# SF<sub>6</sub> By-products: Safety, Cleaning, and Disposal Concerns

U.S. EPA's International Conference on SF<sub>6</sub> and the Environment

> November 29, 2006 San Antonio, TX

Mollie Averyt, ICF International maveryt@icfi.com 202-862-1569



# SF<sub>6</sub> Gas Properties

Slow reacting with a relatively high molecular weight and extremely stable molecular structure.
Excellent insulation properties, strong arc quenching abilities, and high dielectric strength
Non-flammable and non-toxic to humans
Colorless and Odorless

Under high temperature conditions (>  $350^{\circ}$  F), SF<sub>6</sub> decomposes into products that are toxic and corrosive

# SF<sub>6</sub> Decomposition and Contamination

 Reactive decomposition byproducts form when SF<sub>6</sub> is exposed to:

- 1. spark discharges,
- 2. partial discharges,
- 3. switching arcs, and
- 4. failure arcing

Decomposition byproducts can take the form of gas or powders

Other types of contaminants can include moisture and air (from handling or leakage), dust and particles (mechanical generation)

# SF<sub>6</sub> Decomposition Byproducts

#### **Chemical Name**

Chemical Formula

 $WF_6$ ,  $WO_3$ ,  $AIF_3$ ,  $CuF_2$ 

#### Gaseous Byproducts

| Sulfur Dioxide                               | SO <sub>2</sub>                                   |
|----------------------------------------------|---------------------------------------------------|
| Thionyl Sulfide (sulfur tetrafluoride)       | $SOF_2(SF_4)$                                     |
| Hydrogen Fluoride                            | HF                                                |
| Disulfur Decafluoride (sulfur pentafluoride) | S <sub>2</sub> F <sub>10</sub> (SF <sub>5</sub> ) |
| Sulfuryl Fluoride                            | $SO_2F_2$                                         |
| Sulfur Tetrafluoride Oxide                   | SOF <sub>4</sub> (SF <sub>4</sub> ) <sup>a</sup>  |

<sup>a</sup>SF<sub>4</sub> is readily hydrolyzed to SOF<sub>2</sub>.

Powder Byproducts

Tungsten, aluminum, copper fluorides

# Human Health Concerns

Irritating to the eyes, nose, and throat, pulmonary edema and other lung damage, skin and eye burns, nasal congestion, bronchitis; powders may cause rashes

Physical Indicators can include:

- strong irritating "rotten egg" odor at low concentrations
- Eyes, nose, throat and lung irritation at high concentrations

- Presence of white, gray, or tan powders

#### Toxic

 Cell toxicity tests indicate S<sub>2</sub>F<sub>10</sub> is significantly more toxic to cell cultures than other byproducts

# **Occupational Exposure Limits**

| Substance                                         | PEL-TWA    | PEL-Ceiling | TLV-<br>TWA  | TLV-C       |
|---------------------------------------------------|------------|-------------|--------------|-------------|
| HF                                                | 3 ppm      |             |              |             |
| $SOF_4 (SF_4)$                                    |            | 0.1 ppm     |              | 0.1<br>ppm  |
| S <sub>2</sub> F <sub>10</sub> (SF <sub>5</sub> ) | 0.025 ppm* | 0.01 ppm    |              | 0.01<br>ppm |
| $SO_2F_2$                                         | 5 ppm      |             |              |             |
| SO <sub>2</sub>                                   | 2 ppm      |             | 2 ppm        |             |
| SF <sub>6</sub>                                   | 1,000 ppm  |             | 1,000<br>ppm |             |

\*Revised in 1989 to a PEL-ceiling value of 0.01 ppm; enforcement of the new limit stayed by OSHA, until available sampling and analytical technique is published a notice in the Federal Register.



# Safe Handling Procedures

Low Risk (new, non-arced  $SF_6$ ) Work in well-ventilated areas No smoking, refrain from welding, avoid open flame or outdoor heaters Intermediate Risk (normally arced  $SF_{e}$ ) Same as above High Risk (heavily arced  $SF_{6}$ ) - Use of personal protective equipment (i.e., respiratory device, protective clothing such as rubber gloves, footwear, goggles) for removal/handling of solid SFe byproducts

 Ventilate and test enclosed areas for adequate O<sub>2</sub> prior to initiating clean up

# Safeguarding the Work Area

- Post warning signs provided with emergency instructions strategically
- Post evacuation maps and plans
- Provide personnel with written instructions for safe handling of SF<sub>6</sub>-filled equipment, including:
  - Procedures for low, intermediate, and high risk situations
  - Train personnel on cleaning procedures

## **Cleaning Procedures**

#### Contaminated Work Area

- Use of Personal Protective Equipment
- Removal of powdery deposits with vacuum cleaner equipment (HEPA filters), wipes
- Removal of disposable protective equipment and waste bags into a properly labeled hazardous waste drum

### Contaminated SF<sub>6</sub> Gas

- Onsite purification unit for acceptable levels
- Off-site reclamation methods for non-acceptable levels (i.e., heavily arced gas)

# Cleaning Contaminated SF<sub>6</sub> Gas On-Site

Determine gas category
Select appropriate filters
Purify gas by filtering
Perform quality checks
Handle gas that results as non-reusable

# **Select Appropriate Filters**

| Filter Type              | Function                                                                              | SF <sub>6</sub> Gas                            |
|--------------------------|---------------------------------------------------------------------------------------|------------------------------------------------|
| Particle Filter          | Removes solid<br>decomposition products and<br>other particles                        | Non-arced,<br>normally arced,<br>heavily arced |
| Gas/Moisture<br>Filter   | Removes gaseous<br>decomposition products and<br>moisture                             | Non-arced,<br>normally arced,<br>heavily arced |
| Prefilter                | Reduces concentrations of solid and gaseous decomposition products                    | Heavily arced                                  |
| Detoxification<br>Filter | Reduces reactive gaseous<br>decomposition products to<br>below 200 ppmv for transport | Heavily arced                                  |
|                          |                                                                                       | 40                                             |

# **Purify Gas by Filtering**

50 ppmv - maximum tolerable impurity level for reuse

which translates into a reading of

12 ppmv if the sum concentration of  $SO_2$  and  $SOF_2$  is measured

(IEC 60480 and CIGRE TFB3.01.01/2004)

Perform Quality Checks Methods include:

Portable Analyzers
 – Electrochemical sensors

- Spectrometer
- Tester using reactive tubes

Gas chromatograph (not suitable for field testing and expensive)

# **Portable Analyzer**



# Used SF<sub>6</sub> Storage and Transportation

- Generally need to store and transport used SF<sub>6</sub> gas for
  - disposal of non-reusable gas
  - off-site purification
  - Procedures include:
    - Clearly label cylinder as used gas (Apply danger labels and/or use a different color)
    - Follow local transport regulations
    - Arrange for disposal of waste that complies with federal and state regulations



SULPHUR HEXAFLUORIDE USED



#### C - Corrosive

T+ - Very toxic

R 26/27/28 - Very toxic by inhalation, in contact with skin and if swallowed 5 7/9 - keep container tightly closed and in a well-ventilated place 5 38 - in case of insufficient ventilation, wear suitable respiratory equipment 5 45 - in case of accident or if you feel unwell, seek medical advice immediately (show the label where possible)

UN 3308 : Toxic, corrosive liquefied gas, N.O.S Contains : Sulfur hexafluoride - class 2

Source: Bessede, Huet, Montillet - AREVA T&D and Barbier and Micozzi, - AVANTEC

# Used SF<sub>6</sub> Disposal Procedures

- Incineration plants offer destruction services for used SF<sub>6</sub> gas
- SF<sub>6</sub> gas can be destroyed at a thermal process operating at 2100 degrees F
  - Dissociates into reaction products that are passed through wet scrubbers to form gypsum, fluospar minerals
  - Gypsum CaSO<sub>2</sub> used in construction
  - Fluorospar CAF<sub>2</sub> used as an additive in toothpaste

### Resources

SF<sub>6</sub> Recycling Guide (CIGRE Report, **August 2003**) • IEC TR 61634 (SF<sub>6</sub> Handling) • IEC TR 60480 (Used SF<sub>6</sub>) EPA's EPS Partnership Web site – Byproducts of SF6 Use in the Electric Power Industry, January, 2002 – Partner SF<sub>6</sub> Handling Procedures - Service Provider Directory Catalog of Guidelines and Standards for the Handling and Management of SF<sub>6</sub>