA) 

IATA  Integrated Approaches to Testing and Assessment 

ILSI  International Life Sciences Institute 

InChITM  IUPAC International Chemical Identifier 

IPCS  International Program on Chemical Safety 

IUPAC  International Union of Pure and Applied Chemistry 

JRC  Joint Research Centre (European Commission) 

kNN  k Nearest Neighbor 

Kow  Octanol-water partition coefficient 

Kp  Permeability coefficient through the skin for a chemical in water 

LMO  Leave many out 

LOAEL Lowest Observed Adverse Effect Level 

Log P Logarithm to the base 10 of the 1-octanol/water partition coefficient, also Log Kow 

LOO  Leave one out 

MED  Mid-Continent Ecology Division (US EPA ORD) 

MIE  Molecular initiating event 

MOA  Mode of (toxicological) Action 

NAFTA  North American Free Trade Agreement 

NAS  (US) National Academy of Sciences 

NHEERL National Health and Environmental Effects Research Laboratory (US EPA ORD) 

NOAEL  No Observed Adverse Effect Level 

NRC  (US) National Research Council 

OECD  Organization for Economic Co-operation and Development 

OFAS  Office of Food Additive Safety (US FDA) 

OPP  US EPA Office of Pesticide Programs 

OPPT  US EPA Office of Pollution Prevention and Toxics 

ORD  US EPA Office of Research and Development 

PBT  Persistent, bioaccumulative and toxic 

PCKOC Organic Carbon Partition Coefficient model components within the EPI Suite 
(US EPA) 

PMN  Premanufacturing notification 
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PMRA  Pest Management Regulatory Agency (Health Canada) 

Q2  Cross-validated correlation coefficient 

Q2
ext  External correlation coefficient 

(Q)SAR  Quantitative structure-activity relationship or structure-activity relationship 

QSAR  Quantitative structure-activity relationship 

QMRF  QSAR Model Reporting Format (European Commission) 

QPRF  QSAR Prediction Reporting Format (European Commission) 

QSPR  Quantitative structure-property relationship 

R2  Coefficient of determination 

REACH Registration, Evaluation, Authorization (and Restriction) of Chemicals legislation 
(European Union) 

SAR  Structure-activity relationship  

SDF   Structure Data Format 

SEE  Standard error of the estimate 

Spress  Cross-validated standard error of prediction 

TSCA  US Toxic Substances Control Act 

TTC  Threshold of Toxicological Concern  

WHO  World Health Organization 

 

TERMS 

Adverse outcome A conceptual construct that portrays existing knowledge concerning the 
pathway (AOP)  linkage between a direct molecular initiating event and an adverse  
   outcome at a biological level of organization relevant to risk assessment. 

Algorithm A sequence of instructions for carrying out a defined task. Typically the 
instructions are mathematical equations or computer code. 

Analog A chemical compound that has a similar structure and similar chemical 
properties to those of another compound, but differs from it by one or a 
few atoms or functional groups. 

Apical endpoint Observable effects of exposure to a toxic chemical in a test animal. The 
effects reflect relatively gross changes in animals after substantial 
durations of exposure. 

Chemical category A group of chemicals with similar physicochemical, human health, or 
ecotoxicological properties usually resulting from structural similarity. 

Congeneric series A group of chemicals with a common base structure (e.g. aliphatic 
alcohols) but differing in the arrangement of common substituents. The 
polychlorinated biphenyls are considered a congeneric series. 
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Cross-validation A statistical technique for assessing the predictive ability of a QSAR by 
the removal of different proportions of the chemicals from the training 
set, developing a QSAR on the remaining chemicals and using that 
QSAR to predict the activity of those removed. This procedure is 
repeated a number of times, so that a number of statistics can be derived 
from the comparison of predicted data with the known data. 

Data mining A collective term that refers to all procedures (informatic and statistical) 
that are applied to large heterogeneous data sets, in order to develop a 
data matrix amenable to statistical methods. 

Descriptor A quantifiable physical, chemical, or structural property specific to a 
chemical that can be correlated with an endpoint under investigation. 
There are three main categories of descriptors: hydrophobic, steric, and 
electronic. Steric descriptors are those relating to molecular size or 
shape. Electronic descriptors are those concerning molecular 
interactions such as hydrogen bonding and dipole forces and they 
include quantum mechanical and quantum chemical descriptors such as 
atomic charge. Hydrophobic descriptors such as Log P are those relating 
to the tendencies of chemical to partition between hydrophilic (aqueous) 
and hydrophobic/lipophilic (lipid) phases. 

Domain of Applicability The domain of applicability of a (Q)SAR model is the chemical structure 
and response space in which the model makes predictions with a given 
reliability. It can be thought of as a theoretical region in multi-dimensional 
space in which the model is expected to make reliable predictions. It 
depends on the nature of the chemicals in the training set, and the 
method used to develop the model and helps the user of the model to 
judge whether the prediction for a new chemical is reliable or not. 

EC50 Half Maximal Effective Concentration. Statistically derived concentration 
of a substance expected to induce a response halfway between baseline 
and maximum effect. 

 
Endpoint The measure of a biological effect, e.g., LC50 or EC50. A large number of 

endpoints are used in regulatory assessments of chemicals. These 
include lethality, carcinogenicity, immunological responses, organ 
effects, developmental and reproductive effects, etc. In (Q)SAR analysis, 
it is important to develop models for individual toxic endpoints. 

Expert system A formalized system (often computer based) that utilizes a 
knowledgebase of structure-activity relationships accumulated from 
human experts. The knowledgebase is applied using a set of expert rules 
to derive predictions of biological activity for chemicals of interest based 
on the presence of specific chemical structures. 
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External validation A validation exercise in which the chemical structures selected for 
inclusion in the test set are different from those included in the training 
set, but which should be representative of the same chemical domain. 
The QSAR model developed by using the training set chemicals is then 
applied to the test set chemicals in order to assess the predictive ability 
of the model. 

Functional group A molecular moiety that imparts certain characteristics to a molecule, 
e.g., hydroxyl (OH–), amino (NH2

–), or nitro (NO2
–). When only a limited 

number of functional groups are present, they may be the primary basis 
for the specific chemical, physical or biological characteristics of a 
chemical. However, for complex chemicals with many functional groups, 
the simple interactions associated with individual functional groups may 
not be reliable predictors of chemical behavior unless one functional 
group predominates for the particular activity. 

 
Genetic algorithm A statistical method that selects the best combination of descriptors to 

describe a given property, modeled on the principle of the survival of the 
fittest (best) in the breeding of organisms. 

 
In silico  An expression that means “performed on computer or via computer 

simulation.” 
 
LC50 Median Lethal Concentration. Statistically derived concentration of a 

substance expected to cause death in 50% of test animals, usually 
expressed as the weight of substance per weight or volume of water, air 
or feed, e.g., mg/l, mg/kg or ppm. 

 
LD50 Median Lethal Dose. Statistically derived single dose causing death in 

50% of test animals when administered by the route indicated (oral, 
dermal, inhalation), expressed as a weight of substance per unit weight 
of animal, e.g., mg/kg. 

 
Lipinski’s rule of 5 A rule of thumb developed by Christopher Lipinski for evaluating whether 

the properties of a chemical are likely to make it an orally active drug in 
humans. The rule states that, in general, an orally active drug has no 
more than one violation of the following criteria: not more than 5 
hydrogen bond donors, not more than 10 hydrogen bond acceptors, a 
molecular weight under 500, and an octanol-water partition coefficient 
less than 5. 

 
Mechanism of Action The detailed molecular description of key events in the induction of 
(Toxicity) cancer or other health endpoints. Mechanism of action for toxicity 

represents a more detailed understanding and description of events than 
is meant by mode of action. Mechanism of action of toxicity is an 
important component of an adverse outcome pathway (AOP). 
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Mode of Action The mode of action of a pesticide refers to the specific biochemical or 
(Pesticide) physical effect(s) by which the pesticide kills, inactivates, or otherwise 

controls pests. 
 
Mode of Action The description of key events and processes, starting with interaction of 
(Toxicity) an agent with the cell through functional and anatomical changes, 

resulting in cancer or other health endpoints. Mode of action for toxicity is 
an important component of an adverse outcome pathway (AOP). 

 
OECD QSAR Toolbox The OECD QSAR Toolbox is a software application intended to be used 

by governments, chemical industry, and other stakeholders in filling gaps 
in (eco)toxicity data needed for assessing the hazards of chemicals. The 
Toolbox incorporates information and tools from various sources in a 
logical workflow. Crucial to this workflow is the grouping of chemicals into 
chemical categories ( http://www.oecd.org/document/54/ 
0,3746,en_2649_34379_42923638_1_1_1_1,00.html ). 

Outlier A data point that is far removed from other members of the dataset. 
Typically, the outlier of a (Q)SAR model has a cross-validated 
standardized residual greater than three standard deviation units. 

Partition coefficient The ratio of equilibrium concentrations of a chemical distributed between 
two immiscible solvents. Frequently octanol and water are used to mimic 
a chemical distributing between lipid and aqueous phases in an 
organism, normally expressed as a logarithm to base 10, i.e., Log Kow, or 
Log P, a descriptor of hydrophobicity. 

Point of Departure  Commonly abbreviated POD, the point of departure is the dose-response 
point that marks the beginning of a low dose extrapolation. This point is 
often the lower bound on an observed incidence or on an estimated 
incidence from a dose-response model. 

Predictivity A measure of a model’s ability to make reliable predictions for chemical 
structures not included in the training set of the model. 

Read-across Endpoint information for one or more chemicals (the source chemical(s)) 
is used to predict the same endpoint for another chemical (the target 
chemical), which is considered to be “similar” in some way (usually on 
the basis of structural similarity or similar mode or mechanisms of 
action). Sometimes, it is also referred to as “data bridging.” In principle, 
read-across can be used to estimate physicochemical properties, 
toxicity, environmental fate, and ecotoxicity. For any of these endpoints, 
it may be performed in a qualitative or quantitative manner. 

QSAR Quantitative structure-activity relationship — a quantitative relationship 
between an endpoint (biological activity, e.g., toxicity) and one or more 
descriptors associated with the endpoint/activity. 

http://www.oecd.org/document/54/0,3746
http://www.oecd.org/document/54/0,3746
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SAR Structure-activity relationship — a qualitative relationship (i.e., an 
association) between a molecular (sub)structure and the presence or 
absence of a biological activity, or the capacity to modulate a biological 
activity imparted by another substructure. 

SMILES Simplified Molecular Input Line Entry System — a computer-compatible, 
standardized, two-dimensional description of chemical structure. The 
SMILES string is written by following a small number of rules. In brief, 
each non-hydrogen atom (hydrogen is only explicitly included in special 
circumstances) is denoted by its symbol; double and triple bonds are 
shown by “=” and “#” symbols, respectively; branches are shown in 
parentheses; and rings are opened and closed by the use of numbers. 
For example, CCO represents ethanol, and c1ccccc1N represents 
aniline (the digits indicate the beginning and ending of ring, and lower 
case “c” indicates aromatic carbon). 

Structural alert A molecular (sub)structure associated with the presence of a specific 
(usually adverse) biological activity. 

Substructure  A portion of the overall structure of a chemical that may be associated or  
   correlated with a biological activity or property of the chemical. 

TD50 The statistically derived median toxic dose of a drug or toxin at which 
toxicity occurs in 50% of the test population. 

Test set A set of chemicals, not included in the training set used to develop a 
QSAR, that is used to validate (assess the predictive ability of) the 
QSAR. It is sometimes called an “independent” or “external” test set or 
validation set. For the purpose of (Q)SAR validation, it is important that 
the test set has the same domain of applicability as the training set, and 
contains a sufficient number of chemical structures. 

Toxicity pathway A cellular response pathway that, when sufficiently perturbed, is 
expected to result in adverse health effects (NRC, 2007). Toxicity 
pathways are important components of adverse outcome pathways 
(AOPs). 

Training set A set of chemicals used to derive a QSAR. The data in a training set are 
typically organized in the form of a matrix of chemicals and their 
measured properties or effects observed in a toxicity test. A 
homogeneous training set is a set of chemicals which belong to a 
common chemical class or share a common chemical functionality or a 
common mechanism of action. A heterogeneous training set is a set of 
chemicals which belong to multiple chemical classes, or which do not 
share a common chemical functionality or common mechanism of action. 

Validation The testing of a (Q)SAR tool to assess its reliability and relevance. The 
OECD Guidance Document on the Validation of (Quantitative)Structure-
Activity Relationship (Q)SAR Models (OECD Series on Testing and 
Assessment No. 69) defines validation as the process by which the 
reliability and relevance of a particular approach, method, process or 
assessment is established for a defined purpose. 
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1. EXECUTIVE SUMMARY 
 

While pesticide regulatory agencies have traditionally relied on extensive in vivo 
and in vitro testing to support regulatory decisions on human health and 
environmental risks, these and other agencies have initiated the long-term 
investigation of Integrated Approaches to Testing and Assessment (IATA). The 
application of IATA could lead to the refinements, reduction, and/or replacement 
of conventional tests through the integration of existing knowledge bases on 
chemicals, biochemical and cellular assays, computational predictive methods, 
exposure studies, and other sources of information to identify targeted testing 
requirements or develop assessment conclusions. (Quantitative) Structure 
Activity Relationships represent an important set of predictive tools to be 
considered when applying IATA to pesticide risk assessments. 

Moving IATA from a long-term vision into mainstream practice for pesticide 
assessments will require the development and application of new predictive tools 
and the further development and broader application of existing tools such as 
(Q)SAR. In recognition of these requirements and the need to develop common 
approaches to IATA for the risk assessment of pesticides, the United States 
Environmental Protection Agency (US EPA) Office of Pesticide Programs (OPP) 
and the Pest Management Regulatory Agency (PMRA) of Health Canada have 
established a North American Free Trade Agreement (NAFTA) Joint Project on 
“21st Century Toxicology: Integrated Approaches to Testing and Assessment”. 

(Q)SAR is the study of the correlation between chemical structure and 
associated (biological) activity, with the ultimate goal of predicting the activity of 
untested chemicals based on structurally related compounds with known activity. 
The parentheses around the “Q” in (Q)SAR indicates that the term refers to both 
qualitative predictive tools (i.e., structure-activity relationships (SARs)) and 
quantitative predictive methods (i.e., quantitative structure-activity relationships 
(QSARs)). Although the term (Q)SAR is often used to refer to predictive models, 
especially computer-based models, (Q)SAR is actually inclusive of a wide variety 
of computerized and non-computerized tools and approaches. 

The development of this NAFTA (Q)SAR Guidance Document is a key activity 
under the NAFTA Joint Project. The purpose of this guidance document is to help 
pesticide evaluators to evaluate (Q)SAR related information and to identify the 
important issues that may be involved when incorporating (Q)SAR information 
into the risk assessment process. This document does not reproduce or replace 
the ever-expanding volume of journal articles, reports, documents, and textbooks 



 
Page 19 of 186 

that provide guidance on the development and application of (Q)SAR, but 
provides an introduction to the evaluation of (Q)SAR tools and their application to 
pesticide regulatory risk assessments. While the focus of this document is on the 
application of (Q)SAR to pesticide risk assessments, the principles and issues 
are general enough to be applied to other types of chemicals. Regardless of the 
type of risk assessment scenario, (Q)SAR experts should be consulted and peer 
review procedures used to ensure scientific excellence and rigor. 

The document is organized into eight sections including this executive summary. 

Section 2 provides an introduction to some current applications of (Q)SAR to 
pesticide risk assessments with an emphasis on the use of (Q)SAR by the US 
EPA OPP and the PMRA. It also includes a brief discussion of other regulatory 
applications of (Q)SAR at the US EPA, the US FDA, Health Canada and 
Environment Canada, the OECD, and the European Commission. Finally the 
overall purpose of the guidance document is discussed and a schematic is 
provided as guide to the contents of the document. 

The purpose of section 3 is to provide some brief background information on the 
definition of (Q)SAR, types of (Q)SAR tools and approaches, and some key 
issues associated with the development of (Q)SAR tools. In particular, the 
importance of data quality and mode/mechanism of action for toxicity information 
in the development of (Q)SAR models is highlighted. Also, while (computerized) 
(Q)SAR models are frequently cited in examples in this document, section 3 
illustrates that (Q)SAR actually consists of a range of tools and approaches. 

Section 4 focuses on the preliminary analysis of (Q)SAR predictions as one of 
the several potential sources of information to be integrated at the problem 
formulation stage of a pesticide assessment. Problem formulation for (Q)SAR 
essentially involves answering questions on the assessment context for (Q)SAR, 
the characteristics of the pesticide, the characteristics of the (Q)SAR tool and 
prediction, and what empirical data are available including any information on 
mode/mechanism of action for toxicity. 

The topic of section 5, evaluating whether a (Q)SAR prediction is adequate or “fit 
for purpose”, is an important component of applying a prediction to a pesticide 
assessment. Four key factors originally outlined by the European Commission: 
the scientific validity of the model, the applicability of the model to the query 
chemical, the reliability of the (Q)SAR result, and the relevance of the (Q)SAR 
model for the regulatory purpose are used to guide pesticide evaluators through 
the information to be considered when evaluating whether predictions from 
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(Q)SAR tools are adequate for consideration in pesticide assessments. Section 5 
also includes a discussion of the documentation of (Q)SAR tools and predictions. 

Section 6 briefly discusses approaches to combining information from multiple 
(Q)SAR predictions, advantages and disadvantages of combining predictions, 
selecting (Q)SAR tools for multiple predictions, and the evaluation of multiple 
predictions. Because different (Q)SAR tools may have different prediction 
paradigms and different strengths and limitations, combining predictions has the 
potential to increase the confidence in the overall prediction. It is also noted that 
combining predictions from multiple (Q)SAR tools does not eliminate the need to 
ensure that each prediction is adequate or fit for purpose and it is not always 
necessary to combine predictions. 

The National Academy of Sciences risk assessment paradigm (i.e., hazard 
identification, dose response assessment, exposure assessment, and risk 
characterization) provides the context for section 7 which emphasizes guidance 
on the integration of (Q)SAR tools into the hazard identification component of the 
risk assessment process for pesticides. Section 7 builds upon previous sections 
and includes a consideration of the findings at the problem formulation stage, 
evaluating empirical data versus (Q)SAR predictions, a consideration of mode of 
action data, the overall weight of evidence, and hazard identification, and risk 
communication. 

Section 8 provides conclusions and perspectives on the future vision for (Q)SAR 
and pesticides. It is noted that the conclusions of the NAS report on Toxicity 
Testing in the 21st Century: A Vision and a Strategy with respect to increased 
reliance on existing knowledge-bases for chemical classes and alternative testing 
methods is especially relevant for pesticide regulatory authorities and will require 
research on new testing technologies and integrated approaches to testing and 
assessment (IATA) for more efficient and effective reviews that don’t compromise 
public health and the environment. (Q)SAR tools are one example of an 
alternative method that could be applicable to IATA and the increasing use of 
these tools by pesticide authorities make it important to communicate a 
systematic and transparent approach to using (Q)SAR in pesticide assessments. 
This guidance document is consistent with the current hazard/risk assessment 
paradigm with an overall emphasis on not using (Q)SAR in isolation. In addition 
to the validity and relevance of the individual (Q)SAR tools and predictions, the 
defensibility of predictions depends on biological consistency and plausibility 
across all scientific lines of evidence in a holistic weight of evidence approach. 
Future applications will involve anchoring (Q)SAR predictions with what is known 
about chemical classes/categories, biological mode of action, toxicity pathways 
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and population effects. Eventually, (Q)SAR predictions will be built into larger 
conceptual frameworks or Adverse Outcome Pathways (AOPs) that delineate the 
documented, biologically plausible, measurable, and testable processes by which 
a chemical induces molecular perturbations and subsequent biological responses 
that are relevant for risk assessment. 

In addition to the eight sections discussed above, the document also includes an 
appendix of the web pages for a number of national and international 
organizations that may be useful to evaluators seeking additional information on 
general (Q)SAR concepts, and the development, validation, and evaluation of 
(Q)SAR tools and predictions (Appendix I), an appendix summarizing the content 
of the European Commission’s (Q)SAR model and prediction reporting formats, 
examples of detailed information templates that could be considered when 
(Q)SAR predictions are used as critical sources of data in pesticide assessments 
(Appendix II), and an appendix of several examples of the application of (Q)SAR 
tools and methods to pesticides and other chemicals (Appendix III).



 
Page 22 of 186 

2. INTRODUCTION 

 

2.0 Current Applications of (Q)SAR in Pesticide Risk 
Assessments 

In general, pesticide regulatory programs have extensive testing requirements as 
part of the registration process and as a result, they have not had to rely heavily 
on predictive methods such as (Q)SAR. However, this is changing over time as 
pesticide agencies have begun to investigate alternative testing methods such as 
(Q)SAR to help enhance the efficiency of their assessment processes. This is 
particularly the case for the investigation and application of Integrated 
Approaches to Testing and Assessment (IATA) to pesticide risk assessments. 
IATA have the potential to integrate existing data on pesticides with the results of 
alternative methods (e.g., biochemical/cellular assays, (Q)SAR) leading to the 
refinement, reduction, and/or replacement of conventional test requirements. 

Provided below is a brief overview of some of the current applications of (Q)SAR 
by pesticide regulatory agencies. 

2.0.1 United States Environmental Protection Agency, Office of Pesticide 
Programs (US EPA OPP) 

2.0.1.1 Application of (Q)SAR to Pesticide Metabolites and Degradates 

The United States Environmental Protection Agency, Office of Pesticide 
Programs (US EPA OPP) generally considers that the toxicity and ecotoxicity 
studies required to support the evaluation of pesticides adequately address the 
mammalian and environmental hazard profiles. The agency does not typically 
require separate toxicity testing of pesticide plant or livestock metabolites or 
environmental degradates even though there may be much greater human and 
non-human exposure to the metabolites and degradates than the parent 
pesticides. Also, historically, the US EPA OPP has typically included only major 
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(>10%) pesticide metabolites and degradates in human dietary and 
environmental risk assessments. 

The advent of the Food Quality Protection Act (FQPA) has necessitated an 
increased refinement of pesticide risk assessments including a closer scrutiny of 
all metabolites and degradates. In order to determine whether these metabolites 
and degradates should be included in human dietary and environmental risk 
assessments in the absence of detailed toxicity data, the US EPA OPP has relied 
upon various types of structural similarity evaluations. Also, more recently, the 
agency has explored the use of (Q)SAR models to predict the potential toxicity of 
pesticide metabolites/ degradates in order to provide scientific rationales and 
support for requiring additional toxicity testing, to substantiate the use of 
metabolites/degradates in estimates of total toxic residues, or to exclude 
metabolites/degradates from further testing based on a lack of toxicity concerns. 
Similarly, the US EPA OPP has made sporadic use of bridging techniques and 
structure activity relationships to identify whether additional ecotoxicity testing of 
environmental degradates should be required and whether these residues should 
be included in environmental exposure estimates for pesticides. 

Since empirical data are typically available on the parent pesticide, one of the 
key factors considered when determining whether (Q)SAR model predictions for 
the toxicity or ecotoxicity of metabolites and degradates are reliable enough to be 
used is how well predictions from the same model for the parent pesticide 
compare to the empirical data for the parent pesticide. 

2.0.1.2 Application of (Q)SAR to Antimicrobial Agents 

The US EPA OPP has several on-going initiatives and projects related to the 
application of (Q)SAR to antimicrobial pesticide agents and one of the most 
important initiatives is the proposed revised testing requirements for antimicrobial 
agents (40CFR158 subpart W). In this proposed rule, EPA has indicated that it 
will consider any submission using appropriate SAR analyses and QSAR 
modeling to supplement or fulfill data requirements for antimicrobial pesticide 
chemicals. 

Approaches with concepts similar to structure activity relationships (SARs) are 
also being utilized in a pilot project on non-animal eye irritation tests for 
antimicrobial products with cleaning claims. The purpose of this project is to 
assess the predictive performance of registrant submitted non-animal eye 
irritation studies for antimicrobial agents by having registrants include any 
available Draize rabbit test results for structurally related compounds in their 
submissions.  
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There is also an ongoing threshold of toxicological concern (TTC) project that is 
designed to determine a level of concern for various chemical classes of 
antimicrobial pesticides. Human exposures below the TTC would not be 
considered to be of concern and no additional toxicological data would be 
required. SAR will be used to characterize the toxicity of all chemicals within 
specific classes of antimicrobial chemicals. This is an American Chemistry 
Council (ACC) Biocide Panel sponsored project conducted through the 
International Life Sciences Institute (ILSI) with the US EPA participating on the 
ILSI Steering Committee and Expert Working Group. 

2.0.1.3 Application of (Q)SAR to Ecological Risks from Pesticides 

The US EPA OPP estimates chemical properties, environmental fate parameters, 
and ecological toxicity values for pesticides, inert compounds, and degradates 
using the EPI Suite and the Assessment Tools for Ecological Risk (ASTER) 
software on a case-by-case basis when measured values are not available from 
studies submitted to the Agency or from the open literature. In EPI Suite, the 
organic carbon partition coefficient (PCKOC) model is used to estimate soil 
mobility, the KOWWIN model is used to estimate the octanol-water partition 
coefficients, and the BCFWIN model is used to estimate bioconcentration factors. 
The Ecological Structure Activity Relationships (ECOSAR) component of EPI 
Suite and ASTER are used to estimate pesticide ecotoxicity values. These 
estimates may be used to support human dietary and ecological risk 
assessments although their use, at this time, is not uniform across the US EPA 
OPP since formal guidance has not yet been developed. Also, in evaluations 
against measured values, the organic carbon partition coefficient (PCKOC) 
model component of EPI Suite has acceptable predictive performance for organic 
pesticides, but does not perform well for ionic compounds, organometallics, and 
highly fluorinated pesticides. In addition, while ASTER contains models for five 
aquatic species (i.e., fathead minnow, bluegill sunfish, water fleas, rainbow trout, 
and channel catfish), it does not support models for terrestrial species. Similar to 
ASTER, ECOSAR only predicts toxicity for aquatic species and cannot be used 
to profile inorganic or organometallic chemicals. In the case of environmental 
degradates, since empirical data are typically available on the parent compound, 
(Q)SAR-generated toxicity estimates for the parent compound are compared to 
the available empirical data in order to decide on whether it is appropriate to use 
(Q)SAR models to estimate the potential ecological toxicity of the environmental 
degradates. When determining which (Q)SAR model to use, consideration is also 
given as to which model(s) has the best predictive performance. (Q)SARs have 
been used by the US EPA OPP to address data gaps in ecological risk 
assessments on an ad hoc basis. 
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For ecological risk assessments, OPP has made increasing use of bridging 
techniques and structure activity relationships (SARs) to identify whether 
additional testing of degradates/transformation products should be required and 
whether these residues should be included in modeling exposure estimates. 

2.0.2 Pest Management Regulatory Agency (PMRA), Health Canada 

The Pest Management Regulatory Agency (PMRA) of Health Canada takes into 
account the same kinds of considerations as the US EPA OPP when addressing 
the potential toxicity of pesticide metabolites/degradates of chemical pesticides. If 
metabolites or degradates of a pesticide are identified in plants or soil, but not in 
rat metabolism studies, the agency will require the submission of available 
toxicity data on those metabolites. Also, toxicity data on metabolites/degradates 
are sometimes voluntarily submitted to the PMRA by applicants. In terms of the 
application of (Q)SAR, the PMRA can include a request for (Q)SAR predictions 
on metabolites/degradates when requiring the submission of existing data and 
can also generate (Q)SAR predictions to help identify potential concerns. 

2.1 Other Regulatory Applications of (Q)SAR 
Unlike pesticide regulatory agencies, programs involved in the regulatory 
assessment of industrial chemicals, food additives, and other chemicals often 
only have a limited amount of data available to support their assessments. 
Consequently, many of these programs have a longer history with the 
development and use of (Q)SAR tools and approaches. 

Several examples of non-pesticidal regulatory applications of (Q)SAR at the US 
EPA, the US FDA, Health Canada and Environment Canada, the OECD, and the 
European Commission are summarized below. This is not intended as an 
exhaustive listing of the uses of (Q)SAR by regulatory agencies, but it should 
give the reader some context on the development and application of (Q)SAR 
tools and approaches by a number of prominent national and international 
agencies. For further information on current developments and applications of 
(Q)SAR by various national and international agencies, the reader is directed to 
the various websites listed in Appendix I. 
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2.1.1 US EPA, Office of Pollution Prevention and Toxics (OPPT) 

(Q)SAR methods have been used for identification of potential mutagenic, 
carcinogenic and other potential health and ecotoxicological hazards and 
subsequent regulation of new industrial chemicals (premanufacturing notification, 
or PMN, chemicals) for more than two decades by the US EPA’s Office of 
Pollution Prevention and Toxics (OPPT) under the Toxic Substances Control Act 
(TSCA) which regulates all industrial chemicals in US commerce. Under TSCA, 
OPPT is charged with assessing, and if necessary, regulating all phases of the 
life cycle of industrial chemicals including manufacturing, processing, use and 
disposal (OECD 2007b). 

OPPT has also developed a number of publicly available (Q)SAR tools that are 
used in regulating substances under TSCA. Examples include the EPI Suite 
program which includes several models for estimating physical-chemical 
properties and environmental fate parameters. EPI Suite also contains the 
ECOSAR model for predicting ecotoxicity. Other tools developed by OPPT 
include Oncologic, an expert system for predicting carcinogenicity, and an analog 
identification tool (AIM) for identifying structural analogs. 

2.1.2 US EPA, Office of Research and Development 

The US EPA Office of Research and Development (ORD), National Health and 
Environmental Effects Laboratory (NHEERL), Mid-Continent Ecology Division 
(MED) has been developing (Q)SAR models and related databases since the 
1980s. Examples include a database of ecotoxicity information (ECOTOX) as 
well as ASTER3, a collection of databases and (Q)SAR models for toxicity to 
aquatic species. ASTER also includes models to estimate physical-chemical 
properties, bioconcentration, and environmental fate. 

Research at ORD on receptor based toxicity mechanisms in aquatic species has 
led to the development of a QSAR based expert system for predicting the 
estrogen receptor binding potential of data poor pesticidal inerts and 
antimicrobial pesticide active ingredients. The system is designed to prioritize 
chemicals for further testing in the US EPA Endocrine Disruptor Screening 
Program (EDSP) and it has been incorporated into the OECD QSAR Toolbox. 

 

                                            
3 ASTER is a US EPA intranet application only accessible to US EPA staff and contractors. 
http://www.epa.gov/med/Prods_Pubs/aster.htm 
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2.1.3 US FDA, Office of Food Additive Safety 

The US Food and Drug Administration’s (FDA) Office of Food Additive Safety 
(OFAS) has utilized (Q)SAR analysis in the pre-market review of food contact 
substances for many years and has recently implemented the use of multiple 
commercial and publicly available (Q)SAR software models (Lo Piparo et al., 
2011; Arvidson et al., 2010; Bailey et al., 2005). OFAS is also investigating the 
potential application of metabolism prediction software to the review of food 
contact substances. OFAS uses (Q)SAR analysis as a decision support tool in 
conjunction with open literature data and submitted test results, and (Q)SAR may 
also be used to identify the need for additional toxicity testing during pre-
submission consultations for food contact substances. 

2.1.4 Health Canada and Environment Canada 

Health Canada and Environment Canada have extensive experience with the 
use of (Q)SAR to address selected data requirements for new substances under 
the Canadian Environmental Protection Act (CEPA). Adequately validated 
(Q)SAR predictions may be submitted by notifiers or in some cases generated by 
government evaluators to address physical-chemical properties, 
persistence/bioaccumulation, human health effects, ecotoxicity endpoints and 
other endpoints included in the New Substances notification requirements under 
CEPA. For instance, predictions are sometimes used for assessing substances 
with low production volumes and in cases where the substance cannot be 
isolated in pure enough form to provide meaningful test results. (Q)SAR data are 
generally combined with empirical data and expert judgment in a weight of 
evidence approach. (Q)SAR was also utilized by both departments for the 
categorization (prioritization) of existing substances on the Domestic Substances 
List (DSL) for further assessment. Environment Canada used (Q)SAR predictions 
to assist with determinations of persistence, bioaccumulation and inherent 
toxicity to non-human organisms from existing substances while Health Canada 
used (Q)SAR to generate physical-chemical data to support determinations of 
greatest potential for human exposure and as part of the hazard tools used to 
prioritize chemicals for inherent toxicity to humans when data for specific 
endpoints were not available. (Q)SAR can also be used by both departments as 
supporting information in screening level risk assessments for DSL substances 
when experimental data are not available. 

2.1.5 Organization for Economic Cooperation and Development (OECD) 

Starting in the 1990s, the Organization for Economic Cooperation and 
Development (OECD) began the investigation of various (Q)SAR methodologies 
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with the aim of facilitating the application of (Q)SAR approaches in regulatory 
settings and their regulatory acceptance. One of the most important products 
from the OECD (Q)SAR project has been the principles for the validation of 
(Q)SAR models (OECD, 2004). Comprehensive guidance has also been 
produced on the development and application of grouping methods for chemicals 
including chemical categories, read-across and trend-analysis (OECD, 2007a). 

The OECD has also done extensive work on software for identifying structural 
characteristics and mode/mechanism of action data on chemicals, systematically 
grouping them into chemical categories and applying read-across, trend analysis 
and (Q)SARs to fill data gaps. The end result of these efforts, the OECD QSAR 
Toolbox, is intended for use by government agencies and stakeholders for 
addressing gaps in the toxicity and ecotoxicity databases used in the hazard and 
risk assessment of chemicals and is freely available (OECD, 2011a). 

2.1.6 European Commission Joint Research Centre 

The European Union's Registration, Evaluation, and Authorization of Chemicals 
(REACH) legislation is designed to improve the protection of human health and 
the environment while maintaining competitiveness and increasing innovation in 
the European chemicals industry. Under the REACH legislation there is a strong 
emphasis on the use of alternative testing methods to refine, reduce or replace 
conventional animal testing. The European Commission Joint Research Centre 
(JRC) Computational Toxicology Group is involved in projects to promote the 
availability for regulatory application of validated computational methods for 
assessing environmental distribution and fate, and the effects on human health 
and the environment in support of the REACH legislation, the European 
Cosmetics Directive and the assessment of food safety (Mostrag-Szlichtyng et 
al., 2010). The group conducts research on the development of freely available 
(Q)SAR tools (e.g., Toxtree, DART, Toxmatch), regulatory applications of 
(Q)SARs and grouping approaches, the use of computational methods to assess 
the properties of nanomaterials, and the consideration of molecular interactions 
in the assessment of toxicity. The JRC has also developed templates for 
documenting the application of the OECD (Q)SAR validation principles to 
(Q)SAR models including the (Q)SAR Model Reporting Format (QMRF) (EC 
2008a) and (Q)SAR Prediction Reporting Format (QPRF) (EC 2008b), and is 
leading the development of a reporting format for describing key 
events/intermediate effects in AOPs (OHT 201) in collaboration with the OECD 
and the European Chemicals Agency (ECHA). The Joint Research Centre has 
also established a database of (Q)SAR models. 
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2.2 Purpose of the NAFTA (Q)SAR Guidance Document 

The purpose of this guidance document is to help pesticide evaluators to 
evaluate the (Q)SAR-related information and to identify the important issues that 
may be involved when incorporating (Q)SAR information into the risk assessment 
process. It is recognized that there is an ever-expanding volume of journal 
articles, national and international reports and guidance documents, and 
academic textbooks on the subject of (Q)SAR. This document does not 
reproduce or replace these journal articles, reports, guidance documents, and 
textbooks on (Q)SAR, but provides an introduction to the evaluation of (Q)SAR 
tools and their application to pesticide regulatory risk assessments. 

(Q)SAR predictions can be considered as one of the many potential sources of 
data for the weight of evidence approaches used in the risk assessment of 
pesticides. Similar to other sources of data considered, the defensibility of the 
use of (Q)SAR predictions can be related to the consistency of the predictions 
generated from the various (Q)SAR tools used as well as the consistency 
between the predictions and the results of other lines of evidence considered in 
the weight of evidence approaches. 

While many of the illustrative examples in this document involve the application 
of (Q)SAR to the prediction of toxicity in pesticide hazard assessments, the 
general principles discussed can also be applied to (Q)SAR predictions for 
ecotoxicity, physical chemical parameters, and other activities and properties of 
relevance to pesticide assessments. Similarly, although many issues are raised 
in the context of the prediction of apical endpoints, pesticide evaluators should 
recognize that most of these issues will also apply when (Q)SAR is eventually 
used in IATA to predict key events related to mechanism/mode of action for 
toxicity and AOPs such as receptor binding, gene activation, enzyme 
inhibition/activation, etc. 

Although this document focuses primarily on (Q)SAR in the context of pesticide 
risk assessments, the principles and issues discussed are general enough to 
also be broadly applicable to the use of (Q)SAR in risk assessments for other 
types of chemicals. Regardless of the type of assessment that (Q)SAR is being 
applied to, it is recommended that experts in the (Q)SAR field be consulted and 
that adequate peer review procedures be in place to ensure overall scientific 
excellence and rigor. 

The overall structure of this guidance document is presented in schematic form in 
Figure 2–0. The document is organized to navigate the pesticide evaluator 
through sections that provide an introduction to (Q)SAR and (Q)SAR tools, and 
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information on problem formulation and (Q)SAR, evaluating the adequacy of 
(Q)SAR predictions, combining information from multiple predictions, and 
incorporating predictions into weight of evidence assessments. Each section can 
also be considered as stand-alone guidance on its particular subject area. 

As mentioned previously, Appendix I provides a listing of the websites of a 
number of national and international agencies involved in the development and 
application of (Q)SAR tools and approaches. These websites could be a useful 
starting point for those who are interested in learning more about (Q)SAR and 
obtaining more guidance on its use beyond what is presented in this document. 
Appendix II summarizes the key features of the European Commission’s (Q)SAR 
model and reporting formats, and Appendix III provides several case study 
examples of the application of (Q)SAR to pesticides and other chemicals. 
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Figure 2–0: (Q)SAR Guidance Document Schematic 
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3. BACKGROUND INFORMATION ON (Q)SAR 

 

3.0 Introduction 
The purpose of this section is to provide some brief background information on 
the definition of (Q)SAR, types of (Q)SAR tools and approaches and some key 
issues associated with the development of (Q)SAR tools. In particular, the 
importance of data quality and mode/mechanism of action in the development of 
(Q)SAR models is highlighted. Also, while (computerized) (Q)SAR models are 
frequently cited in examples elsewhere in  this document, this section illustrates 
that (Q)SAR actually consists of a range of tools and approaches. 

3.1 Definition of (Q)SAR 
(Q)SAR is the study of the correlation between chemical structure and 
associated biological activity, with the ultimate goal of predicting the activity of 
untested chemicals based on structurally related compounds with known activity 
(Cronin, 2010). Structure-activity relationships (SARs) are qualitative 
relationships, often in the form of structural alerts that incorporate molecular 
substructures or fragments related to the presence or absence of activity 
(Dearden et al., 2009). Quantitative structure-activity relationships (QSARs) 
attempt to quantify the relationship between an aspect of chemical structure and 
an activity or property imparted by that structure. Chemical structure is often 
described by descriptors (e.g., electrophilicity, hydrogen bonding, molecular 
fragments) or physical-chemical properties (e.g., Log P) which are then used to 
develop a mathematical correlation between a group of structures and a defined 
activity or endpoint. The mathematical correlations usually take the form of 

BACKGROUND INFORMATION ON (Q)SAR 

Topics Discussed in this Section: 

 Definition of (Q)SAR 

 Types of (Q)SAR tools and approaches  

 Importance of data quality in (Q)SAR model development 

 Importance of mode/mechanism of action in (Q)SAR model 
development 

 Examples of (Q)SAR tools and their applications 
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statistical algorithms developed through a variety of techniques (e.g., univariate 
regression, multiple linear regression, partial least squares analysis). 

3.1.1 Defining Similarity 

Structurally similar chemicals or structural analogs usually have similar chemical 
structures but with one or more atoms or groups of atoms replaced with other 
atoms or groups of atoms. Figure 3-1 lists the chemical structures of two 
pyrethroid insecticides, deltamethrin and cypermethrin. These two structural 
analogs share a cyclopropane carboxylic acid substructure that is common to 
most pyrethoid structures. 

Figure 3–1: Example of Structural Analogs 

 

 

Listed below are some common criteria used to identify structurally similar 
substances. Many of these have been proposed by the OECD and the US EPA 
as a basis for building chemical categories (OECD, 2007a; US EPA, 1999). 

• a common functional group or sub-structure (e.g., phenols, aldehydes) 

• a common precursor or break-down product, which can result from 
structurally-similar chemicals; this approach can be used to examine related 
chemicals such as acids/esters/salts. (e.g., short-chained alkyl-methacrylate 
esters which are metabolized to methacrylic acid) 

• an incremental or constant change in a chemical structure (e.g., increased 
carbon chain lengths; typically used for physicochemical properties such as 
boiling point) 

 
• common constituents or chemical classes, such as similar carbon range 

numbers, often used with “substances of unknown or variable composition, 
complex reaction products or biological material” (UVCBs) 

• functionally similar chemicals or functional analogs that have similar biological 
activities (e.g., toxicity endpoints, pesticidal mode of action) or physical-
chemical properties (e.g., Log P, solubility, vapour pressure). Note that 

Deltamethrin Cypermethrin 
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functional analogs are not necessarily structural analogs and vice versa 
(Saliner et al., 2005; Russom et al., 1997). 

Table 3–1 lists examples of pesticidal modes of action for several examples of 
insecticides. Most pesticidal modes of action include more than one chemical 
class. Consequently, ‘similarity’ can be based on at least three aspects of a 
pesticide, (i) pesticidal mode of action (e.g., acetylcholinesterase inhibition), 
(ii) pesticide classification (e.g., insecticide) and (iii) chemical 
classification/common functional group (e.g., carbamate, organophosphate, etc.). 
Therefore, a weight of evidence approach can be important when defining 
similarity for the purpose of developing (Q)SAR tools and approaches. As 
discussed in example 5, Appendix III, information on the pesticidal mode of 
action and structural similarity can be combined with pharmacokinetic and 
empirical animal study results in a weight of evidence approach in pesticide 
assessments. 

Table 3–1: Pesticidal Mode of Action and Associated Chemical Class for a 
Select Group of insecticides (adapted from Insecticide Resistance 
Action Committee (IRAC); http://eclassification.irac-online.org/) 

Pesticidal Mode of Action Chemical Class 

Acetylcholine esterase inhibitor Carbamates 

Organophosphates 

GABA-gated chloride channel antagonists Cyclodiene organochlorines 

Phenylpyrazoles (Fiproles) 

Sodium channel modulators Pyrethroids  

Organochlorines 

Nicotinic acetylcholine receptor agonists Neonicotinoids 

Juvenile hormone mimics Juvenile hormone analog 

Carbamates 

Pyridine insect growth regulator 

 

A common mathematical approach to defining structural similarity is the use of 
algorithms or similarity indices that calculate similarity based on pattern 

http://eclassification.irac-online.org/
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matching. These estimation tools rank chemicals based on (structural) 
characteristics or features of each chemical that are similar (match/overlap), and 
features that are dissimilar (mismatch/difference) (Saliner et al., 2005; Monev, 
2004.). Figure 3–2 provides a schematic of the measures that can be described 
in similarity indices. Similarity indices can utilize two- or three-dimensional 
structural information and examples include correlation-type indices (e.g., 
Tanimoto Index (also known as Jaccard coefficient), Hodgkin Ricards Index, 
Cosine-similarity index), dissimilarity measures (e.g., Euclidean distance index, 
Hamming distance), and composite measures of similarity and dissimilarity (e.g., 
Hamann measure, Yule measure). For an overview of these approaches see 
Saliner et al., 2005; Monev, 2004; and Urbano-Cuadrado et al., 2008. It is also 
important to know that a high degree of similarity based on mathematical 
similarity indices does not necessary indicate there are similarities in the mode of 
action (MOA) for the concerned effects. 

Figure 3-2: Measures that can be Described in Similarity Indices 

a b dc

Comparing Chemicals A and B

• a = number of features present in A and absent in B

• b = number of features present in B and absent in A

• c = number of features common to both A and B

• d = number of features absent from both A and B

Chemical A Chemical B

 

3.2 Types of (Q)SAR Approaches 
Although the term (Q)SAR is often used to refer to predictive models, especially 
computer-based models, it should be noted that (Q)SAR is actually inclusive of a 
wide variety of tools and approaches such as analogs, chemical categories and 
computer-based or non-computer based SAR/QSAR models. A brief overview of 
these tools and approaches is provided below. 
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3.2.1 Analogs 

Analog approaches have traditionally involved predicting an endpoint or property 
of one chemical based on the available data for the same endpoint or property of 
a similarly structured chemical (OECD, 2007a). An example of an analog 
technique is bridging or extrapolating the results of toxicological studies on a 
parent pesticide compound to a metabolite or transformation product of that 
same parent pesticide. When using an analog approach for bridging from a 
parent pesticide to metabolites or transformation products, it is important to have 
sufficient evidence to link a particular substructure or substructures to the toxicity 
endpoint of interest, and that the substructure is conserved from the parent 
pesticide to the metabolite or transformation product. 

3.2.2 Chemical Categories 

A chemical category is defined as a group of substances with physical-chemical, 
human health, or ecotoxicological attributes that are similar or follow a pattern as 
a result of structural similarity (OECD, 2007a). As discussed in section 3.1.1, the 
US EPA and the OECD have identified a number of ways of identifying similar 
chemicals for the purpose of building categories. Both agencies have also 
developed a consistent approach for defining chemical categories (OECD, 
2007a; OECD, 2009; US EPA, 1999). Chemicals within a category are not 
required to be similar with respect to all properties, and a substance can belong 
to more than one chemical category. In most instances, chemical category 
approaches are based on a weight of evidence, considering multiple lines of 
information from many tested chemicals and inferring information for an untested 
substance. 

When using the chemical category approach, it is common to construct a matrix 
table as depicted in Figure 3–3. The matrix consists of chemical category 
members in each of the columns and corresponding sets of properties and/or 
activities in each of the rows. The solid dots are properties/activities for which 
reliable data exist and the hollow dots are data gaps. Data gap filling in 
categories can be done using techniques such as read-across, interpolation, 
extrapolation, and trend analysis (see examples in Figure 3–3). Read-across is 
estimating the activity/property for one untested chemical from a tested chemical 
or chemicals. Read-across can be qualitative or quantitative. Interpolation is the 
estimation of a property/activity for a data poor category member based on 
existing data from other category members on both sides of the data poor 
chemical in the matrix. Extrapolation is estimating an activity/property for a 
chemical that is near or at the boundary of the category based on data for other 
category members. Extrapolation is more prone to error than interpolation, 
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especially when the boundary of the category is difficult to define. The 
observation of a quantitative trend (increasing, decreasing, or constant) in the 
experimental data for a given endpoint across chemicals in a category can also 
be used as the basis for interpolation or extrapolation (i.e., trend analysis). In 
addition, it is possible to develop a QSAR within a chemical category by plotting 
the activities versus the properties of chemicals with empirical data. By using a 
combination of tools, i.e., read-across, trend analysis and (Q)SAR, the matrix of 
properties/activities for chemicals under consideration can be rendered less 
uncertain through the greater use of existing data (OECD, 2007a). 

Figure 3–3: A Schematic of a Chemical Category Matrix Table 
(modified from van Leeuwen et al., 2009) 

 

Chemical 4Chemical 3Chemical 2Chemical 1

Activity 4

Activity 3

Activity 2

Activity 1

Property 4

Property 3

Property 2

Property 1 SAR / read-across

Interpolation

Extrapolation

Trend analysis / QSAR

Empirical data

Missing data

 

 

Chemical category approaches have been used for assessing chemicals with 
data gaps by the US EPA’s OPPT, in the US EPA HPV Challenge Program, 
under the REACH legislation, and in OECD SIDS program (van Leeuwen et al., 
2009). Additional examples of categories can be found in Enoch, 2010; Enoch et 
al., 2009; US EPA, 1999; and Worth and Patlewicz, 2007. 

3.2.3 (Q)SAR Models 

(Q)SAR models generally refer to computerized systems developed to predict 
activities or properties of chemicals using SAR or (Q)SAR methods. There are 
numerous commercial (i.e., available for a fee) and non-commercial (i.e., 
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freeware) models available for predicting human health related and 
environmental activities, physical-chemical properties, and other parameters. 

SAR models generally follow a process of identifying active and inactive 
chemicals based on the presence or absence of specific structural features. For 
example, SAR/expert systems use decision logic to categorize potential activity 
of untested chemicals based on expert knowledge gathered from the analysis of 
data on tested chemicals. Some systems use a series of questions that the user 
responds to or the system automatically responds to. The questions may be 
based on databases of structural alerts or chemical parameters known to be 
associated with biological activity and can capture multiple types of interactions 
within a specific biological system. 

(Q)SAR models usually consist of computerized mathematical correlations (i.e., 
algorithms) that relate descriptors of chemical structure or physical-chemical 
properties to an activity or property to be predicted. The descriptors or physical-
chemical properties for a chemical of interest may be input by the user or 
generated by the model and then used in the algorithm to make a prediction. For 
example, in a QSAR model developed to use the octanol and water partition 
coefficient (Kow) to estimate the permeability coefficient through the skin for a 
chemical in water (Kp), the Kow is the descriptor which can be a measured value 
or estimated by the model (US EPA, 2007). QSAR models can produce 
qualitative predictions of activity/inactivity or quantitative (continuous) values 
related to biological activity (e.g., receptor binding affinity, acute oral LD50 in rats, 
etc.) or other parameters (e.g., bioconcentration factor). QSAR models generally 
rely on data for many chemicals (i.e., training sets) for the development of the 
algorithms used to predict the activity of a single chemical lacking data. 

In addition to classifying (Q)SAR models as relying on SAR versus QSAR 
approaches, they can also be considered in terms of statistical versus 
mechanistic approaches and global versus local approaches. In general, 
statistically-based (Q)SAR models rely on a statistical association between 
structure and activity, can be developed objectively with little mechanism of 
action expertise, are useful for detecting structural features/molecular descriptors 
predictive of toxicity, but may be noisier and tend to perform poorer for endpoints 
with multiple mechanisms. Mechanistically-based models can focus on key 
features that provide more clear-cut relationships and mechanistic backing but 
generally require considerable expert knowledge of the relationship between 
mechanism of action and descriptors of chemical structure, may be subjective, 
and could have high levels of uncertainty if the mechanism is unclear or 
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presumptive. Ideally, (Q)SAR models should strive to achieve statistical 
association but have a mechanistic foundation. 

Local QSAR models are generally developed for individual classes of chemicals. 
Their training sets usually consist of highly structurally homogeneous or 
congeneric chemicals or classes of chemicals with similar known biological 
activity/function (e.g., peroxisome proliferators). Local models require fewer 
training set chemicals and tend to perform better, presumably because they are 
more likely to focus on a single mechanism of action. However, they are often 
limited in scope to a small subset of narrowly defined chemicals. Global models 
are generally derived using training sets of structurally heterogeneous or non-
congeneric chemicals. Due to the diversity of the training set chemicals, these 
models often cover a range of different mechanisms of action, usually resulting in 
poorer predictive performance than local models, unless the training sets are 
subdivided based on mechanism of action. Global predictive models tend to be 
more adept in discovering new insights, but may be more likely to yield incorrect 
results if the predicted chemical structure is not well-represented in the training 
set. Several publications have investigated the ability of global and local (Q)SAR 
approaches to fulfill regulatory requirements (e.g., EC , 2010; Yuan et al., 2007; 
and Worth et al., 2011). 

3.3  Importance of Data Quality in (Q)SAR Model Development 
Developing (Q)SAR models depends on experimental data, molecular 
representation (2-D or 3-D structures), availability of chemical descriptor or 
parameter data (measured or calculated) associated with structure, and fitting 
relationships (e.g., algorithms) to the data (Bradbury et al., 2003; Perkins et al., 
2003; Tong et al., 2003; Walker et al., 2003). Among these factors, experimental 
data are generally the most important determinants of the accuracy of the 
predictions from (Q)SAR models as the confidence in a model can be no greater 
than the understanding of, and confidence in, the underlying data. 

In (Q)SAR model development, usually a set of chemicals with reliable data are 
collected for a particular biological/chemical activity. Typically the original test 
data are randomly separated into a training set and a validation set, with the 
training data set used to develop a model and the validation data set used to test 
the assumptions that the model works for chemicals not involved in the 
development of the original model (Leonard and Roy, 2006). 

Model training sets can be assembled prospectively or retrospectively. In the 
prospective approach bioassays are developed and optimized for testing the type 
of chemicals for which the (Q)SAR predictions are needed. Mechanistic 
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information on the training set chemicals can also be obtained prospectively. In 
the more commonly used retrospective approach data are collected from readily 
available sources (e.g., the open literature). This often results in noisier 
predictions because of the lack of control or consistency in study protocols, 
interpretation criteria, etc., although this can be compensated for by evaluating 
the available data and selecting only consistent higher quality studies (i.e., 
chemical identity/form confirmed, concentrations/purity measured, standard test 
protocols, assays optimized for the type of chemicals, etc.). Also, it is important 
to verify that the identities of the chemicals in the training set correspond to their 
structural representations used in the predictions. Sometimes information on the 
metabolism of the chemicals tested and mechanisms of action can also be 
obtained retrospectively to help enhance the interpretability of the predictions. 

The importance of data quality in (Q)SAR model development is also discussed 
further in section 5.1.1 of this document. 

3.4 Importance of Mode/Mechanism of Action in (Q)SAR Model 
Development 

An understanding of a chemical’s mode/mechanism of action is highly sought 
when developing (Q)SARs. Mode/mechanism of action considerations can help 
in the selection of appropriate molecular descriptors or physicochemical 
properties that are associated with activity, determination of whether the training 
set is applicable to the chemicals to be predicted, separation of the training set 
into more mechanistically homogenous groups to help improve predictive 
performance, and the interpretation of model outliers. An understanding of 
mode/mechanism of action can also provide support for predictions, help in the 
assessment of the human significance of predictions of toxicity in laboratory 
animals, and help to identify and prioritize additional testing to fill data gaps. 

One example of the utility of mode/mechanism of action data in (Q)SAR model 
development is a study by Russom et al. (1997). A diverse dataset of more than 
600 chemicals was divided into mechanistic groups prior to developing (Q)SARs 
for fathead minnow acute toxicity. Combining all of the chemicals into a single 
training set would have resulted in a much poorer correlation of the LC50 values 
to the chemical parameter, log Kow, which in turn, would have resulted in much 
poorer predictive performance. 

An understanding of mechanistic considerations is especially important for 
complex biological systems which may have metabolism and chemical kinetics 
adding to the complexity. In general, the less complex the biological system, the 
greater the confidence that the structure of the chemical is directly related to the 
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observed activity and that the relationship can be reliably modeled. For example, 
in vitro systems (e.g., Ames mutagenicity) are often less complex and more 
reliably modeled than many in vivo systems (e.g., carcinogenicity, teratogenicity). 
However, this is not always the case as in vivo fish acute toxicity LC50 values are 
well predicted for several modes of action because chemical concentration in 
water is a good surrogate for chemical activity in the blood (MacKay et al., 1983). 
Also, if in vitro systems include metabolic components, their complexity for 
(Q)SAR development will increase. 

The importance of mode/mechanism of action information in (Q)SAR model 
development is also discussed further in section 5.1.1.5 of this document. 

3.5 Examples of (Q)SAR Tools and their Applications 
This section is not intended to provide an exhaustive overview of computational 
tools available via government, open access, or commercial sources, but rather 
an overview of the types of tools that currently exist. 

Several reviews have been written on the types of tools available (EC, 1995a,b; 
Hulzebos et al., 1999; Jensen et al., 2008; Pavan et al., 2005a,b; Rorije and 
Hulzebos, 2005; Tsakovska et al., 2005, 2008), but it should be kept in mind that 
the inventories of available tools is constantly changing with emerging research 
in this area. 

With the development of Simplified Molecular Input Line Entry System (SMILES) 
notation (Weininger, 1988) as a means to identify structure information in a 
computer readable format, and the advancement of desk top computing in the 
1970’s, (Q)SAR tools have become more readily accessible to risk assessors 
(Benfenati, 2007). Although initially (Q)SAR approaches were primarily used in 
the drug and pesticide discovery and development fields, these techniques 
became especially important to regulatory risk assessment after the promulgation 
of the Toxic Substances Control Act (TSCA) (Zeeman et al., 1995). The use of 
QSARs in assessing potential toxic effects of organic chemicals on ecologically 
relevant species and humans evolved as computational efficiency and 
toxicological understanding advanced, and in many cases has proved to be 
scientifically-credible for use in estimating toxicity for substances with little or no 
available empirical data (OECD, 2007b). 

(Q)SAR models also exist for specific endpoints such as skin sensitization 
(Patlewicz et al., 2008), eye irritation (Tsakovska et al., 2005), acute toxicity and 
repeated-dose endpoints for mammalian species (Tsakovska et al., 2008), 
bioaccumulation (Arnot and Gobas, 2004), mutagenicity and carcinogenicity 
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(Benfenati et al., 2009; Benigni et al., 2007a,b), estimating physical chemical 
properties (EC, 1995a,b; Deardon and Worth, 2007), toxicity to aquatic species 
(EC, 1995a,b; Netzeva et al., 2007; Pavan et al., 2005a,b), and reproductive 
toxicity (Jensen et al., 2008). 

Software applications are available for assisting in the identification of chemical 
similarity (Gallegos-Saliner et al., 2008; Patlewicz et al., 2005). In addition, the 
availability of state-of-the-art software programs for use in the development of 
QSAR models from any data set allows one to generate models at their desk top 
for endpoints/applicability domains not covered by existing models (see the 
series of FDA papers as an example: Matthews et al., 2009 a, b; Matthews et al., 
2007 a,b; Ursem et al., 2009). Key to this type of analysis is a high quality, 
structurally-annotated data set for use in the development of models (Judson et 
al., 2009; Richard et al. 2006, 2008; Williams et al., 2009). Another important 
aspect of many risk assessments is metabolism/degradation products, and 
(Q)SAR tools to simulate metabolism have been developed to assist in 
identifying these products (Dimitrov et al., 2005a,b; Mekenyan et al., 2006; 
Ringeissen, et al., 2010). 

(Q)SAR approaches can be used to better inform testing strategies via 
screening, prioritization, and ranking of large chemical inventories based on 
receptor binding (Jensen et al., 2008; Klopman and Chakravarti, 2003 a,b; 
Schmieder et al., 2004), human health endpoints (Demchuk et al., 2008; 
Klopman et al., 2003; Ruggeri, 2009), and environmental toxicity, fate, and 
persistence (Brown and Wania, 2008; Daginnus et al., 2009; Walker et al., 2004). 
These rankings can be used for a variety of risk assessment purposes including 
developing chemical categories, identification of PBT (persistent, 
bioaccumulative and toxic) substances, and risk characterization (Pavan and 
Worth, 2008). Similarly, (Q)SAR tools have been investigated in combination with 
physical-chemical data and read-across to improve the application of TTC 
methods (Bassan et al., 2011; Worth et al., 2011). 

Under REACH, information on models that meet the OECD validation principles 
and are proposed for use in filling data gaps are currently being gathered. A 
searchable catalog of all models including background information required to 
validate the models, authors/source of model, related publications, endpoint 
estimated and related experimental protocol, algorithm with training set and 
validation set, including all input variables for the models can be found at the 
following website: http://qsardb.jrc.ec.europa.eu/qmrf/index.jsp. Some actual 
example cases are listed in Appendix III. 

http://qsardb.jrc.ec.europa.eu/qmrf/index.jsp
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3.6 Summary 
(Q)SAR tools and approaches involve the study of correlations between chemical 
structure and associated biological activity, physical-chemical properties or other 
properties, with the ultimate goal of predicting the activity or properties of 
untested chemicals using available data from structurally-related compounds. 
While frequently associated with computerized models, (Q)SAR tools actually 
encompass a wide range of approaches such as analogs, chemical categories, 
and computer or non-computer based SAR and (Q)SAR. The development of 
reliable (Q)SAR models depends upon a number of factors, among which, 
experimental data are probably the most important. In particular, data quality and 
a good understanding of the available information on mode/mechanism of action 
can contribute to the confidence in (Q)SAR model predictions. Types of 
endpoints or properties from a pesticide context that can be predicted using 
(Q)SAR and related methods include in vivo ecotoxicity and human health-
related toxicity endpoints, specialized in vitro endpoints, metabolism, physical-
chemical parameters, and environmental fate parameters. While this document is 
not intended to recommend or endorse individual (Q)SAR tools, it is recognized 
that there are currently a variety of computerized and non-computerized, 
commercial and non-commercial (Q)SAR tools for predicting the endpoints or 
properties described above. Sections 2 and 3 of this document were designed to 
provide a brief introduction and background information on (Q)SAR tools and 
approaches. The subsequent sections of this document (4, 5, 6, and 7) focus on 
issues associated with applying (Q)SAR predictions to pesticides including 
problem formulation and (Q)SAR (section 4), evaluating the adequacy of (Q)SAR 
predictions (section 5), combining information from multiple predictions (section 
6) and incorporating (Q)SAR into weight of evidence assessments (section 7). 
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4. Problem Formulation and (Q)SAR 

4.0 Introduction 
Problem formulation is an important initial step for framing the specific 
question(s) to be addressed in assessments of human health and environmental 
risks from pesticides. In its Guidelines for Ecological Risk Assessment, the US 
EPA has indicated that problem formulation involves the on-going integration of 
the available information that eventually leads to three products: assessment 
endpoints, a conceptual model of the risk to be investigated, and an analysis plan 
(US EPA, 1998). 

Since guidance on the general problem formulation process for the risk 
assessment of chemicals such as pesticides has been outlined in other published 
documents (e.g., US EPA, 1998; Doull et al., 2007), the details of that guidance 
will not be discussed here. Instead, this section will focus on the preliminary 
analysis of (Q)SAR predictions as one of the several potential sources of 
information to be integrated at the problem formulation stage. Preliminary 
analysis of (Q)SAR prediction for a pesticide at the problem formulation 
essentially involves answering the following questions: 

 What is the assessment context that the (Q)SAR prediction is being 
applied to? 

 What are the characteristics of the pesticide that is the subject of the 
prediction? 

 What are the characteristics of the (Q)SAR tool and the prediction? 

 What empirical data are available including any information on mode of 
action? 

PROBLEM FORMULATION AND (Q)SAR 

Topics Discussed in this Section: 

 Assessment context that (Q)SAR is being applied to 

 Characteristics of the pesticide that is the subject of the prediction 

 Characteristics of the (Q)SAR tool and the prediction 

 Available empirical data including information on mode of action 



 
Page 45 of 186 

Answering these questions at the problem formulation stage may enable an 
evaluator to immediately determine that a prediction is not suitable or relevant for 
addressing the specific pesticide risk assessment question. Alternatively, these 
questions may lead to a more in-depth evaluation of whether the (Q)SAR 
prediction is adequate or “fit for purpose” (see section 5) and eventually to the 
consideration of how the results of a fit for purpose prediction could be 
incorporated into an overall weight of evidence decision (see section 7). 

4.1 Assessment Context that (Q)SAR is being Applied to 
Identifying the assessment context for a (Q)SAR prediction involves 
understanding why the prediction is being considered for the assessment of a 
pesticide and the specific endpoint or property that the prediction is intended to 
address. Both of these points will assist the evaluator in determining whether a 
(Q)SAR prediction should be considered in a pesticide assessment and if yes, 
what will be an acceptable level of reliability and uncertainty associated with the 
use of (Q)SAR. 

(Q)SAR predictions are generally used to try to gain some insights into the 
toxicity, ecotoxicity, behavior in the environment or other aspects of a pesticide in 
the absence of empirical data. Consideration of a (Q)SAR prediction for the 
premarket assessment of a pesticide would likely involve one of the following 
scenarios: 1) submission of a (Q)SAR prediction by a registrant to address a data 
requirement or as supporting evidence for a data requirement for pesticide, a 
metabolite or a transformation product, or 2) use of a prediction by an evaluator 
to identify or support a data requirement for a pesticide, metabolite or 
transformation product.  

In the first scenario, an applicant would likely submit a (Q)SAR prediction or 
predictions as a replacement for or as supporting evidence to waive a 
requirement for a specific type of empirical data (e.g., to address a requirement 
for acute irritation toxicity data). In most cases, using a (Q)SAR prediction as a 
stand alone replacement for a data requirement is not likely to be acceptable 
depending on the nature of the endpoint and the specific policies of the pesticide 
regulatory agency. Combining a (Q)SAR prediction with other types of data to 
support a waiver request may be more acceptable depending on what other 
types of data are available, the reliability and level of uncertainty for the (Q)SAR 
prediction, the overall scientific defensibility of the rationale, and regulatory 
agency policies. 

The second scenario could involve using a (Q)SAR prediction to justify a 
requirement for a study not normally included in regulatory data requirements for 
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pesticides or to justify a requirement for a study on a metabolite or transformation 
product for which no data have been submitted. This would also include cases in 
which (Q)SAR predictions are used as supporting information when questioning 
the reliability of experimental data, leading to a requirement for the submission of 
more reliable studies. Criteria for what constitutes a reliable (Q)SAR prediction 
and acceptable levels of uncertainty would likely be less stringent for scenarios in 
which (Q)SAR predictions are used to drive data requirements compared to 
cases where (Q)SAR is used to support waiving data requirements.  

While these premarket scenarios are likely to be the most frequent applications 
of (Q)SAR, there may also be instances where (Q)SAR tools could be used post-
market such as the toxicity characterization of a novel impurity (e.g., 
leachable/extractable) not originally characterized during the pre-market approval 
process. 

Endpoints or properties that can be predicted by (Q)SAR and could be relevant 
to pesticide assessments include toxicity (e.g., carcinogenicity, developmental 
toxicity), metabolism, ecotoxicity (e.g., fat head minnow LC50, longer-term toxicity 
in terrestrial species), other biological activities (e.g., estrogen receptor binding), 
and physical-chemical properties (e.g., Log Kow, partition coefficients, 
bioaccumulation factor). The type of endpoint and whether it is a critical data 
point for a pesticide assessment (e.g., used for a point of departure analysis) will 
have an influence on how reliable a (Q)SAR prediction should be (see section 
5.4). For example, it may be possible to accept a less reliable prediction for an 
acute toxicity endpoint used as supporting information for labeling requirements 
compared to a predicted NOAEL for chronic toxicity that is to be considered in a 
point of departure analysis. Furthermore, the use (Q)SAR predictions to address 
critical endpoints in pesticide risk assessments would likely require much more 
detailed analyses of whether the predictions are fit for purpose compared to 
predictions generated for non-critical endpoints. 

4.2 Characteristics of the Pesticide that is the Subject of the 
Prediction 

Understanding the characteristics of the pesticide that is the subject of the 
(Q)SAR prediction is critical to determining whether the pesticide is correctly 
identified; whether the prediction is to be made for an active ingredient, a 
metabolite or a transformation product; whether an accurate structural 
representation is available; or whether it is even possible to generate a prediction 
for the pesticide in question. 
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4.2.1 Chemical Identifiers and Mixtures 

Examples of the types of pesticides for which a (Q)SAR prediction may be 
required include discrete substances; individual isomers or mixtures of isomers; 
crystalline structures (e.g., minerals); substances with unknown or variable 
composition, complex reaction products and biological materials; polymers; other 
mixtures or formulations; and complex salts and metal-containing compounds. 
Therefore, accurate information on the identity, composition and structure of a 
pesticide is critical to determining whether a prediction was based on a correct 
structure. Confusion can result when common or trade names are applied to 
multiple isomers of a pesticide, salt forms, acid/base forms or polymeric and 
monomeric forms. The use of more precise chemical nomenclature (e.g., 
International Union of Pure and Applied Chemistry (IUPAC)) can assist with more 
accurate identification (IUPAC, 2010). While Chemical Abstract Service (CAS) 
numbers (American Chemical Society, 2010) are frequently used as unique 
identifiers for pesticides, in some cases they may actually represent isomer 
mixtures, polymers, and unknown or variable composition substances rather than 
discrete, single chemicals, so it may be necessary to review the CAS number to 
clearly determine which structure(s) it actually represents. 

In general, mixtures cannot be run through (Q)SAR models, nor can synergistic 
or antagonistic effects of chemicals in mixtures be accounted for because models 
typically use single, discrete chemical structures as input. For mixtures of 
discrete organic chemicals, one option may be to make separate predictions for 
each chemical and compare and contrast the results. Alternatively, if one 
component of a mixture is predominant, in some cases that component may be 
used to represent the entire mixture. However, for pesticides with variable 
compositions, (i.e., oligomers, natural fats, or mixtures that change composition 
depending on reaction conditions) evaluators should be aware that (Q)SAR 
predictions generated using a representative structure may not accurately reflect 
the true nature of the material used in the pesticide application. 

4.2.2 Transformation, Degradation, and Metabolism 

A number of pesticides are reactive chemicals that can be readily transformed in 
the environment or in the body (e.g., hydrolyzable acid halides, isocyanates, 
etc.). Transformation products may have dramatically different toxicity profiles 
than the original pesticides and need to be considered when identifying the 
correct structures for (Q)SAR predictions. Similarly, information on potential 
environmental degradates and metabolic by-products of pesticides in livestock, 
food plants or the body should also be considered as the toxicity may not reflect 
the parent pesticide, but rather a reactive intermediate, degradate or metabolite. 
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Information on degradates and metabolites may be available from empirical 
pharmaco/toxicokinetic studies or from in silico models of potential metabolic or 
degradation pathways. If degradates and metabolites are identified, it will also be 
important to consider their stability and in the case of (Q)SAR predictions of 
metabolites, the likelihood that they could occur in vivo. Individual pesticide 
regulatory agencies have specific criteria they use to identify probable, stable 
metabolites. 

When (Q)SAR models are developed, available information on the metabolism of 
the training set compounds should be taken into consideration whenever 
possible. Training set compounds that require metabolic transformation prior to 
inducing a specific endpoint are likely to generate models that are unreliable if 
those models are constructed based on the parent structures alone. Failure to 
consider the structure of a metabolite could lead to an inaccurate assessment of 
the chemical features or properties associated with the predicted endpoint, errors 
in analog selection, problems with characterization of similarity based on mode of 
action, errors in inter-species extrapolation when metabolic differences exist 
between species, and ultimately poor predictive performance. Another aspect of 
metabolism that may need to be considered during (Q)SAR model development 
is differences in metabolism from different routes of exposure. While the 
industrial chemical, bis-(chloromethyl) ether is one of the most potent human and 
animal respiratory carcinogens, it is not expected to be carcinogenic via the oral 
route because it hydrolyses in seconds upon contact with aqueous solution (Woo 
and Lai, 2010; ATSDR, 1989). Consequently, (Q)SAR predictions for direct 
acting reactive pesticides that are used to support data requirements for 
inhalation toxicity should be treated with caution if they come from (Q)SAR tools 
whose training sets only include analog substances tested via the oral route. 
Finally, the results of in vitro tests can also be impacted by metabolic 
transformations, so information on the degree to which metabolic capability is 
incorporated into in vitro toxicity tests should be considered when constructing 
models for those tests. 

4.2.3 Isomers and Structural Representations for (Q)SAR 

A pesticide’s three-dimensional molecular structure or shape and its molecular 
conformation can influence properties such as absorption, distribution, and 
excretion, as well as enzyme or receptor binding, and the resulting differences 
can readily impact toxicity profiles. Consequently, the isomeric form of a pesticide 
is another important piece of information to consider when determining whether a 
prediction is based on the correct structure and whether the (Q)SAR tool is 
applicable to the structure in question. 
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Examples of isomeric forms to consider include stereoisomers that differ in their 
spatial orientation of atoms. The pyrethroid insecticide fenvalerate is a racemic 
mixture of stereoisomers (i.e., R/S enantiomers) of a chiral active ingredient, 
although the S-isomer in the mixture (esfenvalerate) has the greatest insecticidal 
activity (WHO/FAO, 1996) (see Figure 4–1). Because these different isomers 
have the same molecular formula, molecular weight, and physical-chemical 
properties, it can be difficult for some (Q)SAR models to distinguish them, 
especially models that do not take stereoisomerism into account. 

Many regulatory agencies make the conservative assumption that stereoisomers 
will have similar mammalian toxicity and ecotoxicity, unless data are available to 
demonstrate the contrary. In addition to isomeric forms, the position of flexible 
groups in a molecule can also be important as relatively free rotation of attached 
groups about single bonds can influence the conformation of a molecule and 
determine the overall molecular size, especially in complex molecules with 
multiple rotation points. More advanced (Q)SAR techniques may employ three-
dimensional molecular descriptors to account for rotation of flexible groups and 
other characteristics, but calculating these descriptors can be complex and time 
consuming. 

Figure 4–1: Fenvalerate Racemic Mixture 

  

Fenvalerate 

(RS)-alpha-Cyano-3-phenoxybenzyl (RS)-2-(4-
chlorophenyl)-3-methylbutyrate 

CAS No. 51630-58-1 

Esfenvalerate 

(S)-alpha-Cyano-3-phenoxybenzyl (S)-2-(4-
chlorophenyl)-3-methylbutyrate 

CAS No. 66230-04-4 

 

In addition to understanding a pesticide's three dimensional structure and 
conformation, the method of entering structures into a (Q)SAR model should also 
be taken into consideration. Some of the more common structural entry options 
that have been historically employed for single structure entries include the 
SMILES (simplified molecular input line entry system), International Chemical 
Identifier (InChITM) codes, the MDL Mol file (MOL), and various drawing applets 
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and molecular editors (Daylight Chemical Information Systems, 2008; IUPAC, 
2010b; Dalby et al., 1992). For multiple (batch) chemical entries, the Structure 
Data Format (SDF) file and SMILES (SMI) file formats are commonly used 
(Dalby et al., 1992). These structural entry methods have strengths and 
limitations, and in some cases, it may be necessary to verify the accuracy of the 
structural representations from these methods to ensure that correct structures 
are used for predictions. 

4.3 Characteristics of the (Q)SAR Tool and the Prediction 
Prior to considering and weighting the results of an empirical study in the 
assessment of a pesticide, it is necessary to obtain and evaluate the details of 
the study protocol and how the study was conducted, as well as the results of the 
study and how they were interpreted. Similar concepts apply to the use of 
(Q)SAR predictions in pesticide assessments, as the characteristics of the tools 
used to make the predictions and the predictions themselves need to be 
understood and evaluated before weighting the predictions in an assessment. 

Many of the concepts discussed in this section overlap with the evaluation of the 
scientific validity of a (Q)SAR tool as discussed in section 5.1. However, at the 
problem formulation stage, it is intended that the evaluator will gain a basic 
understanding of these issues. This may enable an immediate decision that the 
(Q)SAR prediction is not adequate for the assessment context or it could lead to 
a more detailed evaluation as discussed in section 5.1, especially with respect to 
the application of the OECD (Q)SAR validation principles (section 5.1.1). 

A starting point for characterizing a (Q)SAR tool at the problem formulation stage 
is a sufficient understanding of the general methodology behind the tool. Is the 
tool based on simple analog extrapolations, read-across or trend-analysis 
approaches using chemical categories, a structural alert/rule based SAR/expert 
system, a statistical (e.g., regression based) QSAR derived from a specific 
database of chemicals and their descriptors or some other method? Each of 
these methods has strengths and limitations that can influence how they should 
be interpreted and the reliability of predictions from them. For instance, 
SAR/expert systems based on structural alerts may be supported by expert 
reviews of relevant research, and can include a mechanistic rationale to support 
predictions. However, in some cases these systems do not include structural 
alerts associated with inactivity, may have limited databases of alerts, and may 
not have a clearly defined domain of applicability. Statistical QSAR models based 
on training sets of active/inactive chemicals and descriptors of chemical structure 
may provide insights into associations between specific structures and activity 
that were not previously investigated, help to identify structures that modify or 
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eliminate specific activities, and may be capable of generating quantitative 
predictions (e.g., probabilities or specific numerical values) rather than 
dichotomous active/inactive (yes/no) predictions. However, in some cases QSAR 
models may overemphasize statistical associations in the absence of 
mechanistic rationales, their domains may be restricted by the structural diversity 
in their training sets, and their training sets may include chemicals with a variety 
of different mechanisms which can result in poor predictive performance and/or 
considerable uncertainty in their predictions. A number of reviews of the 
strengths and limitations of (Q)SAR models are available in the scientific 
literature (e.g., Hulzebos et al., 2001; Greene, 2002). 

Gaining an understanding of the empirical data from which the (Q)SAR tool was 
derived is another important starting point for determining whether a (Q)SAR 
prediction is likely to be relevant to a pesticide assessment. It may be possible to 
quickly discount (Q)SAR tools derived from studies based on outdated protocols 
not conducted according to GLP standards, based on endpoints that are vague 
or inconsistent, interpreted according to non-standard criteria, involving 
chemicals significantly structurally dissimilar to the pesticide of interest, and/or 
obtained from non-peer reviewed sources. On the other hand, (Q)SAR tools 
based on higher quality empirical data may be subjected to a more detailed 
evaluation and potentially included in a weight of evidence assessment. 

As discussed in section 4.1, information on the endpoint on which a (Q)SAR tool 
is based can be one of the important factors to consider at the problem 
formulation stage for determining whether a (Q)SAR prediction will be relevant to 
the specific pesticide assessment context. In particular, because many pesticide 
assessment questions involve quantitative toxicity values (e.g., LD50, EC50, 
NOAEL, etc.) for identifying labeling requirements, and calculating margins of 
exposure, reference doses, etc., it is important to determine whether a (Q)SAR 
tool can generate quantitative or qualitative predictions, and if quantitative, the 
type of value predicted. A qualitative yes/no prediction for chronic toxicity will not 
be particularly useful if a prediction of a NOAEL is required to derive a regulatory 
point of departure for a pesticide. Alternatively, a (Q)SAR model that only 
predicts quantitative LOAELs for short-term endpoints may also have limited 
applicability. As mentioned above, predicted endpoints that are somewhat vague 
such as general developmental toxicity potential may not be specific enough to 
address questions about endpoints such as post implantation loss, 
developmental delays, fetal dysmorphogenesis, etc. An overall point to consider 
is whether there is likely to be sufficient, high quality empirical data available on 
an endpoint of interest so that (Q)SAR tools could be developed that are relevant 
to a particular assessment context. 
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Investigating other details of the (Q)SAR tool used may also assist in determining 
the relevance of a (Q)SAR prediction to a pesticide assessment during problem 
formulation. For example, details on a (Q)SAR model such as the specific name 
of the model, version number, date it was developed, and contact information for 
the developer can be important for determining the relevance of a (Q)SAR 
prediction. Model developers can make significant changes from one version to 
another such as increasing the number and diversity of the chemicals in the 
training set, modifying the library of descriptors or structural alerts, and modifying 
model algorithms. As a result, predictions from a newer version of a model may 
not be comparable to predictions from previous versions. Model developers can 
even discontinue support for older versions making it difficult to obtain additional 
information on training sets, interpretation criteria, etc. 

Information on the prediction output should also be considered including the 
actual prediction and information on the structural or other features of the test 
pesticide that influenced the prediction. For dichotomous endpoints, predictions 
may take the form of a positive/negative or active/inactive result, but often a 
dichotomous result will be expressed as a numerical probability (i.e., 0 – 1) by 
QSAR models or as a semi-quantitative probability (e.g., probable, likely, not 
likely) by SAR/expert systems which can then be interpreted as positive or 
negative according to various interpretation criteria. Information on the predicted 
probability, and the interpretation criteria and the rationale for their use may 
assist an evaluator to determine whether a prediction is relevant at the problem 
formulation stage and/or can be considered when determining the reliability of a 
prediction during a more detailed evaluation (see section 5.4). Numerical 
endpoints (e.g., NOAEL, LD50, BCF) predicted from QSAR models may be taken 
at face value, but in some cases specific criteria may be recommended by the 
model developer or by the regulatory agency if the predictions are used to 
support labeling requirements or hazard classifications (e.g., specific 
classification/label statement when predicted value is within an order of 
magnitude of value X). It should also be remembered that some numeric 
predictions will need to be converted before application to a weight of evidence 
assessment (e.g., conversion of a predicted LOAEL in units of mmoles/kg bw/day 
to mg/kg bw/day). 

Other information that can be important to consider at the problem formulation 
stage includes the structural or other features of the test pesticide that have 
influenced the (Q)SAR prediction including structural fragments, specialized 
descriptors of structure (e.g., molecular size, shape and electronic parameters), 
and physical-chemical properties (e.g., molecular weight, Log Kow, boiling point) 
that are used as variables in QSAR model algorithms, and structural alerts that 
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are used by SAR/expert systems to identify potentially active compounds. 
Information on how these features influenced the overall prediction either 
quantitatively or qualitatively can impact on the level of reliability assigned to a 
(Q)SAR prediction (see section 5.4). In particular, it can be important to 
investigate whether the structural fragments, descriptors, and/or physical-
chemical properties that drive a prediction are consistent with available 
information on mechanism of action or not. 

When using QSAR models, it can be important to review the identities of the 
compounds similar to the test pesticide that influenced the prediction. This would 
likely be obtained from an analysis of the training set compounds that formed the 
basis for the model algorithm. Similarly, for SAR/expert systems, the compounds 
that were utilized to support the development of any structural alerts identified in 
the test pesticide could be reviewed. The compounds that make up a category or 
group used in a read-across or trend analysis approach can also be considered 
as compounds that are similar to the test pesticide and that directly influenced 
the (Q)SAR prediction from that approach. Regardless of the type of tool used, 
the identities of the compounds that influenced the prediction, how their similarity 
to the test pesticide was assessed and the degree of similarity, how they 
influenced the prediction, the nature of the empirical data for them that is related 
to the predicted endpoint, how well they are predicted by the (Q)SAR tool (i.e., 
internal validation), and whether a mode and/or mechanism of action has been 
established are all important considerations when determining the reliability of 
the (Q)SAR prediction for a test pesticide (see section 5.4). 

4.4  Empirical Data Including Information on Mode of Action 
Although this section is intended to focus on the preliminary analysis of (Q)SAR 
predictions as one of the sources of information in a problem formulation for 
pesticide risk assessment, it must be remembered that the empirical database for 
a pesticide can impact on the determination of relevance of a (Q)SAR tool for a 
particular regulatory application (see section 5.3) and the reliability of predictions 
obtained from that tool (see section 5.4). Empirical data that may influence the 
use of (Q)SAR predictions includes not only the results of conventional toxicity 
tests, but also information on mode (and mechanism) of action. 

As indicated previously, it is likely that in most pesticide assessment scenarios, 
(Q)SAR will not be used in a stand alone manner, but will represent only one of 
multiple lines of evidence considered. Therefore, understanding what relevant 
empirical data are available, the strengths and limitations of these data, and any 
gaps that need to be addressed will facilitate the determination of whether there 
are any (Q)SAR tools relevant for those gaps. Integrating existing empirical data 
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on a pesticide with relevant and reliable (Q)SAR predictions could also help build 
defensible rationales for requiring additional empirical studies on specific 
endpoints, mode of action, etc. (e.g., targeted testing). 

The integration of the empirical database with (Q)SAR predictions at the problem 
formulation stage could also be important for more detailed evaluations of the 
reliability of the (Q)SAR predictions at a later stage in the assessment (see 
section 5.4). Questions to consider include whether a predicted endpoint for a 
pesticide is consistent with and supported by empirical data for related endpoints 
for the same pesticide or whether the prediction contradicts these data. Empirical 
data for similar compounds, metabolites and degradation products can be 
particularly important to consider when assessing the reliability of a (Q)SAR 
prediction. Knowledge of the toxicity database for a parent pesticide compound 
could impact on the level of confidence assigned to a (Q)SAR prediction for a 
metabolite. In some cases, the consistency of the results of (Q)SAR predictions 
for a parent pesticide versus a metabolite may be useful in determining the 
confidence in the prediction for the metabolite, especially if the parent compound 
contains structural alerts known to be associated with specific mechanisms of 
toxicity and those alerts are preserved or activated following metabolic 
transformation (e.g., substructures associated with DNA/protein binding). Also, 
an evaluation of the existing empirical data for a pesticide may provide 
justification for using more or less conservative criteria to interpret a (Q)SAR 
prediction for that same pesticide. 

As mentioned previously, information on mode of action for toxicity is one type of 
empirical data that could impact on the consideration of (Q)SAR predictions at 
the problem formulation stage of a pesticide assessment. A consideration of 
mode of action can also include the pesticidal mode of action against the target 
species, and any postulated modes of action of toxicity in non-target species 
(e.g., humans) which could be used to support the results of existing (Q)SAR 
predictions or rationales for generating additional (Q)SAR predictions and/or 
obtaining additional empirical data. 

If a pesticidal mode of action is not species specific (e.g., acetylcholinesterase 
inhibition), information on this mode of action may support the need to investigate 
related endpoints (e.g., neurotoxicity, developmental neurotoxicity) using (Q)SAR 
predictions for various taxa, which could, in turn, lead to requirements for 
additional in vivo studies of those endpoints in the relevant organisms. A 
common pesticidal mode of action may also be a means of identifying groups of 
similar pesticides from which to build categories and support data bridging 
through read-across or other types of predictions. 
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For a postulated (eco)toxicological mode of action, the extent to which the initial 
chemical-biological system relationship is understood and how well the cascade 
of key events leading to the adverse outcome is understood (i.e., mode of action, 
mechanism of action, adverse outcome pathway) in taxa under consideration 
could directly influence the level of confidence in (Q)SAR predictions for 
endpoints associated with this mode of action. For instance, when a 
(eco)toxicological mode of action has already been established for a structurally 
similar compound, or for a chemical class in which the pesticide in question 
resides, this mode of action could be used at the problem formulation stage to 
focus (Q)SAR predictions on particular endpoints and taxa, bridge from the 
structurally similar compound to inform dose selection for any study required for 
the pesticide in question, provide support for waiving the need for specific studies 
based on the current pesticide dataset, and/or help to rule out the relevance of 
the observed or predicted effect to humans or other species, so that additional 
studies are unlikely to be required. 

Although information on postulated modes of toxicological action can provide 
support for (Q)SAR predictions at the problem formulation stage and during 
weight of evidence assessments, it should be noted that, mode of action 
determinations are generally data rich decisions that must be made on a case-
by-case basis. The International Program on Chemical Safety (IPCS) has 
developed an extensive framework for mode of action analysis based on the 
Bradford Hill criteria which can be used for cancer and non-cancer endpoints in 
the context of human health, and for ecological endpoints (Boobis et al., 2008). In 
most situations, information on toxicological mode of action will not be readily 
available for a majority of pesticides. 

In some cases, comprehensive toxicological mode of action data for pesticide 
may not be available, but it may be possible to use information on the chemical 
structure of a pesticide and/or selected (Q)SAR tools (e.g., OECD QSAR 
Toolbox) to identify potential (chemical) mechanisms of action of pesticides (e.g., 
mechanisms of protein or DNA binding) to assist in identifying analogs, grouping 
chemicals into categories and supporting read-across extrapolations (OECD, 
2011b; 2009; 2007a). 
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4.5  Summary 
The initial step in framing the questions to be addressed in the human health or 
environmental assessment of a pesticide is problem formulation. Although the 
questions to be addressed in pesticide risk assessments have traditionally been 
framed in terms of the available empirical data, (Q)SAR predictions are another 
source of information that can be considered during the problem formulation 
process. The assessment context in which (Q)SAR is being applied, the 
characteristics of the pesticide that is the subject of the prediction, the 
characteristics of the (Q)SAR tool and the prediction, and the available empirical 
data including mode of action data that could impact on the application of 
(Q)SAR are all important factors to consider when integrating (Q)SAR into a 
problem formulation. This type of preliminary analysis of the (Q)SAR information 
on a pesticide could lead to an immediate conclusion that (Q)SAR is not suitable 
for the particular pesticide assessment question or it could set the stage for a 
more in depth evaluation of whether a (Q)SAR prediction is fit for purpose for 
integrating into a weight of evidence decision (see section 5). 
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5. Evaluating the Adequacy of (Q)SAR Predictions 

 

5.0  Introduction 

Evaluating whether a (Q)SAR prediction is adequate or “fit for purpose” is an 
important component of applying the prediction to a pesticide assessment. The 
European Commission Joint Research Centre (JRC) has noted that whether a 
prediction from a (Q)SAR model is adequate or not depends upon four key 
factors: the scientific validity of the model, the applicability of the model to the 
query chemical, the reliability of the (Q)SAR result, and the relevance of the 
(Q)SAR model for the regulatory purpose. The validity of the model was to be 
established through the application of the OECD QSAR validation principles 
(OECD, 2004), the applicability of the model relates to whether the chemical of 
interest lies within the model domain of applicability, reliability is based on the 
application of a valid (Q)SAR to a chemical within its domain of applicability, and 
relevance involves considering whether a predicted endpoint can be directly 
applied to a particular regulatory purpose (EC, 2008b). Similarly, the REACH 
guidance for applying (Q)SARs provides a flexible framework for using (Q)SAR 
models in lieu of experimental data that is based on four main conditions: the 
scientific validity of the model used, the applicability of the model to the chemical 
of interest, the relevancy of the prediction for the regulatory purpose, and 
whether appropriate documentation on the (Q)SAR and the prediction is provided 
(ECHA, 2008; ECHA, 2010; Worth et al., 2011). 

In this section of the NAFTA (Q)SAR Guidance Document, the key factors noted 
by the JRC for assessing the adequacy of (Q)SAR models and the REACH 

EVALUATING THE ADEQUACY OF (Q)SAR PREDICTIONS 

Topics Discussed in this Section: 

 Scientific validity of a (Q)SAR tool 

 Applicability of the (Q)SAR tool to the pesticide 

 Relevance of the (Q)SAR tool to the assessment context 

 Reliability of the (Q)SAR prediction 

 Documentation of (Q)SAR tools and predictions 
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framework have have been adapted to guide pesticide evaluators through the 
information to be considered when evaluating whether predictions from (Q)SAR 
tools are adequate for use in pesticide assessments. A schematic for the 
resulting modified framework is shown in Figure 5–1. Evaluating the adequacy of 
(Q)SAR predictions relies on a lot of the same information initially considered at 
the problem formulation stage (see section 4), but with a more focussed 
consideration of validity, applicability, relevance, and reliability. This type of 
evaluation can be done in advance of or at least independently of the process of 
combining the prediction with other information in a weight of evidence 
assessment (see section 7). Since clear and complete documentation of (Q)SAR 
tools and predictions is important both to the evaluation of the adequacy of 
predictions and their incorporation into weight of evidence assessments, this 
section also includes a discussion of documentation. 

The guidance provided here is not meant to be prescriptive, but is intended to 
allow for case-by-case flexibility and the incorporation of expert scientific 
judgment. As such, it is recognized that the level of detail and effort employed in 
evaluating the adequacy of predictions and documenting them will vary 
depending on a number of factors including the assessment context in which 
(Q)SAR is being applied. 

Although the evaluation of the adequacy of a (Q)SAR prediction may be a new 
concept to many pesticide evaluators, the process can be thought of as parallel  
to evaluating the adequacy of empirical studies. When evaluating traditional 
animal toxicity studies, evaluators can generally rely on the existence of validated 
test guidelines that are applicable to most pesticides, whereas for (Q)SAR 
predictions, additional effort needs to be invested to assess the validity of the 
(Q)SAR tool and its applicability to the pesticide in question. 

Much of the discussion in this section focuses on (Q)SAR models. However, it 
should be recognized that the key issues to consider when evaluating the 
adequacy of (Q)SAR predictions are applicable to all types of (Q)SAR tools. 
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Figure 5–1: Evaluating the Adequacy of a (Q)SAR Prediction for a Pesticide 
(modified from ECHA, 2008 and Worth et al., 2011) 

SCIENTIFIC VALIDITY OF
THE (Q)SAR TOOL

APPLICABILITY OF 
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RELEVANCE OF THE (Q)SAR TOOL
TO  THE PESTICIDE 

ASSESSMENT CONTEXT

RELIABLITY OF 
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PREDICTION
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5.1  Scientific Validity of the (Q)SAR Tool 
The OECD has defined (Q)SAR validation as “the process by which the reliability 
and relevance of a particular approach, method, process or assessment is 
established for a defined purpose” (OECD, 2007c). In the context of (Q)SAR 
model validation, the OECD considers that reliability focuses on the predictive 
accuracy of the (Q)SAR tool for a range of different chemicals and relevance 
refers to specific toxicological pathways and mechanisms that culminate in the 
test endpoint. In particular, it is assumed that a (Q)SAR tool that has a 
mechanistic basis for the predicted endpoint tends to be more relevant and 
reliable for groups of chemicals acting via the mechanism in question (OECD, 
2007c). 

5.1.1 OECD (Q)SAR Validation Principles 

The OECD previously noted that one of the critical challenges to the regulatory 
acceptance of (Q)SAR predictions was the lack of an internationally harmonized 
framework for assessing (Q)SARs. In particular, there was a need for an 
internationally-agreed-upon set of principles for (Q)SAR validation to provide a 
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scientific basis for making decisions on the acceptability of (Q)SAR predictions, 
and to improve the transparency and consistency of (Q)SAR reporting leading to 
a greater mutual acceptance of predictions (OECD, 2007c). 

In response, the OECD developed the Principles for the Validation, for 
Regulatory Purposes, of (Q)SAR Models which can be used as guidance for the 
types of information to review when determining if a (Q)SAR model is acceptable 
or not for use in a regulatory or decision-making framework. The principles 
include “1) a defined endpoint, 2) an unambiguous algorithm, 3) a defined 
domain of applicability, 4) appropriate measures of goodness-of-fit, robustness 
and predictivity, and 5) a mechanistic interpretation, if possible.” (OECD, 2004). 
The OECD also drafted and finalized a separate guidance document (Guidance 
Document on the Validation of (Quantitative) Structure-Activity Relationships 
[(Q)SAR] Models) that includes a discussion of the principles and information on 
how to validate (Q)SARs for different applications (OECD, 2007c). 

The five OECD (Q)SAR validation principles are presented in sections 5.1.1.1–
5.1.1.5 along with a summary of some of the key issues identified in the OECD 
guidance document and other sources that should be considered in the context 
of evaluating (Q)SAR tools for application to specific purposes in pesticide risk 
assessments. For further details on the principles and their application, 
evaluators should consult the OECD guidance document (OECD, 2007c). 
Evaluators may also be interested in consulting a recent paper by Dearden et al. 
(2009) which outlined 21 types of errors related to the OECD (Q)SAR validation 
principles which were identified in various (Q)SAR analyses published in the 
scientific literature. 

Application of the principles is an important step in determining the adequacy of 
(Q)SAR predictions for use in pesticide assessments. However, the OECD has 
noted that because of the designs of many of the currently available (Q)SAR 
models, it may not be possible to completely address all of the principles in every 
case. Consequently, evaluators will need to be flexible and take into account the 
available information on (Q)SAR tools and predictions, and individual regulatory 
program requirements when applying the principles (OECD, 2007c). Also, 
because of the range of (Q)SAR tools that could be used to make predictions for 
pesticides and the varying levels of complexity of these tools, use of the OECD 
(Q)SAR validation principles will require the application of expert scientific 
judgment, in some cases from a multidisciplinary team. 

Example No. 1 in Appendix III provides a summarized version of a case study of 
reliability and validation testing of a set of (Q)SAR models for predicting acute 
toxicity to fish species. 
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5.1.1.1  Principle 1 — Defined Endpoint 

The purpose of this principle is to make sure that the endpoint being predicted by 
a given (Q)SAR tool is transparent. According to the OECD a “defined endpoint” 
can be considered as “any physicochemical, biological or environmental effect 
that can be measured and therefore modeled.” (OECD 2007c). 

Unlike empirical data derived from standardized guideline based studies 
designed to meet regulatory requirements for pesticides, studies for chemicals in 
(Q)SAR model training sets may be based on non-standardized, non-uniform, 
experimental protocols and conditions. The variability induced by these 
differences can affect predictive performance and may be a limitation for some 
(Q)SAR models. However, this variability does not necessarily invalidate the data 
or models derived from them, but the characteristics of the data and their 
potential impacts on model predictions must be taken into account. 

No (Q)SAR model can be better than the data upon which it is based. Optimally, 
all of the training set data for a particular (Q)SAR model should correspond to the 
specific regulatory endpoint of interest, have been generated using the same 
experimental protocol (ideally a standardized guideline type protocol), and be 
interpreted using evaluation criteria that correspond to those of the specific 
pesticide regulatory program. While this type of approach would help to ensure 
the reliability and relevance of (Q)SAR predictions, (Q)SAR model developers 
often have to rely on studies conducted under different protocols and conditions 
in order to ensure sufficient numbers and diversity of chemical structures in the 
model training sets (OECD, 2007c). 

Variability can also be induced by the nature of the regulatory endpoint. 
Regulatory test guideline type endpoints such as developmental toxicity may 
actually encompass a range of subendpoints (e.g., teratogenicity, fetal growth 
retardation, fetal death). Attempting to model poorly defined endpoints may result 
in the use of model training sets containing a variety of chemical structures 
producing different subendpoints via different mechanisms of action in a variety 
of study types. Failing to take this variability into account can result in poor 
correlations between model parameters and predicted endpoints resulting in poor 
predictive performance. Alternatively, building a model for a more defined 
endpoint such as a 96-hour LC50 in fish using a more mechanistically 
homogeneous training set will likely produce better correlations and predictive 
performance. Finally, in some cases, there may be uncertainties associated with 
the model endpoint and training set data because information on study protocols 
and evaluation criteria may not be readily available for some (Q)SAR models, 
particularly certain commercial models. Pesticide evaluators should take these 



 
Page 62 of 186 

potential sources of variability and uncertainty into account when evaluating the 
validity of a (Q)SAR tool. 

5.1.1.2  Principle 2 — Unambiguous Algorithm 

The second principle states that a (Q)SAR model should be associated with an 
unambiguous algorithm. This means that the specifics of the relationship 
between the chemical structures and the predicted endpoint or property (e.g., an 
equation) should be clear and transparent. For a mathematically-based QSAR 
model, the algorithm may take the form of a regression equation that relates 
descriptors of the chemical structures to the predicted endpoint. Although it is 
recognized that the unambiguous algorithm principle may be best applied to 
statistical QSAR models, the OECD has extended the principles to other model 
types, such as structural alert based SAR/expert system, where the algorithm 
would take the form of expert-derived rules (OECD, 2007c). 

Ideally, a (Q)SAR algorithm should be clear enough that an independent (Q)SAR 
analyst should be able to explain how predictions were generated and reproduce 
the results, if required. Although some (Q)SAR models that do not have 
transparent algorithms may have equal or better predictive performance than 
more transparent models, the lack of transparency of the former may negatively 
impact their regulatory acceptance. While transparency is critical, the OECD has 
stated that there is a difference between having a transparent algorithm and 
being able to interpret the algorithm as a cause-and-effect relationship. The 
descriptor values and equation for a QSAR model may be readily available, but a 
mechanistic/causal link between the descriptors and the predicted endpoint may 
not have been identified (OECD, 2007c). 

In practice, the degree of transparency varies depending on the type of (Q)SAR 
tool considered, as some non-commercial models have fully transparent 
algorithms, while most commercial model developers consider specific algorithms 
and how they were derived to be proprietary information. Also, what constitutes a 
sufficient level of transparency for regulatory purposes will likely depend upon the 
assessment context such that only limited information may suffice when (Q)SAR 
predictions are used to prioritize inventories of chemicals for further 
testing/assessment, whereas much more detail would likely be required for the 
algorithm of a (Q)SAR model used to derive a quantitative prediction for a 
regulatory point of departure estimate. In some cases, it may be possible to 
compensate for less than complete transparency by analyzing a model’s 
predictive performance for a set of chemicals similar to the test chemical, but not 
used in the model training set, and for which empirical data are available (ECHA, 
2008). 
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5.1.1.3  Principle 3 — Defined Domain of Applicability 

Netzeva et al. (2005) have defined the applicability domain of a (Q)SAR model as 
“the response and chemical structure space in which the model makes 
predictions with a given reliability.” This means the range of chemical structures, 
physicochemical properties, mechanisms, and responses over which the (Q)SAR 
tool can generate reliable predictions for the intended regulatory purpose. The 
domain of applicability is dependent upon the set of chemicals on which the tool 
is based (e.g., (Q)SAR model training set). 

While it is possible to make predictions for chemicals outside of the applicability 
domain of a (Q)SAR model, such predictions are extrapolations that are assumed 
to be less reliable than predictions for chemicals within the domain of applicability 
(i.e., interpolations). Also, because there are multiple ways of defining domain of 
applicability (e.g., structures, physico-chemical properties, mechanisms), there 
may be variations in the reliability of predictions even for chemicals within the 
domain of applicability of a (Q)SAR tool. For instance, a prediction for a test 
chemical that is structurally similar to chemicals in the training set of a (Q)SAR 
model may still be unreliable if the test chemical has a different mechanism of 
action compared to the chemicals in the training set (OECD, 2007c). 

There is a balance between the overall range of the domain of applicability and 
the predictivity of a (Q)SAR tool. Models with large training sets and diverse 
domains of applicability may be capable of generating predictions for a wider 
variety of chemical structures than smaller more structurally and mechanistically 
homogeneous models, but there is a greater chance that many of those 
predictions will be unreliable (OECD, 2007c; ECHA, 2008). Using information on 
mechanisms, mode of action, and/or adverse outcome pathways to group 
chemicals can improve predictive performance for large heterogeneous training 
sets. 

A number of existing commercial and non-commercial QSAR models have built-
in methods for determining whether a compound lies within the domain of 
applicability. Examples include the univariate analysis (whether the training set 
substructures include the substructures in the query chemical ) and multivariate 
analysis (whether the query chemical’s descriptors are in the optimum prediction 
space) in the TOPKAT program, the CAESAR models’ warnings for descriptor 
values outside the range of the training set compounds and classes or groups of 
compounds known to be less than optimally predicted, and the ASTER system’s 
notification when a chemical is outside the predictive capability of a model 
(Accelrys Inc., 2004; Benfenati, 2010; US EPA, 2011). 
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The OECD guidance document on the validation of (Q)SAR models summarizes 
a variety of different methods for defining domain of applicability including the use 
of structural features that enhance (toxicophores) or modulate toxicity to define 
the mechanistic domain, characterizing the descriptor or interpolation space by 
graphing and distance (geometric) analysis, using Williams plots to visualize 
outliers in descriptor and response space, comparing the structural and physical-
chemical similarity of the test chemical to the training set by fragment based 
approaches, and other methods (OECD, 2007c). A number of reviews of different 
methods for defining domain of applicability have also been published (Nikolova 
and Jaworska, 2003; Dimitrov et al., 2005a; Jaworska et al., 2005; Netzeva et al., 
2005). 

It should be noted that there is no single approach, or set of accepted 
approaches, to assessing domain applicability. Consequently, whatever 
approach is adopted should be transparently presented and documented. 

In the context of (Q)SAR predictions for pesticide active ingredients, the need to 
assess the domain of applicability cannot be over-emphasized. A long-standing 
limitation of many commercial and non-commercial (Q)SAR models has been 
domains of applicability that are not sufficiently representative of the structures 
and mechanisms of action associated with pesticide active ingredients. This is in 
part related to the nature of pesticide data (i.e., confidential unpublished studies 
accessible only by regulatory agencies). Fortunately, this is changing over time 
as resources such as the US EPA ToxRef database should it make it possible to 
build models and other tools with domains of applicability that are more 
encompassing of pesticide active ingredients. 

5.1.1.4  Principle 4 — Appropriate Measures of Goodness-of-fit, 
Robustness, and Predictivity 

According to principle 4, a (Q)SAR should be associated with “appropriate 
measures of goodness-of-fit, robustness and predictivity” which are obtained 
through statistical validation of a (Q)SAR tool. For a QSAR model, goodness-of-
fit refers to how well the model accounts for the variability in the endpoint or 
property measured for the training set chemicals. Robustness is a measure of 
how much change will be induced in the coefficients, etc. in the model algorithm if 
the training set chemicals are changed. Predictivity involves determining how well 
the model can make predictions, generally for an external test set of data not 
included in the training set (Eriksson et al., 2003). 

Goodness-of-fit for regression-based QSAR models is usually expressed as a 
multiple correlation coefficient (R2 value; range: 0 – 1) which is the amount of 
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variation in the predicted values that can be explained by the regression 
equation, and the standard error of the estimate (s) which measures the 
dispersion of the predicted values around the regression line. Well-fitted models 
have R2 values close to 1 and low s values. Poorly-fitted models are not likely to 
be too useful for regulatory applications. However, it should be noted that 
deceptively high R2 and low s values can be obtained by including a large 
number of variables or descriptors in the regression equation (i.e., over-fitting a 
model). Generally, better predictive performance can be obtained when the ratio 
of the number of chemicals in the training set to the number of descriptors in the 
regression equation (i.e., the Topliss ratio) is 5:1 or more. Note that R2 and s 
values alone are not enough to assess model validity as they do not provide 
information on the predictive performance for chemicals not included in the 
training set of a (Q)SAR model (OECD, 2007c; ECHA, 2008). 

For (Q)SAR tools that make dichotomous classifications (i.e., active/inactive, 
positive/negative), goodness-of-fit is usually expressed as Cooper statistics such 
as sensitivity (fraction of true positive chemicals predicted as positive), specificity 
(fraction of true negative chemicals predicted as negative), accuracy (fraction of 
true positive and negative chemicals correctly predicted as positive and negative, 
respectively), and positive and negative predictivities (probabilities that chemicals 
predicted as positive and negative are actually positive and negative, 
respectively). Some (Q)SAR models can be biased towards high specificity or 
sensitivity depending on the specific application they are designed for. Because 
the Cooper statistics are interrelated, designing a model for high specificity can 
result in decreased sensitivity (i.e., high false negative prediction rate) and vice 
versa. This can be an important consideration as there is generally a greater 
emphasis on correctly predicting positive chemicals (i.e., high sensitivity) for 
pesticides and other environmental chemicals. Cooper statistics can also be 
influenced by the distribution of positive and negative chemicals in the test set 
such that the predictive performance for the largest class of chemicals in the test 
set (i.e., positive or negative) will impact on the accuracy of the model and the 
proportion of positive chemicals in the test set will influence the positive and 
negative predictivities. The OECD has recommended that the Cooper statistics 
be significantly greater than 50% for classification models used in a stand-alone 
manner, but there is no absolute value for differentiating good from poor 
predictive performance and a (Q)SAR tool with poor performance for one Cooper 
statistic may still be useful depending upon the application (OECD, 2007c; 
ECHA, 2008). Also, as discussed in section 6, it may be possible to combine 
predictions from multiple (Q)SAR tools to enhance overall predictive 
performance. 
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Predictivity can be assessed by external validation, either through the use of a 
test set of chemicals separate from the (Q)SAR model training set or by 
separating a set of chemicals into a training set and a test set at the design stage 
(Gramatica, 2007). External validation is usually measured by an external 
correlation coefficient (Q2

ext). External test sets should be of sufficient size and 
representative of the types of chemicals to be predicted using the (Q)SAR model. 

In some cases, model developers may also present the results of internal 
validation techniques such as leave-one-out (LOO) and leave-many-out (LMO) 
methods. For these methods, one or more chemicals is removed from the 
training set, the model is re-built, the removed chemicals are predicted, the 
process is repeated, and the average predictivity across the various versions of 
the model is estimated as a cross-validated regression coefficient (Q2). One of 
the reasons internal validation statistics are presented is that there may be 
limited data from which to construct an independent external test set because 
(Q)SAR model developers generally want to maximize the number of training set 
chemicals, leaving few chemicals for external validation testing. 

Q2 or Q2
ext values of >0.5 and >0.9 are considered to represent good and 

excellent performance, respectively, but it should be noted that predictivity is 
dependent on the statistical method used and the composition of the test set. 

Also, as stated previously, predictions outside the domain of the training set are 
likely to be less reliable than predictions within the domain of applicability, so that 
validation principle 4 is closely linked to validation principle 3 (OECD, 2007c; 
ECHA, 2008). 

It should be noted that not all elements of principle 4 are applicable to all (Q)SAR 
tools, so the assessment of goodness-of-fit, robustness, and predictivity may 
have to be made on a case by case basis. Rule-based SAR/Expert Systems that 
use databases of structural alerts are one example in which there is generally no 
training set and as such LOO, LMO, and other methods will not be applicable. 
Also, when considering Cooper statistics for external validation testing, the 
determination of specificity and negative predictivity may be difficult if the expert 
system is only based on structural alerts for activity. 
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5.1.1.5  Principle 5 — Defined Mechanism of Action, if Possible 

The fifth validation principle states that a (Q)SAR model should be associated 
with a mechanistic interpretation wherever possible. Although it is recognized that 
mechanistic information is not always available for (Q)SAR models, whenever it 
is available, it should be investigated and reported. A transparent mechanistic 
interpretation can assist in the determination of whether the domain of 
applicability of a model is suitable for predictions for the chemical of interest, help 
with the interpretation of outliers, guide hypothesis testing, and provide support 
for the biological plausibility (i.e., toxicological interpretation) and reliability of the 
predictions from a model. However, the absence of a clearly identified 
mechanistic basis for a model does not necessarily mean that the model is not 
potentially useful for a given regulatory application (OECD, 2007c). 

For QSAR models, a mechanistic interpretation represents the physical, chemical 
and/or biological basis for the model descriptors and their relationship with the 
endpoint or property to be predicted (ECHA, 2008). A mechanistic interpretation 
can be associated with a QSAR model through the selection of mechanistically 
relevant descriptors at the time of model development (i.e., a priori) or through 
the investigation and delineation of the mechanistic basis for the descriptors in an 
existing model (i.e., a posteriori) (OECD, 2007c). 

As indicated previously using mechanistic similarity to group chemicals in the 
training set of a (Q)SAR tool can provide a solid basis for QSAR model 
development and interpretation. Consequently, when evaluating the mechanistic 
basis of a (Q)SAR tool, it is important that the rationales for grouping training set 
chemicals be presented, particularly with respect to any mechanistic hypotheses 
that were applied (e.g., skin sensitization associated with protein binding 
potential) and how the mechanistic hypotheses were translated into structural 
inclusion/exclusion rules (e.g., grouping thiol compounds with potential for protein 
binding via disulfide formation). 

For knowledge-based SAR/expert systems and other related tools, the 
mechanistic interpretation can be related to observed empirical data, expert 
knowledge, and expert derived rules on the chemical reactivity and/or biological 
activity of various chemical substructures (OECD, 2007c). 
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5.2  Applicability of the (Q)SAR Tool to the Pesticide 
Whether a (Q)SAR tool can be considered as applicable to a pesticide depends 
upon the characteristics of the pesticide (see section 4.2) and the domain of 
applicability of the (Q)SAR tool (see section 5.1.1.3). 

In terms of the characteristics of a pesticide, accurate information on identity, 
composition, and structure is necessary when determining whether a (Q)SAR 
tool could be applicable. Many (Q)SAR models are limited to making predictions 
for discrete organic chemicals and are incompatible with pesticides that are 
mixtures, salts, or polymers. These incompatibilities may necessitate the use of 
surrogate compounds such as monomers, uncharged acid forms, and single 
mixture components to make predictions. Although surrogates may in some 
cases be a useful approach to making predictions for pesticides that are 
incompatible with available models, their use should be supported by rationales 
that account for the potential impacts of molecular size and weight, ionization 
state, variations in mixture composition, synergism/ antagonism between mixture 
components, and other factors. 

Similarly, if the isomeric form of a pesticide could have an impact on the endpoint 
or property to be predicted, the (Q)SAR tool will need to be capable of 
differentiating between isomers to be applicable. A QSAR model that uses 2-D 
structural descriptors and only accepts 2-D structural representations of 
chemicals to be predicted will not be very useful for predicting differences in 
toxicity between stereoisomeric forms of a pesticide. A better approach would be 
to use a QSAR model capable of recognizing structural representations of 
isomers, that includes isomer specific descriptors, and whose training set is 
sufficiently diversified with respect to data on different isomeric forms. 

As discussed in section 4.2, for pesticides that can be transformed in the 
environment or through metabolism in the body, the toxicity, ecotoxicity, physical-
chemical properties and other properties of the transformation products, 
degradates or metabolites may differ from those of the parent pesticide. Whether 
or not a (Q)SAR tool could be applicable to a pesticide that can be metabolized 
or transformed would involve identifying metabolites or transformation products 
(i.e., from empirical data or model predictions) and determining whether 
predictions can be generated for them or not. 

Section 5.1.1.3 outlines the concept of defining domain of applicability during the 
evaluation of the validity of a (Q)SAR tool. While it is possible for some (Q)SAR 
tools to make predictions for pesticides outside their domains of applicability, 
those predictions are likely to be less reliable at best or in some cases the 
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pesticides will be so far outside the domain of applicability that the (Q)SAR tools 
should not be considered as applicable. As discussed, there are a number of 
commercial and non-commercial (Q)SAR models that include automated 
methods for assessing whether a chemical lies within their domain of applicability 
based on limits on descriptor values, the presence of unrecognized structural 
features, and other parameters. Also, a variety of different methods of defining 
domain of applicability have been published (OECD 2007c; Nikolova and 
Jaworska, 2003; Dimitrov et al., 2005a; Jaworska et al., 2005; Netzeva et al., 
2005). 

5.3  Relevance of the (Q)SAR Tool to the Assessment Context 
As noted by the JRC, the relevance of a (Q)SAR model involves considering 
whether a predicted endpoint can be directly applied to a particular regulatory 
purpose (EC, 2008b). This is based on the endpoint or property that the tool is 
capable of predicting and the specific type of prediction information that the tool 
can generate for a particular assessment context. The information obtained at the 
problem formulation stage on the assessment context that (Q)SAR is being 
applied to (section 4.1) and the characteristics of the (Q)SAR tool and the 
prediction (section 4.3) can provide a useful starting point for assessing the 
relevance of the (Q)SAR tool. 

In order for a (Q)SAR tool to be relevant, the endpoint or property that it predicts 
must correspond to the endpoint or property for which a data requirement exists 
in a given pesticide assessment context. A (Q)SAR model, capable of generating 
reliable predictions for the mutagenicity of chemicals in Salmonella typhimurium 
TA1538 may provide useful information on the in vitro mutagenicity of a pesticide, 
but it will not provide specific information to address a data requirement for an in 
vivo clastogenicity study. Similarly, a positive prediction for general pre-natal 
developmental toxicity for a pesticide may not be sufficient to address a question 
about whether a pesticide can induce specific skeletal malformations. 

Whether the endpoint or property predicted by a (Q)SAR tool could address a 
specific pesticide data requirement involves a clear understanding of the data 
from which the tool was derived. This corresponds to the OECD validation 
principle of defined endpoint which was discussed in section 5.1.1 — i.e., 
understanding study protocols, data interpretation criteria, and other study 
elements. 

The type of information that a (Q)SAR tool can generate can also impact on its 
relevance to a pesticide assessment question. In particular, (Q)SAR models are 
usually designed to generate qualitative or quantitative predictions for particular 
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endpoints. A model that can provide a qualitative (e.g., yes/no, positive/negative) 
estimate of the toxicity of a pesticide to freshwater fish may provide some useful 
information, but will be of limited relevance if a prediction of an acute LC50 in trout 
is required for a particular assessment context. 

5.4  Reliability of the (Q)SAR Prediction 
In addition to considering the validity of a (Q)SAR tool for a particular pesticide 
assessment context, the applicability of the tool to the pesticide, and the 
relevance of the tool to the assessment context, it is also necessary to evaluate 
the level of reliability (or confidence) in the individual prediction itself. Evaluating 
the reliability of a prediction takes into account information gleaned from the 
problem formulation process (see section 4) and information obtained when the 
(Q)SAR tool is evaluated using the OECD validation principles (see section 5.1). 

The pesticide assessment context is an overlying consideration when evaluating 
the reliability of a (Q)SAR prediction. Moving from a less comprehensive to a 
more comprehensive assessment context will likely require a higher level of 
reliability from any (Q)SAR predictions used in the assessment. When rapidly 
prioritizing chemicals for further assessment, it may be possible to take 
predictions from validated (Q)SAR tools almost on face value. However, prior to 
relying on a (Q)SAR prediction as a critical piece of information in a human 
health or environmental risk assessment for a pesticide, the relationship of the 
pesticide to the domain of applicability of the (Q)SAR tool, the strengths and 
limitations of the tool, the prediction results and how they are interpreted, the 
predictive performance of the tool for similar chemicals, and the potential impact 
of other available information all have to be evaluated in more detail in order to 
judge the reliability of the (Q)SAR prediction. 

5.4.1 Relationship of the Pesticide to the Domain of Applicability of 
the (Q)SAR Tool 

The importance of considering the domain of applicability of the (Q)SAR tool has 
already been mentioned with respect to the OECD validation principles (see 
section 5.1.1.3) and the applicability of a (Q)SAR tool to a pesticide (see section 
5.2), respectively. Section 5.1.1.3 also references a number of methods for 
assessing domain of applicability. 

Evaluating the relationship of the pesticide to the domain of applicability of the 
(Q)SAR tool essentially involves determining whether the pesticide lies within the 
domain of applicability or outside of it. As indicated previously, predictions for 
pesticides outside of the domain of applicability of a (Q)SAR tool are not 
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necessarily inaccurate, but are generally considered less reliable than predictions 
for compounds falling with the domain of applicability. 

As mentioned in section 5.1.1.3, domain of applicability may be defined in 
different ways (e.g., descriptor, structural fragment, mechanistic, and metabolic 
domains). Whether a pesticide is within the domain of a descriptor based QSAR 
model is usually based on comparing the pesticide descriptor values to the range 
of values for the chemicals in the training set. Structural fragment domain 
analyses would involve ensuring that the pesticide doesn’t contain fragments that 
are not present in the training set of the model. For the mechanism of action or 
metabolic domain, the key question is whether the pesticide is likely to act via the 
same mode/mechanism of action and/or be metabolized in the same manner as 
other chemicals for which the (Q)SAR tool is applicable (EC, 2010). The OECD 
has noted that because there are different ways of defining domain of 
applicability, a prediction for a pesticide that is within the domain of applicability 
of a (Q)SAR tool based on structural and physicochemical parameters may still 
not be reliable if it has a unique mechanism of action not covered by the 
mechanistic domain(s) of applicability of the (Q)SAR tool (OECD, 2007c). 

The age of the QSAR model and its training set may also have impacts on the 
consideration of the domain of applicability of the model and the reliability of the 
prediction. An older, global type QSAR model may make a negative prediction for 
a pesticide because its training set is populated with a limited number of 
chemicals that contain the key structural elements in the pesticide and that all 
tested negative in historical empirical studies. However, a more up-to-date 
model, whose training set has been tested in more modern empirical studies, has 
been segregated into groups according to mechanism of action, and contains a 
larger number of compounds from the same chemical class as the pesticide of 
interest, many of which have positive empirical test results, may generate a 
positive prediction that is more reliable even though the pesticide falls within the 
domains of applicability of both models. Consequently the use of the most up-to-
date versions of models and training sets is recommended and could be 
particularly important when combining information from multiple predictions (see 
section 6). 

Finally, as discussed above, assessing the domain of applicability may be 
particularly important for pesticides as (Q)SAR tool developers have not always 
had access to proprietary pesticide empirical studies for incorporation into 
training sets. 
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5.4.2 Strengths and Limitations of the (Q)SAR Tool 

The strengths and limitations of a (Q)SAR tool can impact on the evaluation of 
the reliability of the predictions from that tool (Hulzebos et al., 2001; Greene, 
2002). One source of strengths and limitations is the general methodologies on 
which various (Q)SAR tools are based (e.g., analog approaches, chemical 
categories, SAR and QSAR models, etc.) (see section 4.3). An example already 
cited in this document is the lack of structural alerts linked to inactivity or negative 
test results in some SAR/expert systems. If no structural alerts are identified for a 
pesticide using this type of system and this is considered as equivalent to a 
prediction of inactivity (negative), the prediction may be less reliable than a 
positive prediction from the same system or a negative prediction from another 
type of (Q)SAR tool that uses descriptors, alerts or other parameters directly 
related to inactivity, depending on the assessment context. Similarly, the 
overemphasis on statistical associations and lack of a mechanistic basis for 
predictions may make some statistical QSAR models less reliable. 

Built-in biases are another source of strengths and limitations of (Q)SAR tools 
that could influence the reliability of predictions. For instance, some QSAR 
models for pharmaceutical applications have training sets with distributions of 
positive and negative compounds designed to generate higher specificity versus 
sensitivity scores (Section 5.1.1.4). This type of bias needs to be taken into 
account when models of this type are applied to pesticides as they may generate 
a higher proportion of false negative predictions. The European Chemicals 
Agency noted a potential source of bias for biodegradation models in their 
guidance for the implementation of the REACH legislation. Because QSAR 
models for biodegradation are often biased towards non-ready biodegradability, 
predictions of biodegradability may be less reliable than predictions of non-ready 
biodegradability (ECHA, 2008). 

The sources of data for training set compounds, and the sources of data or 
methods of calculation for descriptors (see section 5.1.1.1) can be another type 
of strength or limitation of (Q)SAR model that could impact on the reliability of 
predictions. While empirical datasets for registered pesticides usually consist of 
peer reviewed guideline type studies, many model training sets are based on 
open literature studies of varying quality. Also, as noted by Doull et al. (2007), for 
some chemical classes, potential training set data may not be available from the 
published literature. Similarly, the sources of the descriptor values and/or 
methods used to estimate them may need to be scrutinized when evaluating the 
reliability of a QSAR model prediction. Whether calculated descriptors, especially 
obscure types, are reproducible or whether methods used to estimate descriptors 
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for older versions of QSAR models have been supplanted by newer methods 
could impact on the acceptability of predictions. These considerations also apply 
to chemical category/read-across approaches. The methods used to identify 
similar compounds, and the sources used for the endpoint related, physical-
chemical property, mechanistic and other data used to support chemical category 
development and read-across predictions may need to be carefully considered 
when determining the reliability of those predictions (OECD, 2007a). 

5.4.3 Prediction Results and How They are Interpreted 

Along with the basic qualitative (e.g., positive, negative, marginal) or quantitative 
(e.g., LC50, LOAEL, TD50, etc.) prediction results, additional information is 
available from most (Q)SAR tools which can be used to assist in evaluating the 
reliability of predictions. Many QSAR models provide information on the structural 
fragments, descriptors or physical-chemical parameters used as variables in their 
algorithms. Examination of the values of these variables and their coefficients in 
the model algorithm can indicate whether they positively or negatively influenced 
a (Q)SAR prediction and the magnitude of their impact. Combining information on 
the influence of structural fragments or descriptors on a model prediction with 
knowledge of their relationship to the mechanism of action for the predicted 
endpoint can provide powerful evidence to support or question the reliability of 
the prediction. For instance, an increased level of reliability could be assigned to 
a QSAR model prediction for a toxicity endpoint directly related to a receptor 
binding process if the model algorithm contains descriptors of molecular size and 
shape known to be related to receptor binding affinity and the values of those 
descriptors for the pesticide in question are similar to those for chemicals known 
to bind to the receptor and produce the effect in question. 

Other information generated by some (Q)SAR models includes calculated values 
for molecular weight of the test chemical, and properties such as Log Kow and 
bioavailability (e.g., based on Lipinski’s rule of 5) which can help with the 
consideration of whether a prediction for an endpoint could reliably represent 
what might occur following an in vivo exposure to a chemical. Similarly, some 
SAR/expert systems have expert rules that can take into account physical-
chemical factors which can impact on absorption/bioavailability by discounting 
the presence of a structural alert associated with toxicity in a pesticide if the 
physical-chemical parameters of the pesticide are outside the range normally 
associated with the endpoint in question. 

Understanding how the results of (Q)SAR predictions have been interpreted is 
another consideration in the evaluation of their reliability. Algorithms for QSAR 
models are generally derived from training sets of empirical study results for 
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chemicals. How those empirical study results are interpreted can influence the 
nature of the algorithm, the predictive performance of the model, and ultimately 
the reliability of predictions from that model. For a carcinogenicity (Q)SAR model 
developed from a training set of rodent bioassays, the bioassay results may have 
been interpreted as positive based on a specific percentage increase in tumor 
incidence over controls, a statistically significant increase in incidence over 
controls, a statistically significant trend over several dose groups, and/or other 
criteria. The reliability of a prediction from such a model could be influenced by 
whether the study interpretation criteria were consistent among the training set 
chemicals and whether the criteria correspond to regulatory agency specific 
interpretation criteria. 

The criteria for interpreting predictions that have been developed by the 
originator of the (Q)SAR tool and the rationale for them should also be taken into 
account when evaluating the reliability of predictions. Statistical-based QSAR 
models often generate probabilities (i.e., 0 – 1.0) for dichotomous (e.g., 
positive/negative) endpoints and the model developers recommend specific 
criteria for interpreting the predicted probabilities (e.g., TOPKAT criteria: ≥0.7 and 
≤1.0 = positive; ≥0.0 and <0.3 = negative; ≥0.3 and <0.7 = inconclusive; Accelrys 
Inc., 2004). Criteria of this nature are usually developed based on internal and/or 
external validation testing to optimize the predictive performance of the model. 

Although originators of (Q)SAR tools may recommend prediction interpretation 
criteria, users of the tools may make modifications to those criteria. A pesticide 
applicant or regulatory evaluator may decide that interpretation criteria put forth 
by a (Q)SAR model developer are too conservative or not conservative enough 
based on previous experience with the model, the results of validation studies or 
other information. In some cases, comparisons of predictions for parent 
compounds versus metabolites, data from related empirical studies, kinetic 
and/or mechanism of action data, and other information may be used to modify, 
override or contradict the interpretation criteria recommended by a model 
developer. Also, regulatory agencies may develop standing policies on how 
selected (Q)SAR tools should be interpreted that may differ from those of the tool 
developers. Regardless of which criteria are used, they should be transparent so 
that they can be considered in the evaluation of the reliability of the predictions. 



 
Page 75 of 186 

5.4.4 Predictive Performance of the (Q)SAR Tool for Similar 
Chemicals 

Testing the predictive performance of a (Q)SAR tool on chemicals that are similar 
to the pesticide in question and have empirical data available for them can 
provide another source of information for evaluating the reliability of predictions. 
Chemicals from the same chemical class as the pesticide in question, as well as 
isomers, salts, and other forms could be considered for testing the predictive 
performance of the (Q)SAR tool. For example, a starting point for testing the 
predictive performance of a (Q)SAR tool for a sodium salt of an organic acid 
would be to generate a prediction for a de-salted acid form of the compound for 
which empirical data are available. Which chemicals to use would depend on the 
type and quality of empirical data available for them, the parameter used to 
assess similarity (e.g., physical-chemical parameters, structure, metabolism) and 
the degree of similarity. 

As discussed in other sections of this document, one of the advantages of 
applying (Q)SAR to pesticide metabolites, transformation products or 
manufacturing impurities can be the abundance of high quality guideline study 
derived data on a structurally related parent pesticide. In some cases, parent 
pesticides with existing empirical databases can be used as external validation 
sets or “positive and negative controls” for the associated metabolites, 
transformation products or manufacturing impurities. When an endpoint for a 
parent pesticide is well predicted by a (Q)SAR tool and the structures or 
descriptors with the greatest influence on predictions are similar for the parent 
pesticide and its metabolite, it may be possible to assign a greater reliability to 
the prediction for the metabolite from the same tool. 

5.4.5 Other Available Information  
Although there may be some instances where (Q)SAR predictions will be used in 
a stand-alone manner, in most pesticide assessments, predictions will be only 
one of many lines of evidence to be considered. Therefore, when evaluating a 
(Q)SAR prediction for a pesticide, it is important to consider the impact of other 
available information on the evaluation of the reliability of the (Q)SAR prediction. 
Available empirical data on a pesticide could contradict the (Q)SAR prediction or 
support it. Also, even if the prediction is supported by the empirical data, the 
degree of support may justify a more or less conservative interpretation of the 
prediction. For example, a prediction of high acute inhalation toxicity for a 
pesticide may be generated by a QSAR model, but contradictory empirical data 
on the physical-chemical properties of the pesticide may indicate low volatility or 
low potential for aerosolization which may lead the evaluator to question the 
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reliability of the prediction and seek additional data or predictions for structurally 
similar chemicals. On the other hand, there may be cases where precursor 
effects in a target organ consistently reported in short-term studies may be used 
to support a (Q)SAR prediction of a related longer-term effect (e.g., 
carcinogenicity) in the same target organ and species by the same route of 
exposure. 

Just as a defined mechanism of action can be an important consideration when 
evaluating the validity of a (Q)SAR tool (section 5.1.1.5), empirical data on mode 
or mechanism of action can be an important consideration when evaluating the 
reliability of an individual (Q)SAR prediction. Even if a (Q)SAR tool is not based 
on a defined mode or mechanism of action, high quality, empirical toxicological 
mode or mechanism of action data for a pesticide can represent a very powerful 
line of supporting or contradictory evidence for a prediction from that tool, 
including supporting or contradicting the relevance to humans and/or 
environmental organisms of the predicted toxicity endpoint. For instance, 
because of the relationship between the protein binding capability of chemicals 
and their skin sensitization potential, it could be assumed that a category 
composed of chemicals that are not only structurally similar to a test pesticide, 
but are also known to bind to proteins via the same mechanism as the test 
pesticide will likely result in a read-across skin sensitization prediction that is 
more reliable compared to predictions where information on protein binding 
mechanism is not available (Dimitrov et al., 2005b). One example of the impact of 
mode of action data on the human relevance of a (Q)SAR prediction could 
involve the interpretation of a positive prediction for renal tumors in male rats that 
has been statistically validated and has a domain of applicability that 
encompasses the pesticide in question. The interpretation of such a prediction 
may have to be tempered if data are available from short-term or specialized 
mode of action studies that indicate the accumulation of alpha-2u-globulin in the 
kidneys of male rats administered the pesticide, a potential mode of action of 
questionable relevance to humans. 

As outlined in section 4.4, empirical data on the pesticidal mode of action of 
pesticides could provide support and enhance the reliability of (Q)SAR 
predictions for related endpoints in humans and other non-target species. Also, a 
common pesticidal mode of action could be one of several lines of evidence 
supporting the formation of a category of related chemicals. A category that is 
based not only on structural and physical-chemical similarities, but also similarity 
of pesticidal mode of action amongst category members is likely to result in more 
reliable read-across and trend analysis predictions. 
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5.5 Documentation of (Q)SAR Tool and Prediction 
In order for an evaluator to critically review the adequacy of a (Q)SAR prediction 
for a pesticide, the (Q)SAR tool and the prediction must be documented with a 
sufficient level of transparency. This is similar to the concept of sufficient 
documentation for empirical studies as delineated in empirical study guidelines 
and in guidance for producing robust study summaries for regulatory purposes. 
What constitutes a sufficient level of transparency will depend on the assessment 
context, specific data reporting requirements or policies of the regulatory agency 
and the type of (Q)SAR tool. When predictions of toxicity, ecotoxicity, 
environmental fate, etc. are used in a prioritization or screening context, it may 
not be necessary to provide full details on the adequacy of the (Q)SAR 
predictions. However, for a (Q)SAR prediction to be accepted as a critical data 
point in a pesticide assessment would likely require less uncertainty, and thus 
more extensive documentation analogous to pesticide data evaluation records 
(DERs) used to capture critical information from conventional toxicity, exposure, 
and other study types. 

5.5.1 General Types of Information 
At the present time, a standardized template for reporting information on (Q)SAR 
predictions included in pesticide assessments has not yet been developed. 
However, in lieu of such a template, some recommendations can be made 
regarding the general types of information to report (see Table 5–1). In general, 
for any (Q)SAR prediction, sufficient information must be provided to clearly 
identify the chemical for which the prediction is being made and the model or 
other (Q)SAR tool used to generate the prediction. A description of the results of 
the prediction and how they were interpreted should also be presented as well as 
a discussion of the validity of the tool in the context in which it is being used. 
These recommendations should only be considered as a starting point for what to 
include when documenting (Q)SAR predictions for pesticides. As indicated 
above, the level of detail to be included when reporting on predictions will depend 
on the assessment context, specific data reporting requirements or policies of the 
regulatory agency and the type of (Q)SAR tool. 

While the recommendations in Table 5–1 are fairly general, they include a 
number of information elements that may be more suitable for (Q)SAR models 
than other tools such as analog and category approaches. Specific guidance on 
reporting formats for analog and category approaches has been developed by 
the OECD (OECD, 2007a). 
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Table 5–1:  Recommended General Types of Information to Include when 
Documenting (Q)SAR Predictions 

 

5.5.2 Documentation of (Q)SAR Predictions — EC QMRF and QPRF 
The European Commission (EC) has developed the QSAR Model Reporting 
Format (QMRF) and the QSAR Prediction Reporting Format (QPRF) as detailed 
documentation templates for providing sufficient information to facilitate 
regulatory consideration of (Q)SAR models and predictions. The QMRF has been 
designed to provide information related to the OECD principles for the validation, 
for regulatory purposes, of (Q)SAR models and the QPRF has been developed to 
provide information to assist in the consideration of the adequacy of a (Q)SAR 
prediction for a defined regulatory purpose (EC, 2008a; 2008b). In terms of 
parallels with the assessment of empirical studies, the QMRF is somewhat 
analogous to an empirical study test guideline and the QPRF is analogous to a 
study DER. However, the QMRF and QPRF are very detailed and were not 
specifically designed for use in a pesticide context. They are discussed here only 
as useful  examples to consider when specific (Q)SAR reporting templates for 
pesticides are being developed. One of the potential projects under consideration 
as a follow-up to this document is the development of pesticide specific (Q)SAR 
DERs. Further background information on the QMRF and QPRF, tables 

Information on the chemical 
• Chemical (systematic) and common names 
• CAS number 
• Structural formula 
• Form of the chemical (including relevant stereochemistry) 
• Structural entry format 

 
Information on the (Q)SAR model or tool 

• Type of model or tool 
• Name of the software platform 
• Name of model/submodel or tool 
• Version number/date of model/submodel or tool 
• Characterization of the training set 
 

Validity of the (Q)SAR model or tool 
• Information on the predicted endpoint 
• Information on the algorithm 
• Domain of applicability 
• Internal/external validation statistics 
• Mechanistic information (if available) 

 
Results and interpretation of the prediction 

• Qualitative prediction (i.e., yes/no, +/-) 
• Quantitative prediction (e.g., LOAEL = 50 mg/kg bw) 
• Predictive probability 
• Criteria for interpreting predictions 
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summarizing the information fields in each, and the EC website link for the 
templates and additional guidance on their use are included in Appendix II. 

5.6 Summary 
Evaluating the adequacy of a (Q)SAR prediction is an essential step for 
determining whether the prediction is useful source of data for a pesticide 
assessment. Adequate or fit for purpose predictions can be incorporated into 
weight of evidence assessments, whereas inadequate predictions necessitate a 
reliance on other sources of data alone. Whether a prediction is adequate or fit 
for purpose should always be determined within a specific assessment context 
such that a prediction that is adequate to support a request that specific empirical 
studies be conducted may not be adequate enough to replace those studies in 
an assessment. In this section, a framework has been presented for evaluating 
the adequacy of predictions based on a consideration of the validity of the 
(Q)SAR tool, the applicability of the (Q)SAR tool to the pesticide of interest, the 
relevance of the (Q)SAR tool to the pesticide assessment context, and the 
reliability of the prediction (Figure 5–1). This framework relies on information 
obtained during problem formulation for (Q)SAR (see section 4) and it is flexible 
enough to be useful for a variety of different assessment contexts. The next 
section of this document (section 6) deals with combining information from 
multiple predictions. While there are specific issues associated with combining 
multiple predictions, in general, the framework for evaluating the adequacy of 
(Q)SAR predictions outlined in section 5 can also be applied to multiple 
predictions. For either single or multiple predictions that have been determined to 
be adequate, the next step is the incorporation into a weight of evidence 
assessment which is the subject of section 7 of this document. 
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6. Combining Information from Multiple Predictions 

 

6.0 Introduction 
Combining information from multiple (Q)SAR predictions can be thought of as 
analogous to combining the results of multiple in vivo and in vitro studies to 
strengthen a weight of evidence argument for a toxicity or ecotoxicity endpoint. 
Because different (Q)SAR tools may have different prediction paradigms and 
different strengths and limitations, combining predictions has the potential to 
increase the confidence in the overall prediction. However, it should be noted that 
combining predictions from multiple (Q)SAR tools does not eliminate the need to 
ensure that each prediction is adequate or fit for purpose (see section 5). In 
particular, it is important that each (Q)SAR tool used be scientifically valid, 
applicable to the pesticide of interest, and relevant to the assessment context. 

Also, while there are advantages to combining predictions, it is not always 
necessary to do so. In some instances, relying on a single prediction from a 
(Q)SAR tool that is valid for the stated purpose, applicable to the pesticide in 
question, and relevant to the assessment context may be much more acceptable 
than trying to combine predictions from tools with significant limitations. 

This section briefly discusses approaches to combining information from multiple 
predictions, some advantages and disadvantages of combining predictions, 
selecting (Q)SAR tools for multiple predictions, and the evaluation of multiple 
predictions. Although much of the discussion focuses on combining predictions 
from (Q)SAR models, many of the concepts mentioned can also be applied when 
predictions from different types of (Q)SAR tools are combined. 

COMBINING INFORMATION FROM MULTIPLE PREDICTIONS 

Topics Discussed in this Section: 

 Approaches to combining multiple predictions 

 Advantages and disadvantages of combining predictions 

 Selecting (Q)SAR tools for multiple predictions 

 Evaluation of multiple predictions 
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6.1 Approaches to Combining Multiple Predictions 
Combining the output of multiple (Q)SAR models into an overall prediction has 
been referred to as consensus modeling, battery approaches, or weight of 
evidence approaches to (Q)SAR modeling (Abshear et al., 2006; OECD, 2007; 
Hewitt et al., 2007; Matthews et al., 2008, 2009a; Ellison et al., 2010; Hewitt et 
al., 2010). An example of a fairly simple approach to consensus predictions is the 
set of interpretation criteria in the KnowITAll computational system described by 
Abshear et al. (2006) which are summarized in Table 6–1 below. These criteria 
range from single hit/unanimity requirements for true/false predictions based on 
the worst case scenario and vice versa for the best case scenario, to the 
assessment of counts of true and false predictions for the majority and 
percentage agreement scenarios. For toxicity predictions, a value of true can be 
considered as equivalent to a positive prediction and value of false as equivalent 
to a negative prediction. 

Table 6-1:  Consensus Modeling Interpretation Criteria 
(Abshear et al., 2006) 

Scenario Definition 

Worst Case 1. If any model returns a value of true, return a value of true 
2. Only if all models return a value of false, return a value of false 

Best Case 1. If any model returns a value of false, return a value of false 
2. Only if all models return a value of true, return a value of true 

Majority Rules 1. If the majority of the models return true, the consensus will be true 
2. If the majority of the models return false, the consensus will be false 

Percentage 
Agreement 

1. If a specified percentage of the models returns a true value, the consensus 
will be true 

2. Otherwise, the consensus will be false 

 

In contrast, a slightly more complex method of combining predictions is the 
weight of evidence approach of Ellison et al. (2010) in which predictions from the 
OECD QSAR Toolbox, Derek for Windows, CAESAR and SMARTS rules were 
combined for skin sensitization with positive predictions given a weighting of 
+0.5, negative predictions given a weighting of -0.5, and the absence of structural 
alerts in a compound given a weighting of -0.25. The sum of the weightings was 
then interpreted in a weight of evidence argument as positive: 
≥ +0.5, negative: ≤ -0.5, and inconclusive: > -0.5 and < +0.5. 

Additional factors that could be considered when weighting individual predictions 
in a consensus approach include characteristics of the models or tools that are 
being combined such as the presence/absence of a mechanistic basis for the 
predictions, the characteristics of the model training set (e.g., data sources and 
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domain of applicability), and the known predictive performance of the models or 
tools. Finally, when predictions are made for a quantitative (i.e., continuous) 
endpoint (e.g., LC50, LOAEL, TD50, EC50, etc.), it may, in some cases, be 
possible to average the predicted numerical values or combine them using other 
statistical methods. Consensus predictions can vary in complexity depending on 
the tools considered and the methods of counting, scoring or weighting the 
individual predictions. 

6.2 Advantages and Disadvantages of Combining Predictions 

6.2.1 Advantages of Combining Predictions 
A number of researchers have demonstrated improvement in measures of 
statistical fit and predictive performance when multiple (Q)SAR predictions for 
human health related and environmental toxicity endpoints are combined. One 
example is the study of Matthews et al. (2009a) involving the generation of 
consensus predictions for drug-induced adverse liver and urinary tract effects 
using training sets configured for four (Q)SAR programs (i.e., MC4PC, 
MDL-QSAR, BioEpisteme and Predictive Data Miner). Consensus predictions 
where a positive prediction from at least one program was considered as an 
overall positive result resulted in an increase in sensitivity from 39% for one 
program to 56% for two, and to 68% for four programs. Increased sensitivity was 
at the cost of specificity which decreased from 86% for one program, to 78% for 
two, and to 67% for three. Consensus predictions requiring agreement between 
two, three and four programs increased the specificity by 4, 9, and 12%, 
respectively, compared to single program predictions. In this case, sensitivity was 
increased for consensus predictions from two or more programs, but reduced by 
11 and 26% for predictions requiring agreement between three and four or more 
programs, respectively. Similar improvements in predictive performance were 
obtained for carcinogenicity predictions using models built from the four (Q)SAR 
programs above in an earlier study (Matthews et al., 2008). Matthews et al. 
(2009a) concluded that no one (Q)SAR model can provide both high specificity 
and high sensitivity. Combining models that have good specificity individually in a 
consensus approach can enhance the overall sensitivity, which can be an 
important consideration for models used in the assessment of pesticides. 

Another example of improved predictive performance from consensus modeling, 
is the work of Lewis et al. (2002) in which a predictive concordance of 100% was 
obtained from combined COMPACT and Hazard Expert predictions for a small 
group (14) of carcinogens. The concordances were 71% for COMPACT alone 
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and 57% for Hazard Expert alone.4 However, not all studies have demonstrated 
improved model statistics for consensus versus individual models. Hewitt et al. 
(2007) used genetic algorithms to construct a range of models for four different 
data sets (silastic membrane flux, toxicity of phenols to the ciliated protozoan 
Tetrahymena pyriformis, acute toxicity in fathead minnow and flash point). There 
was no consistent improvement in statistical fit or predictivity (i.e., R2, Q2 root 
mean square error) for average predictions from a consensus of the 10 best 
models (i.e., models with the highest R2 and Q2 values); or a consensus of a 
diverse set of models that best covered the available model space compared to 
the single regression model with the best R2 and Q2 values. 

The potential for multiple (Q)SAR models to provide complementary or 
confirmatory information compared to individual predictions is another advantage 
of consensus approaches. Matthews et al. (2009a) defined complementary 
models as two or more models that predict different sets of active and inactive 
chemicals when used on the same test set and noted that combining 
complementary models can enhance predictive performance (e.g., sensitivity). 
Combining complementary models could also enhance or expand the overall 
coverage or domain of applicability. For instance, if within a set of 100 pesticides, 
40 contain key structures that are in the domain of applicability of (Q)SAR model 
A, whereas the domain of applicability of (Q)SAR model B covers half of those 
same 40 pesticides plus key structures found in the 60 pesticides not covered by 
model A, then combining predictions could provide complementary coverage of 
all 100 pesticides. Combining predictions from multiple models for similar or 
related endpoints could also provide complementary information that increases 
the reliability of the overall assessment. A single positive prediction for 
mutagenicity in a (Q)SAR model for one specific strain of Salmonella 
typhimurium provides limited information on the potential microbial (prokaryotic) 
mutagenicity of a compound. Combining multiple positive predictions from 
models for several Salmonella strains, models for in vitro mutagenicity in 
mammalian cell systems, and models for in vitro and in vivo chromosomal 
aberration assays could provide complementary information that when combined 
with evidence of carcinogenicity from in vivo bioassays may provide an initial 
indication of a potential genotoxic mode of action for a carcinogenic compound. 

Models that are based on different predictive paradigms (e.g., molecular 
fragment versus molecular descriptor paradigms) that predict the same 
chemicals to be active and inactive from a single test set provide confirmatory 
                                            
4 Although the COMPACT model is not currently available, the example was included to illustrate 
some of the advantages of combining predictions from different (Q)SAR models. 
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information (Matthews et al., 2009a). This type of confirmatory information can 
increase the overall confidence in predictions (Contrera et al., 2007), especially 
when additional mechanistic insights are provided by one or more of the models. 
Individual models can emphasize a set of structural features in a molecule while 
placing reduced or no emphasis on other features (Gramatica et al., 2007). 
Consequently, combining multiple (Q)SAR models that are based on different 
methodologies can help to relate the activity of a compound to different aspects 
of its structure, confirming the impact of key structural features on activity or 
providing additional insights into the key parts of a compound's structure that 
influence activity (Contrera et al., 2007). Confirmatory predictions also increase 
the likelihood that the structures in the active compounds are causally related to 
the activity in question and that the compounds come from clusters with the same 
mechanism of action (Matthews et al., 2008; 2009a). However, combining 
predictions from models based on the same methodology (e.g., several statistical 
(Q)SAR models based on similar descriptors) and developed from the same 
training set would not be expected to provide much additional information. 

6.2.2 Disadvantages of Combining Predictions 
Combining information from multiple predictions has the potential to greatly 
increase the complexity of the predictive process in terms of selecting models to 
be combined, approaches to combining models, and interpreting the combined 
predictions. In the study of Hewitt et al. (2007) described above, the authors 
noted the complexity of generating multiple models from a range of descriptors 
for each endpoint, and in assessing which models and how many should be used 
from the global model space to construct consensus models. Also, when a large 
number of descriptors is considered, consensus models may be based on 
descriptors that are difficult to interpret mechanistically. 

Conflicting predictions from individual models for the same endpoint may 
represent another source of complexity in consensus approaches. While the 
evaluation of the adequacy of the individual (Q)SAR predictions (see section 5) 
may help to resolve some differences, conflicting predictions may still occur if 
different (Q)SAR paradigms are employed and/or the models are based on 
different training data sets. While simplified approaches for reconciling conflicting 
predictions may be adopted, such as the criteria summarized by Abshear et al. 
(2006), quantitative or semi-quantitative weighting of models may be necessary 
to account for differences in model domains of applicability, scoring criteria for 
training set data, performance measures, mechanistic bases and other 
characteristics. When multiple factors are influencing the weighting, multiple 
predictions can be very complex to interpret, especially when there is a need to 
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additionally weight the (Q)SAR predictions against other data available on a 
chemical. 

Resources needed to develop optimized consensus approaches could be 
another disadvantage of combining multiple predictions. While it may be possible 
to predefine weightings of (Q)SAR tools based on their known characteristics, 
finalized weightings of tools may require multiple rounds of testing and analysis 
(EC, 2010). 

6.3 Selecting (Q)SAR Tools for Multiple Predictions 
Many of the considerations in selecting models for multiple predictions 
encompass similar issues to those discussed in the problem formulation section 
(section 4) of this guidance document — i.e., the assessment context, 
characteristics of the pesticide, characteristics of the (Q)SAR tool, and available 
empirical data including information on mode of action. 

The assessment context, including whether the prediction is used to support a 
data waiver or to identify data requirements, what type of endpoint or property is 
being predicted, and whether the predicted endpoint or property is critical to a 
pesticide assessment will influence the level of confidence or reliability required 
in the combined predictions which, in turn, can be factored into the selection of 
appropriate (Q)SAR tools. Similarly, the amount and quality of the available 
supporting empirical data including data on mode of action can also impact on 
the required level of confidence in the combined predictions and the choice of 
tools used to make those predictions. 

As discussed in section 4, certain (Q)SAR models may not be compatible with 
the molecular structure of some pesticides (e.g., ionic compounds, complex 
mixtures, polymers, etc.) and others, though compatible, may have limitations 
such as insufficient structural diversity in their domains of applicability or the 
inability to generate quantitative predictions. As a result, the characteristics of the 
pesticide and of the (Q)SAR tool can also influence the selection of appropriate 
(Q)SAR tools for the generation of multiple predictions for a pesticide. 

While selection of models for specific scenarios will most likely be made on a 
case by case basis taking into account the factors described above and expert 
judgment, one example of an approach that has been used previously is the 
selection of a molecular fragment-based method (Q)SAR model and a descriptor-
based model, both having high predictive performance for a toxicological 
endpoint of interest. Such a combination could have a good chance of improving 
the combined domain of applicability of the models, and positive predictions 
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could provide strong evidence that the fragments/descriptors associated with the 
toxicological activity are highly significant and well separated from the structural 
features of inactive molecules. 

Another example of an approach to selecting (Q)SAR tools for multiple 
predictions would be combining complementary models with different prediction 
paradigms, such as molecular fragment-based (Q)SAR methods that detect small 
molecular fragment alerts, large molecular fragments, and very large molecular 
fragments. Relative confidence in the predictions could be increased if these 
different methods identify a common region of a molecule that is correlated with 
activity. Similarly, approaches based on combinations of predictions from 
molecular descriptor-based methods that use different pools of descriptors and/or 
different statistical methods to detect activity could also be considered. 
Confidence in the predictions is increased when these different methods identify 
a common physicochemical structural feature of a molecule that is correlated with 
activity. The work of Matthews et al. (2008, 2009a) provides some examples of 
combining predictions from (Q)SAR models with different prediction paradigms. 

6.4 Evaluation of Multiple Predictions 
Evaluation of multiple predictions involves similar considerations to those 
discussed in section 5 of this guidance document relating to evaluating the 
adequacy of single predictions — i.e., scientific validity of the (Q)SAR tools, 
applicability of the (Q)SAR tools to the pesticide, reliability of the combined 
predictions, relevance of the (Q)SAR tools to the assessment context, and 
documentation of the tools and predictions. Also, as mentioned previously, 
combining predictions from multiple (Q)SAR tools does not eliminate the need to 
ensure that each prediction is adequate or fit for purpose. 

In addition to the concepts discussed in section 5, another issue to consider 
when evaluating the results of multiple or consensus predictions is the overall 
objective of combining the predictions. Have predictions been combined to 
confirm or to increase the confidence in the predictions from one (Q)SAR model 
based on the results of other models that use different predictive paradigms? As 
mentioned above, identical predictions from multiple (Q)SAR models developed 
from the same training set using very similar predictive methodologies may not 
provide much additional information, whereas models based on different 
paradigms that identify the same chemicals to be active and inactive may 
increase the confidence in the predictions (Contrera et al., 2007). Alternatively, is 
there an interest in improving the overall predictive performance for a given 
endpoint or parameter by combining complementary models that individually 
predict different chemicals to be active and inactive? Such an approach could 
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potentially enhance predictive performance compared to the individual models 
(Matthews et al., 2009a). Knowing the objective of combining predictions and the 
characteristics of the (Q)SAR tools used can help the pesticide evaluator 
determine whether it is appropriate to combine predictions or not. 

The adequacy of the training sets in the models is another important factor in 
determining whether it is appropriate to combine predictions (Matthews, 2009b). 
If confirmatory predictions are required from multiple models then the models 
should have comparable training sets in terms of coverage of the chemicals to be 
predicted. Also, the scoring systems or criteria used to characterize the data on 
the training set chemicals should be comparable. For example, two models 
based on similar training sets of Ames test results, but constructed using different 
scoring systems for what constitutes a positive versus a negative assay result 
may not give reliable predictions when combined. Whether the training sets have 
been designed to be balanced or heavily weighted towards active or inactive 
chemicals should also be considered. If the training set for one model has a 
relatively low ratio of active to inactive chemicals (A/I ratio) and a high sensitivity 
prediction is desired, then it may be better to combine the predictions from this 
model with predictions from models that have higher A/I ratios in order to 
enhance the chance of correctly predicting positive chemicals. 

If it is considered appropriate to combine predictions, then how the predictions 
are combined and interpreted (see section 6.1) is another important question. For 
example, a pesticide applicant may put a higher priority or heavier weight on 
models with a high level of specificity when addressing submission data 
requirements in an effort to support waiver rationales for multiple in vivo studies. 
Conversely, for a metabolite or residue of potential concern for which little 
empirical data are available, pesticide evaluators may assign a greater weight to 
models with high sensitivity in order to ensure potential endpoints of concern are 
flagged for additional data requirements. Interpretation criteria for multiple 
predictions may also be designed to compensate for the strengths and limitations 
of the individual models being combined such as giving precedence or higher 
weighting to predictions from tools with more extensive domains of applicability 
encompassing the test compound, superior overall predictive performance, 
clearer mechanistic bases, greater transparency, etc. Regardless of the 
approach used to combine and interpret multiple predictions, the interpretation 
criteria should be transparent and the rationale for their use should be included 
when documenting predictions. Documentation for combining predictions may 
consist of separate records for each prediction (e.g., QPRFs) with an 
accompanying rationale for combining predictions, or, alternatively a single 
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document may be used to capture the individual predictions and the rationale for 
combining predicitions. 

Finally, if it is determined that combining (Q)SAR predictions is appropriate for a 
particular assessment context, sufficient information on training sets, scoring 
systems, interpretation criteria, etc., should be available on each model used in 
the combined prediction so that their strengths and limitations are transparent 
and if necessary, their predictions can be weighted before they are combined. 

6.5 Summary 
In general, the aims of combining multiple predictions include enhancing 
predictive performance, expanding domain of applicability, obtaining 
complementary or confirmatory information, and ultimately increasing confidence 
in (Q)SAR predictions. Although there can be advantages to combining multiple 
predictions, it is not always necessary, as a single prediction from a validated, 
applicable and relevant (Q)SAR tool is likely to be more acceptable than 
combined predictions from tools with significant limitations. The selection of 
appropriate tools for generating multiple predictions for a pesticide will involve a 
trade-off of the desired advantages against the potential disadvantages and a 
consideration of the assessment context, characteristics of the pesticide, 
characteristics of the (Q)SAR tools, and the available empirical data. Combining 
information from multiple predictions does not represent a new data stream for 
consideration in pesticide assessments. Rather it is a variation in the (Q)SAR 
data stream that needs to undergo the same types of problem formulation, 
evaluation of adequacy, and weight of evidence considerations as single (Q)SAR 
predictions prior to being incorporated into pesticide assessments. 
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7.  Integration of (Q)SAR Predictions into Hazard 
Assessments 

 

7.0 Introduction 
Traditional pesticide risk assessments in regulatory agencies have routinely been 
based on the results of laboratory animal testing and estimates of exposure 
according to the following four key steps from the National Academy of Sciences 
(NAS) risk assessment paradigm (NRC, 1983): 

• Hazard Identification 
• Dose Response Assessment 
• Exposure Assessment 
• Risk Characterization 

Twenty four years later, the NAS presented a vision for toxicity testing and risk 
assessment in the document Toxicity Testing in the 21st Century A Vision and a 
Strategy; this document recommended the use of predictive tools such as 
(Q)SAR (NRC, 2007). In the outline of this vision, the NAS described some of the 
risk assessment-related applications of (Q)SAR including the prediction of 
toxicity, ADME properties, environmental fate, and ecologic effects for chemicals. 
Consistent with the NAS vision and the existing risk assessment paradigm, the 
emphasis in this section is on the integration of (Q)SAR tools into the hazard 
identification (biological endpoint) component of the risk assessment process for 
pesticides. This section builds upon concepts discussed in section 4 (Problem 
Formulation for (Q)SAR) and section 5 (Evaluating the Adequacy of (Q)SAR 

INTEGRATION OF (Q)SAR PREDICTIONS INTO HAZARD ASSESSMENTS 

Topics Discussed in this Section: 

 Incorporating (Q)SAR in hazard characterizations: Overview 

 Problem formulation and Adequacy Determination 

 Evaluating empirical data versus (Q)SAR predictions 

 Mode of action considerations 

 Overall weight of evidence 

 Hazard characterization and risk communication 
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Predictions), and discusses the process of integrating the overall toxicity 
database (including (Q)SAR predictions) to arrive at conclusions regarding 
hazard with consideration of confidence and level of uncertainty. As with 
traditional pesticide risk assessments, the characterization of the hazards and 
associated uncertainties are communicated to risk managers for consideration in 
regulatory decision making. 

7.1 Incorporating (Q)SAR in Hazard Characterizations: 
Overview 

In general, the hazard identification and characterization process should not be 
greatly different for situations where (Q)SAR predictions are an additional source 
of data compared to traditional hazard assessments in which empirical data 
alone are considered. As discussed in section 4, there are two situations where 
(Q)SAR predictions are likely to be considered by a pesticide regulatory authority: 
a pesticide applicant submits a (Q)SAR prediction to address a data requirement, 
either to fulfill or support the requirement or a waiver for the requirement or the 
evaluator of a pesticide risk assessment uses a (Q)SAR prediction to support the 
case for an additional or refined data requirement. For the first situation where a 
pesticide applicant has submitted a (Q)SAR prediction, the primary tasks for the 
evaluator are to determine the purpose of the (Q)SAR submission, determine 
whether the (Q)SAR prediction fulfills the intended purpose and to factor the 
(Q)SAR prediction into the overall weight of evidence for the pesticide chemical 
in the appropriate context. If the (Q)SAR prediction is not clearly deficient, the 
prediction is evaluated according to the principles and procedures discussed in 
sections 4 and 5 to determine whether the prediction accomplishes its intended 
purpose as defined in the problem formulation. At the same time, the empirical 
data are evaluated with respect to the validity and acceptability of each study. If 
mode of action data have been submitted, these data are also evaluated for 
individual validity and acceptability. 

For the second situation where an evaluator uses a (Q)SAR prediction, usually 
there is no empirical information involved and it is still important to assess the 
validity and reliability of the chosen (Q)SAR method or model for the evaluator’s 
purpose. 

The basic steps in the integration of (Q)SAR predictions and empirical data into a 
weight of evidence analysis are listed in Figure 7–1 and described in more detail 
in subsequent sections. 
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Figure 7–1: Weight of Evidence Analysis: Integration of (Q)SAR Predictions 
and Empirical Data 

 

 

 

 

 

 
 
 

 

 

 

* For most pesticides, a complete understanding of the mode of toxicological action may be 
absent. To the extent that a toxicological mode of action is postulated for an analog of the 
pesticide of interest, it would be important to consider this information to help build confidence in 
a predicted endpoint. 

7.2 Problem Formulation and Adequacy Determination 
As discussed in section 4, problem formulation in the context of (Q)SAR 
prediction for pesticides involves asking and answering a number of key 
questions during the course of the review with respect to assessment context, 
characteristics of the chemical subject to the (Q)SAR prediction, characteristics 
of the selected (Q)SAR tool(s) and the prediction, and identification of empirical 
data including mode of action data that are relevant to the (Q)SAR prediction. 

The assessment context is essentially a determination of the objective of the 
(Q)SAR analysis, the specific endpoint that is predicted, the role that the (Q)SAR 
prediction plays in the risk assessment and the acceptable level of reliability that 
the (Q)SAR prediction must have if the prediction is to be accepted for its 
proposed role. 

Pesticide characterization involves identifying whether the prediction is for a 
pesticide active ingredient, an impurity, a metabolite or transformation product, a 
pesticide inert/formulant ingredient, or an analog of the pesticide of interest. It 

1. Problem formulation: What is the goal of the assessment? And the role of 
(Q)SAR in that assessment? 

2. Determination of Adequacy: What is the adequacy of the (Q)SAR 
prediction? Is it fit for the purpose intended in the problem formulation step? 

3. Weight of Scientific Evidence: Integration of the existing empirical data 
and (Q)SAR predictions. Weighing the scientific data including mode of 
action information, if available.* 

4. Data base sufficient: Is the data base sufficient for risk assessment? 
What data are missing? What is the level of data base uncertainty? 

5. Hazard characterization: Telling a clear and transparent hazard story and 
presenting the determination of confidence level and level of uncertainty, 
and risk communication. 
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also involves ensuring that the correct structure was the subject of the prediction 
and whether it is appropriate to use (Q)SAR predictions for that structure. 

The characterization of the (Q)SAR tool and the prediction includes a 
consideration of the general methodology behind the tool, the empirical data on 
which the tool is based, the endpoint predicted by the tool, other details on the 
tool, and details on the prediction. As discussed in section 5, this information is 
used in the evaluation of the adequacy of the prediction that includes the 
scientific validity of the (Q)SAR tool (i.e., OECD (Q)SAR validation principles), 
applicability of the tool to the pesticide, reliability of the prediction, and the 
relevance of the tool to the assessment question (context). The characterization 
of the (Q)SAR tool and the evaluation of the adequacy of the prediction can aid in 
the interpretation of the prediction relative to any available empirical data. 

Empirical data related to the (Q)SAR prediction and available mode of action 
data are important to consider if they either support the (Q)SAR prediction or 
contradict it. These data will be discussed further in the following sections. 

7.3 Evaluating Empirical Data versus (Q)SAR Predictions 
For many pesticide active ingredients the empirical database will consist of a 
suite of guideline toxicity studies that are typically required by regulatory 
agencies for the registration and reregistration of pesticide chemicals. These 
studies address systemic and local effects (e.g., acute toxicity, skin irritation, 
developmental toxicity, genotoxicity, carcinogenicity), multiple routes of exposure 
(e.g., oral, inhalation, dermal), multiple durations of exposure (e.g., acute, short-
term, long-term), and are conducted across multiple taxa (e.g., freshwater fish, 
aquatic invertebrates, rats, mice, rabbits). 

Toxicity studies tend to be very detailed. The description of the conduct of the 
study (i.e., materials and methods) is typically very extensive. The results 
sections of the studies are also reported in even greater detail and many of the in 
vivo studies cover a variety of biological endpoints. The studies also have a 
conclusion section in which the data submitter will often propose a point of 
departure for the study depending on how the submitter interprets the outcome of 
the study. The reviewer or evaluator of each study prepares a written evaluation 
of the study (“Data Evaluation Record” or “DER” at EPA and PMRA), and in this 
DER the evaluator summarizes the key points of the study. Perhaps most 
importantly, the evaluator records his or her own conclusions about the adequacy 
of the study and the appropriate points of departure for the endpoints supported 
by the study. In the normal review of empirical data for pesticide risk assessment, 
each study is evaluated individually for scientific rigor and those studies that are 
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considered acceptable are integrated to “tell a story” or “paint a picture” of the 
hazard profile of the pesticide chemical. 

The review of a (Q)SAR prediction is similar to the review of empirical data. In the 
typical scenario, the pesticide applicant will submit a documented (Q)SAR 
prediction including the purpose of the prediction, the rationale for selection of a 
model (or models), information on how the query structure was entered into the 
model, a discussion of the OECD validation principles as applied to the model, 
why the training set chemicals are applicable to the query structure, why the 
(Q)SAR prediction satisfies a data requirement (or supports a waiver from the 
data requirement) and a discussion of limitations and uncertainties associated 
with the prediction. The evaluator reviews the submitted (Q)SAR prediction and 
all of the supporting documentation and prepares a written record of the review 
much like the DER for empirical data (see section 5.5). 

Once the review of the empirical data and the (Q)SAR prediction have taken 
place, and provided that the review indicates that the prediction is scientifically 
valid, the evaluator is in a position to determine whether the prediction is reliable, 
i.e., whether it fills a data gap or supports a waiver from a data requirement. 

Evaluating empirical data with (Q)SAR predictions enables a determination of 
whether relevant empirical data on structurally related chemicals will support, 
detract from, or influence the weighting of the (Q)SAR prediction in the 
assessment. For example, if there are only limited empirical data available from 
short-term animal studies on a pesticide impurity of potential concern and the 
objective is to determine whether the impurity has carcinogenic potential and, if 
so, to obtain some information on how it might elicit carcinogenicity, then a 
weight of evidence approach could be considered. Such an approach could 
combine information from the available short-term animal dataset on the impurity, 
genotoxicity/carcinogenicity studies for structurally similar compounds if 
applicable, and carcinogenicity and genotoxicity predictions for the impurity in 
question. In this example, the short-term animal study data may provide 
information on precursor effects that may support the carcinogenicity of the 
impurity. Similarly, if the studies on the structurally similar compounds are in 
agreement with the (Q)SAR predictions for the impurity, this would enhance the 
confidence in the predictions. 

On occasion the (Q)SAR prediction may be in apparent conflict with empirical 
data. In such situations, it is useful to re-examine both the empirical database 
and the data supporting the prediction for a possible resolution of the apparent 
conflict. A theoretical example of using a closer examination of the empirical 
database to resolve a conflict with a (Q)SAR prediction would involve a pesticide 
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that demonstrates clear systemic toxicity in short-term dermal toxicity tests. If 
read-across extrapolations from analog chemicals indicate low potential for 
dermal absorption, then there is an apparent conflict. However, if a closer 
examination of the physical-chemical properties of the pesticide and skin irritation 
testing data reveals that the pesticide is likely to be poorly absorbed at low 
concentrations, but at high concentrations, it is corrosive, destroying the barrier 
properties of the skin, facilitating access to the systemic circulation then it may be 
possible to resolve the differences between the (Q)SAR predictions and the 
empirical data. 

Depending on the basis for a conflict between a (Q)SAR prediction and the 
results of empirical studies, it may be necessary to fully examine the adequacy of 
the (Q)SAR prediction (see section 5), and also the adequacy of the empirical 
data. (Q)SAR tools are reductionist methods that may not fully account for the 
impact of physical-chemical properties and pharmacokinetics/dynamics, may 
over-emphasize the contribution of a particular structural alert or property or may 
miss a toxicologically relevant alert because of database/training set limitations. 
In general, (Q)SAR predictions should not be used to override the results of well-
conducted, guideline type studies for the same endpoint. However, in cases 
where the empirical studies are of questionable reliabilty because they are non-
guideline studies, conducted according to older protocols, restricted to examining 
specific research endpoints or have other limitations, it may be necessary to give 
greater weight to reliable and relevant (Q)SAR predictions and/or develop 
recommendations for further testing to help resolve the conflict. Weighting of 
predictions and empirical data is discussed further in section 7.5. 

As discussed in section 6 (Q)SAR evidence may actually consist of multiple 
predictions from multiple (Q)SAR tools (e.g., read-across from a chemical 
category, QSAR model prediction, SAR prediction, etc.) each based on different 
prediction paradigms with different strengths and limitations. There are a number 
of important advantages of combining predictions from multiple (Q)SAR models 
(e.g., improved predictive performance, enhanced domain of applicability, 
complementary information, increased confidence in the predictions). Because of 
these advantages, it may be possible to assign a greater level of confidence and 
a greater weighting to combined or consensus predictions when comparing them 
to the available empirical data and the other streams of evidence. 

There are three likely outcomes to the weight of evidence evaluation: 1) The 
(Q)SAR prediction adequately addresses the data requirement, i.e., the data 
requirement is satisfied or the study need not be done; 2) The (Q)SAR prediction 
is not relevant to the data requirement, i.e., the (Q)SAR prediction is scientifically 



 
Page 95 of 186 

adequate but does not address the specific data requirement; and 3) The 
(Q)SAR prediction is scientifically acceptable and addresses the data 
requirement, but the data requirement is critical, requiring a high degree of 
certainty and confidence that the prediction as submitted is unable to meet. In 
this last instance, the result of reviewing the empirical data and the (Q)SAR 
prediction together may point the way to follow up action such as additional 
information from the submitter on the identity of, and relevant data for the training 
set chemicals; or perhaps targeted mode of action testing on the query structure 
and specific training set chemicals that could help fulfill the data requirement. 

7.4 Mode of Action Consideration 
If the weight of evidence includes a known or suspected mode of toxicological 
action (MOA), this understanding could substantially strengthen the overall 
database and provide additional support to determine whether the (Q)SAR 
prediction(s) is biologically plausible and consistent with what is known about the 
chemical of interest. The mode of action for the chemical of interest provides the 
overall biological basis for the phenotypically expressed adverse effects reported 
among the traditional in vitro and in vivo toxicology studies, and can also support 
a (Q)SAR prediction for the specific endpoint of interest (e.g., cancer, 
genotoxicity). Some of the most robust (Q)SARs are ones with the greatest 
confidence that all the chemicals being combined in a model are producing 
toxicity through a single molecular initiating event (mechanism). 

7.5 Overall Weight of Evidence 

Evaluating empirical data versus (Q)SAR predictions is part of the overall 
concept of integrating multiple lines of evidence into a weight of evidence. While 
(Q)SAR predictions have strengths, limitations, and uncertainties that can differ 
from those associated with empirical studies, (Q)SAR predictions can be 
considered as one potential line of evidence within a weight of evidence 
assessment of a pesticide. 

A detailed discussion of weight of evidence approaches in pesticide risk 
assessment is outside the scope of this document, but some general principles 
can be highlighted that are applicable in scenarios where (Q)SAR predictions and 
empirical data are being integrated. Similar to weight of evidence for empirical 
data alone, it is likely that qualitative, scientific expert judgement based 
approaches will be the most frequently used ones for integrating (Q)SAR 
predictions and empirical data. These approaches can involve considering 
information from each individual prediction, collectively examining multiple 
predictions within a (Q)SAR line of evidence (see section 6), considering multiple 



 
Page 96 of 186 

data points within each individual empirical study, combining information from 
similar empirical studies within one line of evidence, and finally, integrating 
(Q)SAR, empirical and other lines of evidence together to arrive at an 
assessment conclusion (Health Canada, 2011). 

Just as with empirical data based weight of evidence, approaches that integrate 
(Q)SAR and empirical lines of evidence usually include a qualitative weighting or 
ranking of the importance of the different lines of evidence for the overall 
assessment conclusion. Such a weighting involves a consideration of the 
adequacy (i.e., see section 5) and uncertainties associated with the different lines 
of evidence. Regardless of the weighting/ranking approach adopted, 
transparency is critical and can be addressed via comprehensive narrative 
rationales outlining the approaches followed in considering each line of evidence 
and integrating the lines of evidence together. It is particularly important to outline 
the approaches taken when there are conflicts between the (Q)SAR and the 
empirical data lines of evidence. For ease of interpretation, tabular presentations 
of the (Q)SAR and empirical data lines of evidence can also be considered. 

While qualitative approaches are likely to be used most often, it is also possible 
to consider quantitative scoring systems or mathematical algorithms that may be 
more systematic for weighting (Q)SAR and empirical data lines of evidence than 
qualitative, expert judgement-based approaches. Examples of such systems 
usually involve numerical weightings for each line of evidence, multiplying the 
scores for each line of evidence by its weighting, and summing up the weighted 
scores into an overall result. Just as transparency is critical for qualitative 
weighting/ranking approaches, it is especially critical to clearly outline the 
rationale behind any quantitative weight of evidence scoring systems. 

7.6 Hazard Characterization and Risk Communication 
The hazard characterization should include a clear, straightforward hazard 
narrative, piecing together all the components of the problem formulation, hazard 
identification, weight of evidence and addressing the level of uncertainty in the 
database and confidence in the overall assessment. As with all characterizations 
of hazard, it is imperative to consider all available hazard data whether these are 
in vivo or in vitro toxicity data or, in the absence of measured values, relevant 
data from (Q)SAR predictions or other predictive methods. 

Subsequent to developing a clear, straightforward hazard narrative, 
communicating this narrative to risk assessors and risk managers becomes 
critical. The successful communication of risk is not only dependent on relaying 
the adverse health outcome(s), susceptible subpopulations, dose response and 
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exposure assessment, but also the quality of the data, level of uncertainty, and 
confidence in the overall assessment. Any risk mitigation decision that is based 
on risk assessment conclusions, must be made with a clear understanding of the 
level of uncertainty surrounding the risk assessment conclusions and what level 
of confidence should be placed on those conclusions to support a regulatory 
decision. If, for example, the level of uncertainty in the database is high because 
most of the non-cancer endpoints are predicted and the level of confidence in the 
overall risk assessment is weak, the risk manager should be cognizant of this low 
level of confidence before selecting an adequate risk mitigation option. In short, 
the regulatory option selected should be consistent with the level of uncertainty 
identified for the predicted and empirical datasets so as not to over or under-
inflate the confidence in these datasets. If that level of database uncertainty can 
be addressed by additional research, the decision on when the data will be 
required to be submitted and when they can be considered in future risk 
assessment and management decisions may be dependent on the potential 
health outcome. In any scenario, it is critical that the risk manager has all the 
relevant information from the risk assessor in order to develop appropriate risk 
management options and make a good regulatory decision based on sound 
science. 

7.7 Summary 
The integration of (Q)SAR predictions into the risk assessment involves many 
steps which are similar to the risk assessment paradigm: hazard identification, 
dose response assessment, exposure assessment and risk characterization. The 
only difference between a risk assessment based on traditional empirical data 
from that which involves in silico predictions is the judgement of adequacy of the 
(Q)SAR predictions and determination of database completeness. 

The steps involved with integrating (Q)SAR predictions rely on starting with a 
solid problem formulation to establish what the (Q)SAR prediction is intended to 
inform for the assessment and what type of assessment to be performed will 
indicate the amount of uncertainty that is deemed acceptable. For example, a 
screening level assessment would allow for more uncertainty than a risk 
assessment. The determination that the (Q)SAR prediction is valid and reliable 
for the purpose described in the problem formulation step is critical to proceed 
forward in the subsequent steps. Without the determination of scientific 
adequacy, the (Q)SAR prediction would be rendered unacceptable and therefore, 
could not be considered in the risk assessment. 

The next step of integrating the (Q)SAR prediction with extant scientific data on 
that compound or a structural analog is critical to a scientific weight of evidence 
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analysis. Issues of reproducibility of observations, consistency of effects across 
species, strain, time of exposure and routes of exposure, as well as the 
determination of biological plausibility and incorporation of mode of action 
information is considered in this analysis. After developing the weight of scientific 
evidence, the risk assessor proceeds forward to determine the completeness of 
the database to support the risk assessment. 

If the database is considered deficient, and missing critical studies, the weight of 
evidence, including any mode of action information, should be informative in 
determining the type of study(s) needed to fulfill the database deficiency; this 
may be in vitro and/or short term studies depending on the data deficiency and 
as the concept of the adverse outcome pathway becomes elucidated for the 
particular toxicity endpoint, the determination of what study will be needed will be 
more clearly defined. In short, the combination of the (Q)SAR prediction, 
empirical data, mode of action, and/or adverse outcome pathway in a weight of 
evidence approach will inform the risk assessment on database deficiency and 
identification of critical research needed to address this level of uncertainty. 
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8.  Conclusions and Future Vision for (QSAR) and 
Pesticides 

 

8.0 Toxicity Testing in the 21st Century: Shift in the Risk 
Assessment Paradigm 

The NAS report Toxicity Testing in the 21st Century: A Vision and a Strategy 
emphasizes the need for moving away from prescriptive assessments based on 
checklists of traditional animal toxicity studies towards an integrated approach 
that relies on the existing knowledge-base for a class of chemicals and the 
results of alternative testing methods to identify toxicity pathways and to focus 
data requirements on more targeted toxicity testing (NRC, 2007). This is 
especially relevant for pesticide regulatory authorities that receive and evaluate 
large volumes of animal and ecological toxicity data submitted in support of new 
chemical registrations. To continue to meet the demands of new pesticide 
registrations requires new technologies that allow for faster, more efficient and 
effective technical reviews; this change, however, must not come at the price of 
public health and environmental protection. 

While there is the need for more efficient review processes, there is also the 
impetus of research on newer technologies, a recognition of the accelerated pace 
of scientific innovation. New technologies will allow pesticide regulatory 
authorities to build upon existing knowledge of pesticide toxicity to develop 
integrated approaches for testing and assessment (IATA) of pesticides. These 
parallel regulatory and risk assessment changes and advancements in the state-
of-the-science propel the agencies forward and expedite the transition towards 
global application of newer, swifter risk assessment and testing methodologies. 

CONCLUSIONS AND FUTURE VISION FOR (Q)SAR AND 
PESTICIDES 

Topics Discussed in this Section: 

 Toxicity Testing in 21st Century: Shift in the Risk Assessment Paradigm 

 Weight of Evidence Approach: Biological Plausibility 

 Adverse Outcome Pathway: Conceptual Framework 

 Expert Scientific Judgment and Peer Review 
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Computational tools vary widely depending on the purpose for their use in risk 
assessment. (Q)SAR tools represent an example of an alternative testing method 
that could be a useful component of integrated approaches to testing and 
assessment. (Q)SAR tools have had a long history of use by industry and 
regulatory agencies for hazard determinations and other applications; there are 
also many different types of commercial and non-commercial (Q)SAR tools that 
are either currently available or rapidly under development. However, in spite of 
the regulatory experience and the on-going developments in the field of (Q)SAR, 
there are very few examples of formal (Q)SAR guidance documents that discuss 
the unique issues and considerations associated with the application of (Q)SAR 
to pesticide regulatory risk assessments. 

Because pesticide regulatory authorities are transitioning down the path of 
utilizing this type of predictive technology, it becomes increasingly important that 
a systematic and transparent approach to the use of (Q)SAR predictions in 
pesticide assessments be adopted and communicated to ensure that the 
application of sound scientific judgment. To that end, this document seeks to 
provide risk assessors and hazard evaluators with some general guidance on 
how to review (Q)SAR predictions included in pesticide submissions. It is well 
recognized, however, that there are a variety of different guidance documents for 
(Q)SAR which have been published by agencies such as the OECD, the EU, the 
US EPA and others. This particular NAFTA guidance document does not 
endeavor to reproduce or to replace any of the other guidance documents, but 
seeks to provide much needed ready-to-use, streamlined, plain language 
guidance to pesticide evaluators on the application of (Q)SAR to pesticide 
regulatory decision making. 

8.1 Weight of Evidence Approach: Biological Plausibilty 
This guidance document is consistent with the current hazard/risk paradigm in 
terms of the approach to the evaluation of (Q)SAR predictions. The document 
starts at the problem formulation stage as explained in section 4, through 
evaluating the adequacy of (Q)SAR predictions as described in section 5, 
combining information from multiple predictions in section 6 and integrating 
(Q)SAR predictions into hazard assessments assessment in section 7. The 
overall emphasis throughout this document is that (Q)SAR predictions should be 
considered among the many other data streams in a weight of evidence 
approach for determination of hazard/risk. Similar to the consideration of multiple 
lines of evidence when identifying a toxicological mode of action, (Q)SAR 
predictions should not be used in isolation when reaching  human and 
environmental hazard assessment conclusions for a pesticide. In addition to 
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considerations of the reliability, validity and relevance of the individual (Q)SAR 
tools and predictions, the defensibility of the predictions is dependent on 
biological consistency and plausibility across all scientific lines of evidence in a 
holistic weight of evidence approach. This weight of evidence analysis should be 
described in the hazard characterization section of a pesticide assessment and 
should include the level of confidence, range of uncertainty, data gaps and any 
needed research for further refinement of the risk assessment. 

8.2 Adverse Outcome Pathway: Conceptual Framework 
As stated earlier, (Q)SAR is not a new predictive tool; it has been used for many 
decades within various regulatory programs to provide predictions of apical 
endpoints, biological and physiochemical properties. The limitations of using 
(Q)SAR when the domain of applicability is not inclusive of the chemical under 
review or when the database is not targeted for a particular endpoint of concern, 
are well understood. These limitations and others are discussed in this 
document, particularly in the context of the OECD validation principles, as 
described in section 5. In spite of these limitations, (Q)SAR remains a predictive 
tool worthy of continued use and development. 

The historical use of (Q)SAR predictions were two-dimensional, stopping at the 
binary prediction (e.g., yes/no carcinogenicity). The future use of (Q)SAR will 
involve anchoring (Q)SAR predictions with what is known about that chemical 
class/category, the biological mode of action, toxicity pathways and population 
effects; (Q)SAR predictions will be built into larger conceptual frameworks called 
adverse outcome pathways (AOPs) (Ankley et al., 2010). More simplistically, and 
as illustrated in Figure 8–1 below, AOPs delineate the documented, biologically 
plausible, measurable and testable processes by which chemicals induce 
molecular perturbations and subsequent biological responses relevant for risk 
assessment. The basic concept describes how molecular perturbations cause 
effects at different levels of biological organizations including at the subcellular, 
cellular, tissue, organ, and population levels (OECD 2011a). As indicated in 
Figure 8–1, toxicity pathways, the initial perturbations of cell-signaling motifs, 
genetic circuits, and cellular-response networks that might eventually result in 
disease, are components of AOPs, but unlike AOPs, toxicity pathways are not 
necessarily directly linked to apical effects (i.e., disease outcomes). The mode of 
action (MOA) is also a component of the AOP; it is inclusive of the events from 
the initial molecular perturbations to an adverse effect at the individual level, but 
does not usually consider exposure or effects at the population level (OECD, 
2012a). AOPs capture the continuum of metabolism, molecular perturbations, 
cellular interactions, effects on the tissue and organ leading to individual effects 
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and effects at the population level in a holistic approach. They allow regulatory 
authorities to move away from an overdependence on single chemical (Schultz 
and Diderich, 2011) in vivo animal testing and make greater use of 
computational, molecular and in vitro tools as described and advocated for in the 
2007 NAS report Toxicity Testing in the 21st Century: A Vision and a Strategy. 

One way in which (Q)SARs could contribute to the AOP approach would be 
through the identification of structural alerts associated with key events in an 
AOP, particularly molecular initiating events (MIEs). The OECD has noted that a 
close linkage between an MIE and an observed adverse outcome in vivo can be 
used as a basis for developing a chemical category for the relationship between 
chemical structure and the in vivo endpoint. Thus, rather than just relying on 
intrinsic chemical activity, AOPs potentially provide a comprehensive mechanistic 
basis for forming toxicologically meaningful categories for making predictions 
using read-across or (Q)SAR models (OECD, 2012b). As noted previously the 
European Commission Joint Research Centre is developing a reporting format 
for describing key events/intermediate effects in AOPs in collaboration with the 
OECD and ECHA (OECD, 2012a). 

An example of an AOP discussed in a US EPA hosted workshop in December, 
2010 involves the binding of a xenobiotic to an hepatic nuclear receptor as the 
molecular initiating event for a variety of toxicity pathways, including pathways 
leading to liver cancer (Hester et al., 2006). The identification of molecular 
initiating events of this type allows the development of methods to screen for 
chemical interactions with biological targets and in this case, receptors. This is 
where (Q)SAR models become critical, in identifying chemical categories based 
on chemical structures and their linkage to biological activities by understanding 
the toxicity pathways relevant for risk assessment (OECD, 2011b). 
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Figure 8–1: Adverse Outcome Pathway Diagram (Ankley et al., 2010) 

 

In summary, (Q)SAR tools are important predictive technologies for today’s risk 
assessment as well as those for tomorrow — provided that they are applied with 
appropriate constraints and cautionary guidance and that there is a meaningful 
attempt to build data bridges in a weight of evidence approach among (Q)SAR 
and future emerging predictive technologies to better target efforts to more 
efficiently and effectively maximize overall biological predictive capability (Benigni 
et al., 2007b). 

8.3 Expert Scientific Judgment and Peer Review 
While this guidance document is intended to cover the main issues that 
evaluators should consider when reviewing (Q)SAR predictions included in 
pesticide submissions, the document is not intended to provide stand-alone, 
step-by-step instructions for all potential applications of (Q)SAR tools to 
pesticides. This guidance document should be supplemented with expert 
scientific judgment and expert peer review to ensure consistency, reproducibility, 
and scientific defensibility in the use of (Q)SAR in pesticide hazard assessments. 

To this end, the NAFTA pesticide regulatory authorities are currently assembling 
a (Q)SAR expert committee to provide advice to pesticide evaluators in complex 
assessments that seek to integrate (Q)SAR predictions with empirical data in a 
weight of evidence approach for hazard/risk determinations that may trigger 
regulatory risk management decisions. One of the mandates of this expert 
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committee will be to identify updates, modifications or additions to the guidance 
document. 

Finally, as mentioned previously, there are a variety of other available guidance 
documents on regulatory applications of (Q)SAR (see Appendix I). Pesticide 
evaluators are encouraged to consult these other documents for additional 
information on specific topics or scenarios as required. 
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Appendix I 
 

Where To Go to Learn More About (Q)SAR 
Listed below are world wide webpages (WWW) for a number of national and 
international organizations involved in projects and the development of tools 
related to (Q)SAR and the assessment of risks from chemicals. In most cases, 
the descriptions of the activities and projects come directly from the webpages. 
These links may be useful to pesticide evaluators who are seeking additional 
information on general (Q)SAR concepts, and the development, validation, and 
evaluation of (Q)SAR tools and predictions. Some of the links and information 
below have been cited in various sections of this guidance document. 

The list below is by no means exhaustive, and since the field of (Q)SAR is 
constantly expanding, pesticide evaluators are advised to regularly monitor 
various national and international agency websites and the open literature for 
developments in the area of (Q)SAR of interest to them. 

Danish Ministry of the Environment Environmental Protection 
Agency (Danish EPA) (Q)SAR — Assessment of Chemical 
Properties of Substances 

http://www.mst.dk/English/Chemicals/assessment_of_chemicals/qsar_assessme
nt_chemical_properties_of_substances/ 

Descriptions of the key (Q)SAR activities from the Danish EPA webpage (i.e., the 
(Q)SAR database and the Advisory list for self-classification of dangerous 
substances) are provided below. 

“The Danish EPA has for a number of years worked with the development and 
use of (Q)SAR’s, also called ‘computer models’ for prediction of properties of 
chemical substances. (Quantitative) Structure Activity Relationships — (Q)SAR 
— are relations between structure properties of chemical substances and some 
other property. The other property can be a physical-chemical property or a 
biological activity, including the ability to cause toxic effects.” 

“The Danish EPA has made a database, which comprise predictions from more 
than 70 (Q)SAR models on endpoints for physico-chemical properties, fate, eco-
toxicity, absorption, metabolism and toxicity. The database is constantly growing 
as new models are obtained and developed. More than half of all the estimates 

http://www.mst.dk/English/Chemicals/assessment_of_chemicals/
http://www.mst.dk/English/Chemicals/assessment_of_chemicals/qsar_assessment_chemical_properties_of_substances/
http://www.mst.dk/English/Chemicals/assessment_of_chemicals/qsar_assessment_chemical_properties_of_substances/
http://www.mst.dk/English/Chemicals/assessment_of_chemicals/qsar_assessment_chemical_properties_of_substances/
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are for mammalian (human) toxicity endpoints and include commercial data sets 
from TOPKAT and MULTICASE as well as many models developed in-house.” 

“Lack of data on hazardous properties of chemicals makes it difficult for 
companies to meet their obligations to self classify the chemicals they import or 
produce. To address this issue, The Danish Environmental Protection Agency 
(DK-EPA) publishes the advisory list for self classification of chemical substances 
— with advisory classifications of more than 30,000 substances. Since the new 
regulation for classification and labelling (the CLP-regulation) came into force, the 
regulation is in a transitional phase until 2015 where both regulations still are 
relevant in certain situations. Therefore both regulations are covered.” 

 

European Commission Joint Research Centre (JRC) Institute for 
Health and Consumer Protection (IHCP) 

http://ihcp.jrc.ec.europa.eu/our_labs/computational_toxicology/ 

A description of the EU computational toxicology and modeling activities from the 
IHCP website is listed below. 

“One of the activities of the Institute is to support the implementation of EU 
chemicals policy (including the safety assessment of industrial chemicals, 
chemicals in consumer products, pesticides and biocides) through the 
development, assessment and application of computational (in silico) methods. 
These methods, sometimes referred to as ‘non-testing methods’, can be used to 
reduce our reliance on experimental testing, and in particular animal testing. In 
practice, these methods are used in Integrated Testing Strategies, along with 
experimental data generated by alternative (non-animal) tests, such as in vitro 
tests and high throughput screening (HTS) assays.” 

“Quantitative Structure-Activity Relationship (QSAR) models can be used to 
obtain information on the properties and activities of substances from chemical 
structure alone, and can thus be used to fill data gaps in the safety assessment 
of chemicals.” 

“Another method, Physiologically Based Biokinetic (PBBK) Modelling, can be 
used to extrapolate between in vitro and in vivo exposure conditions, thereby 
helping to establish the relevance of data generated by in vitro toxicity tests.” 

The IHCP website provides information and links to a number of documents and 
several downloadable (Q)SAR tools: 
 

http://ihcp.jrc.ec.europa.eu/our_labs/ivm
http://ihcp.jrc.ec.europa.eu/our_labs/ivm
http://ihcp.jrc.ec.europa.eu/our_labs/hts
http://ihcp.jrc.ec.europa.eu/our_labs/computational_toxicology/
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• Background information on non-testing methods 
• Information on QSAR reporting formats 
• A range of other information sources, including chemical inventories and 

documents on computational toxicology 
• A list of IHCP publications on computational toxicology 
• Webpages for free download or access to the following computational 

tools: 
o JRC QSAR Model Database 
o Toxtree 
o Dart 
o Toxmatch 
o Stat-4-tox 

 

Organization for Economic Cooperation and Development 
(OECD) OECD (Q)SAR Project 

http://www.oecd.org/env/hazard/qsar 
 

The following is a description of the OECD (Q)SAR project from the OECD 
website: 

“To facilitate practical application of (Q)SAR approaches in regulatory contexts by 
governments and industry and to improve their regulatory acceptance, the OECD 
(Q)SAR project has developed various outcomes, such as the principles for the 
validation of (Q)SAR models, guidance documents as well as the QSAR 
Application Toolbox. The OECD (Q)SAR Project is carried out with the financial 
assistance of the European Union.” 

The (Q)SAR project website includes links to a number of documents and 
software relating to OECD (Q)SAR activities including the following: 

• History (of the project) 
• Introduction to (Q)SARs 
• Grouping of chemicals 
• Validation of (Q)SAR models 
• OECD QSAR Toolbox 

 

Rijksinstituut voor Volksgezondheid en Milieu (RIVM) [National 
Institute for Public Health and the Environment — Netherlands] 

http://www.rivm.nl/rvs/risbeoor/Modellen/QSAR.jsp 
 

http://www.oecd.org/env/hazard/qsar
http://www.oecd.org/env/hazard/qsar
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The RIVM QSAR webpage provides a definition of QSAR and links to a number 
of QSAR related publications produced by the Institute including: 

• Report: (Q)SARs: gatekeepers against risk on chemicals? 
• A literature review of (Q)SARs for human toxicological endpoints 
• A literature review on (Q) SARs for ecotoxicological endpoints 
• Report: The application of structure-activity relationships in human hazard 

assessment: a first approach 
• Report: Estimating the PBT-profile 

 
While much of the information on the webpage is in Dutch, the majority of the 
publications are available in English. 
 

United States Environmental Protection Agency (US EPA) Office 
of Pollution Prevention and Toxics (OPPT) Sustainable Futures 
Initiative (SF) 

http://www.epa.gov/oppt/sf/tools/methods.htm 
 

A description of the SF initiative from the OPPT webpage is listed below. 

“The goal of the Sustainable Futures Initiative (SF) is to make new chemicals 
safer, available faster, and at lower cost. It works by giving chemical developers 
the same risk-screening models that EPA uses to evaluate new chemicals before 
they enter the market.” 

“Using these computer-based models, companies can identify potentially risky 
chemicals early in the development process and reduce risk by finding safer 
substitutes and/or processes before submitting them to the EPA. Also, the 
companies that take training and graduate from Sustainable Futures become 
eligible for an expedited EPA review of their pre-screened chemicals.” 

The computer-based models and tools freely available for download from the 
OPPT webpage include the following: 

• EPI Suite 
• ECOSAR 
• PBT Profiler 
• Oncologic 
• Analog Identification Methodology (AIM) 
• NonCancer Screening Protocol 
• E-FAST 
• ChemSteer 

 

http://www.epa.gov/oppt/sf/tools/methods.htm
http://www.epa.gov/oppt/sf/meetings/train.htm
http://www.epa.gov/oppt/sf/pubs/graduation.htm
http://www.epa.gov/oppt/sf/tools/methods.htm
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United States Food and Drug Administration (US FDA) Center for 
Drug Evaluation and Research (CDER) Informatics and 
Computational Safety Analysis Staff (ICSAS) 

http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobac
co/CDER/ucm092125.htm 
 
The following description of ICSAS is listed on the US FDA CDER webpage: 
 
“The Informatics and Computational Safety Analysis Staff (ICSAS) is part of 
CDER’s Office of Pharmaceutical Science. ICSAS is an applied regulatory 
research unit that: 

• Develops databases of toxicological and clinical endpoints 
• Transforms data, developing rules for quantifying toxicological and clinical 

effects 
• Evaluates structure activity relationship (SAR) and data mining software 

using ICSAS databases 
• Works with software developers to develop toxicology and clinical effects 

prediction programs through research leveraging partnerships 
• Reduces the use of animals in testing by eliminating non-critical laboratory 

studies 
• Facilitates the review process by making better use of accumulated 

scientific knowledge 
• Supplies tools to the pharmaceutical industry to develop better means to 

identify and eliminate compounds with potentially significant adverse 
properties early in the drug discovery and development process” 

 

The webpage also includes links to databases and further information on ICSAS 
activities including: 

• Database Projects 
• Maximum Recommended Therapeutic Dose (MRTD) Database 
• Human Liver Adverse Effects Database 
• Genetic Toxicity, Reproductive and Developmental Toxicity, and 

Carcinogenicity Database 
• Salmonella Mutagenicity E-state Descriptors 
• Chemical Structure Similarity Searching 
• The Computational Toxicology Program and ComTox Consulting Service 
• ComTox Regulatory Application of ICSAS MCASE/MC4PC-ES by the 

Center for Food Safety and Applied Nutrition  
• Application of Computational Toxicology to Assess Clinical Adverse Drug 

Reactions 
• Publications 

 

http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/ucm092125.htm
http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/ucm092125.htm
http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/ucm092125.htm
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Additional Useful References 

The following are some additional useful references on the development, 
evaluation, and application of (Q)SAR tools. These references are also included 
in the reference section of this document. 

Bassan, A., E. Fioravanzo, M. Pavan, and M. Stocchero. 2011. Applicability of 
physicochemical data, QSARs and read-across in Threshold of Toxicological 
Concern assessment. Final report of a study carried out by Soluzioni 
Informatiche (S-In, Vicenza, Italy) for the European Food Safety Authority 
(EFSA). http://www.efsa.europa.eu/en/supporting/pub/159e.htm 
 
Cronin, M. 2010. Quantitative structure-activity relationships (QSARs) — 
applications and methodology. Chapter 10 in Recent Advances in QSAR Studies: 
Methods and Applications. Puzyn, T., J. Leszczynski, and M.T.D. Cronin (eds.). 
Springer, Heidelberg, Germany, pp. 3–11. 
 
ECHA. 2010. Practical guide 5. How to report (Q)SAR. European Chemicals 
Agency, Helsinki, Finland. 
http://echa.europa.eu/documents/10162/13655/pg_report_qsars_en.pdf 
 
Lo Piparo, E., A. Worth, M. Manibusan, C. Yang, B. Schilter, P. Mazzatorta, M.N. 
Jacobs, H. Steinkellner, and L. Mohimont. 2011. Use of computational tools in 
the field of food safety. Regulatory Toxicology and Pharmacology 60:354–362. 
 
Mostrag-Szlichtyng, A. and A.P. Worth. 2010. In silico modelling of microbial and 
human metabolism: a case study with the fungicide carbendazim. JRC Scientific 
and Technical Report EUR 24523 EN. Publications Office of the European Union, 
Luxembourg. Available at: 
http://ihcp.jrc.ec.europa.eu/our_labs/computational_toxicology/publications/ 
 
Mostrag-Szlichtyng, A. and A. Worth. 2010. Review of QSAR Models and 
Software Tools for predicting Biokinetic Properties. JRC Technical Report EUR 
24377 EN. Publications Office of the European Union, Luxembourg. Available at: 
http://ihcp.jrc.ec.europa.eu/our_labs/computational_toxicology/publications/ 
 
van Leeuwen, C.J., G.Y. Patlewicz, and A.P. Worth. 2007. Intelligent testing 
strategies. In: Risk Assessment of Chemicals: An Introduction. 2nd Edition. Van 
Leeuwen, C.J. and T.G. Vermeire, (eds.). 
 
Vonk, A.J., R. Benigni, M. Hewitt, M. Nendza, H. Segner, D. van de Meent, and 
M.T.D. Cronin. 2009. The Use of Mechanisms and Modes of Toxic Action in 
Integrated Testing Strategies: The Report and Recommendations of a Workshop 
held as part of the European Union OSIRIS Integrated Project. ATLA 37:557–
571. 

http://echa.europa.eu/documents/10162/13655/pg_report_qsars_en.pdf
http://echa.europa.eu/documents/10162/13655/pg_report_qsars_en.pdf
http://ihcp.jrc.ec.europa.eu/our_labs/computational_toxicology/publications/
http://ihcp.jrc.ec.europa.eu/our_labs/computational_toxicology/publications/
http://www.efsa.europa.eu/en/supporting/pub/159e.htm
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Worth, A., M. Fuart-Gatnik, S. Lapenna, and R. Serafimova. 2011. Applicability of 
QSAR analysis in the evaluation of developmental and neurotoxicity effects for 
the assessment of the toxicological relevance of metabolites and degradates of 
pesticide active substances for dietary risk assessment. Report produced for 
EFSA. Available at: http://www.efsa.europa.eu/en/supporting/pub/169e.htm 
 
Worth, A., S. Lapenna, E. Lo Piparo, A. Mostrag-Szlichtyng, and R. Serafimova. 
2010. The Applicability of Software Tools for Genotoxicity and Carcinogenicity 
Prediction: Case Studies relevant to the Assessment of Pesticides. JRC 
Technical Report EUR 24640 EN. Publications Office of the European Union, 
Luxembourg. Available at: 
http://ihcp.jrc.ec.europa.eu/our_labs/computational_toxicology/publications/ 
 
Worth, A.P. 2010. The role of QSAR methodology in the regulatory assessment 
of chemicals, Chapter 13 in Recent Advances in QSAR Studies: Methods and 
Applications. Puzyn, T., J. Leszczynski, and M.T.D. Cronin, (eds.). Springer, 
Heidelberg, Germany, pp. 367–382. 
 
Worth, A.P. and A.Mostrag-Szlichtyng. 2011. Towards a Common Regulatory 
Framework for Computational Toxicology: Current Status and Future 
Perspectives, in New Horizons in Predictive Toxicology: Methods and 
Applications. Wilson, A.G.E. (ed.). The Royal Society of Chemistry, Cambridge, 
UK, pp. 38–69. 
 

http://www.efsa.europa.eu/en/supporting/pub/169e.htm
http://ihcp.jrc.ec.europa.eu/our_labs/computational_toxicology/publications/
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Appendix II 
 

European Commission Joint Research Centre (JRC) QSAR 
Model Reporting Format (QMRF) and QSAR Prediction Reporting 
Format (QPRF) 

The European Commission Joint Research Centre (JRC) has developed the 
QSAR Model Reporting Format (QMRF), a template for summarizing and 
reporting critical information on (Q)SAR models. The JRC also maintains a freely 
accessible database of QMRFs. The QSAR Prediction Reporting Format 
(QPRF), also developed by the JRC, is a template for summarizing and reporting 
individual substance-specific predictions generated by (Q)SAR models. Both 
templates have been designed to solicit information about (Q)SAR models and 
predictions that corresponds to the OECD “Principles for the Validation, for 
Regulatory Purposes, of (Q)SAR Models”. Also, the JRC has noted that the 
QPRF and QMRF are complementary and that a QPRF should always be 
associated with a QMRF. 

While not specifically designed for documenting (Q)SAR models and predictions 
for pesticides, the QMRF and QPRF can be viewed as examples of detailed 
information templates of the type that may need to be considered when (Q)SAR 
predictions are to be used as critical sources of data in pesticide assessments. 

Tables 12.1 and 12.2 below list the information fields included in the QMRF and 
the QPRF. The most current versions of the QMRF and the QPRF, guidelines for 
reviewing the QMRF, a QMRF editor for filling in the QMRF, guidance on creating 
SDF files associated with QMRFs, and examples of completed QMRFs can be 
downloaded from the following website: 

http://ihcp.jrc.ec.europa.eu/our_labs/computational_toxicology/qsar_tools/QRF 

The website above also provides access to the JRC database of QMRFs. 

In addition, the European Chemicals Agency has developed guidance for the use 
of the QMRF and QPRF to report on (Q)SARs and to input information from 
these templates into IUCLID 5 (ECHA, 2009). 

 

http://ihcp.jrc.ec.europa.eu/our_labs/computational_toxicology/qsar_tools/QRF
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Table 1.  JRC QMRF (version 1.2) Information 

 

1. QSAR identifier 
1.1 QSAR identifier (title) 
1.2 Other related models 
1.3 Software coding the model 
 

2. General Information 
2.1 Date of QMRF 
2.2  QMRF author(s) and contact details 
2.3 Date of QMRF update(s) 
2.4 QMRF update(s) 
2.5 Model developer(s) and contact details 
2.6 Date of model development and/or publication 
2.7 Reference(s) to main scientific papers and/or software package 
2.8 Availability of information about the model 
2.9 Availability of another QMRF for exactly the same model 
 

3. Defining the endpoint — OECD Principle 1 
3.1 Species 
3.2 Endpoint 
3.3 Comment on endpoint 
3.4 Endpoint units 
3.5 Dependent variable 
3.6 Experimental protocol 
3.7 Endpoint data quality and variability 

 
4. Defining the algorithm — OECD Principle 2 

4.1 Type of model 
4.2 Explicit algorithm 
4.3 Descriptors in the model 
4.4 Descriptor selection 
4.5 Algorithm and descriptor generation 
4.6 Software name and version for descriptor generation 
4.7 Descriptors/Chemicals ratio 

 
5. Defining the applicability domain — OECD Principle 3 

5.1 Description of the applicability domain of the model 
5.2 Method used to assess the applicability domain 
5.3 Software name and version for applicability domain assessment 
5.4 Limits of applicability 
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6. Defining goodness-of-fit and robustness — OECD Principle 4 
6.1 Availability of the training set 
6.2 Available information for the training sets 
6.3 Data for each descriptor variable for the training set 
6.4 Data for the dependent variable (response) for the training set 
6.5 Other information about the training set 
6.6 Pre-processing of data before modeling 
6.7 Statistics for goodness-of-fit 
6.8 Robustness- Statistics obtained by leave-one-out cross-validation 
6.9 Robustness- Statistics obtained by leave-main-out cross-validation 
6.10  Robustness- Statistics obtained by Y-scrambling 
6.11 Robustness- Statistics obtained by bootstrap 
6.12 Robustness-Statistics obtained by other methods 

 
7. Defining predictivity — OECD Principle 4 

7.1 Availability of the external validation set 
7.2 Available information for the external validation set 
7.3 Data for each descriptor variable for the external validation set 
7.4 Data for the dependent variable for the external validation set 
7.5 Other information about the external validation set 
7.6 Experimental design of test set 
7.7 Predictivity- Statistics obtained by external validation 
7.8 Predictivity- Assessment of the external validation set 
7.9 Comments on the external validation of the model 
 

8. Providing a mechanistic interpretation — OECD Principle 5 
8.1 Mechanistic basis of the model 
8.2 A priori or a posteriori mechanistic interpretation 
8.3 Other information about the mechanistic interpretation 
 

9. Miscellaneous information 
9.1 Comments 
9.2 Bibliography 
9.3 Supporting information 
 

10. Summary for the JRC Inventory 
10.1  QMRF number 
10.2 Publication date 
10.3 Keywords 
10.4 Comments 
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Table 2.  EC QPRF (version 1.1) Information Fields 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Substance 
1.1 CAS number 
1.2 EC number 
1.3 Chemical name 
1.4 Structural formula 
1.5 Structure code 

a. SMILES 
b. InChi 
c. Other structural representation 
d. Stereochemical features 

2. General information 
2.1 Date of QPRF 
2.2 QPRF author and contact details 

3. Prediction 
 3.1  Endpoint (OECD Principle 1) 

 a. Endpoint 
b. Dependent variable 

3.2 Algorithm (OECD Principle 2) 
a. Model or submodel name 
b. Model version 
c. Reference to QMRF 
d. Predicted value (model result) 
e. Predicted value (comments) 
f. Input for prediction 
g. Descriptor values 

3.3 Applicability domain (OECD Principle 3) 
a. Domains 

i. Descriptor domain 
ii. Structural fragment domain 
iii. Mechanistic domain 
iv. Metabolic domain 

b. Structural analogues 
c. Considerations on structural analogues 

3.4 The uncertainty of the prediction (OECD Principle 4) 
3.5 The chemical and biological mechanisms according to the model 

underpinning the predicted result (OECD Principle 5) 

4.  Adequacy (Optional) 
4.1 Regulatory purpose 
4.2 Approach for regulatory interpretation of the model result 
4.3 Outcome 
4.4 Conclusion 
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Appendix III 
Listed below is a selection of example case studies of the application of (Q)SAR 
tools and approaches to the prediction of the ecotoxicity and toxicity of pesticides 
and other chemicals. These examples were prepared by various groups in the 
US EPA and Health Canada for applications within their respective programs. 
These examples were not specifically designed for use in this document, but they 
were generously contributed in order to illustrate various issues discussed in 
sections 3, 4, 5, 6, and 7 of the document. 

Example No. 1 

Case Study: 

Use of EcoSAR QSAR Models to Estimate the Acute Toxicity of Organophosphate and 
Carbamate Pesticide Classes to Fish Species. 

The following is a summarized version of a case study of reliability and validation 
testing of a set of (Q)SAR models for predicting acute toxicity to fish species. 
This case study involved comparing available high quality empirical data on acute 
toxicity for an external test set of organophosphate and carbamate pesticides 
with model predictions for the same pesticides generated by the US EPA’s 
EcoSAR models. The case study was prepared by the US EPA’s National Health 
and Environmental Research Laboratory (NHERL) and it provides a useful 
example of application of the OECD (Q)SAR validation principles and 
considerations of the adequacy of (Q)SAR predictions as discussion in Section 5 
of this document. 

Issue:  Currently the US EPA’s Office of Pesticide Programs receives acute toxicity data 
for fish species via the FIFRA registration process.  OPP typically does not obtain test 
data for degradate chemicals of active ingredients and relies on QSAR approaches to 
determine the potential hazard associated with these substances.  In addition, the Office 
of Water is interested in using QSAR approaches to fill data gaps to meet minimum data 
requirements in the development of water quality criteria for pesticide active 
ingredients.  These are typically for other chordate and arthropod taxa, but at times 
data gaps exist for fish and salmonid species. A potential issue with using QSAR models 
is that most tools were developed to support the TSCA legislation which deals primarily 
with industrial organic compounds.  To this end, an analysis was conducted to 
determine the reliability and validity of QSAR models for use in estimating the acute 
toxicity to fish for a set of organophosphate and carbamate pesticides acting via an 
acetylcholinesterase inhibition mode of action. 
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Approach:  For this exercise Version 1.1 of the US EPA’s EcoSAR modeling application 
was used (http://www.epa.gov/oppt/newchems/tools/21ecosar.htm).  Independent 
assessments of EcoSAR attest to the reliability for predicting toxicity for non-specific 
modes of action (MOAs), and, with limited success, predicting toxicity for more specific 
MOAs such as reactive mechanisms (Moore et al., 2003; Reuschenbach et al., 2008). 
With Version 1.1 of EcoSAR, the US EPA’s Office of Pollution Prevention and Toxics 
(OPPT), which maintains the tool, began augmenting models with a limited number of 
pesticide data which have been reviewed and categorized as acceptable for fulfillment 
of pesticide registration and re-registration guideline requirements as explained under 
FIFRA Subdivision E, Parts 158.145 and 158.150.  This case study was conducted to 
determine whether these improvements led to reliable QSAR models for use in 
estimating hazard associated with carbamate and organophosphate pesticides with an 
acute mode of action of acetylcholinesterase inhibition.  To make this determination, a 
high quality empirical data set was compiled and used to evaluate how well the QSAR 
models estimates agreed with empirical toxicity test data.  Chemicals that were used in 
the EcoSAR model training set were excluded from the final evaluations of model 
performance, thereby being a validation of the existing models as they relate to use in 
estimating toxicity of acetylcholinesterase inhibitors to fish.  The OECD QSAR validation 
principles are used as a template for examining the applicability, reliability, robustness, 
and predictivity of models. 

QSAR Prediction Reporting Format (QPRF): 

1. Substance:  Carbamates: Initially a list of seventeen (17) carbamates and forty-six 
(47) organophosphate pesticides were examined (See Attachment 1 for chemical 
name, CAS Registry Number, and SMILES string and Attachment 2 for the logP 
(log of the octanol water partition coefficient.) 

2. General information: 

a. QPRF author and contact details: This analysis was compiled by Chris 
Russom, US EPA, ORD, NHEERL, MED, Duluth, MN 
(Russom.chris@epa.gov and completed using EcoSAR V 1.1 with EcoSAR 
outputs completed on June 2011. 

3. Validation of QSAR model vs. High Quality Empirical Data Set: 

a. Empirical Data Set: A data set was compiled for use in validating model 
predictions by selecting test results from the ECOTOX database 
(www.epa.gov/ecotox), and the OPP database of studies submitted for 
registration of active ingredients (Brian Montague, OPP/EFED, personal 

http://www.epa.gov/oppt/newchems/tools/21ecosar.htm
mailto:Russom.chris@epa.gov
http://www.epa.gov/ecotox
mailto:Russom.chris@epa.govandcompletedusingEcoSARV1.1withEcoSARoutputscompletedonJune2011.3.ValidationofQSARmodelvs.HighQualityEmpiricalDataSet:a.EmpiricalDataSet:AdatasetwascompiledforuseinvalidatingmodelpredictionsbyselectingtestresultsfromtheECOTOXdatabase
mailto:Russom.chris@epa.govandcompletedusingEcoSARV1.1withEcoSARoutputscompletedonJune2011.3.ValidationofQSARmodelvs.HighQualityEmpiricalDataSet:a.EmpiricalDataSet:AdatasetwascompiledforuseinvalidatingmodelpredictionsbyselectingtestresultsfromtheECOTOXdatabase
mailto:Russom.chris@epa.govandcompletedusingEcoSARV1.1withEcoSARoutputscompletedonJune2011.3.ValidationofQSARmodelvs.HighQualityEmpiricalDataSet:a.EmpiricalDataSet:AdatasetwascompiledforuseinvalidatingmodelpredictionsbyselectingtestresultsfromtheECOTOXdatabase
mailto:Russom.chris@epa.govandcompletedusingEcoSARV1.1withEcoSARoutputscompletedonJune2011.3.ValidationofQSARmodelvs.HighQualityEmpiricalDataSet:a.EmpiricalDataSet:AdatasetwascompiledforuseinvalidatingmodelpredictionsbyselectingtestresultsfromtheECOTOXdatabase
mailto:Russom.chris@epa.govandcompletedusingEcoSARV1.1withEcoSARoutputscompletedonJune2011.3.ValidationofQSARmodelvs.HighQualityEmpiricalDataSet:a.EmpiricalDataSet:AdatasetwascompiledforuseinvalidatingmodelpredictionsbyselectingtestresultsfromtheECOTOXdatabase
mailto:Russom.chris@epa.govandcompletedusingEcoSARV1.1withEcoSARoutputscompletedonJune2011.3.ValidationofQSARmodelvs.HighQualityEmpiricalDataSet:a.EmpiricalDataSet:AdatasetwascompiledforuseinvalidatingmodelpredictionsbyselectingtestresultsfromtheECOTOXdatabase
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communication).  Studies were used which met the following criteria: (a) 
fish species identified; (b) endpoint is LC50 ; (c) test conducted in 
freshwater; (d) compound purity >90%; (e) test duration of 96 hrs; (f) 
effect is mortality; (g) studies conducted in a laboratory setting; (h) 
concentrations are not indefinite values (i.e., exclude  >, < or ~ values); (i) 
documented temperature and dissolved oxygen measurements; and (j) 
adherence to standard test procedures (ASTM 2007; U.S. EPA 1996) e.g., 
as they relate to organism life stage, water temperature and dissolved 
oxygen.  Duplicate studies were removed by identifying tests where the 
CAS Registry number, species, age, and LC50 toxicity concentrations were 
the same.  Once all requirements had been met an analysis of outliers 
was performed.  In instances where more than one toxicity value was 
available for a chemical, species, endpoint, duration combination, the 
ratio of the maximum and minimum concentration values was calculated.  
When ratios approached or exceed 10, the original publications were 
examined, and if errors in data were identified these data were not 
included in the analysis.  If an outlier could not be determined (e.g., only 
two data points), then all data records were removed if the ratio was 
greater than 10. 

The focus of this evaluation was the use of QSAR models to estimate 
acute toxicity to fulfill minimum data requirements for use by OW in 
deriving Agency benchmarks. Rainbow trout or bluegill sunfish tended to 
be the most sensitive fish species (Figure 1) upon examination of the 
empirical validation data set.  Since the ECOSAR model is generic for fish 
(see 3b below), and a critical minimum data requirement under the 
Water Quality Criteria Guidelines is a salmonid (USEPA 1985), 
comparisons of the QSAR model estimates were made using the average 
test concentration of empirical test results for rainbow trout when 
possible, and bluegill test data only when rainbow trout data were not 
available (See Attachment 2). 
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Figure 1:  Average toxicity value by for OP and carbamate acetylcholinesterase 
inhibitors from ICE model data set
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b. QSAR Model Endpoint (OECD Principle 1 — A defined biological 
endpoint): 

i. Species/Endpoint: This analysis compares QSAR estimates to a 
high quality empirical data set using the EcoSAR QSAR models for 
acute (96 hr) LC50 to freshwater fish species.  The EcoSAR QSAR 
models provide an estimate for a generic fish, not for a particular 
species of fish, although frequently used species to develop the 
QSAR models included bluegill sunfish (Lepomis macrochirus), 
common carp (Cyprinus carpio), fathead minnow (Pimephales 
promelas), guppy (Poecilia reticulata), rainbow trout 
(Oncorhynchus mykiss), medaka (Oryzias latipes), or zebrafish 
(Brachydanio rerio).  Model output to the user is presented in 
concentration units of mg/L. 

ii. Test Protocols: Acute toxicity test data used in the training set 
followed either ASTM or OPP standard testing procedures (ASTM, 
2007; U.S. EPA 1996).  Therefore the data were from several 
laboratories. 

iii. Dependent variable:  The model calculates log millimole/liter LC50 
and EcoSAR software converts the value to mg/L for the report 
page provided to the user. 
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3.1 Algorithm (OECD Principle 2) 

a. Model, Version, and QSAR sub-model name: 

i. QSAR and model name: Table 1 provides details on the linear 
regression models from EcoSAR Version 1.1 used in this model 
validation exercise.  The supporting files within EcoSAR provide a 
list of all test data included in the model training set.   Attachment 
3 identifies the models used for each chemical in the validation 
set.  None of the chemicals in the validation set exceeded model 
limits.  These are chemical class-based models and guidance in the 
model documentation states: 

1. The Carbamate Esters, phenyl chemical class model may 
be used to estimate toxicity of O-phenyl substituted 
carbamate esters (i.e., RNC(=O)OPh; where R is anything 
except two hydrogens; and R is not a primary amine.  The 
phenyl (Ph) can have substitutions on the ring.) 

2. The Carbamate Esters, Oxime chemical class model may be 
used to estimate toxicity of O-oxime substituted 
carbamate esters (i.e., RNC(=O)ON=C; where R is anything 
except two hydrogens; and R is not a primary amine.)  

3. The Esters, Phosphates chemical class model may be used 
to estimate toxicity for phosphate esters (i.e., 
R1OP(=O)(R2)R3 OR  R4SP(=O)(R2)R3 where R1 can be alkyl 
carbon, olefinic carbon, acetylenic carbon, aromatic 
carbon, a carbonyl, phosphorus, sulfur, oxygen or 
nitrogen; R2 and R3 can be anything EXCEPT a hydroxy 
group (OH), and  R4 can be an alkyl carbon, olefinic carbon, 
acetylenic carbon, aromatic carbon, or phosphorus.)  
EcoSAR flagged halogenated tri-alkylphosphate esters as 
being significantly more toxic than would be estimated by 
this model. EcoSAR documentation also commented that 
this model may over or under estimate toxicity for 
acetylcholinesterase inhibitors, and that proper 
classification of these substances is ongoing. 

4. The Esters, Dithiophosphates chemical class model may be 
used to estimate toxicity for dithiophosphate esters (i.e., 
R1P(=S)(SR2)OR3; where R1 can be anything except sulfur; 
R2 must be a hydrogen, carbon (alkyl, olefinic, acetylenic, 
aromatic, or carbonyl), or phosphorus, and R3 must be a 
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hydrogen, carbon (alkyl, olefinic, acetylenic, aromatic, or 
carbonyl), nitrogen, oxygen, phosphorus, or sulfur.) 

5. The Esters, Monothiophosphates chemical class-based 
model may be used to estimate toxicity for 
monothiophosphate esters (i.e., R1P(=S)(R2)OR3; where R1 
and R2 can be anything except sulfur, and R3 must be a 
hydrogen, carbon (alkyl, olefinic, acetylenic, aromatic, or 
carbonyl), nitrogen, oxygen, phosphorus, or sulfur.) 

Table 1: EcoSAR V 1.1 Fish Acute LC50 QSAR model information: 

Model name QSAR Statistics 

Carbamate Esters, phenyl Log 96-h LC50 (mmol/L) = -0.3478 (logP) - 0.9147 R2 = 0.1697; N=23 

Carbamate Esters, oxime Log 96-h LC50 (mmol/L) = -0.4048 (logP) – 1.6878 R2 = 0.4475; N=18 

Esters, Phosphate Log 96-h LC50 (mmol/L) = -0.3504 (logP) - 0.9625 R2 = 0.2551; N=27 

Esters, Dithiophosphate Log 96-h LC50 (mmol/L) = -0.4981 (logP) – 1.2363 R2 = 0.2355; N=28 

Esters, Monothiophosphate Log 96-h LC50 (mmol/L) = -0.5902 (logP) – 0.7618 R2 = 0.1508; N=44 
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ii. Predicted value: Attachment 3 provides model estimates as 
provided in EcoSAR user outputs.  As stated earlier, there were no 
flags on any of the estimates, therefore these chemicals were all 
estimated within the domain of the model as parameterized. Also, 
the model estimates the millimolar/liter as the unit, but EcoSAR 
converts the value to mg/L prior to presenting it in the EcoSAR 
output.  Figure 2 is a plot of the log molar LC50 (QSAR estimated 
and empirical) vs. log P.  The non-polar narcosis toxicity line is 
provided as a baseline. 

iii. Input for prediction: CAS Registry numbers were used as input for 
EcoSAR model prediction, and SMILES strings were available 
within EcoSAR for all chemicals except cis-Thiocarboxime. The 
EcoSAR structures were verified against a second source 
(Alanwood or ChemID).  The SMILES string was written and used 
as input for EcoSAR model prediction for cis-Thiocarboxime and 
this structure was verified in a second source.   

iv. Descriptor values:  The logP value from KowWin Version 1.68 was 
retrieved by EcoSAR as the descriptor variable for the resident 
QSAR models. 

3.2 Applicability domain (OECD principle 3) 

a. Domains: 

i. Descriptor variable: The logP values for the validation data set 
ranged from 0.123-2.552 for the carbamates and -0.096-5.863 for 
the organophosphates.  Examining training sets used for each 
QSAR model against the chemicals with estimated values not 
included in the training set found that all carbamate chemicals 
except formetanate (logP=0.89 vs. logP for Phenyl carbamate 
ester training set of 1.52 to 3.06) had logP values within the 
model training set logP range.  For the organophosphates 
estimated using the Monothiophosphate ester QSAR models, all 
chemical in the validation set were within the training set logP 
ranges (i.e., logP range of 2.4 to 4.7) except Dichlofenthion 
(logP=5.202), Fenchlorfos (logP=4.865), Iodophos (logP=5.387), 
and Trichloronate (logP=5.863).  All chemicals estimated using the 
Dithiophosphate ester QSAR models had logP values within the 
training set logP range.  Dicrotophos (logP=-0.096) was the only 
substance estimated using the Phosphate ester QSAR model that 
was outside the logP range for the training set (-0.74 to 4.85).  
EcoSAR documentation acknowledges that in general, above a 
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logP of 5, research has shown that the hydrophobicity of the 
molecule leads to “no effects at saturation” and due to this, 
ECOSAR documentation recommends this as an upper limit of 
acute toxicity (Mayo-Bean et al., 2011.)  This limitation is more 
biological than model domain dependant and does not appear to 
be an issue with these substances, so for this exercise they were 
considered to be within the domain of the model. 

ii. Structural fragment domain: The EcoSAR models are chemical 
class-based, therefore the chemical structure domain as described 
under Section 3.1 defines the chemical domain of the QSAR. The 
model selected for each validation chemical agrees with the rules 
presented in the documentation and a scan of the structures, 
except the description provided for oxime carbamates appears to 
not include terminal -ON=C fragment.  Both oxime carbamates in 
the validation set were identified by EcoSAR as oxime carbamates, 
so it could be the documentation is not capturing the fragments 
properly. 

iii. Mechanism domain:  All of the validation and training set 
chemicals listed in Attachments 1-4 are known to inhibit 
acetylcholinesterase, and documentation included in EcoSAR for 
Phenyl carbamate esters, oxime carbamate esters confirms this as 
well.  The documentation for the other EcoSAR QSAR models does 
not mention specific modes of action associated with the chemical 
class. 

b. Structural analogues:  Training set structural analogues are presented in 
Attachments 1. 

c. Considerations on structural analogues: 

i. Structural requirements for carbamates (Fukuto 1990): 

 

X: Leaving group; typically aryloxy or oxime (i.e., -ONR); when 
X is a phenyl group, activity increases with 3 substitution on 
the ring from hydrogen, methyl, ethyl, isopropyl.  Having a 
quarternary ammonium ion in the 3 position on the ring has a 
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maximum activity.  Tert-butyl is less active than the isopropyl 
form. 

ii. Structural requirements for organophosphates (Fukuto 1990): 

 

R:  Typically a methyl or ethyl group.  Many times RO = R1.  
When R1=RO, and R is either a propyl or isopropyl group 
acetylcholinesterase activity is very low  

R1: Methoxy, ethoxy, ethyl, phenyl, amino, substituted amino, 
alkylthio 

X: Leaving group; typically phenoxy or aromatic group 
containing hetero atoms, substituted thioalkyl, or substituted 
alkoxy groups.  When X contains a thioether group, these are 
susceptible to metabolic activation to sulfoxides which are 
metabolized to sulfones, making these more active AChE 
inhibitors. 

O(S):  Direct acting organophosphates have the oxon group; 
thiophosphates require metabolic activation via mixed 
function oxidases to the oxon prior to inhibition of AChE 
activity.  Thiophosphates are less reactive and are more stable 
to hydrolytic degradation than the oxon form. 

3.3 The uncertainty of the prediction (OECD principle 4) 

a. Data sources:  The model training set was not generated from one 
laboratory, therefore the data sets may have variability amongst the data 
related to differences in genetic stock for fish, consistency in application of 
test protocols such as static vs flow through exposures; use of analytical 
procedures to measure test concentration, or reporting of only nominal 
values, etc. 

b. Test Species:  As mentioned earlier these models are generic for fish, as 
can be seen in Figure 1, fish species can have a range of sensitivities to these 
substances. 
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c. Model Predictivity:  The coefficient of correlation between predicted and 
empirical test data is R=0.485.  As presented in Figure 3, most chemicals are 
estimated within an order of magnitude.  Predictivity could be improved by 
the addition of new chemical categories and expanded sub-structure rules 
for existing chemical categories, as further described under Section 4.0. 
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3.4 The chemical and biological mechanisms according to the model underpinning 
the predicted result (OECD principle 5). 

Organophosphate and carbamate pesticides are indirect inhibitors of 
cholinesterase caused by blocking the site (serine hydroxyl group) on 
acetylcholinesterase where the neurotransmitter, acetylcholine, would normally 
attach, thereby blocking the breakdown of acetylcholine (Fukuto 1990; Mileson 
1998).  Acetylcholine is a major neurotransmitter in the autonomic and 
cholinergic (CNS) nervous system.  Inhibition of acetylcholine binding at the 
serine site results in a build-up of acetylcholine in synapses, resulting in 
overstimulation of muscles, glands, and CNS.  Toxic effects associated with 
exposure to acetylcholine inhibiting chemicals include muscle contraction and 
secretion, cholinergic hyperactivity, lack of muscle coordination, and respiratory 
depression.  A rate limiting step for the thion (i.e., (RO-)3P=S rather than (RO-
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)3P=O) forms of organophosphates is the oxidative desulfuration to create the 
oxon form which is required for the OP to bind to the AChE enzyme (Fukuto 
1990).  Documentation within EcoSAR identified the phenyl carbamate ester, the 
phosphate ester, and the oxime carbamate ester models as associated with an 
acetylcholinesterase mode of action.  Although the monothiophosphate esters 
and dithiophosphate esters are not explicitly identified as associated with 
acetylcholinesterase inhibition, the structural requirements as outlined in the 
EcoSAR documentation align with structure requirements for 
acetylcholinesterase inhibitors (Fukuto 1990.) 

 

4. Adequacy  

Scientific validity of the EcoSAR model used to estimate the toxicity of chemicals listed in 
Attachment 2, based on the adherence to the OECD principles as outlined above, finds 
that for carbamates the method appears to be valid, but issues exist for some of the 
organophosphates.  Both carbamate models provided acceptable estimates of toxicity 
for the five substances in the validation set, with all chemicals estimated within an order 
of magnitude of the empirical test value.  Comparison of the EcoSAR QSAR estimates for 
the freshwater fish acute LC50 to empirical data sets for the organophosphate chemicals 
found that most values agreed within an order of magnitude (see Figure 3).  One 
significant outlier was chlorpyrifos-methyl oxon, the metabolically active form of 
chlorpyrifos-methyl.  EcoSAR categorized the degradate as a phosphate ester, and using 
this model, estimated the toxicity to be nearly 4000 times less toxic than found in 
empirical studies.  Methidathion and azinphos-methyl were more than 2 orders of 
magnitude more toxic than estimated by the EcoSAR dithiophosphate ester model.  The 
QSAR estimate for naled was more than an order of magnitude different than empirical 
test data.  Once again, this substance was estimated using the phosphate ester model.  
The reliability of these models for use with organophosphates depends on the 
development of new or refined chemical class to estimate toxicity more effectively. 
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Azinphos-methyl Methidathion 

  

 

Log P is the only molecular descriptor used in the EcoSAR models evaluated in this case 
study.  The coefficient of determination for the EcoSAR models evaluated herein (see 
Table 1 for R2 values) reflects that factors other than partitioning into the organism are 
required to completely describe the toxic response.  To this end, these QSAR models 
would improve by the identification and inclusion of toxicologically relevant molecular 
descriptors in the EcoSAR QSAR models, with linkages to key events within the 
acetylcholinesterase inhibition adverse outcome pathway. 

Risk assessors will need to determine how relevant these model outputs are to the 
question being asked.  For instance, are estimations within an order of magnitude 
acceptable?  What statistical criteria must be met for the internal performance of a 
model to be considered acceptable (i.e., R2 > 0.60)?  Similarly, what statistical 
benchmarks should be used to determine the predictivity of a model?  The answer to 
these questions may depend on whether the risk assessment is for a screening and 
prioritization, or for deriving a final benchmark value.  The purpose of this analysis was 
to determine whether QSAR estimates could fill data gaps used in deriving Agency 
benchmark values, and it is recommended that the models undergo further refinement 
prior to this use. 
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Attachment 1:  Carbamate and organophosphate pesticides structures and CAS Registry Numbers. 

Greyed cells are substances that were not included in the final evaluation of model performance because the chemical was 
part of the EcoSAR model training set. 

Pesticide 
CAS 

Registry 
Number 

Empirical 
Fish 96 hr 
LC50 data  

EcoSAR 
Training 

Set 
Chemical Class: Specific Structure: SMILES 

Carbamates (N=17 total, with N=12 included in the EcoSAR model training set, N=5 used in model validation.) 

Bendiocarb 22781-23-3 Yes No Carbamate CNC(=O)Oc1cccc2OC(C)(C)Oc12 

cis-Thiocarboxime 29118-87-4 Yes No Oxime carbamate   CNC(=O)ON=C(C)SCCC(#N) 

endo-3-Chloro-exo-6-
cyano-2-
norbornanone, o-
(Methylcarbamoyl) 
oxime 

15271-41-7 Yes No Oxime carbamate   CNC(=O)ON=C1C(C2)C(C#N)CC2C1Cl 

Formetanate 
hydrochloride 

23422-53-9 Yes No Formamidine CNC(=O)Oc1cccc(N=CN(C)C)c1 

Pirimicarb 23103-98-2 Yes No Dimethylcarbamate CN(C)C(=O)Oc1nc(nc(C)c1C)N(C)C 

3,4,5-
Trimethylphenyl 
methylcarbamate 

2686-99-9 Yes Yes Phenyl methylcarbamate CNC(=O)Oc1cc(C)c(C)c(C)c1 

Aldicarb 116-06-3 Yes Yes Oxime carbamate   CNC(=O)ON=CC(C)(C)SC 

Aldoxycarb  1646-88-4 Yes Yes Oxime carbamate   CNC(=O)ON=CC(C)(C)S(C)(=O)=O 

Aminocarb 2032-59-9 Yes Yes Phenyl methylcarbamate CNC(=O)Oc1ccc(N(C)C)c(C)c1 

Carbaryl 63-25-2 Yes Yes Carbamate CNC(=O)Oc1cccc2ccccc12 

Carbofuran 1563-66-2 Yes Yes 
Benzofuranyl 
methylcarbamate 

CNC(=O)Oc1cccc2CC(C)(C)Oc12 

Methiocarb 2032-65-7 Yes Yes Phenyl methylcarbamate CNC(=O)Oc1cc(C)c(SC)c(C)c1 

Methomyl 16752-77-5 Yes Yes Oxime carbamate   CNC(=O)ON=C(C)SC 
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Attachment 1:  Carbamate and organophosphate pesticides structures and CAS Registry Numbers. 

Greyed cells are substances that were not included in the final evaluation of model performance because the chemical was 
part of the EcoSAR model training set. 

Pesticide 
CAS 

Registry 
Number 

Empirical 
Fish 96 hr 
LC50 data  

EcoSAR 
Training 

Set 
Chemical Class: Specific Structure: SMILES 

Mexacarbate 315-18-4 Yes Yes Phenyl methylcarbamate CNC(=O)Oc1cc(C)c(N(C)C)c(C)c1 

Oxamyl 23135-22-0 Yes Yes Oxime carbamate   CNC(=O)ON=C(SC)C(=O)N(C)C 

Propoxur 114-26-1 Yes Yes Phenyl methylcarbamate CNC(=O)Oc1ccccc1OC(C)C 

Thiodicarb 59669-26-0 Yes Yes Oxime carbamate CSC(C)=NOC(=O)N(C)SN(C)C(=O)ON=C(C)SC 

Organophosphates (N=47 total, with N=28 included in the EcoSAR model training set, N=19 used in model 
validation.) 

Acephate 30560-19-1 Yes No Phosphoramidothioate COP(=O)(NC(C)=O)SC 

Azinphos-methyl 86-50-0 Yes No 
Benzotriazine 
organothiophosphate 

S=P(OC)(OC)SCN1N=Nc2ccccc2C1(=O) 

Carbophenothion 786-19-6 Yes Yes Phenyl organothiophosphate CCOP(=S)(OCC)SCSc1ccc(Cl)cc1 

Chlorfenvinphos 470-90-6 Yes No Organophosphate CCOP(=O)(OCC)OC(=CCl)c1ccc(Cl)cc1Cl 

Chlorpyrifos 2921-88-2 Yes Yes Pyridine organothiophosphate  CCOP(=S)(OCC)Oc1nc(Cl)c(Cl)cc1Cl 

Chlorpyrifos-methyl 
oxon 

5598-52-7 Yes No Degradate — Oxon O=P(OC)(OC)Oc1nc(Cl)cc(Cl)c1Cl 

Crufomate 299-86-5 Yes No Phosphoramidate CNP(=O)(OC)Oc1ccc(cc1Cl)C(C)(C)C 

Dichlofenthion  97-17-6 Yes No Phenyl organothiophosphate CCOP(=S)(OCC)Oc1ccc(Cl)cc1Cl 

Dicrotophos 141-66-2 Yes No Organophosphate COP(=O)(OC)OC(C)=CC(=O)N(C)C 

Dioxathion 78-34-2 Yes No 
Heterocyclic 
organothiophosphate 

CCOP(=S)(OCC)SC1OCCOC1SP(=S)(OCC)OCC 

Fenchlorphos 299-84-3 Yes No Phenyl organothiophosphate COP(=S)(OC)Oc1cc(Cl)c(Cl)cc1Cl 

Fenitrothion 122-14-5 Yes No Phenyl organothiophosphate COP(=S)(OC)Oc1ccc(N(=O)=O)c(C)c1 

Fosthiazate 98886-44-3 Yes No 
Heterocyclic 
organothiophosphate 

CCOP(=O)(SC(C)CC)N1CCSC1=O 
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Attachment 1:  Carbamate and organophosphate pesticides structures and CAS Registry Numbers. 

Greyed cells are substances that were not included in the final evaluation of model performance because the chemical was 
part of the EcoSAR model training set. 

Pesticide 
CAS 

Registry 
Number 

Empirical 
Fish 96 hr 
LC50 data  

EcoSAR 
Training 

Set 
Chemical Class: Specific Structure: SMILES 

Iodofenphos 18181-70-9 Yes No Phenyl organothiophosphate COP(=S)(OC)Oc1cc(Cl)c(I)cc1Cl 

Methidathion 950-37-8 Yes No 
Thiadiazole 
organothiophosphate 

COc1nn(CSP(=S)(OC)OC)c(=O)s1 

Methyl 
carbophenothion 

953-17-3 Yes No Phenyl organothiophosphate COP(=S)(OC)SCSc1ccc(Cl)cc1 

Monocrotophos 6923-22-4 Yes No Organophosphate CNC(=O)C=C(C)OP(=O)(OC)OC 

Naled 300-76-5 Yes No Organophosphate COP(=O)(OC)OC(Br)C(Cl)(Cl)Br 

SD-7438 2782-70-9 Yes No Organothiophosphate COP(=S)(OC)SCc1ccc(SP(=S)(OC)OC)cc1 

Sulfotep 3689-24-5 Yes No Aliphatic organothiophosphate CCOP(=S)(OCC)OP(=S)(OCC)OCC 

Trichloronate 327-98-0 Yes No Phenyl ethylphosphonothioate  CCOP(=S)(CC)Oc1cc(Cl)c(Cl)cc1Cl 

Chlorpyrifos-methyl 5598-13-0 Yes Yes Pyridine organothiophosphate  COP(=S)(OC)Oc1nc(Cl)c(Cl)cc1Cl 

Coumaphos 56-72-4 Yes Yes 
Heterocyclic 
organothiophosphate 

S=P(OCC)(OCC)Oc1ccc2C(C)=C(Cl)C(=O)Oc2c1 

Demeton 8065-48-3 Yes Yes Aliphatic organothiophosphate 
S=P(OCC)(OCC)OCCSCC + 
O=P(OCC)(OCC)OCCSCC 

Diazinon 333-41-5 Yes Yes 
Pyrimidine 
organothiophosphate 

CCOP(=S)(OCC)Oc1cc(C)nc(n1)C(C)C 

Dichlorvos/DDVP 62-73-7 Yes Yes Organophosphate COP(=O)(OC)OC=C(Cl)Cl 

Dimethoate 60-51-5 Yes Yes 
Aliphatic amide 
organothiophosphate  

CNC(=O)CSP(=S)(OC)OC 

Disulfoton 298-04-4 Yes Yes Aliphatic organothiophosphate CCOP(=S)(OCC)SCCSCC 

EPN 2104-64-5 Yes Yes 
Phenyl 
phenylphosphonothioate  

CCOP(=S)(Oc1ccc(cc1)N(=O)=O)c2ccccc2 

Ethion 563-12-2 Yes Yes Aliphatic organothiophosphate CCOP(=S)(OCC)SCSP(=S)(OCC)OCC 
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Attachment 1:  Carbamate and organophosphate pesticides structures and CAS Registry Numbers. 

Greyed cells are substances that were not included in the final evaluation of model performance because the chemical was 
part of the EcoSAR model training set. 

Pesticide 
CAS 

Registry 
Number 

Empirical 
Fish 96 hr 
LC50 data  

EcoSAR 
Training 

Set 
Chemical Class: Specific Structure: SMILES 

Ethoprophos 13194-48-4 Yes Yes Aliphatic organothiophosphate CCCSP(=O)(OCC)SCCC 

Fensulfothion 115-90-2 Yes Yes Phenyl organothiophosphate CCOP(=S)(OCC)Oc1ccc(cc1)S(C)=O 

Fenthion 55-38-9 Yes Yes Phenyl organothiophosphate COP(=S)(OC)Oc1ccc(SC)c(C)c1 

Fonofos 944-22-9 Yes Yes Phenyl ethylphosphonothioate CCOP(=S)(CC)Sc1ccccc1 

Isazofos  42509-80-8 Yes Yes Triazole organothiophosphate CCOP(=S)(OCC)Oc1nc(Cl)n(n1)C(C)C 

Isofenphos 25311-71-1 Yes Yes Phosphoramidothioate CCOP(=S)(NC(C)C)Oc1ccccc1C(=O)OC(C)C 

Malathion 121-75-5 Yes Yes Aliphatic organothiophosphate CCOC(=O)CC(SP(=S)(OC)OC)C(=O)OCC 

Oxydemeton-methyl 301-12-2 Yes Yes Aliphatic organothiophosphate CCS(=O)CCSP(=O)(OC)OC 

Parathion 56-38-2 Yes Yes Phenyl organothiophosphate CCOP(=S)(OCC)Oc1ccc(cc1)N(=O)=O 

Parathion-methyl 298-00-0 Yes Yes Phenyl organothiophosphate S=P(OC)(OC)O-c(ccc1N(=O)=O)cc1 

Phorate 298-02-2 Yes Yes Aliphatic organothiophosphate CCOP(=S)(OCC)SCSCC 

Phosmet 732-11-6 Yes Yes 
Isoindole 
organothiophosphate 

COP(=S)(OC)SCN2C(=O)c1ccccc1C2=O 

Profenofos 41198-08-7 Yes Yes Phenyl organothiophosphate CCCSP(=O)(OCC)Oc1ccc(Br)cc1Cl 

Propetamphos 31218-83-4 Yes Yes Phosphoramidothioate CCNP(=S)(OC)OC(C)=CC(=O)OC(C)C 

Tebupirimfos 96182-53-5 Yes Yes 
Pyrimidine 
organothiophosphate 

CCOP(=S)(OC(C)C)Oc1cnc(nc1)C(C)(C)C 

Temephos 3383-96-8 Yes Yes Phenyl organothiophosphate 
COP(=S)(OC)Oc2ccc(Sc1ccc(OP(=S)(OC)OC)cc1)
cc2 

Trichlorfon 52-68-6 Yes Yes Phosphonate  COP(=O)(OC)C(O)C(Cl)(Cl)Cl 
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Attachment 2:  Empirical data set of acceptable quality data for acetylcholinesterase inhibitors for use in 
comparison to QSAR model estimates.  The ECOSAR Version 1.1 tool included generic freshwater fish 

QSAR models.  For this exercise, fish model estimates were compared to either rainbow trout 
(Oncorhynchus mykiss) or bluegill (Lepomis macrochirus) empirical data. 

CAS Registry 
Number 

Pesticide Species 
Minimum 
Toxicity 
(ug/L) 

Maximum 
Toxicity  
(ug/L) 

Average 
Concentration 

(ug/L) 

Number of 
Toxicity 
Values 

2686999 
3,4,5-Trimethylphenyl 
methylcarbamate 

Oncorhynchus mykiss 4700 4700 4700 1 

30560191 Acephate Oncorhynchus mykiss 110000 110000 110000 1 

116063 Aldicarb Oncorhynchus mykiss 560 560 560 1 

1646884 Aldoxycarb  Oncorhynchus mykiss 42000 42000 42000 1 

2032599 Aminocarb Oncorhynchus mykiss 12000 25000 18314.29 7 

86500 Azinphos-methyl Oncorhynchus mykiss 4.3 6.3 5.3 2 

22781233 Bendiocarb Oncorhynchus mykiss 1200 1200 1200 1 

741582 bensulide  Oncorhynchus mykiss 720 1400 1073.33 3 

63252 Carbaryl Oncorhynchus mykiss 780 3500 1796.63 16 

1563662 Carbofuran Oncorhynchus mykiss 380 600 466.67 3 

786196 Carbophenothion Lepomis macrochirus 13 13 13 1 

470906 Chlorfenvinphos Oncorhynchus mykiss 510 510 510 1 

2921882 Chlorpyrifos Oncorhynchus mykiss 7.1 25 13.37 3 

5598130 Chlorpyrifos-methyl Oncorhynchus mykiss 120 301 210.5 2 

5598527 Chlorpyrifos-methyl oxon Oncorhynchus mykiss 1.7 2 1.85 2 

29118874 cis-Thiocarboxime Oncorhynchus mykiss 1500 1500 1500 1 

56724 Coumaphos Oncorhynchus mykiss 890 890 890 1 

299865 Crufomate Lepomis macrochirus 1800 1800 1800 1 
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Attachment 2:  Empirical data set of acceptable quality data for acetylcholinesterase inhibitors for use in 
comparison to QSAR model estimates.  The ECOSAR Version 1.1 tool included generic freshwater fish 

QSAR models.  For this exercise, fish model estimates were compared to either rainbow trout 
(Oncorhynchus mykiss) or bluegill (Lepomis macrochirus) empirical data. 

CAS Registry 
Number 

Pesticide Species 
Minimum 
Toxicity 
(ug/L) 

Maximum 
Toxicity  
(ug/L) 

Average 
Concentration 

(ug/L) 

Number of 
Toxicity 
Values 

8065483 Demeton Oncorhynchus mykiss 520 600 560 2 

333415 Diazinon Lepomis macrochirus 136 460 254.67 3 

97176 Dichlofenthion  Oncorhynchus mykiss 1250 1250 1250 1 

62737 Dichlorvos/DDVP Oncorhynchus mykiss 100 100 100 1 

141662 Dicrotophos Oncorhynchus mykiss 6300 6300 6300 1 

60515 Dimethoate Oncorhynchus mykiss 6200 8600 7433.33 3 

78342 Dioxathion Oncorhynchus mykiss 69 69 69 1 

298044 Disulfoton Oncorhynchus mykiss 1850 1850 1850 1 

15271417 
endo-3-Chloro-exo-6-cyano-2-
norbornanone, o-
(Methylcarbamoyl) oxime 

Oncorhynchus mykiss 13000 13000 13000 1 

2104645 EPN Oncorhynchus mykiss 210 210 210 1 

563122 Ethion Oncorhynchus mykiss 500 500 500 1 

13194484 Ethoprophos Oncorhynchus mykiss 1150 1150 1150 1 

299843 Fenchlorphos Oncorhynchus mykiss 550 645 597.5 2 

122145 Fenitrothion Oncorhynchus mykiss 1000 2700 2050 7 

115902 Fensulfothion Lepomis macrochirus 72 72 72 1 

55389 Fenthion Oncorhynchus mykiss 550 840 740 3 

944229 Fonofos Oncorhynchus mykiss 20 50 35 2 

23422539 Formetanate hydrochloride Oncorhynchus mykiss 4400 4400 4400 1 

98886443 Fosthiazate Oncorhynchus mykiss 111000 111000 111000 1 
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Attachment 2:  Empirical data set of acceptable quality data for acetylcholinesterase inhibitors for use in 
comparison to QSAR model estimates.  The ECOSAR Version 1.1 tool included generic freshwater fish 

QSAR models.  For this exercise, fish model estimates were compared to either rainbow trout 
(Oncorhynchus mykiss) or bluegill (Lepomis macrochirus) empirical data. 

CAS Registry 
Number 

Pesticide Species 
Minimum 
Toxicity 
(ug/L) 

Maximum 
Toxicity  
(ug/L) 

Average 
Concentration 

(ug/L) 

Number of 
Toxicity 
Values 

18181709 Iodofenphos Oncorhynchus mykiss 16.2 16.2 16.2 1 

42509808 Isazofos  Oncorhynchus mykiss 18.7 18.7 18.7 1 

25311711 Isofenphos Lepomis macrochirus 1400 1400 1400 1 

121755 Malathion Oncorhynchus mykiss 30 200 105.6 5 

950378 Methidathion Oncorhynchus mykiss 10 14 12 2 

2032657 Methiocarb Oncorhynchus mykiss 436 750 593 2 

16752775 Methomyl Oncorhynchus mykiss 1050 1600 1308.33 6 

953173 Methyl carbophenothion Oncorhynchus mykiss 760 760 760 1 

315184 Mexacarbate Oncorhynchus mykiss 4450 15000 9887.5 4 

6923224 Monocrotophos Lepomis macrochirus 12100 12100 12100 1 

300765 Naled Oncorhynchus mykiss 132 195 167.33 3 

23135220 Oxamyl Oncorhynchus mykiss 4200 4700 4450 2 

301122 Oxydemeton-methyl Oncorhynchus mykiss 730 730 730 1 

56382 Parathion Oncorhynchus mykiss 864 1430 1214.67 3 

298000 Parathion-methyl Oncorhynchus mykiss 2750 3700 3225 2 

298022 Phorate Oncorhynchus mykiss 13 21 17 2 

732116 Phosmet Oncorhynchus mykiss 105 4700 1142.08 12 

23103982 Pirimicarb Oncorhynchus mykiss 79000 79000 79000 1 

41198087 Profenofos Oncorhynchus mykiss 21 23.5 22.25 2 

31218834 Propetamphos Oncorhynchus mykiss 940 2600 1770 2 
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Attachment 2:  Empirical data set of acceptable quality data for acetylcholinesterase inhibitors for use in 
comparison to QSAR model estimates.  The ECOSAR Version 1.1 tool included generic freshwater fish 

QSAR models.  For this exercise, fish model estimates were compared to either rainbow trout 
(Oncorhynchus mykiss) or bluegill (Lepomis macrochirus) empirical data. 

CAS Registry 
Number 

Pesticide Species 
Minimum 
Toxicity 
(ug/L) 

Maximum 
Toxicity  
(ug/L) 

Average 
Concentration 

(ug/L) 

Number of 
Toxicity 
Values 

114261 Propoxur Oncorhynchus mykiss 3700 3700 3700 1 

2782709 SD-7438 Oncorhynchus mykiss 34 34 34 1 

3689245 Sulfotep Oncorhynchus mykiss 1000 1000 1000 1 

96182535 Tebupirimfos Oncorhynchus mykiss 2220 2220 2220 1 

3383968 Temephos Oncorhynchus mykiss 3490 6800 5145 2 

59669260 Thiodicarb Oncorhynchus mykiss 2650 2650 2650 1 

52686 Trichlorfon Oncorhynchus mykiss 370 8800 1882.57 28 

327980 Trichloronate Oncorhynchus mykiss 140 140 140 1 
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Attachment 3:  Comparison of ECOSAR model (Version 1.1) estimates for fish to the average LC50 value (mg/L) from 
acceptable empirical data collection (See Supplemental Information Table 2 for details related to empirical test 
data.)  ECOSAR Class Model is the QSAR chemical class-based equation used to estimate toxicity for this exercise. 

ECOSAR Version 1.1 Model Estimates and Average Empirical Test Data — Fish 

CAS  
Registry 
Number 

Pesticide 
General 

Chemical Class 

Version 1.1 — 

ECOSAR Class Model 

Version 
1.1 — 

KowWin 
LogP 

Version 1.1 
ECOSAR Fish-

96 hr LC50 
Estimate 
(mg/L) 

Average of 
Acceptable 
Empirical 
Fish 96 hr 

LC50 values 
(mg/L) 

Ratio of 
ECOSAR 

Estimated 
value by 
Empirical 
Test data 

Carbamate Validation Data Set:  Chemical was NOT part of EcoSAR Model Training Set 

22781233 Bendiocarb Carbamate Carbamate esters, phenyl  2.552 3.521   1.20 2.93 

29118874 cis-Thiocarboxime Carbamate Oxime Carbamate Ester 0.123 3.684   1.50 2.46 

15271417 

endo-3-Chloro-exo-6-
cyano-2-norbornanone, 
o-(Methylcarbamoyl) 
oxime 

Carbamate Oxime Carbamate Ester 1.089 1.797   13.00 0.14 

23422539 
Formetanate 
hydrochloride 

Carbamate Carbamate esters, phenyl  0.879 13.318   4.40 3.03 

23103982 Pirimicarb Carbamate Carbamate esters, phenyl  1.399 9.456   79.00 0.12 

Organophosphate Validation Data Set:  Chemical was NOT part of EcoSAR Model Training Set 

30560191 Acephate Organophosphate Esters (phosphate) -0.902 41.359  110.00 0.38 

86500 Azinphos-methyl Organophosphate Esters, Dithiophosphates 2.532 1.01   0.01 190.57 

470906 Chlorfenvinphos Organophosphate Esters (phosphate) 4.146 1.382   0.51 2.71 

5598527 Chlorpyrifos-methyl oxon Organophosphate Esters (phosphate) 1.911 7.151  0.00 3865.41 

299865 Crufomate Organophosphate Esters (phosphate) 3.299 2.22   1.80 1.23 

97176 Dichlofenthion  Organophosphate Esters, Monothiophosphates  5.202 0.046   1.25 0.04 

141662 Dicrotophos Organophosphate Esters (phosphate) -0.096 27.934  6.30 4.43 

78342 Dioxathion Organophosphate Esters, Dithiophosphates 3.446 0.509   0.07 7.38 

299843 Fenchlorphos Organophosphate Esters, Monothiophosphates  4.865 0.075   0.60 0.13 

122145 Fenitrothion Organophosphate Esters, Monothiophosphates  3.296 0.544   2.05 0.27 

98886443 Fosthiazate  Organophosphate Esters (phosphate) 2.471 4.207   111.00 0.04 
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Attachment 3:  Comparison of ECOSAR model (Version 1.1) estimates for fish to the average LC50 value (mg/L) from 
acceptable empirical data collection (See Supplemental Information Table 2 for details related to empirical test 
data.)  ECOSAR Class Model is the QSAR chemical class-based equation used to estimate toxicity for this exercise. 

ECOSAR Version 1.1 Model Estimates and Average Empirical Test Data — Fish 

CAS  
Registry 
Number 

Pesticide 
General 

Chemical Class 

Version 1.1 — 

ECOSAR Class Model 

Version 
1.1 — 

KowWin 
LogP 

Version 1.1 
ECOSAR Fish-

96 hr LC50 
Estimate 
(mg/L) 

Average of 
Acceptable 
Empirical 
Fish 96 hr 

LC50 values 
(mg/L) 

Ratio of 
ECOSAR 

Estimated 
value by 
Empirical 
Test data 

18181709 Iodofenphos Organophosphate Esters, Monothiophosphates  5.387 0.047  0.02 2.90 

950378 Methidathion Organophosphate Esters, Dithiophosphates 1.584 2.851   0.01 237.58 

953173 Methyl carbophenothion Organophosphate Esters, Dithiophosphates 4.463 0.109   0.76 0.14 

6923224 Monocrotophos  Organophosphate Esters (phosphate) -0.307 31.165  12.10 2.58 

300765 Naled Organophosphate Esters (phosphate) 1.605 11.374 # 0.17 67.97 

2782709 SD-7438 Organophosphate Esters, Dithiophosphates 4.545 0.128  0.03 3.76 

3689245 Sulfotep  Organophosphate Esters, Monothiophosphates  3.98 0.25   1.00 0.25 

327980 Trichloronate Organophosphate Esters, Monothiophosphates  5.863 0.02   0.14 0.14 
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Attachment 4: Structures for chemicals in the Validation set (not in the EcoSAR training set for the models and 
high quality empirical test data were available to use in model validation).  Structures are from Alan Wood 
website (www.alanwood.net) with the exception of endo-3-Chloro-exo-6-cyano-2-norbornanone, o-
(Methylcarbamoyl) oxime , Chlorpyrifos-methyl oxon, and SD-7438 which are from ChemIDPlus 
(http://chem.sis.nlm.nih.gov/chemidplus/). 

Carbamates that were not 
part of the EcoSAR Training 
Set 

Bendiocarb (CAS: 22781-23-3) cis-Thiocarboxime (CAS: 29118-87-4) 

 

 
 

 

 

endo-3-Chloro-exo-6-cyano-2-
norbornanone, o-
(Methylcarbamoyl) oxime  
(CAS: 15271-41-7) 

Pirimicarb (CAS: 23103-98-2) Formetanate hydrochloride (CAS: 
23422-53-9) 

 

 

 

 

 

 

http://www.alanwood.net/
http://chem.sis.nlm.nih.gov/chemidplus/
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Attachment 4: Structures for chemicals in the Validation set (not in the EcoSAR training set for the models and 
high quality empirical test data were available to use in model validation).  Structures are from Alan Wood 
website (www.alanwood.net) with the exception of endo-3-Chloro-exo-6-cyano-2-norbornanone, o-
(Methylcarbamoyl) oxime , Chlorpyrifos-methyl oxon, and SD-7438 which are from ChemIDPlus 
(http://chem.sis.nlm.nih.gov/chemidplus/). 

 

 

Organophosphates that were 
not part of the EcoSAR 
Training Set 

Acephate (CAS: 30560-19-1) Azinphos-methyl (CAS: 86-50-0) 

 

 

 

 

Chlorfenvinphos 

 (CAS: 470-90-6) 

Chlorpyrifos-methyl oxon  

(CAS: 5598-52-7) 

Crufomate (CAS: 299-86-5) 

 

  

 

 

http://www.alanwood.net/
http://chem.sis.nlm.nih.gov/chemidplus/
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Attachment 4: Structures for chemicals in the Validation set (not in the EcoSAR training set for the models and 
high quality empirical test data were available to use in model validation).  Structures are from Alan Wood 
website (www.alanwood.net) with the exception of endo-3-Chloro-exo-6-cyano-2-norbornanone, o-
(Methylcarbamoyl) oxime , Chlorpyrifos-methyl oxon, and SD-7438 which are from ChemIDPlus 
(http://chem.sis.nlm.nih.gov/chemidplus/). 

Dichlofenthion (CAS: 97-17-6 Dicrotophos (CAS: 141-66-2) Dioxathion (CAS: 78-34-2) 

 

 

 

 

 

 

Fenchlorphos (CAS: 299-84-3) Fenitrothion (CAS: 122-14-5) Fosthiazate (CAS: 98886-44-3) 

 

 

 

 

 

 

Iodofenphos (CAS: 18181-70-9)  Methidathion (CAS: 950-37-8) Methyl carbophenothion 

(CAS: 953-17-3) 

 

 

 

 

 

 

http://www.alanwood.net/
http://chem.sis.nlm.nih.gov/chemidplus/
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Attachment 4: Structures for chemicals in the Validation set (not in the EcoSAR training set for the models and 
high quality empirical test data were available to use in model validation).  Structures are from Alan Wood 
website (www.alanwood.net) with the exception of endo-3-Chloro-exo-6-cyano-2-norbornanone, o-
(Methylcarbamoyl) oxime , Chlorpyrifos-methyl oxon, and SD-7438 which are from ChemIDPlus 
(http://chem.sis.nlm.nih.gov/chemidplus/). 

Monocrotophos (CAS: 6923-22-4) Naled (CAS: 300-76-5) SD-7438 (CAS: 2782-70-9) 

 

 

 

 

 

 

Sulfotep (CAS: 3689-24-5) Trichloronate (CAS: 327-98-0)  

 

 

 

 

 

 

http://www.alanwood.net/
http://chem.sis.nlm.nih.gov/chemidplus/
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Example No. 2 
 

The following case study was prepared by the Office of Pesticide Programs 
(OPP), US EPA. 

 
Case Study: 

Use of Analog Data to Determine Whether Additional Data Should be  
Required for a Pesticide Degradate 

In pesticide risk assessment there is often an abundance of toxicity data on the parent active 
ingredient and very little, if any, data on pesticide metabolites or environmental degradation 
products.  This can be a problem in trying to assess the risks of metabolites or environmental 
degradates.  In the case of environmental degradates, a screening level risk assessment may be 
performed to determine if additional toxicity data on the degradate should be called in.  The 
hazard component of the screening level assessment is often based on structural analogy of a 
degradate to the parent active ingredient.  If parent and degradate are closely related 
structurally then toxicity data on the parent ai can be used to estimate the toxicity of the 
degradate.  If the margin of exposure between estimated toxicity and estimated exposure is not 
considered large enough, additional toxicity data may be called in to enable a more 
comprehensive risk assessment of a degradate.  On occasion, the metabolite or degradate bears 
little resemblance to the parent and an alternative analog with associated data must be found to 
support the screening level risk assessment. 

The herbicide dichlobenil is relatively stable in the environment except for aqueous photolysis.  
A major photodegradate of dichlobenil in water (up to 19% of applied dichlobenil) has been 
identified as 4-chloro-2(3H)benzoxazolone (BZZ). This photodegradate bears little resemblance 
to the parent dichlobenil and therefore toxicity data on the parent are not considered useful for 
assessing the toxicity of BZZ.  In the absence of appropriate toxicity data the degradate, termed 
BZZ, was determined to be of potential concern. 

A number of online sources of information were consulted in search of appropriate analogs to 
BZZ including EPA/OPPT's Analog Identification Methodology (AIM) (http://aim.epa.gov/), 
ChemSpider (http://www.chemspider.com/) and Chemicalize (http://www.chemicalize.org/).  A 
close analog (and isomer) of BZZ, 5-chloro-2(3H)benzoxazolone, was identified and this 
particular analog has a wealth of health effects data since it is an often prescribed muscle 
relaxant (common name chlorzoxazone). 

http://aim.epa.gov/
http://www.chemspider.com/
http://www.chemicalize.org/
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Chlorzoxazone has estimated physical properties very close to BZZ (see table below) and so 
bioavailability is likely to be similar. Chlorzoxazone is pharmacologically active as a muscle 
relaxant at doses of 10-30 mg/kg/day (http://www.drugs.com/monograph/chlorzoxazone.html), 
so the potential exists for BZZ to be biologically active at the same dosage, although no 
assumption is made about the kind of effects that might be observed at this dose of BZZ. 

 
 

Estimation of selected physical-chemical properties using Episuite v4.1 
 

Property Dichloben
il BZZ 

Chlorzoxazo
ne 

Benzoxazolone
* Model 

log P 1.68 1.59 1.59 0.95 KOWWIN v1.68 

KOC (L/kg) 257 15.06 14.76 10 KOCWIN/MCI  v2.00 

water sol. 
(mg/L) 36 361 361 1414 Water NT v1.01 

pKa n/a 8.38 8.43 8.91 SPARC v4.6 

Henry's Law 
(atm-m3/mole) 2.86E-05 2.72E-08 2.72E-08 3.66E-08 

Henry v3.20, bond 
estimation 

 
     *Benzoxazolone is the unsubstituted fused ring structure common to BZZ and chlorzoxazone 
 

Screening Risk Assessment.  The theoretical upper limit for BZZ based on estimated surface 
water concentration of parent dichlobenil is 0.005 mg/L and the corresponding dosage in a 
young child is approximately 0.0005 mg/kg/day for a 10 kg child ingesting 1 liter of BZZ 
contaminated water per day.  The MOE between the lowest effective pharmacological dose of 
chlorzoxazone (10 mg/kg/day and the theoretical intake is 10 mg/kg/day divided by 0.0005 
mg/kg/day or 20,000.  Although there are many uncertainties in a screening level risk 
assessment such as this, the MOE is sufficiently large to conclude that additional toxicity data 
are unlikely to result in risks of concern from ingestion of BZZ formed in drinking water as a 
result of registered uses of dichlobenil. 

 

http://www.drugs.com/monograph/chlorzoxazone.html
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Example No. 3 

The following example has been provided by the Office of Pollution Prevention 
and Toxics (OPPT) and the Office of Pesticide Programs (OPP) at the US EPA. It 
serves to illustrate the potential use of SAR analysis as one line of evidence to 
support a mode of action analysis for a pesticide active ingredient. 

Case Study:   Fomesafen cancer assessment and mode of action: use of mechanism-
based SAR 

Description of the case: 

Fomesafen, a diphenyl ether herbicide, was submitted to OPP’s Cancer Assessment 
Review Committee (CARC) for re-evaluation of its carcinogenic potential to humans.  
The herbicide was previously shown to be a mouse hepatocarcinogen by the submitter 
and classified as a Category C possible human carcinogen by OPP.  The new data 
provided by the submitter included: (a) consistent negative genotoxicity data, (b) some 
evidence of involvement of peroxisome proliferator-activated receptor alpha receptor 
(PPARα) as a possible nongenotoxic mode of action for carcinogenicity, and (c) 
metabolism data.  No SAR study was attempted.  The Committee concurred that the 
pesticide should be nongenotoxic but considered the PPARα evidence inadequate. 

SAR approaches conducted: 

Several structurally related diphenyl ether pesticides with carcinogenicity data were 
identified.  Among these, Nitrofen, Lactofen, Acifluorfen and Oxyfluorfen were 
considered the closest.  Like Fomesafen, all four were hepatocarcinogenic in mice with 
Oxyfluorfen being weakly/marginally active. The chemical structures are shown in the 
figure below. 
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The presence of a nitro group in aromatic ring is generally considered a genotoxic 
structural alert.  Indeed, there was some evidence that Nitrofen was positive in the Ames 
test but the evidence was complicated by the presence of impurities.  In addition to mouse 
liver tumors, there was some evidence that Nitrofen may induce pancreatic tumors in the 
rat.  The mode of action of Nitrofen has not been thoroughly studied. 

The mode of action of rodent hepatocarcinogenesis for both Lactofen and Acifluorfen 
(HED MTARC; TXR #s 0051907 and 0052006, respectively) has been extensively 
studied and shown to involve PPARα-medicated peroxisome proliferation.  Lactofen can 
be readily hydrolyzed by esterases to yield Acifluorfen as its primary metabolite. 
Structure-activity relationships studies have shown that one of the major structural 
requirements/alerts of most peroxisome proliferators is the presence of an acidic 
functional group (e.g., carboxylic, sulfonic) either in the parent compound or a metabolite 
(Woo and Lai 2003).  The key question is whether Fomesafen can be hydrolyzed to a 
carboxylic acid metabolite.  In general, the amide (-CO-NH-) bond is quite resistant to 
enzymatic hydrolysis.  However, in Fomesafen, the presence of a sulfonyl group adjacent 
to the amide linkage can significantly facilitate hydrolysis.  Indeed, a metabolism study 
by the submitter showed that up to 10% of Fomesafen may be hydrolyzed to yield a 
carboxylic acid metabolite as the most significant metabolite.  Thus, Fomesafen, 
Acifluorfen, and Lactofen may actually have common carboxylic acid metabolite(s).  It is 
interesting to note that, despite structural similarity, Oxyfluorfen, which cannot be 
metabolized to a carboxylic acid metabolite, is only weakly/marginally active as a 
hepatocarcinogen .  Attempts to demonstrate possible PPARα-mediated activity were 
unsuccessful for Oxyfluoren.  Overall, these findings strengthen the biological 
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plausibility of PPARα mode of action for Fomesafen-induced liver tumor formation in 
mice. 

Outcome of the SAR study: 

The SAR study provided significant support to the weight of evidence of a PPARα mode 
of action of Fomesafen-induced mouse liver tumors.  Based on the current scientific 
understanding of peroxisome proliferation (e.g., Klaunig et al., 2003) and previous EPA 
decisions on structurally related herbicides (e.g., Lactofen and Acifluorfen), the level of 
confidence in this assessment is high.  While the proposed mode of action for liver 
tumors in mice is theoretically plausible in humans, it is quantitatively implausible and 
unlikely to take place in humans based on quantitative species differences in PPAR 
activation and toxicokinetics. In accordance with the EPA Final Guidelines for 
Carcinogen Risk Assessment (March 29, 2005), the CARC classified Fomesafen as “Not 
Likely to be Carcinogenic to Humans”. 

References: 

Klaunig JE, Babich MA, Baetcke KP, Cook JC, Corton JC, David RM, DeLuca JG, Lai 
DY, McKee RH, Peters JM, Roberts RA, Fenner-Crisp PA. (2003). PPARalpha agonist-
induced rodent tumors: modes of action and human relevance. Crit Rev Toxicol 
33(6):655–780. 

Woo, Y.T., and Lai, D.Y. (2003). Mechanism of action of chemical carcinogens and their 
role in structure-activity relationships (SAR) analysis and risk assessment.  In: 
Quantitative Structure-Activity Relationship (QSAR) Models of Mutagens and 
Carcinogens, R. Benigni, ed., CRC Press, p. 41. 
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Example No. 4 

The following example has been abstracted from the Screening Assessment for 
the Challenge for Methylium, {4-(dimethylamino)phenyl]bis{4-(ethylamino)-3-
methyphenyl]-, acetate prepared by Environment Canada and Health Canada in 
July, 2010 pursuant to section 74 of the Canadian Environmental Protection Act 
1999 (CEPA, 1999). 

This example does not include the entire text or conclusions of the screening 
assessment document. The example is only an abstract of the following sections: 
Substance Identity, Physical and Chemical Properties, Health Effects 
Assessment, Appendix 6, and Appendix 7. 

These sections have been abstracted to illustrate the application of (Q)SAR and 
information on analog substances to assess the toxicity of a substance in a 
weight-of-evidence type approach. 

For a copy of the complete screening assessment document, please consult the 
following website: 

http://www.ec.gc.ca/ese-ees/default.asp?lang=En&n=403207BF-1
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Substance Identity 
 
For the purposes of this document, this substance will be referred to as MAPBAP acetate, 
derived from the DSL name.  MAPBAP acetate belongs to a class of dyes known as 
cationic triarylmethanes.  The class can be further sub-divided into those where the 
charge on the cation (triarylmethane moiety) is localized or delocalized.  MAPBAP 
acetate belongs to the latter sub-category (Hunger 2003) implying that the bond holding 
the cationic and anionic components of the structure together is at least partly covalent. 
 

Table 2. Substance identity for MAPBAP acetate.  

Chemical Abstracts 
Service Registry 
Number (CAS RN)  

72102-55-7 

DSL name 
Methylium, [4-(dimethylamino)phenyl]bis[4-(ethylamino)-3-
methylphenyl]-, acetate  

National Chemical 
Inventories (NCI) 
names1  

Methylium, [4-(dimethylamino)phenyl]bis[4-(ethylamino)-3-
methylphenyl]-, acetate (1:1) (TSCA) 

Methylium, [4-(dimethylamino)phenyl]bis[4-(ethylamino)-3-
methylphenyl]-, acetate (AICS, PICCS, ASIA-PAC, NZIoC) 

Other names  
[4-(Dimethylamino)phenyl]bis[4-(ethylamino)-3-
methylphenyl]methylium acetate  

Chemical group  

(DSL Stream) 
Discrete organics 

Major chemical class or 
use 

Cationic triphenylmethanes; anilines; 

Major chemical sub-
class  

Secondary Aromatic Amines, Secondary Amines, Tertiary 
Amines, Tertiary Aromatic Amines 

Chemical formula C27H34N3.C2H3O2 
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Chemical structure 2 

 

SMILES 3 
CN(c2ccc(cc2)C[(OC(=O)C)](c3cc(c(cc3)NCC)C)c1cc(c(cc1)N
CC)C)C 

Molecular mass (g/mol) 459.64 

1 National Chemical Inventories (NCI). 2006: AICS (Australian Inventory of Chemical Substances); 
ASIA-PAC (Asia-Pacific Substances Lists); PICCS (Philippine Inventory of Chemicals and Chemical 
Substances); NZIoC ( New Zealand Inventory of Chemicals) and TSCA (Toxic Substances Control Act 
Chemical Substance Inventory). 
2 This substance is an organic salt, comprising a carbocation and an acetate anion.    
3  SMILES stands for : Simplified Molecular Line Input Entry System.  This SMILES notation was used to 
generate predictions. It is for the neutral form of the molecule and indicates a covalent bond between the 
carbocation and acetate anion. This is typically how they are shown in EPIWIN.  It is not fully established 
what effect using this SMILES will have on the predictions. The acetate part of the SMILES is placed in 
square brackets here to highlight the fact that the molecule is at least partly ionic. 
 

http://stneasy.fiz-karlsruhe.de/dbss/chemlist/asia.html
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I.  

II. Physical and Chemical Properties 
 

No experimental data are available for MAPBAP acetate.  At the Environment Canada-
sponsored Quantitative Structure-Activity Relationship (QSAR) Workshop in 1999 
(Environment Canada 2000) modelling experts identified many structural classes of 
pigment and dyes as being “difficult to model” using QSARs. Some physical and 
chemical properties of many of the structural classes of dyes and pigments are not 
amenable to prediction by models.  Under such circumstances, a "read-across" approach 
is considered which employs close analogues, to determine the approximate physical and 
chemical properties of MAPBAP acetate. A search of the ChemIDPlus (2009) database 
yielded a number of suitable analogues which are described in Table 2.  Experimental 
data for these analogues, when available, were used as extrapolated (read-across) values 
for MAPBAP acetate or as supporting values for the weight of evidence. 
 
A limited number of read-across data were found for the selected analogues and, 
therefore, predicted values are also used for MAPBAP acetate and the uncertainties of the 
predictions are noted.  
 
Table 3 below contains predicted physical-chemical properties of the neutral form of 
MAPBAP acetate that are relevant to its environmental fate.  Analogue data are available 
for water solubility and log Kow.  The water solubility of Ethyl Violet (CAS RN 2390-59-
2) is 9000 mg/L (Green 1990).  There is an indication that triphenylmethane acetates are 
more soluble than the chlorides (Pfenninger and Bruttel 1985) indicating the water 
solubility of MAPBAP acetate is high.
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Table 2. MAPBAP acetate and its structural analogues 

Methylium, [4-
(dimethylamino)phenyl]bis[4-(ethylamino)-
3-methylphenyl]-, acetate  
 
 

 
 
 
 
 
MAPBAP acetate 
(CAS RN 72102-55-7) 

Analogue 1 
Ethanaminium, N-[4-
[bis[4-
(diethylamino)phenyl]met
hylene]-2,5-
cyclohexadien-1-ylidene]-
N-ethyl-, chloride  
 
Ethyl Violet 
(CAS RN 2390-59-2) 
 

Analogue 2 
N-(4-(Bis(4-(dimethyl 
amino) phenyl) 
methylene) -2,5-cyclo 
hexadien-1-ylidene)-N-
methyl 
methanaminium, 
Chloride 
 
 
Gentian violet 
(CAS RN548-62-9) 

Analogue 3 
Methanaminium, N-(4-
((4-
(dimethylamino)phenyl)p
henyl-methylene)-2,5-
cyclohexadien-1-ylidene)-
N-methyl-, chloride 
 
 
 
Malachite Green  
(CAS RN 569-64-2) 
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Comparative analysis: 

  The differences between the chemical structures of MAPBAP acetate (i) and analogues 1,2 and 3 are: 
• the number and position of the methyl, or ethyl, groups; 
• the counteranions: acetate, for MAPBAP acetate and chloride (Cl-) for the analogues. 

For all substances, the charge on the cation is de-localized.  Resonance hybrids can occur and these affect the position of the 
counteranion (acetate for (i) and chloride for the analogues). 
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Table 3.  Physical and chemical properties for the neutral form of MAPBAP acetate and analogues 

Property Substance Type Value1 

 

Temperature (°C) Reference 

 

Melting point (ºC) MAPBAP acetate Modelled 236.73 - MPBPWIN 2008 

Boiling point 

(ºC) 

MAPBAP acetate 
Modelled 551.67  - MPBPWIN 2008 

Vapour pressure 

(Pa) 

MAPBAP acetate 

Modelled 

9.13 x 10-10 

(6.85 x 10-12 

mmHg)  

25 
EPIWIN 2004 

 

Henry’s Law constant 

(Pa·m3/mol) 

MAPBAP acetate 
Modelled 

 

1.92 x 10-10 

(1.895 x 10-15 

atm·m3/mole) 

25 HENRYWIN 2008 

Log Kow  

(Octanol-water partition 
coefficient) 

(dimensionless) 

Analogue 

 

(C.I. Basic Violet 3 CAS 
RN 548-62-9) 

Experimental 
0.51 

 
- Tsai et al. 1991 
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Property Substance Type Value1 

 

Temperature (°C) Reference 

 

Koc 

(Organic carbon-water 
partition coefficient) 

(dimensionless) 

 

MAPBAP acetate 
Modelled 10.26 2 - PCKOCWIN 2008 

Water solubility 3 (mg/L) 

Analogue 

 

(CAS RN 2390-59-2) 

Experimental 

9000  

 

 

- Green 1990 

MAPBAP acetate 
Modelled 475 2 25 

WSKOWWIN 2008 

 

1 Values and units in brackets represent those originally reported by the authors or estimated by the models.  

2  This value was modelled using the experimental analogue logKow of 0.51 as input,. 

3  Importer of MAPBAP acetate has indicated that it is completely soluble at environmental pHs (eg. pH 7). 
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Health Effects Assessment 

 

No empirical toxicity data were identified for MAPBAP acetate.  Sources of health 
hazard information considered included examination of available international reviews, 
assessments or classifications, reviewing the available empirical data where available and 
the use of predictive models as appropriate. The outputs of predictive models were also 
considered using five different QSAR models: TOPKAT (2004), CASETOX (2008), 
Toxtree (2009), DEREK 2008, and Model Applier (2009). 

Using the representative molecular structure of MAPBAP (with the acetic acid fragment 
(acetate) attached to the carbon atom (attached to three aromatic rings)), the following 
results were obtained. Positive predictions were obtained on five different genotoxicity 
endpoints and only one of these (i.e. rodent micronucleus assay) is corroborated by more 
than one model (CASETOX and Toxtree). The Benigni-Bossa model within the Toxtree 
also predicts it to be a Salmonella typhimurium TA100 mutagen with metabolic 
activation. On the other hand, the female rat cancer models of both CASETOX and 
Model Applier gave positive predictions. The male rat cancer model of Model Applier as 
well as both mice models (male and female) of CASETOX gave positive predictions. The 
presence of a structural alert indicative of genotoxic carcinogenicity is another piece of 
supporting information that has been obtained from the Benigni-Bossa model within 
Toxtree. Applying the OncoLogic model to a nearly similar structure containing hydroxyl 
group in place of the acetate group results in a positive carcinogenicity prediction. This 
prediction is based on presence of Nitrogen substituted groups on the aromatic rings. 

It is important to note that the Toxtree micronucleus model is a coarse grain filter for 
preliminary screening of potential in vivo mutagens and the OncoLogic does not use the 
identical structure for prediction purposes. Also, the Ames point mutation models of 
CASETOX and Model Applier predict negative results whereas TOPKAT and DEREK 
fail to provide any information. However, in the case of cancer models, there are at least 
three models (CASETOX, Model Applier and Toxtree) that classify this chemical as a 
potential carcinogen. The CASETOX, Model Applier and the Toxtree models are based 
on unique methodologies for making predictions and since they point towards a similar 
outcome, it carries more weight. 

Thus the model predictions were mixed for carcinogenicity (6 positive and 4 negative), 
genotoxicity (6 positive and 7 negative), developmental (2 positive; 18 negative and 10 
no result) and reproductive toxicity (1 positive and 12 no result). 

Potential structural analogues of MAPBAP acetate for the purposes of read-across for 
human health toxicity information were identified using Leadscope (Leadscope 2008) 
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and ChemID (ChemIDPlus 2009) along with professional judgement.  As the main 
structure would distribute the positive charge across the molecule through resonance 
structures, the acetate counter ion would likely interchange with other ions or substrates 
when the dye is used.  Therefore, the moiety of interest from a human health 
toxicological perspective would be the parent molecule itself.  Other similar triarylamine 
substances, that have empirical data, include gentian violet (CAS 548-62-9), malachite 
green (CAS 569-64-2), C.I. Basic Violet 4 (CAS 2390-59-2) and leucomalachite green 
(CAS 129-73-7) as shown in Appendix 7. 

Gentian violet has been classified by the European Union as Carcinogenicity Category 2 
(ECB 2002) based on carcinogenicity in experimental animals.  One study did report 
negative in vitro genotoxicity for mutations in a reverse mutation assay in several S. 
typhimurium strains after exposure to gentian violet at concentrations ranging from 5 – 
1000 µg/plate (NICNAS 1999). Malachite green has been classified by the European 
Union as Reproductive Toxicity Category 3(ECB 2003) based on developmental toxicity 
in experimental animals. Also, the U.S. NTP (2005) reported equivocal evidence of 
carcinogenicity in female rats and negative results for genotoxicity from an in vivo 
micronucleus assay and an in vitro assay in S. typhimurium (NTP 1997, 1994).  C.I Basic 
Violet 4 had negative in vitro genotoxicity data for chromosomal aberrations in Chinese 
Hamster Ovary cells (NICNAS 1999) and was also found to be predominately negative in 
vitro in assays conducted in S. typhimurium and mouse lymphoma cells (CCRIS 2009).  
Leucomalachite green was found to have some evidence of carcinogenicity in female 
mice and had positive in vivo genotoxicity data (NTP 1996, 2005). 

The information obtained from the QSAR models as well as potential analogues, suggest 
that there may be potential carcinogenic or developmental toxicity hazards associated 
with the substance. 

The confidence in the toxicity database is considered to be low due to the lack of 
available data for MAPBAP acetate. 
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Appendix 6: Summary of (Q)SAR Results 

(Q)SAR PREDICTIONS ON CARCINOGENICITY 

Model/ 
Species 

Mice Rat 
Rat Mice Rodent Mammal 

Male Female Male Female 

Model 
Applier 

 

N N P P P N N - 

Multicase 
Casetox 

 

P P ND* P - - - - 

Topkat 

 
NR NR NR NR - - - - 

Derek - - - - - - - NR 

* This one is weakly positive (30 case units & 81 % probability) 
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(Q)SAR PREDICTIONS ON GENOTOXICITY 
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MA ND ND ND ND ND ND ND ND ND ND P N ND - N N ND N ND P N - 

CT N - - P - ND - - - - NR - - ND - - - - - - N - 

TK - - - - - - - - - - - - - - - - - - - - NR - 

TT - - - - P - - - - - - - - - - - - - - - P P 
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(Q)SAR PREDICTIONS ON REPRODUCTIVE TOXICITY 

Model Applier 

Model/ 

endpoint 

Female 

 
Male 

Species mice rat Rodent mice rat rodent 

repro ND ND ND ND ND ND 

sperm - - - ND ND ND 

Multicase Casetox 

mice rat rabbit human 

NR P NR NR 

 

(Q)SAR PREDICTIONS ON DEVELOPMENTAL TOXICITY 

Model Applier 

Endpoint/ Species mice rabbit rat rodent 

Retardation N ND N N 

Weight decrease N ND N N 

Fetal death N ND N N 

Post impl. loss ND ND N N 

Pre impl. loss P ND N N 

Structural N ND ND N 

Visceral N - N N 

 

 

 



 
Page 180 of 186 

Multicase Casetox 

Endpoint/Species Hamster Mammal Miscellaneous 

Teratogenicity - P NR 

Developmental NR - - 

 

 

MA – model applier;  

CT – Multicase Casetox;  

TK – Topkat;  

TT – Toxtree; 

BB – Benigni-Bossa rule; 

ND – not in domain;  

'-' no model available in QSAR suite 

NR – no result 

P – positive 

N – negative 
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Appendix 7:  Analogues of MAPBAP acetate considered in Human Health portion of assessment 

Structure Name / CAS RN Data/Classifications  

 

Genitian violet 

548-62-9 

European Union Carcinogenicity Category 2 (ECB 2002) 
based on evidence in experimental animals 

 

Genotoxicity  

In-vitro reverse mutation:  

Negative in S.typhimurium  TA98, TA100, TA1535,  
TA1537  with and without activation (NICNAS 1999). 

 

Malachite green  

569-64-2 

European Union Reproductive Category 3 (ECB 2003) 

Carcinogenicity 

Equivocal evidence of cancer in female rats (NTP 2005) 
 

Genotoxicity 

In-vitro gene mutation: 

Negative in S.typhimurium TA97, TA98, TA100, TA102, 
TA104, TA1535 with and without activation (NTP 1994). 

Chromosome aberration: 

In vivo: Negative in mouse micronucleus bone marrow 
and peripheral blood (NTP 1997). 
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` 
C.I Basic Violet 4 

2390-59-2 

Genotoxicity 

In vitro gene mutation: 

Negative in S.typhimurium TA98, TA100, TA1537, 
TA1538 with and without activation; TA1535 without 
activation (CCRIS 2009): 
 
Positive in TA1535 with S9 activation (CCRIS 2009) 

 
Negative in Mouse Lymphoma L5178Y with and without 
activation (CCRIS 2009) 

 
Chromosome aberration: 

Negative in Chinese Hamster Ovary Cells V79 with and 
without S9 activation (NICNAS 1999). 

 

Leucomalachite green 

129-73-7 

Carcinogenicity 

Some evidence of carcinogenicity in female mice (NTP 
2005) 

 
Genotoxicity 

In vivo chromosome aberration: 

Positive in female mouse micronucleus peripheral blood 
study (NTP 1996). 
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Example No. 5 

The following example has been provided by the Office of Pesticide Programs (OPP) at 
the US EPA. It serves to illustrate the potential use of SAR analysis and weight of 
evidence approaches in risk assessment decision making. 

 

Case Study:   Use of a weight of Evidence (WOE) approach, including SAR information, to 
waive the chronic toxicity/carcinogenicity study requirement in a biocide reregistration decision. 

1, 2-benzisothiazolin-3-one (BIT) is a member of the isothiazolone class of biocides. Some of the 
registered uses of BIT involve chronic/long term exposures (e.g., use in metal working fluids). To 
address this type of potential exposure scenario, chronic and/or cancer studies would usually be 
required. 

The chemical structures of the isothiazolone biocides can be divided into two sub-classes (Figure 
1): 

1. General Isothiazolone Class:  Isothiazolone pesticide chemicals without a benzene ring 
attached at the 4-5 position of the isothiazolone ring. For example: Kathon RH287, 
Kathon RH886 and/or OIT, which have been registered by OPP. 

 

2. 1,2-Benzoisothiazolone Class:  Isothiazolone pesticide chemicals with a benzene ring 
attached at the 4-5 position of the isothiazolone ring. In this case, BIT is the chemical 
being discussed. 
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Figure 1.  Chemical Structures of the Isothiazolone Biocides 

 
All isothiazolone biocides contain an isothiazolone ring (Figure 1).   

 
 
 
 
 
 
 
 

The issue to be discussed in the example case is whether chronic/cancer studies can be waived 
based on existing conditions.  The issue is discussed from following different aspects. 

• Pesticidal Mode of Action:  BIT, CMIT, MIT, OIT, and DCOIT all share a common 
pathway for antimicrobial activity: 

• All inhibit cell respiration 
• All inhibit the same class of dehydrogenase enzymes 

 

These biocides react with microbial cells through cleavage of the S-N bond to form an 
S-S linkage with the thiol group on target enzymes.  Biocidal activity is a function of the 
inhibition of cell respiration. 

• Structure Activity Consideration:  According to the pesticide mode of action 
consideration, the antimicrobial activity for all isothiazolone classes is due to the 
isothiazolinone ring and the sulfur nitrogen bond in the isothiazolinone ring plays a key 
role for efficacy as a biocide.  The current issue is whether the benzene ring will be a 
concern for potential toxic effects of BIT.  Based on SAR information, the benzene ring 
may prolong the biological half-life of the metabolic intermediate moieties in the body. 

 
• Toxicity Profile for BIT:  There are no carcinogenicity or chronic toxicity studies for 

any of the benzene ring-isothiazolone chemicals (such as BIT).  BIT is not mutagenic as 
all acceptable guideline mutagenicity studies were negative.  The toxicity profile of BIT 
shows that it is an irritant following oral and dermal exposures, and this is the effect 
observed following repeated dosing in subchronic toxicity studies. 
 

o In two oral subchronic rat studies, gastrointestinal irritation was reported at 
10 mg/kg/day (lowest dose tested), and there were no other treatment-related 
systemic effects. 

 
o In a 90-day rat dermal study, skin irritation and histopathology were noted at 

all doses of 100, 300 and 1000 mg/kg/day, while systemic toxicity was only 
reported at the limit dose (1000 mg/kg/day).  Gastrointestinal 
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irritation/histopathology was also reported at 100 mg/kg/day which may be 
attributed to grooming. 
 

o The repeated-dose metabolism and disposition study indicates the 
metabolites associated with BIT exposure may remain in the body much 
longer than the parent compound.  The evidence from this study indicates 
benzene containing metabolites may accumulate in the liver, kidneys and 
thyroid gland.   
 

• Toxicity Profile for the non-benzene ring isothiazolone pesticides: The mutagenicity 
data for the non-benzene ring containing isothiazolones were largely negative except for 
a few positive observations in vitro with CMIT/MIT and DCOIT.  Three 
chronic/carcinogenicity studies are available for non-benzene ring isothiazolone 
pesticides and all were negative for carcinogenicity, although two of these were found to 
have major deficiencies for the chronic toxicity portion of the studies. 
 

o One study was conducted using drinking water administration of a 14.2% 
CMIT/MIT mixture at doses of 2.0/3.1, 6.6/9.8, and 17.2/25.7 mg/kg/day in 
rats males/females. This study reported hyperplasia of the GI tract but no 
other systemic effects. 

 
o The second study used dermal administration of a single dose of 400 ppm 

CMIT/MIT to the skin of mice for 30 months and the only significant finding 
was dermal irritation. 

 
o A carcinogenicity study was conducted using dietary administration of OIT. 

There were no reported carcinogenic effects following oral exposure to up to 
1000 ppm in the diet for 78 weeks.  Although some tumors were reported, 
the incidences were within the ranges for the control animals. 

All of the isothiazolones produced toxicity at the site of contact, i.e. irritation of the 
gastrointestinal tract, skin and respiratory tract, when administered at high doses.  These 
biocides produce minimal to no significant systemic toxicity; no histopathological change 
distant from the site of dosing was observed, which appears correlated with rapid 
metabolism and excretion for these chemicals. Based on read-across comparison, it is 
concluded that: 

o Skin irritation:  Similar findings in all dermal studies (BIT, CMIT/MIT, OIT) 
although at different dose levels. 

o Skin histopathology:  Similar for BIT and OIT, none found in rabbit study on 
CMIT/MIT 

o Similar clinical chemistry findings with BIT and OIT and similar to BIT oral dog 
study 

o Severe skin irritation in BIT dermal study 



 
Page 186 of 186 

The relative potency is as follows: 

 Skin Irritation: CMIT, DCOIT  > OIT, MIT, BIT 

 Skin Sensitization: CMIT > DCOIT >OIT > MIT > BIT 

• Risk assessment considerations: As a class, the isothiazolone pesticides are irritants by 
all routes of exposure, and are dermal sensitizers.  For BIT, gastrointestinal irritation 
provides the basis for points of departure for short, intermediate, and chronic/long-term 
exposure scenarios. 

Final Recommendation: 

Based on a read-across comparison and weight of evidence (WOE) approach, that the chronic 
toxicity/carcinogenicity study for BIT is not required at this time if the risk assessment is 
protective of irritation. This recommendation was based on the following considerations: 1) 
available cancer studies for the isothiazolone pesticides are negative; 2)  there is a lack of  
mutagenicity concern for BIT, and the other isothiazolone pesticides; 3) BIT and the other 
isothiazolones are irritants following oral, dermal and inhalation exposures and produce similar 
effects following subchronic exposures; 4)  the isothiazolones as a group have a known mode of 
action for antimicrobial activity; 5)  irritation is the predominant effect and is the basis of the 
PODs; 6) although the metabolism study for BIT showed an increased half life and accumulation 
of radioactivity in thyroid compared to other isothiazolone chemicals, these observations were 
determined to be not of toxicological significance, as the toxicological effects of  BIT up to 90 
days were not different than the effects observed with the other isothiazolone chemicals.  

It is recommended that the available data be evaluated to inform the need for a UF to account for 
subchronic to chronic exposure durations for BIT. 
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