Evaluation of the Destruction of the Harmful Cyanobacteria, Microcystis aeruginosa, with a Cavitation and Superoxide Generating Water Treatment Reactor

Victor F. Medina, Chris S. Griggs & Catherine Thomas

Victor F. Medina · Chris S. Griggs · Catherine Thomas

Received: 10 September 2015 / Accepted: 27 January 2016
© Springer Science+Business Media New York (outside the USA) 2016

Abstract Cyanobacterial/Harmful Algal Blooms are a major issue for lakes and reservoirs throughout the U.S.A. An effective destructive technology could be useful to protect sensitive areas, such as areas near water intakes. The study presented in this article explored the use of a reactor called the KRIA Water Treatment System. The reactor focuses on the injection of superoxide (O$_2^-$), which is generated electrochemically from the atmosphere, into the water body. In addition, the injection process generates a significant amount of cavitation. The treatment process was tested in 190-L reactors spiked with water from cyanobacterial contaminated lakes. The treatment was very effective at destroying the predominant species of cyanobacteria, *Microcystis aeruginosa*, organic matter, and decreasing chlorophyll concentration. Microcystin toxin concentrations were also reduced. Data suggest that cavitation alone was an effective treatment, but the addition of superoxide improved performance, particularly regarding removal of cyanobacteria and reduction of microcystin concentration.

Keywords Cyanobacterial/harmful algal blooms (CHAB) · Cyanobacteria · Microcystin · Superoxide · Cavitation

Numerous studies have documented the impacts of Cyanobacterial/Harmful Algal Blooms (CHABs) in the United States and throughout the world (Beaver et al. 2014; Heiskary et al. 2014; Oberholser et al. 2006; Makhera et al. 2011; Mou et al. 2013; Persaud et al. 2015; Roelke et al. 2013). These organisms can adversely affect aquatic life through rapidly decreased dissolved oxygen, prevention of light penetration, and limit gas exchange. Furthermore, certain algae and cyanobacteria species can release toxins in water, such as microcystin, that can harm people, kill livestock and affect other aquatic life (Zimba et al. 2001; Otten and Pearl 2015). For example, Lake Erie suffered record setting CHABs in 2013 (Michalak et al. 2013), and in 2014, cyanobacterial blooms in Lake Erie, U.S.A., necessitated the closure of the water treatment intake for the City of Toledo OH and bottled drinking water had to be provided to the city’s residents (Egan 2014).

There are numerous means of controlling algal blooms. Ultimately, preventing these blooms by controlling land use nutrient loading from surface water runoff, is considered the most effective means (Oberholser et al. 2006; Beaver et al. 2014). However, implementing such controls is challenging due to spatial and temporal constraints. Therefore effective, localized source treatments are needed that can destroy cyanobacteria and algae in hot spot areas, such as water intakes, sensitive environmental areas, and in areas used for livestock watering. However, in some cases, physical destruction of the algal biomass can have the unintended result of releasing biotoxins into the water (Li et al. 2014).

The KRIA Water Treatment System (tradename, Premier Materials, Minneapolis, MN) is a unique reactor that combines several potential mechanisms for controlling algal blooms including: cavitation, microbubbles, and the generation of superoxide radicals. The literature has indicated that physical cavitation can be an effective means of cyanobacterial deactivation (Li et al. 2014) and superoxide has been speculated to be effective at treating microcystin...
toxin (Shephard et al. 1998). A previous study confirmed the production of superoxide, and also showed that the KRIA can supersaturate dissolved oxygen and increase electrical conductivity (due to the charged oxygen species) in a 50 gal (190 L) reactor (Medina et al. 2015). This study explored the effectiveness of the KRIA reactor for algal blooms in a controlled setting.

Materials and Methods

The KRIA ionizing water treatment system is designed to be deployed into rivers, streams, lakes and ponds, although it could be effectively applied into tanks and engineered reactors. It has an intake where water is drawn into the reactor, and a discharge, where water is returned (Fig. 1). Superoxide is produced from atmospheric air, which air is drawn into the system, and electrochemically treated, resulting in the conversion of molecular oxygen into the superoxide anion (Fig. 1). The method of ionization, described as “ionization by collision”, involves reaction in a magnetic field as the air is drawn through a bed of ceramic balls with reactive minerals, which are not specified (Kunio et al. 1999). The negatively charged air is then pressurized and stored in a reservoir tank. This superoxide is charged into the discharge of the system. The discharge is also a key part of the treatment, as it is designed to promote reactions by cavitation in addition to superoxide reactions (Kunio et al. 1999). Additional information on the KRIA reactor can be found in Medina et al. (2015).

Two identical test reactors were prepared, these being lined 55 gallon (209 L) drums. A top was engineered by cutting holes for the reactor inlet/discharge to limit volatilization while allowing for the KRIA nozzles to be inserted in the water. The two test reactors were filled with 170 L of dechlorinated tap water, which is used for fish cultivation studies. Reactors were then spiked with 40 L of water collected from lakes suffering from severe algal blooms. Two sets of samples were collected from lakes in California, and a third from a bay in Lake Erie, from an Ohio location near the city of Toledo. Samples were collected by onsite personnel using surface scoop samplers and placed in 5 gallon buckets, sealed and shipped by overnight mail to the laboratory. At the laboratory, the buckets were opened and placed under plant growth lights and used in studies within 24 h of their receipt.

Algal/cyanobacterial counts were conducted by PhycoTech (St. Joseph, MI). Volatile matter was determined using gravimetric loss on ignition, using ASTM method D7348 (ASTM International 2013). A 50 mL portion of solution was taken and placed in a preweighed crucible, then dried at 105°C. The crucible was then weighed again to measure the total solids. The crucible was then combusted at 500°C to combust the organic compounds, and was weighed after cooling to room temperature to measure the organic content. Total suspended chlorophyll was extracted and measured spectrophotometrically (ESS 1991). Turbidity was measured using a Hach 2100P Turbidimeter, which was calibrated prior to use. Microcystin toxin concentrations were measured by GreenWater Laboratories (Palatka, FL). The cells were lysed using ultrasonication and the microcystin was then measured using an Enzyme Linked Immunosorbent Assay method with a detection limit of 0.15 ug/L (as described in Rivasseau et al. 1999).

Individual studies were conducted on samples from three water bodies, respectively. Study 1 used samples from Clear Lake in California (provided by Ms. Carolyn Ruttan, Invasive Species Coordinator, Lake County, CA) to spike the reactors and involved 40 min exposures to the

![Fig. 1 Schematic of the KRIA Water Treatment System](image)
KRIA reactor with and without superoxide charging. An untreated control was maintained for comparison. Study 1 did not include the algal/cyanobacterial counts. The 40 min exposures had been based on treatment studies focused on chemical contaminants like diesel and gasoline (Medina et al. 2015). However, it became apparent that the reactions were much faster. Consequently, Study 2 also used samples from Clear Lake, but with 5 min exposures to the KRIA. It also included a control—spiked with algae but not treated in any way with the KRIA. Study 3 focused on the 5 min treatment of a sample collected from Lake Erie using only the KRIA with superoxide. Due to the large scale of the reactors, the limited amount of spiking solutions, and the time requirements to do each experiment, this experiment did not employ replication.

Results and Discussion

Treatment using the KRIA showed almost immediate results in removing visible cyanobacterial cells. Figure 2 shows a photograph comparing a sample collected at 5 min from an untreated control reactor to one sample treated by the KRIA reactor, in this case with the superoxide valve off. The difference in color and turbidity was striking, showing virtually no color or turbidity after treatment.

Analysis of the intreated samples by Phycotech indicated that over 90 % of the algal/cyanobacterial species were M. aeruginosa. Table 1 shows algal cell counts and biovolume data from two studies (Study 1 did not have count data). In Study 2, a reduction observed in the control and in the two KRIA treatments, with and without superoxide. The reduction in the KRIA without superoxide was nearly twice that of the control and more than four times that of the control when exposed to superoxide. The % biovolumes decreased in all cases, but the decreases were larger with the KRIA treatments. The effect was most pronounced with the KRIA with superoxide, which had an 80 % reduction compared to a 32 % reduction for the control. Study 3, which examined the treatment of a sample from Lake Erie with the KRIA with superoxide charging, had a 23 % reduction in M. aeruginosa and 27 % reduction in the % biomass.

Figure 3 shows normalized volatile matter concentrations in samples collected from Study 1 at 1, 5 and 40 min of KRIA treatment with superoxide, compared to an untreated control (Study 1). The treatment resulted in a sharp, 70 %, drop in volatile matter within 1 min, followed by a more gradual reduction to reach an 82 % reduction at 40 min. The control also had a sharp initial drop, but not as much as the KRIA treated reactor. The reduction in volatile matter in the control at 40 min was 37 %. Similarly, KRIA without superoxide had a 75 % reduction after 5 min of treatment (Study 2), and the Lake Erie study (KRIA with superoxide) had a 65 % reduction (Study 3).

Treatment with the KRIA system showed a powerful effect on chlorophyll concentrations (Fig. 4, Study 1). Chlorophyll concentrations dropped 80 % in the Kria treated (with SO) reactor while actually increased in the control. Decreases were also found in Kria without SO (90 % in 5 min, Study 2) and in the Lake Erie treated samples (75 % in 5 min, Study 3).

Turbidity is the measure of light scattering in water and is a function of particles in the water. Algal cells can act as light scattering particles and typically account for some portion of turbidity in water. In these experiments, with no other turbidity sources entering or exiting the system, it is reasonable to assume that the bulk of any changes in turbidity are related to algal concentrations. Figure 5 summarizes turbidity measurements in Study 1. The KRIA-treated with superoxide sparging sample had >90 % reduction of turbidity after 40 min treatment. There was no reduction of turbidity in the control. Similarly, KRIA-treated without superoxide (Study 2) and Lake Erie treatment (Study 3) both had 84 % reductions in turbidity after 5 min of treatment.

KRIA treatments with and without superoxide charging resulted in substantial reduction of microcystin toxins compared to controls. Study 1 and 2 were treatments of Clear Lake samples, but the starting levels in Study 1 were lower than that in Study 2 (146 vs. 555 µg/L). In Study 1, which was a 40 min treatment, the control had only a 5 % reduction in microcystin concentration compared to 68 % and 77 % reduction in KRIA treatments without and with superoxide, respectively. In Study 2, which focused on a 5 min treatment, the control had a 61 % reduction in microcystin levels, and this was substantially less than the
KRIA treatments of 87 % and 92 % reductions found in KRIA treatments without and with superoxide, respectively. Superoxide charging improved performance on the order of 5 %–9 %. The microcystin levels in Study 3 (Lake Erie) were much lower. We found a 67 % reduction after a 5 min KRIA with superoxide treatment. These destruction rates are much faster than those found for biodegradation of microcystin. For example, Ramani et al. (2012) found 74 % reduction in a 20-day incubation (Table 2).

Because of the nature of the study, replication was not applied. So, it is not possible to indicate statistical significance. However, the magnitude of changes by a range of data presented (counts, volatile matter, chlorophyll and turbidity) strongly support the destruction of *M. aeruginosa* by the KRIA system. The results consistently indicate that substantial reductions were obtained by using the KRIA without the superoxide system. This further suggests that cavitation is a primary mechanism in the effectiveness of

Table 1

Counts of the cyanobacteria *Microcystis aeruginosa*

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment</th>
<th>Initial count (NU/mL)</th>
<th>Final count (NU/mL)</th>
<th>% Count change</th>
<th>Initial biovolume (μm³/mL)</th>
<th>Final biovolume (μm³/mL)</th>
<th>% Biomass change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study 2—California Lake with high cell density</td>
<td>Control</td>
<td>3.70E+07</td>
<td>3.08E+07</td>
<td>17</td>
<td>1.72E+09</td>
<td>1.18E+09</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>KRIA with superoxide</td>
<td>3.40E+07</td>
<td>6.32E+06</td>
<td>81</td>
<td>1.10E+09</td>
<td>2.16E+08</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>KRIA without superoxide</td>
<td>1.72E+07</td>
<td>1.17E+07</td>
<td>32</td>
<td>5.34E+08</td>
<td>3.37E+08</td>
<td>37</td>
</tr>
<tr>
<td>Study 3—Lake Erie</td>
<td>KRIA with superoxide</td>
<td>7.56E+05</td>
<td>5.81E+05</td>
<td>23</td>
<td>3.83E+07</td>
<td>2.80E+07</td>
<td>27</td>
</tr>
</tbody>
</table>
the system. However, the addition of superoxide charging as a secondary mechanism improved performance. This tandem effect of cavitation coupled with superoxide provided by the KRIA Water Treatment System was most pronounced in the cell count data, but also occurred in the microcystin toxin treatment, demonstrating an effective strategy to destroy *M. aeruginosa* cell and its biotoxin.

The changes in volatile matter and suspended chlorophyll suggest that the treatment resulted in the oxidation of the organic material associated with the cyanobacteria, indicating cellular disruption. Li et al. (2014) found that the physical action of cavitation resulted in lysing of *M. aeruginosa* cells which led to a spike of microcystin levels due to release of intracellular toxins. Similarly, Wu et al. (2012) used cavitation to lyse cyanobacteria, but then used ozone to destroy the toxins. This is contrary to our results, as we found reductions in microcystin toxins in KRIA treated samples even without superoxide sparging. Shepard et al. (1998) reported that radicals (superoxide and hydroxyl) generated from titanium dioxide reactions were effective at degrading microcystin toxin. Moreover, studies have shown that cavitation alone can generate radicals, to the point of degrading polychlorinated biphenyls (Zhang and Hua 2000). We hypothesize that these radicals, whether generated by the superoxide generator or by cavitation, result in microcystin toxin degradation. In some cases, cavitation may only be strong enough to lyse the cyanobacteria, as in the studies of Li and Wu. But a strong enough cavitation field could generate enough radicals to initiate toxin degradation.

Effective treatment is probably not feasible for most lakes and ponds due to their large size. However, most CHAB occurrences are found near shores or bays. For example Davis et al. (2014) found most growth in near shore areas. By applying treatment in problematic areas, it may be possible to minimize the effects of CHAB events.

Acknowledgments The authors would like to acknowledge the support of Premier Materials Technology, Inc. of Minneapolis, MN, who funded the project and the time to prepare this paper. Mr. Keith Bouiais, CEO, was our primary contact. We also acknowledge the support by Mr. Mike Mangham of ECOUSA, who provided information on the operation of the KRIA reactor. A follow on project was funded by the Aquatic Plant Control Research Program, and some supplementary data were provided via this effort.

References

Table 2 Microcystin toxin concentrations

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment</th>
<th>Treatment time (min)</th>
<th>Time zero microcystin concentration (ug/L)</th>
<th>Post treatment microcystin concentration (ug/L)</th>
<th>% Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study 1—California Lake with medium cell density</td>
<td>Control</td>
<td>40</td>
<td>146</td>
<td>138</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>KRIA with Superoxide</td>
<td>40</td>
<td>146</td>
<td>34</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>KRIA without Superoxide</td>
<td>40</td>
<td>138</td>
<td>44</td>
<td>68</td>
</tr>
<tr>
<td>Study 2—California Lake with high cell density</td>
<td>Control</td>
<td>5</td>
<td>555</td>
<td>215</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>KRIA with superoxide</td>
<td>5</td>
<td>555</td>
<td>47</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>KRIA without superoxide</td>
<td>5</td>
<td>215</td>
<td>28</td>
<td>87</td>
</tr>
<tr>
<td>Study 3—Lake Erie</td>
<td>KRIA with superoxide</td>
<td>5</td>
<td>5.5</td>
<td>1.8</td>
<td>67</td>
</tr>
</tbody>
</table>

Medina VF, Morrow AB, Wade R (2016) Testing of the KRIA ionizing water treatment system for waters contaminated with diesel, PCBs, and nutrients (nitrogen forms). U.S. Army Engineer Research & Development Center Technical Note. ERDC/EL TR-16-03

