SF6 Leak Reduction Using On-line Leak Sealing

Presented by:

Liisa Colby
Client Service, Power Services Division
THE COLT GROUP
On-line Leak Sealing

Temps: Cryogenic – 1,500 F

Under pressure: Vacuum up to 5000 PSI
The History of Leak Sealing
Early On-Line Steam Leak Repair
Sealing Leaks in Transformers and Circuit Breakers
Thirty+ Years Later
Statistically proven process

12,484 repairs completed as of 8/01/13
- 5,482 Flanges
- 5,007 Packings
- 813 Drain plugs
- 799 Custom clamps & enclosures
- 230 Cover plates
- 153 Misc.

- 93.1% sealed on first visit. 6.9% repump rate
Benefits of online leak repair

- A cost-effective option
- Should not be used to replace re-gasketing
- No need to drain the oil or depressurize
- Some repairs can be made while energized
Comparison: OCB Bushing Flange Leak Repair

<table>
<thead>
<tr>
<th></th>
<th>Leak Repair</th>
<th>Conventional Repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td>20 hours, including switching and grounding</td>
<td>96 hours</td>
</tr>
<tr>
<td>Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parts</td>
<td>Repair: $2,000</td>
<td>Replacement: $5,000</td>
</tr>
<tr>
<td>Other</td>
<td>None</td>
<td>Oil tanker, gaskets, etc</td>
</tr>
<tr>
<td>Total Cost</td>
<td>$3,000 - $5,000</td>
<td>$10,000 - $12,000</td>
</tr>
</tbody>
</table>
Your options for dealing with leaks

- Let it leak
 But if oil or gas are getting out, air and moisture are getting in. Also environmental concerns and regulations.

- Regasket or replace
 Your number one choice in a perfect world.
 Requires outage time, budget and personnel resources.
 Replacement parts not always available

- In-house Repair
 Not always effective

- On-line Leak Repair Specialists
 An alternative worth considering in certain situations
A good case for on-line leak repair
Leak repair methodology

- Drill and Tap Technique (oil leaks)
- Custom enclosures (oil, nitrogen, SF6)
- Sealant is not an epoxy. Easy to remove

Specially formulated for use with electrical apparatus – allows for movement due to temperature changes and vibration.
1) Drill and Tap technique

- Four bolt flapper valve
- O-Ring / Packing type seal
On-Line Repair of Flapper Valve Flange using Drill & Tap Technique

- Injection valves are placed into the gasket area
- A two part sealant is injected and cures
- Injectors are removed after sealant cures
- Teflon coated pipe plugs are installed
Flapper Valve Packing

Injector will be removed

Valve still operates

- Follower nut is backed out.
- Valve remains operable.
Radiator flanges
Cover plates
Bushing Flange
2) Custom Enclosures

Damaged/Cracked Flange

Before

After
Custom Enclosure Job Examples: Drain/Fill/Sample valves

Before

After
Offset Bushing Flange Clamp
SF6 Leak Repairs

Typical SF6 Leak Locations:

• Between the porcelain and aluminum

• Between the flange ID and the porcelain

• Tank flanges

• Tanks

• Instrument lines, fittings and valves

• Pores in the casting
The SF6 Leak Repair Process

- Determine point of leak
- Technician takes precise measurements for a containment device
- Engineer designs a clamp or enclosure
- Clamp/enclosure is bolted around the leak and hydraulically injected with sealant
SF6 Leak Repair Case Story
Eddyville Substation 69 kv SF6 Breaker
Alliant SF6 Case Story

1. Leave as is – not an option
2. Re-gasket – time to take the breaker out of service was the primary issue
 5 days of down time, loss transmission & $20,000.00 due to placement of breaker
3. Repair – Installing custom enclosure and injecting sealant was determined optimal solution

Justification: Reduced downtime for critical apparatus. Just 1 day of down time and $20,860.00 to fix all leaking components
Precise measurements taken
MACHINE 1/4 X 1/4 DP PACKING GROOVE IN Ø8.094 BORE INSTALL (4) 1/16 NPT INTO PACKING GROOVE MACHINE 1/8 X 1/16 DP PACKING GROOVE IN Ø9.652 BORE
HUB CLAMP

ASSEMBLY VIEW

STRONGBACK RING

BUSHING HUB CLAMP/SB

COLT ATLANTIC SERVICES
4135 INDUSTRY WAY
FLOWERY BRANCH, GA 30542
PH# 1-(804)-674-0031

MATERIAL:
PLATE: SB09 ALCAD 6061 T651
PIPE:
EARS:
STUDS: SA-193 B8MCLI
NUTS: SA-194 GRBM

SHEET 3 OF 3
Design Summary/Calcs

Design By: VF **Date:** 01/05/12 **Client:** CSA

Checked By: **Date:** **Clamp #:** J0105F

Dsgn Temp.: 85 °F **Oper Temp.:** **Job No.:**

Dsgn Press.: 90 PSI **Oper Press.:** **Service:** SF6

Allowable Stresses

Pipe: SB209 6061 T651 10900 PSI

Plate: SA193 BBMCL1 18600 PSI

Bolts: SA193 BBMCL1 18600 PSI

Mawp: 90 PSI @ 85 °F

Design is for internal pressure loadings only. Corrosion allowance 1.25 in. unless otherwise specified. Material stress are from ASME BPVC Sect. II Part D (2010) Formulas are from ASME BPVC Sect. VIII Div. 1 or standard engineering practices.

Cover Thickness

\[
P = \text{Design Pressure} \\
OD = \text{Outside Diameter} \\
S = \text{Allowable Stress} \\
E = \text{Joint Efficiency} \\
CA = \text{Corrosion Allow.} \\
T(\text{turn}) = \text{Cover Thickness} \\
MT = \text{Mill Tolerance} \\
\text{T(req) = Minimum Thickness}
\]

\[
T(req) = \frac{P(OD/2-MT(T\text{turn}))+CA}{(S^*)-(E^*)} \\
= \frac{90(13.880/2-1.00(1.780)+125}{(9000*1.0)-(8*90)} \\
= 1.69 \text{ IN.}
\]

-T(req) = 1.780 IN.

Cover calculations are from ASME BPVC Sect. VIII, Div. 1, UC-27(c)(1) and allowable stresses from ASME BPVC Sect. II, Part D (2010).

Working Load Per Stud

Clamp Bolting

\[
TL = \text{Total Load} \\
P = \text{Design Pressure} \\
A = \text{Area in Sq. In.} \\
WL = \text{Load Per Bolt} \\
N = \text{Number of Studs}
\]

\[
TL = P \times A = 90 \times 2.41 \\
A = 216.54 \text{ LBS.} \\
WL = TL = 216.54 \\
N = 2 \\
= 108.27 \text{ LBS/BOLT}
\]

Max Allowable Load Per Stud

\[
S = \text{Max Allow. Stress/Stud} \\
A = \text{Tensile or Root Area/Stud} \\
ML = \text{Max Allow Load/Stud}
\]

\[
ML = A \times S = 126 \times 18800 \\
= 2383.16 \text{ LBS/BOLT}
\]

Thrust on Enclosure Due to Unequal Bores

\[
P = \text{Pressure} \\
T = P \left[\left(D^2-(d)^2\right)/2\right] \times 7.854 \\
D = \text{Large Bore Dia.} \\
d = \text{Small Bore Dia.} \\
T = \text{Thrust on Enclosure}
\]

\[
P = 90 \left[\left(9.65^2-(8.09)^2\right)/2\right] \times 7.854 \\
= 1954.35 \text{ LBS}
\]

Stud Size: 1/2 X 13UNC BBMCL1
DESIGN CALCULATIONS

WORKING LOAD PER STRONGBACK STUD

\[T = \text{THRUST} \quad \text{WL} = \frac{T}{N} = \frac{1954.35}{6} = 325.73 \text{ LBS/BOLT} \]

\[N = \text{NUMBER OF BOLTS} \quad \text{WL} = \text{LOAD/BOLT} \]

MAX ALLOWABLE LOAD PER STUD

\[S = \text{MAX ALLOW. STRESS/STUD} \quad ML = A \cdot S = 0.126 \cdot 18800 = 2363.16 \text{ LBS/BOLT} \]

\[A = \text{TENSILE OR ROOT AREA/STUD} \quad ML = \text{MAX ALLOW LOAD/STUD} \]

STUD SIZE: 1/2 X 13 UNC B8MCI1
Other examples:
345 KV SF6 Breaker Leak - Before
SF6 Leak – After
Other SF6 Repairs
Before...
After
Before
After
Before
After
SF6 Repair on Insulated Bus
SF6 Tubing Leak
Thank you

Liisa Colby
Client Service
THE COLT GROUP, Power Services Division
www.coltpowerservices.com