# Important Information Concerning the Menu of Control Measures

The U.S. EPA compiled this Menu of Control Measures (MCM) to provide information useful for: (1) developing local emission reduction and NAAQS SIP scenarios, and (2) identifying and evaluating potential control measures. It is intended to provide a broad, though not comprehensive, listing of potential emissions reduction measures for direct PM2.5 and precursors of ozone and PM2.5 (NOX, VOC, SO2, and ammonia). The MCM is based on data found in reports from the U.S. EPA and several other organizations, such as other Federal agencies, multi-state organizations, state air agencies, and contractor reports.

While mobile source control measures are not included in the MCM, we encourage State air planning agencies to consider such measures when they conduct an initial screening step to identify the sectors that warrant more detailed analysis as part of their control strategy preparation for nonattainment ozone or PM SIPs. SIPs should incorporate information from mobile source emissions modeling runs for States' specific geographic areas according to guidance from EPA's Office of Transportation and Air Quality (OTAQ). Please contact your EPA Regional Offices and the State Measures and Transportation Planning Center in OTAQ for information on possible mobile source control measures. Additional information can also be found at the State and Local Transportation Resources website at https://www.epa.gov/state-and-local-transportation.

Before examining potential control measures for a particular area, an important step is to identify the nature of the PM<sub>2.5</sub> or ozone problem in the area, including the key source sectors contributing to the problem. The severity, nature and sources of the problem vary from area to area, so the measures that will be most efficient at reducing emissions and cost-effective will also vary by area. The geographic area in which emission reduction measures are effectively applied will vary depending on the extent to which pollution sources outside the area contribute to an area's air quality problem. Similarly, the costs of applying a given control measure will be case-specific. While the MCM provides national-level average control costs and control efficiency estimates derived from relevant references, there is inherent uncertainty in the estimates. We do not attempt to provide rigorous treatment of these uncertainties, but rather provide the control efficiency and cost estimates as a rough "ballpark" starting point. The MCM also does not provide specific emissions monitoring and testing information. We encourage the use of source-specific assessments for these activities because such assessments will be more reliable.

The MCM contains several tabular lists of point source and non-point source control measures, organized by pollutant, i.e.,  $NO_X$ , VOC, PM, ammonia, and  $SO_2$ . The tables include a control measure abbreviation - the first letter is the primary pollutant associated with the measure, and the additional letters can identify the control technology, the type of emissions unit, and the fuel used in the emissions unit. The tables also identify reference sources that the user may wish to consult for more information. Note that this technical document is focused on identification of measures and does not address mechanisms for implementation, such as whether a measure would be implemented on a mandatory or voluntary basis.

Users of this information may want to consider local cost factors for more refined analyses. While the MCM presents the average control cost per ton of emissions removed, some of the measures in the MCM have equations in the Control Measure Database that allow for more precise estimates of costs if required information about the source (e.g., design capacity, stack flow rate) is available. Nonetheless, any estimates calculated using either the average cost per ton or related equation will not be as precise as a rigorous engineering assessment that explicitly considers local and site-specific cost factors.

Information about the Control Strategy Tool and related Control Measure Database can be found at https://www.epa.gov/economic-and-cost-analysis-air-pollution-regulations/cost-analysis-modelstools-air-pollution, while the EPA Air Pollution Control Cost Manual often used in engineering assessments can be found at https://www.epa.gov/economic-and-cost-analysis-air-pollution-regulations/cost-reports-and-guidance-air-pollution.

In many cases the accuracy of the MCM cost and control efficiency information is limited by the information in the emissions inventory to which it is applied. For example, for a more reliable estimate, it is important to know what control measures or technologies are currently in place at a source before quantifying the cost and increased control efficiency of a more effective control measure. Information on existing control measures and technologies in place at specific sources is often limited in emissions inventories.

We expect to make ongoing revisions to the measures in this document as we receive additional information, and as new control measures become available. We invite users to provide suggestions for additional measures, or additional sources of information on measures, that they believe should be included in this document.

Feedback is welcome and encouraged - please send comments by clicking the "Contact Us" link on https://www.epa.gov/air-quality-implementation-plans/menu-control-measures-naaqs-implementation.

| Sector                  | Source Category    | Control Measure<br>Abbreviation | Emission Reduction Measure  | Control<br>Efficiency (% | Cost Effectiveness (2018\$/ton | Other Pollutants<br>Controlled | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | References                                                      |
|-------------------------|--------------------|---------------------------------|-----------------------------|--------------------------|--------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Agricultural<br>Ammonia | Cattle Feedlots    | ACHMADDBFL                      | Chemical Additives to Waste | 50                       | \$330                          |                                | This control is the adding of chemicals to cattle waste to reduce ammonia emissions from cattle feedlots.                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pechan 2006, Axe 1999x,<br>McCubbin et al. 2002                 |
| Agricultural<br>Ammonia | Poultry Operations | ACHMADDCHK                      | Chemical Additives to Waste | 75                       | \$1,466                        |                                | This control is the chemical addition of alum to poultry litter. Alum is used to stabilize poultry litter to reduce ammonia emissions. Alum, an acid-<br>forming compounds, keeps the pH of the poultry litter below 7, which inhibits ammonia volatilization.                                                                                                                                                                                                                                                                              | Pechan 2006, Axe 1999x,<br>Moore 1999x, McCubbin<br>et al. 2002 |
|                         |                    |                                 |                             |                          |                                |                                | The control effectiveness for alum treatment is estimated to be 75 percent (Moore 1999x). The control effectiveness is highest during the early part of the growing cycle (i.e., >95 percent), when the young chickens are most susceptible to health problems from high ammonia levels. The control effectiveness drops off during the grow-out (about two months). Alum is then reapplied to the litter before the next grow-out begins (typically, there are 5 or 6 grow-outs per year). There is assumed to be 100 percent penetration. |                                                                 |
| Agricultural<br>Ammonia | Hog Operations     | ACHMADDHOG                      | Chemical Additives to Waste | 50                       | \$106                          |                                | This control is the adding of chemicals to hog waste to reduce ammonia emissions from hog feedlots. Assessment of control measures applicable to ammonia emissions for hog operations is based on procedures used for cattle operations.                                                                                                                                                                                                                                                                                                    | Pechan 2006, Axe 1999x,<br>McCubbin et al. 2002                 |
|                         |                    |                                 |                             |                          |                                |                                | There is assumed to be 100 percent penetration; however, the modeling parameters are probably most applicable to large hog farming operations.<br>Hence, it may be more reasonable to apply the control in counties with large hog raising operations (i.e., using COA data).                                                                                                                                                                                                                                                               |                                                                 |
| Agricultural<br>Ammonia | Dairy Operations   | AEMRGDIARY                      | Emergent Control            | 55                       | \$14,459                       |                                | This control consists of a composite of the following: solids separations/nutrient removal systems, a phototrophic lagoon processing system, a<br>liquid manure injection and spreading system, and a man-made wetlands system for nitrogen removal. The control efficiency and costs used in<br>CoST area an average across all of these control technologies.                                                                                                                                                                             | EPA 2006e                                                       |
| Agricultural<br>Ammonia | Hog Operations     | AEMRGHOG                        | Emergent Control            | 70                       | \$14,459                       |                                | This control is a solids separation-tangential flow separator combined with a fan separation system. The system treats swine waste from finishing<br>barns. Manure flushed from the barns flows first to a collection pit, then to an above-ground feed tank, then to the fan separator which is on a raised<br>platform.                                                                                                                                                                                                                   | EPA 2006e                                                       |

| Sector          | Source Category                               | Control Measure<br>Abbreviation | Emission Reduction Measure    | Control<br>Efficiency (%) | Cost Effectiveness (2018\$/ton<br>reduced)                                                  | Other Pollutants<br>Controlled | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | References                                                                          |
|-----------------|-----------------------------------------------|---------------------------------|-------------------------------|---------------------------|---------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| NonEGU          | Lean Burn ICE - NG                            | NAFRCICENG                      | Air to Fuel Ratio Controller  | 20                        | NOX < 365 tpy: \$1,121                                                                      |                                | This control is the use of air/fuel ratio adjustment to reduce NOx emissions. This control applies to gasoline powered internal combustion engines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CARB 2001, EPA 2018,                                                                |
| Point<br>NonEGU | Internal Combustion                           | NAFRICGS                        | Adjust Air to Fuel Ratio      | 20                        | NOX < 365 tpy: \$2,723                                                                      |                                | with uncontrolled NOx emissions greater than 10 tons per year.<br>This control is the use of air/fuel ratio adjustment to reduce NOx emissions. This control applies to natural gas-fired internal combustion engines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RTI 2014<br>EPA 1993c, Pechan                                                       |
| Point           | Engines - Gas                                 | inii iiloob                     | highest million actuallo      | 20                        | NOX > 365 tpy: \$659                                                                        |                                | with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1998a, Pechan 2006                                                                  |
|                 |                                               |                                 |                               |                           |                                                                                             |                                | Capital and annual cost information was obtained from model engine data in the Alternative Control Techniques (ACT) Document NOx Emissions from Stationary Reciprocating Internal Combustion Engines (EPA 1993c).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |
| NonEGU          | Internal Combustion                           | NAFRIICGS                       | Adjust Air to Fuel Ratio and  | 30                        | NOX < 365 tpy: \$2,497                                                                      |                                | This control is the use of air/fuel and ignition retard to reduce NOx emissions. This control applies to natural gas-fired internal combustion engines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPA 1993c, Pechan 2006                                                              |
| Point           | Engines - Gas                                 |                                 | Ignition Retard               |                           | NOX > 365 tpy: \$798                                                                        |                                | with uncontrolled NOx emissions greater than 10 tons per year.<br>Capital and annual cost information was obtained from model engine data in the Alternative Control Techniques (ACT) Document NOx Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                     |
|                 |                                               |                                 |                               |                           |                                                                                             |                                | from Stationary Reciprocating Internal Combustion Engines (EPA 1993c).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
| NonEGU<br>Point | ICI Boilers - Gas                             | NBFIBG                          | Flue Gas Recirculation        | 40                        | 25tpy < NOX < 50 tpy: \$23,290<br>50tpy < NOX < 100 tpy: \$12,423<br>NOX > 100 tpy: \$6,602 |                                | Gas from the boiler, economizer or air heater outlet is reintroduced to the furnace by fans and flues. Flue Gas Recirculation (FGR) is feasible as long<br>as there is no minimum operational temperature/oxygen requirement for the boiler. Flue gas recirculation would lower the temperature range and<br>oxygen levels in the boiler. Should there be a requirement for a minimum temperature or oxygen level (or both) from the boiler (for other processes<br>at the facility) then FGR may not be feasible. Those requirements would need to be assessed on a source-by-source basis. In addition, FGR is<br>generally implemented in conjunction with low NOx burners. FGR may also affect fan capacity, furnace pressure, burner pressure drop, and<br>turndown stability. If these are critical parameters for processes associated with the boiler then FGR may be infeasible (MACTEC 2005b).                                                                                                                                                              | 2005b, OTC-LADCO 2010,                                                              |
| NonEGU          | ICI Boilers - Oil                             | NBFIBO                          | Flue Gas Recirculation        | 40                        | NOX > 25 tpy: \$13,000                                                                      |                                | Gas from the boiler, economizer or air heater outlet is reintroduced to the furnace by fans and flues. Flue Gas Recirculation (FGR) is feasible as long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bodnarik 2011, MACTEC                                                               |
| Point           |                                               |                                 |                               |                           |                                                                                             |                                | as there is no minimum operational temperature/oxygen requirement for the boiler. Flue gas recirculation would lower the temperature range and<br>oxygen levels in the boiler. Should there be a requirement for a minimum temperature or oxygen level (or both) from the boiler (for other processes<br>at the facility) then FGR may not be feasible. Those requirements would need to be assessed on a source-by-source basis. In addition, FGR is<br>generally implemented in conjunction with low NOx burners. FGR may also affect fan capacity, furnace pressure, burner pressure drop, and<br>turndown stability. If these are critical parameters for processes associated with the boiler then FGR may be infeasible (MACTEC 2005b).                                                                                                                                                                                                                                                                                                                         |                                                                                     |
|                 |                                               |                                 |                               |                           |                                                                                             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                     |
| NonEGU<br>Point | Glass Manufacturing -<br>Flat                 | NCATCFGMFT                      | Catalytic Ceramic Filter      | 80                        | \$11,414                                                                                    |                                | Marked as Emerging due to SRA review in Dec. 2016. (01/23/2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ETS 2014                                                                            |
|                 |                                               |                                 |                               |                           |                                                                                             |                                | Filter tubes have nanohits of proprietary catalyst are embedded throughout the filter walls. The system can achieve excellent NOx removal using<br>liquid ammonia that is injected upstream of the filters, reacting with NOx at the catalyst to form nitrogen gas and water vapor. This control applies<br>to general glass manufacturing operations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |
| NonEGU          | Gas Turbines - Natural                        | NCATCGTNG                       | Catalytic Combustion          | 98                        | NOX < 365 tpy: \$1,330                                                                      |                                | This control is the use of catalytic combustion to reduce NOx emissions. Catalytic combustors reduce the amount of NOx created by oxidizing fuel at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                     |
| Point           | Gas                                           |                                 |                               |                           | DC < 26 MW: \$969<br>DC > 26 MW: \$535                                                      |                                | lower temperatures (and without a flame) than in conventional combustors. Catalytic combustion uses a catalytic bed to oxidize a lean air fuel<br>mixture within a combustor instead of burning with a flame. The fuel and air mixture oxidizes at lower temperatures than in a conventional<br>combustor, producing less NOx. Currently installed only on a few 1.4 MW combustion turbines, and commercially available for turbines rated up to<br>10 MW (CT-1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1999, EPA 2018, RTI 2014                                                            |
| NonEGU<br>Point | Glass Manufacturing -<br>Container or Pressed | NCUPHGMCP                       | Cullet Preheat                | 5                         | \$6,812                                                                                     |                                | This control is the use of cullet preheat technologies to reduce NOx emissions from container glass manufacturing operations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EPA 1994c, DOE 2002,<br>RTI 2014                                                    |
| NonEGU<br>Point | Gas Turbines - Natural<br>Gas                 | NDLNCGTNG                       | Dry Low NOx Combustion        | 84                        | NOX < 365 tpy: \$434<br>NOX > 365 tpy: \$188                                                |                                | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction<br>between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.<br>This control applies to large (83.3 MW to 161 MW) natural gas fired turbines with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pechan 1998a, EPA<br>2002b, EPA 1993b, DOE<br>1999, RDC 2001, EPA<br>2018, RTI 2014 |
|                 |                                               |                                 |                               |                           |                                                                                             |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                     |
| NonEGU<br>Point | In-Process Fuel<br>Use;Bituminous Coal; Ge    | NDSCRBCGN<br>m                  | Selective Catalytic Reduction | 90                        | \$4,377                                                                                     |                                | This control is the selective catalytic reduction of NOx through add-on controls. SCR controls are post-combustion control technologies based on the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the NOx removal efficiency, which allows the process to occur at lower temperatures. This control applies to operations with general (in process) bituminous coal use and uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EPA 2007a                                                                           |
|                 |                                               |                                 |                               |                           |                                                                                             |                                | Selective Catalytic Reduction (SCR) has been widely applied to stationary source, fossil fuel-fired, combustion units for emission control since the<br>early 1970s. SCR is typically implemented on units requiring a higher level of NOx control than achievable by SNCR or other combustion controls<br>(EPA 2002b). Lide SNCR, SCR is based on the chemical reduction of the NOX molecule. The primary difference between SNCR and SCR is that SCR<br>uses a metal-based catalyst to increase the rate of reaction (EPA 2002b). A nitrogen based reducing reagent, such as ammonia or urea, is injected<br>into the flue gas. The reagent reacts selectively with the flue gas NOx within a specific temperature range and in the presence of the catalyst and<br>oxygen to reduce the NOx.                                                                                                                                                                                                                                                                       |                                                                                     |
|                 |                                               |                                 |                               |                           |                                                                                             |                                | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency and the lower and broader temperature ranges. However, the decrease in reaction temperature and increase in efficiency is accompanied by a significant increase in capital and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or anhydrous ammonia as the reagent. Anhydrous amonolia is a gas at atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to increase surface area (EPA 2002b). |                                                                                     |
|                 |                                               |                                 |                               |                           |                                                                                             |                                | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected reagent and the combustion gases; uncontrolled NOx concentration level; molar ratio of injected reagent to uncontrolled NOx; ammonia slip; catalyst activity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deactivation; and catalyst management (EPA 2001).                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                     |

|                 |                                                          | Control Measure |                               | Control | Cost Effectiveness (2018\$/ton | Other Pollutants |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
|-----------------|----------------------------------------------------------|-----------------|-------------------------------|---------|--------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Sector          | Source Category                                          | Abbreviation    | Emission Reduction Measure    |         | b) reduced)                    | Controlled       | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | References                                     |
| NonEGU<br>Point | In-Process; Bituminous<br>Coal; Cement and Lime<br>Kilns | NDSCRBCK        | Selective Catalytic Reduction | 90      | \$3,064                        |                  | This control is the selective catalytic reduction of NOx through add-on controls. SCR controls are post-combustion control technologies based on<br>the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the<br>NOx removal efficiency, which allows the process to occur at lower temperatures. Like SNCR, SCR is based on the chemical reduction of the NOx<br>molecule. The primary difference between SNCR and SCR is that SCR uses a metal-based catalyst to increase the rate of reaction (EPA 2002b). A<br>nitrogen based reducing reagent, such as ammonia or urea, is injected into the flue gas. The reagent reacts selectively with the flue gas NOx within a<br>specific temperature range and in the presence of the catalyst and oxygen to reduce the NOx.<br>The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency and the lower and broader<br>temperature ranges. However, the decrease in reaction temperature and increase in efficiency is accompanied by a significant increase in capital<br>set of the set of the s | EPA 2007a, EPA 2017,<br>EPA 2007h, Pechan 2006 |
|                 |                                                          |                 |                               |         |                                |                  | temperature ranges. However, the decrease in creation temperature and microase in enciency a stopmath due of a significant microase in depict<br>and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or<br>anhydrous ammonia as the reagent. Anhydrous ammonia is a gas at atmospheric pressure (EPA 2002b). Aqueous ammonia is generally transported and<br>stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase<br>with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to<br>increase surface area (EPA 2002b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |
|                 |                                                          |                 |                               |         |                                |                  | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of<br>reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected<br>reagent and the combustion gases; uncontrolled NOx concentration level; molar ratio of injected reagent to uncontrolled NOx; ammonia slip;<br>catalyst activity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deactivation; and catalyst management (EPA 2001).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |
| NonEGU<br>Point | Cement Manufacturing -<br>Dry                            | NDSCRCMDY       | Selective Catalytic Reduction | 90      | \$6,703                        |                  | This control is the selective catalytic reduction of NOx through add-on controls. SCR controls are post-combustion control technologies based on<br>the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the<br>NOx removal efficiency, which allows the process to occur at lower temperatures. This control applies to dry-process cement manufacturing and<br>natural gas cement kilns with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPA 2007a, EPA 2017,<br>EPA 2007h, Pechan 2006 |
|                 |                                                          |                 |                               |         |                                |                  | Selective Catalytic Reduction (SCR) has been widely applied to stationary source, fossil fuel-fired, combustion units for emission control since the<br>early 1970s. SCR is tryitedly implemented on units requiring a higher level of NOx control than achievable by SNCR or other combustion controls<br>(EPA 2002b). Like SNCR, SCR is based on the chemical reduction of the NOx molecule. The primary difference between SNCR and SCR is that SCR<br>uses a metal-based catalyst to increase the rate of reaction (EPA 2002b). A nitrogen based reducing reagent, such as ammonia or urea, is injected<br>into the flue gas. The reagent reacts selectively with the flue gas NOx within a specific temperature range and in the presence of the catalyst and<br>oxygen to reduce the NOx.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
|                 |                                                          |                 |                               |         |                                |                  | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency is adjusted to be advantages of the SCR process over SNCR, the higher NOx reduction efficiency is accompanied by a significant increase in capital and operating costs (EPA 2002b). The cost increases is due to the large amount of catalyst required. The SCR system can utilize either aqueous or anhydrous ammonia as the reagent. Anhydrous ammonia is agas at atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia is must be transported and stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to increase surface area (EPA 2002b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |
|                 |                                                          |                 |                               |         |                                |                  | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of<br>reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected<br>reagent and the combustion gases; uncontrolled NOX concentration level; molar ratio of injected reagent to uncontrolled NOX concentration level; molar ratio of injected reagent sources and sourc             |                                                |
| NonEGU<br>Point | Cement Manufacturing -<br>Wet                            | NDSCRCMWT       | Selective Catalytic Reduction | 90      | \$5,728                        |                  | This control is the selective catalytic reduction of NOx through add-on controls. SCR controls are post-combustion control technologies based on<br>the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the<br>NOx removal efficiency, which allows the process to occur at lower temperatures. This control applies to large (>1 ton NOx per OSD) wet-process<br>cement manufacturing with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPA 2017, EPA 2007a,<br>EPA 2007h, Pechan 2006 |
|                 |                                                          |                 |                               |         |                                |                  | Selective Catalytic Reduction (SCR) has been widely applied to stationary source, fossil fuel-fired, combustion units for emission control since the<br>early 1970s. SCR is tryically implemented on units requiring a higher level of NOx control than achievable by SNCR or other combustion controls<br>(EPA 2002b). Like SNCR, SCR is based on the chemical reduction of the NOx molecule. The primary difference between SNCR and SCR is that SCR<br>uses a metal-based catalyst to increase the rate of reaction (EPA 2002b). A nitrogen based reducing reagent, such as ammonia or urea, is injected<br>into the flue gas. The reagent reacts selectively with the flue gas NOx within a specific temperature range and in the presence of the catalyst and<br>oxygen to reduce the NOx.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
|                 |                                                          |                 |                               |         |                                |                  | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency and the lower and broader<br>temperature ranges. However, the decrease in reaction temperature and increase in efficiency is accompanied by a significant increase in capital<br>and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or<br>anhydrous ammonia as the reagent. Anhydrous ammonia is a gas at atmospheric pressure and normal temperatures. There are safety issues with<br>the use of anhydrous ammonia, as it must be transported and stored under pressure (EPA 2002b). Augeous ammonia is generally transported and<br>stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, or active phase<br>with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to<br>increase surface area (EPA 2002b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |
|                 |                                                          |                 |                               |         |                                |                  | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of<br>reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected<br>reagent and the combustion gases; uncontrolled NOx concentration level; molar ratio of injected reagent to uncontrolled NOx; ammonia slip;<br>catalyst activity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deactivation; and catalyst management (EPA 2001).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |

| Sector          | Source Category                                               | Control Measure<br>Abbreviation | Emission Reduction Measure    | Control<br>Efficiency (% | Cost Effectiveness (2018\$/ton<br>%) reduced) | Other Pollutants<br>Controlled | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | References |
|-----------------|---------------------------------------------------------------|---------------------------------|-------------------------------|--------------------------|-----------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| NonEGU<br>Point | Taconite Iron Ore<br>Processing - Induration -<br>Coal or Gas | NDSCRFEP                        | Selective Catalytic Reduction | 90                       | \$7,618                                       |                                | This control is the selective catalytic reduction of NOx through add-on controls. SCR controls are post-combustion control technologies based on<br>the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the<br>NOx removal efficiency, which allows the process to occur at lower temperatures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EPA 2007a  |
|                 |                                                               |                                 |                               |                          |                                               |                                | Selective Catalytic Reduction (SCR) has been widely applied to stationary source, fossil fuel-fired, combustion units for emission control since the<br>early 1970s. SCR is typically implemented on units requiring a higher level of NOx control than achievable by SNCR or other combustion controls<br>(EPA 2002b). Like SNCR, SCR is based on the chemical reduction of the NOx molecule. The primary difference between SNCR and SCR is that SCR<br>uses a metal-based catalyst to increase the rate of reaction (EPA 2002b). A nitrogen based reducing reagent, such as ammonia or urea, is injected<br>into the flue gas. The reagent reacts selectively with the flue gas NOx within a specific temperature range and in the presence of the catalyst and<br>oxygen to reduce the NOx.                                                                                                                                                                                                                                                                                           |            |
|                 |                                                               |                                 |                               |                          |                                               |                                | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency and the lower and broader temperature ranges. However, the decrease in reaction temperature and increase in efficiency is accompanied by a significant increase in capital and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or anhydrous ammonia as the reagent. Anhydrous ammonia is ag gas at atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to increase surface area (EPA 2002b).                     |            |
|                 |                                                               |                                 |                               |                          |                                               |                                | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of<br>reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected<br>reagent and the combustion gases; uncontrolled NOx concentration level; molar ratio of injected reagent to uncontrolled NOx; ammonia slip;<br>catalyst activity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deactivation; and catalyst management (EPA 2001).                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I          |
| NonEGU<br>Point | Fluid Cat Cracking Units;<br>Cracking Unit                    | NDSCRFFCCU                      | Selective Catalytic Reduction | 90                       | \$8,269                                       |                                | This control is the selective catalytic reduction of NOx through add-on controls. SCR controls are post-combustion control technologies based on<br>the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the<br>NOx removal efficiency, which allows the process to occur at lower temperatures. This control is applicable to fluid catalytic cracking units with<br>uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EPA 2007a  |
|                 |                                                               |                                 |                               |                          |                                               |                                | Selective Catalytic Reduction (SCR) has been widely applied to stationary source, fossil fuel-fired, combustion units for emission control since the early 1970s. SCR is typically implemented on units requiring a higher level of NOx control than achievable by SNCR or other combustion controls (EPA 2002b). Like SNCR, SCR is based on the chemical reduction of the NOx molecule. The primary difference between SNCR and SCR is that SCR uses a metal-based catalyst to increase the rate of reaction (EPA 2002b). A nitrogen based reducing reagent, such as ammonia or urea, is injected into the flue gas. The reagent reacts selectively with the flue gas NOx within a specific temperature range and in the presence of the catalyst and oxygen to reduce the NOx.                                                                                                                                                                                                                                                                                                          |            |
|                 |                                                               |                                 |                               |                          |                                               |                                | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency and the lower and broader<br>temperature ranges. However, the decrease in reaction temperature and increase in efficiency is accompanied by a significant increase in capital<br>and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or<br>anhydrous ammonia as the reagent. Anhydrous ammonia is a gas at atmospheric pressure and normal temperatures. There are safety issues with<br>the use of anhydrous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and<br>stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase<br>with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to<br>increase surface area (EPA 2002b). |            |
|                 |                                                               |                                 |                               |                          |                                               |                                | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of<br>reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected<br>reagent and the combustion gases; uncontrolled NOx concentration level; molar ratio of injected reagent to uncontrolled NOx; ammonia slip;<br>catalyst activity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deactivation; and catalyst management (EPA 2001).                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I          |
| NonEGU<br>Point | In-Process; Process Gas;<br>Coke Oven Gas                     | NDSCRFPGCO                      | Selective Catalytic Reduction | 90                       | \$9,212                                       |                                | This control is the selective catalytic reduction of NOx through add-on controls. SCR controls are post-combustion control technologies based on<br>the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the<br>NOx removal efficiency, which allows the process to occur at lower temperatures. Applies to process gas fired ICI boilers with NOx emissions<br>greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EPA 2007a  |
|                 |                                                               |                                 |                               |                          |                                               |                                | Selective Catalytic Reduction (SCR) has been widely applied to stationary source, fossil fuel-fired, combustion units for emission control since the<br>early 1970s. SCR is typically implemented on units requiring a higher level of NOx control than achievable by SNCR or other combustion controls<br>(EPA 2002b). Like SNCR, SCR is based on the chemical reduction of the NOx molecule. The primary difference between SNCR and SCR is that SCR<br>uses a metal-based catalyst to increase the rate of reaction (EPA 2002b). A nitrogen based reducing reagent, such as ammonia or urea, is injected<br>into the flue gas. The reagent reacts selectively with the flue gas NOx within a specific temperature range and in the presence of the catalyst and<br>oxygen to reduce the NOx.                                                                                                                                                                                                                                                                                           |            |
|                 |                                                               |                                 |                               |                          |                                               |                                | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency and the lower and broader<br>temperature ranges. However, the decrease in reaction temperature and increase in efficiency is a companied by a significant increase in capital<br>and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or<br>anhydrous ammonia as the reagent. Anhydrous ammonia is a gas at atmospheric pressure and normal temperatures. There are safety issues with<br>the use of anhydrous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and<br>stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase<br>with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to<br>increase surface area (EPA 2002b). |            |
|                 |                                                               |                                 |                               |                          |                                               |                                | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of<br>reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected<br>reagent and the combustion gases; uncontrolled NOx concentration level; molar ratio of injected reagent on uncontrolled NOx; annenia slip;<br>catalyst activity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deactivation; and catalyst management (EPA 2001).                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I          |

\_\_\_\_

| Sector          | Source Category                           | Control Measure<br>Abbreviation | Emission Reduction Measure    |    |         | Other Pollutants<br>Controlled | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | References |
|-----------------|-------------------------------------------|---------------------------------|-------------------------------|----|---------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| NonEGU<br>Point | Industrial Incinerators                   | NDSCRINDIN                      | Selective Catalytic Reduction | 90 | \$4,495 |                                | This control is the selective catalytic reduction of NOx through add-on controls. SCR controls are post-combustion control technologies based on<br>the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the<br>NOx removal efficiency, which allows the process to occur at lower temperatures. This control applies to industrial incinerators with uncontrolled<br>NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EPA 2007a  |
|                 |                                           |                                 |                               |    |         |                                | Selective Catalytic Reduction (SCR) has been widely applied to stationary source, fossil fuel-fired, combustion units for emission control since the<br>early 1970s. SCR is typically implemented on units requiring a higher level of NOx control than achievable by SNCR or other combustion controls<br>(EPA 2002b). Lide SNCR, SCR is based on the chemical reduction of the NOX molecule. The primary difference between SNCR and SCR is that SCR<br>uses a metal-based catalyst to increase the rate of reaction (EPA 2002b). A nitrogen based reducing reagent, such as ammonia or urea, is injected<br>into the flue gas. The reagent reacts selectively with the flue gas NOx within a specific temperature range and in the presence of the catalyst and<br>oxygen to reduce the NOx.                                                                                                                                                                                                                                                                       |            |
|                 |                                           |                                 |                               |    |         |                                | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency and the lower and broader temperature ranges. However, the decrease in reaction temperature and increase in efficiency is accompanied by a significant increase in capital and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or anhydrous ammonia as the reagent. Anhydrous ammonia is a gas at atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia, is generally transported and stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to increase surface area (EPA 2002b). |            |
|                 |                                           |                                 |                               |    |         |                                | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected reagent and the combustion gases; uncontrolled NOx concentration level; molar ratio of injected reagent to uncontrolled NOx; ammonia slip; catalyst activity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deactivation; and catalyst management (EPA 2001).                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| NonEGU<br>Point | In-Process Fuel Use - Gas                 | s NDSCRIPUG                     | Selective Catalytic Reduction | 90 | \$7,161 |                                | This control is the selective catalytic reduction of NOx through add-on controls. SCR controls are post-combustion control technologies based on<br>the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the<br>NOx removal efficiency, which allows the process to occur at lower temperatures. This control is applicable to operations with in-process natural<br>gas usage and uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EPA 2007a  |
|                 |                                           |                                 |                               |    |         |                                | Selective Catalytic Reduction (SCR) has been widely applied to stationary source, fossil fuel-fired, combustion units for emission control since the<br>early 1970s. SCR is typically implemented on units requiring a higher level of NOx control than achievable by SNCR or other combustion controls<br>(EPA 2002b). Like SNCR, SCR is based on the chemical reduction of the NOX molecule. The primary difference between SNCR and SCR is that SCR<br>uses a metal-based catalyst to increase the rate of reaction (EPA 2002b). A nitrogen based reducing reagent, such as ammonia or urea, is injected<br>into the flue gas. The reagent reacts selectively with the flue gas NOx within a specific temperature range and in the presence of the catalyst and<br>oxygen to reduce the NOx.                                                                                                                                                                                                                                                                       |            |
|                 |                                           |                                 |                               |    |         |                                | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency is accompanied by a significant increase in capital and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or anhydrous ammonia as the reagent. Anhydrous ammonia is a gas at atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to increase surface area (EPA 2002b).                                                                                                                         |            |
|                 |                                           |                                 |                               |    |         |                                | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of<br>reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected<br>reagent and the combustion gases; uncontrolled NOX concentration level; molar ratio of injected reagent to uncontrolled NOX, ammonia slip;<br>catalyst activity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deactivation; and catalyst management (EPA 2001).                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| NonEGU<br>Point | In-Process Fuel Use;<br>Residual Oil; Gen | NDSCRUROGN                      | Selective Catalytic Reduction | 90 | \$6,446 |                                | This control is the selective catalytic reduction of NOx through add-on controls. SCR controls are post-combustion control technologies based on<br>the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the<br>NOx removal efficiency, which allows the process to occur at lower temperatures. This control is applicable to operations with in-process residual<br>oil usage and uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPA 2007a  |
|                 |                                           |                                 |                               |    |         |                                | Selective Catalytic Reduction (SCR) has been widely applied to stationary source, fossil fuel-fired, combustion units for emission control since the<br>early 1970s. SCR is typically implemented on units requiring a higher level of NOx control than achievable by SNCR or other combustion controls<br>(EPA 2002b). Like SNCR, SCR is based on the chemical reduction of the NOx molecule. The primary difference between SNCR and SCR is that SCR<br>uses a metal-based catalyst to increase the rate of reaction (EPA 2002b). A nitrogen based reducing reagent, such as ammonia or urea, is injected<br>into the flue gas. The reagent reacts selectively with the flue gas NOx within a specific temperature range and in the presence of the catalyst and<br>oxygen to reduce the NOx.                                                                                                                                                                                                                                                                       |            |
|                 |                                           |                                 |                               |    |         |                                | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency is accompanied by a significant increase in capital and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or anhydrous ammonia as the reagent. Anhydrous ammonia is a gas at atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to increase surface area (EPA 2002b).                                                                                                                         |            |
|                 |                                           |                                 |                               |    |         |                                | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of<br>reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected<br>reagent and the combustion gases; uncontrolled NOX concentration level; molar ratio of injected reagent to uncontrolled NOX, ammonia slip;<br>catalyst activity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deactivation; and catalyst management (EPA 2001).                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| NonEGU<br>Point | Glass Manufacturing -<br>General          | NELBOGMGN                       | Electric Boost                | 30 | \$9,673 |                                | This control is the use of electric boost technologies to reduce NOx emissions from general glass manufacturing operations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DOE 2002   |

| Sector          | Source Category                               | Control Measure<br>Abbreviation | Emission Reduction Measure                   | Control<br>Efficiency (% | Cost Effectiveness (2018\$/ton<br>) reduced)      | Other Pollutants<br>Controlled | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | References                                                  |
|-----------------|-----------------------------------------------|---------------------------------|----------------------------------------------|--------------------------|---------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| NonEGU<br>Point | Gas Turbines - Natural<br>Gas                 | NEMXDGTNG                       | EMx and Dry Low NOx<br>Combustion            | 99                       | NOX > 365 tpy: \$2,401                            |                                | This control is the use of EMx in combination with dry low NOx combustion. EMx is a post-combustion catalytic oxidation and absorption<br>technology that uses a two-stage catalyst-laborber system for the control of NOx as well as CO, VOC, and optionally SOX. A coated catalyst oxidizes<br>NO to NO2, CO to CO2, and VOC to CO2 and water. The NO2 is then absorbed onto the catalyst surface where it is chemically converted to and stored<br>as potassium nitrates and nitrites. A proprietary regeneration gas is periodically passed through the catalyst to desorb the NO2 from the catalyst<br>and reduce it to elemental nitrogen (N2). EWX has been successfully demonstrated on several small combustion turbine projects up to 45 MW. The<br>manufacturer has claimed that EMx can be effectively scaled up to larger turbines (CT-1).                                                                                                                                                             |                                                             |
|                 |                                               |                                 |                                              |                          |                                                   |                                | Cost estimates for DLN combustion in 2008 dollars are not available. Thus, the total system cost in this analysis in 2008 dollars was developed from 1999 cost estimates for DLN combustion that were escalated to 2008 dollars and added to the available 2008 estimate for the EMx system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                             |
| NonEGU<br>Point | Gas Turbines - Natural<br>Gas                 | NEMXGTNG                        | EMx                                          | 95                       | N0X > 365 tpy: \$2,401                            |                                | EMx is a post-combustion catalytic oxidation and absorption technology that uses a two-stage catalyst/absorber systems for the control of NOx, as<br>well as CO and VOC. A coated catalyst oxidizes NO to NO2, CO to CO2, and VOC to CO2 and water. The NO2 is then absorbed onto the catalyst surface<br>where it is chemically converted to and stored as potassium nitrates and nitrites. A proprietary regeneration gas is periodically passed through the<br>catalyst to desorb the NO2 from the catalyst and reduce it to elemental nitrogen (N2). EMx has been successfully demonstrated on several small<br>combustion turbine projects up to 45 MV. Capital and annual costs can be calculated using equations. Besice NOx, EMx also reduces fine<br>particulate and VOC emissions. This control technology should only be used with natural gas-fired turbines since the catalyst/absorbers systems<br>will not function optimally in the presence of less clean turbs (e.g., digester gas, process gas). |                                                             |
| NonEGU<br>Point | Gas Turbines - Natural<br>Gas                 | NEMXWGTNG                       | EMx and Water Injection                      | 99                       | NOX > 365 tpy: \$3,467                            |                                | This control is the use of EMx in combination with water injection.<br>Cost estimates for water injection in 2008 dollars are not available. Thus, the total system cost in this analysis in 2008 dollars was developed from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BAAQMD 2010,<br>EmeraChem Power 2008,<br>EPA 2018, RTI 2014 |
|                 |                                               |                                 |                                              |                          |                                                   |                                | 1999 cost estimates for water injection that were escalated to 2008 dollars and added to the available 2008 estimate for the EMx system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                             |
| NonEGU<br>Point | Adipic Acid<br>Manufacturing                  | NEXABADMF                       | Extended Absorption                          | 86                       | \$156                                             |                                | This control is the use of extended absorption technologies to reduce NOx emissions from adipic acid manufacturing operations. Extended<br>absorption reduces NOx by increasing the efficiency of absorption by installing a single large tower, extending the height of existing absorption<br>tower, or adding a second tower in series with an existing tower. As an add-on control, it is typically one of the latter two options as new plants are<br>generally designed with a single large absorption tower as part of new plant design.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pechan 1998a, EPA 1991                                      |
| Point Manu      | Nitric Acid<br>Manufacturing                  | NEXABNAMF                       | Extended Absorption                          | 95                       | \$832                                             |                                | generally designed with a single large absorption tower as part of new plant design.<br>This control is the use of extended absorption technologies to reduce Nox emissions from nitric acid manufacturing operations. Extended<br>absorption reduces NOx by increasing the efficiency of absorption by installing a single large tower, extending the height of existing absorption<br>tower, or adding a second tower in series with an existing tower. As an add-on control, it is typically one of the latter two options as new plants are<br>generally designed with a single large absorption tower as part of new plant design.                                                                                                                                                                                                                                                                                                                                                                             | Pechan 1998a, EPA 1991                                      |
| NonEGU<br>Point | IC Engines - Gas/ Diesel/<br>LPG              | NIRICGD                         | Ignition Retard                              | 25                       | NOX < 365 tpy: \$1,335<br>NOX > 365 tpy: \$850    |                                | This control is the use of ignition retard technologies to reduce NOx emissions. Capital and annual cost information was obtained from model<br>engine data in the Alternative Control Techniques (ACT) Document NOx Emissions from Stationary Reciprocating Internal Combustion Engines<br>(EPA 1993c).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 1993c, Pechan 1998a                                     |
| NonEGU<br>Point | Internal Combustion<br>Engines - Gas          | NIRICGS                         | Ignition Retard                              | 20                       | NOX < 365 tpy: \$1,769<br>NOX > 365 tpy: \$954    |                                | This control is the use of ignition retard technologies to reduce NOx emissions. This applies to small (<4,000 HP) natural gas-fired IC engines with<br>uncontrolled NOx emissions greater than 10 tons per year. Capital and annual cost information was obtained from model engine data in the<br>Alternative Control Techniques (ACT) Document - NOX Emissions from Stationary Reciprocating Internal Combustion Engines (EPA 1993c).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 1993c, Pechan 1998a                                     |
| NonEGU<br>Point | Internal Combustion<br>Engines - Oil          | NIRICOL                         | Ignition Retard                              | 25                       | NOX < 365 tpy: \$1,335<br>NOX > 365 tpy: \$850    |                                | This control is the use of ignition retard technologies to reduce NOx emissions. This applies to small (<4,000 HP) oil IC engines with uncontrolled<br>NOx emissions greater than 10 tons per year. Capital and annual cost information was obtained from model engine data in the Alternative Control<br>Techniques (ACT) Document - NOX Emissions from Stationary Reciprocating Internal Combustion Engines (EPA 1993c).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 1993c, Pechan 1998a                                     |
| NonEGU<br>Point | Reciprocating IC Engines<br>Oil               | - NIRRICOIL                     | Ignition Retard                              | 25                       | \$1,335                                           |                                | This control is the use of gnition retard technologies to reduce NOx emissions. This applies to small (<4,000 HP) oil IC engines with uncontrolled<br>NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pechan 2006                                                 |
| NonEGU<br>Point | Lean Burn ICE - NG                            | NLCICE2SLBNG                    | Layered Combustion                           | 97                       | NOX < 365 tpy: \$43,657<br>NOX > 365 tpy: \$1,723 |                                | Layered combustion - for Large Bore, 2 stroke, Lean Burn, Slow Speed (High Pressure Fuel Injection achieves 90% reduction; Turbocharging<br>achieves 75% reduction; Precombustion chambers achieves 90% reduction; Cylinder Head Modifications). All retrofit combustion-related controls<br>may not be available for all manufacturers and models of 2-stroke lean burn engines. Actual NOx emission rates would be engine design specific.<br>Efficiency achieved may range from 60 to 90%, depending on the make/model of engine (approximate range of NOx emissions of 3.0 to 0.5 g/bhp-<br>hr).                                                                                                                                                                                                                                                                                                                                                                                                                | OTC 2012, RTI 2014                                          |
| NonEGU<br>Point | Lean Burn ICE - NG                            | NLCICE2SNG                      | Layered Combustion                           | 97                       | \$5,695                                           |                                | Layered combustion - 2 stroke, Lean Burn, NG (Air Supply; Fuel Supply; Ignition; Electronic Controls; Engine Monitoring). Evaluation for 3 most<br>representative made/models of 2 stroke LB compressor engines. All retrofit combustion-related controls may not be available for all manufacturers<br>and models of 2-stroke lean burn engines. Actual NOx emission rates would be engine design specific. Efficiency achieved may range from 60 to<br>90%, depending on the make/model of engine (approximate range of NOx emissions of 30 to 0.5 g/bhp-hr).                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OTC 2012, RTI 2014                                          |
| NonEGU<br>Point | Iron & Steel Mills -<br>Reheating             | NLEAISRH                        | Low Excess Air                               | 13                       | \$2,289                                           |                                | Soly, depending on the make/mode of engine (approximate range of NOX emissions of SO to So going-inf).<br>The reduction in NOX emissions is achieved through the use of low excess air techniques, such that there is less available oxygen convert fuel<br>nitrogen to NOX. This control applies to iron & steel reheating furnaces. Low excess air works by reducing levels of excess air to the combustor,<br>usually by adjustments to air registers and/or fuel injection positions, or through control of overfine air dampers. The lower oxygen concentration<br>in the burner zone reduces conversion of the fuel nitrogen to NOX. Also, under excess air conditions in the flame zone, a greater portion of fuel-<br>bound nitrogen is converted to N2 therefore reducing the formation of fuel NOX (ERG 2000).                                                                                                                                                                                            | EPA 1993c, Pechan<br>1998a, ERG 2000, EPA<br>1994e          |
| NonEGU<br>Point | Lean Burn ICE - NG                            | NLECICENG                       | Low Emission Combustion                      | 80                       | NOX < 365 tpy: \$1,384                            |                                | Low Emission Combustion includes Precombustion chamber head and related equipment on a Lean Burn engine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RTI 2014, SJVAPCD 2003,<br>EPA 2018                         |
| NonEGU<br>Point | Ammonia Prod;<br>Feedstock<br>Desulfurization | NLNBFAPFD                       | Low NOx Burner and Flue Gas<br>Recirculation | 60                       | NOX < 365 tpy: \$4,440<br>NOX > 365 tpy: \$1,023  |                                | This control is the use of low NOx burner (LNB) technology and flue gas recirculation (FGR) to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pechan 1998a, EPA<br>1994d                                  |
|                 |                                               |                                 |                                              |                          |                                                   |                                | It is assumed that the superheated steam needed to regenerate the activated carbon bed used in the desulfurization process is the NOx source.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                             |
|                 |                                               |                                 |                                              |                          |                                                   |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b).                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |
| NonEGU<br>Point | In-Proc;Process Gas;Coke<br>Oven/Blast Furn   | NLNBFCOBF                       | Low NOx Burner and Flue Gas<br>Recirculation | 55                       | NOX < 365 tpy: \$5,532<br>NOX > 365 tpy: \$4,284  |                                | This control is the use of low NOx burner (LNB) technology and flue gas recirculation (FGR) to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pechan 1998a, EPA<br>2002b                                  |
|                 |                                               |                                 |                                              |                          |                                                   |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b).                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |

| Sector          | Source Category                            | Control Measure<br>Abbreviation | Emission Reduction Measure                   |    |                                                                                             | Other Pollutants<br>Controlled | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | References                                                                                           |
|-----------------|--------------------------------------------|---------------------------------|----------------------------------------------|----|---------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| NonEGU<br>Point | Pri Cop Smel; Reverb<br>Smelt Furn         | NLNBFCSRS                       | Low NOx Burner and Flue Gas<br>Recirculation | 60 | \$1,301                                                                                     |                                | This control is the use of low NOx burner (LNB) technology and flue gas recirculation (FGR) to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                 | Pechan 2006                                                                                          |
|                 |                                            |                                 |                                              |    |                                                                                             |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). |                                                                                                      |
| NonEGU<br>Point | Fluid Cat Cracking Units;<br>Cracking Unit | NLNBFFCCU                       | Low NOx Burner and Flue Gas<br>Recirculation | 55 | NOX < 365 tpy: \$5,532<br>NOX > 365 tpy: \$4,284                                            |                                | This control is the use of low NOx burner (LNB) technology and flue gas recirculation (FGR) to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                 | Pechan 1998a, EPA<br>1993a, EPA 2002b                                                                |
|                 |                                            |                                 |                                              |    |                                                                                             |                                | The source of emissions for fluidized catalytic cracking come from process heaters and catalyst regenerators.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                      |
|                 |                                            |                                 |                                              |    |                                                                                             |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). |                                                                                                      |
| NonEGU<br>Point | Fuel Fired Equip; Process<br>Htrs; Pro Gas | NLNBFFPHP                       | Low NOx Burner and Flue Gas<br>Recirculation | 55 | NOX < 365 tpy: \$5,532<br>NOX > 365 tpy: \$4,284                                            |                                | This control is the use of low NOx burner (LNB) technology and flue gas recirculation (FGR) to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                 | Pechan 1998a, EPA 1993a                                                                              |
|                 |                                            |                                 |                                              |    |                                                                                             |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). |                                                                                                      |
| NonEGU<br>Point | Ammonia - NG-Fired<br>Reformers            | NLNBFFRNG                       | Low NOx Burner and Flue Gas<br>Recirculation | 60 | NOX < 365 tpy: \$4,440<br>NOX > 365 tpy: \$1,023                                            |                                | This control is the use of low NOx burner (LNB) technology and flue gas recirculation (FGR) to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                 | Pechan 1998a, EPA<br>1993a, Pechan 2006                                                              |
|                 |                                            |                                 |                                              |    |                                                                                             |                                | This control is applicable to small (<1 ton NOx per OSD) ammonia production operations with natural gas-fired reformers and uncontrolled NOx<br>emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                             | an<br>2b).<br>t of Pechan 1998a, EPA<br>f 1993a, Pechan 2006<br>)x<br>an<br>2b).<br>t of Pechan 2006 |
|                 |                                            |                                 |                                              |    |                                                                                             |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). |                                                                                                      |
| NonEGU<br>Point | Ammonia - Oil-Fired<br>Reformers           | NLNBFFROL                       | Low NOx Burner and Flue Gas<br>Recirculation | 60 | NOX < 365 tpy: \$1,942<br>NOX > 365 tpy: \$676                                              |                                | This control is the use of low NOx burner (LNB) technology and flue gas recirculation (FGR) to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                 | Pechan 2006                                                                                          |
|                 |                                            |                                 |                                              |    |                                                                                             |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). |                                                                                                      |
| NonEGU<br>Point | ICI Boilers - Gas                          | NLNBFIBG                        | Low NOx Burner and Flue Gas<br>Recirculation | 61 | 25tpy < NOX < 50 tpy: \$25,768<br>50tpy < NOX < 100 tpy: \$13,798<br>NOX > 100 tpy: \$7,338 |                                | This control is the use of low NOx burner (LNB) technology and flue gas recirculation (FGR) to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                 | Bodnarik 2011, MACTEC<br>2005b, OTC-LADCO 2010,<br>NESCAUM 2009, EPA<br>2018, ERG 2010, EPA          |
|                 |                                            |                                 |                                              |    |                                                                                             |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). | 2000e                                                                                                |
| NonEGU<br>Point | ICI Boilers - Oil                          | NLNBFIBO                        | Low NOx Burner and Flue Gas<br>Recirculation | 61 | NOX > 25 tpy: \$14,054                                                                      |                                | This control is the use of low NOx burner (LNB) technology and flue gas recirculation (FGR) to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                 | Bodnarik 2011, MACTEC<br>2005b, EPA 2000e, OTC-<br>LADCO 2010, NESCAUM<br>2009, EPA 2018, ERG        |
|                 |                                            |                                 |                                              |    |                                                                                             |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). | 2009, EPA 2016, EKG<br>2010                                                                          |
| NonEGU<br>Point | Iron & Steel Mills -<br>Galvanizing        | NLNBFISGV                       | Low NOx Burner and Flue Gas<br>Recirculation | 60 | \$1,006                                                                                     |                                | This control is the use of low NOx burner (LNB) technology and flue gas recirculation (FGR) to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                 | Pechan 1998a, EPA<br>1994e, EPA 2002b                                                                |
|                 |                                            |                                 |                                              |    |                                                                                             |                                | This control is applicable to iron and steel galvanizing operations with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                      |
|                 |                                            |                                 |                                              |    |                                                                                             |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). |                                                                                                      |

| Sector          | Source Category                                                                       | Control Measure<br>Abbreviation | Emission Reduction Measure                   | Control<br>Efficiency (% | Cost Effectiveness (2018\$/ton<br>) reduced)     | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | References                              |
|-----------------|---------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------|--------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| NonEGU<br>Point | Iron & Steel - In-Process<br>Combustion - Process<br>Gas -Coke Oven/ Blast<br>Furnace | NLNBFISIPCG                     | Low NOx Burner and Flue Gas<br>Recirculation | 55                       | NOX < 365 tpy: \$5,532<br>NOX > 365 tpy: \$4,284 | This control is the use of low NOx burner (LNB) technology and flue gas recirculation (FGR) to reduce NOx emissions. LNBs reduce the amount of<br>NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of<br>oxygen available in another. This control is applicable to operations with in-process combustion (Process Gas - Coke Oven/ Blast Furnace) in the<br>Iron & Steel industry with uncontrolled NOx emissions greater than 10 toms per year.                                                                                                                                                                                                  | Pechan 1998a, EPA<br>2002b              |
| NonEGU<br>Point | Iron and Steel Production<br>- Annealing or Soaking<br>Pits                           | NLNBFISPASP                     | Low NOx Burner and Flue Gas<br>Recirculation | 60                       | \$1,301                                          | This control is the use of low NOx burner (LNB) technology and flue gas recirculation (FGR) to reduce NOx emissions. LNBs reduce the amount of<br>NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of<br>oxygen available in another.                                                                                                                                                                                                                                                                                                                                                                                                              | Pechan 1998a, EPA<br>2002b              |
|                 |                                                                                       |                                 |                                              |                          |                                                  | This control is applicable to iron and steel annealing operations with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |
|                 |                                                                                       |                                 |                                              |                          |                                                  | Soaking pits are a combustion source which can fire natural gas, oil or coal. Emissions of NOx are similar to boilers emissions. LNBs are designed<br>to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature. Staging techniques are<br>usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone. Staged-air LNBs create a<br>fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a end combustion zone that is<br>relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). |                                         |
| NonEGU<br>Point | Iron and Steel<br>Production; Blast Heating<br>or Reheating                           | NLNBFISPBR                      | Low NOx Burner and Flue Gas<br>Recirculation | 77                       | \$659                                            | This control is the use of low NOx burner (LNB) technology and flue gas recirculation (FGR) to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                                                                                                                                    | Pechan 1998a, EPA<br>1994e, EPA 2002b   |
|                 |                                                                                       |                                 |                                              |                          |                                                  | This control is applicable to reheating processes in iron production operations with blast heating stoves ant uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |
|                 |                                                                                       |                                 |                                              |                          |                                                  | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b).                                                                                                                                    |                                         |
| NonEGU<br>Point | Plastics Prod-Specific;<br>(ABS) Resin                                                | NLNBFPPAR                       | Low NOx Burner and Flue Gas<br>Recirculation | 55                       | NOX < 365 tpy: \$5,532<br>NOX > 365 tpy: \$4,284 | This control is the use of low NOx burner (LNB) technology and flue gas recirculation (FGR) to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                                                                                                                                    | Pechan 1998a, EPA<br>1994d              |
|                 |                                                                                       |                                 |                                              |                          |                                                  | This control is applicable to with acrylonitrile-butadiene-styrene plastic production uncontrolled NOx emissions greater than 10 tons per year. It is assumed that the NOx source is a process heater or boiler.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |
|                 |                                                                                       |                                 |                                              |                          |                                                  | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b).                                                                                                                                    |                                         |
| NonEGU<br>Point | Sand/Gravel; Dryer                                                                    | NLNBFSGDR                       | Low NOx Burner and Flue Gas<br>Recirculation | 55                       | NOX < 365 tpy: \$5,532<br>NOX > 365 tpy: \$4,284 | This control is the use of low NOx burner (LNB) technology and flue gas recirculation (FGR) to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                                                                                                                                    | Pechan 1998a, EPA<br>1993a, Pechan 2006 |
|                 |                                                                                       |                                 |                                              |                          |                                                  | This control is applicable to small (<1 ton NOx per OSD) sand and gravel drying processes with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                       |
|                 |                                                                                       |                                 |                                              |                          |                                                  | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b).                                                                                                                                    |                                         |
| NonEGU<br>Point | Space Heaters - Distillate<br>Oil                                                     | NLNBFSHDO                       | Low NOx Burner and Flue Gas<br>Recirculation | 60                       | NOX < 365 tpy: \$4,318<br>NOX > 365 tpy: \$1,318 | This control is the use of low NOx burner (LNB) technology and flue gas recirculation (FGR) to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                                                                                                                                    | Pechan 1998a, EPA 1993a                 |
|                 |                                                                                       |                                 |                                              |                          |                                                  | This control is applicable to small (<1 ton per OSD) residual oil-fired process heaters with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
|                 |                                                                                       |                                 |                                              |                          |                                                  | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b).                                                                                                                                    |                                         |
| NonEGU<br>Point | Space Heaters - Natural<br>Gas                                                        | NLNBFSHNG                       | Low NOx Burner and Flue Gas<br>Recirculation | 60                       | NOX < 365 tpy: \$4,440<br>NOX > 365 tpy: \$1,023 | This control is the use of low NOx burner (LNB) technology and flue gas recirculation (FGR) to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                                                                                                                                    | Pechan 1998a, EPA<br>1994d              |
|                 |                                                                                       |                                 |                                              |                          |                                                  | This control is applicable to small (<1 ton per OSD) LPG-fired process heaters with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |
|                 |                                                                                       |                                 |                                              |                          |                                                  | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b).                                                                                                                                    |                                         |

| Sector          | Source Category                                      | Control Measure<br>Abbreviation | Emission Reduction Measure                              | Control<br>Efficiency (%) | Cost Effectiveness (2018\$/ton<br>reduced)       | Other Pollutants<br>Controlled | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | References                                                             |
|-----------------|------------------------------------------------------|---------------------------------|---------------------------------------------------------|---------------------------|--------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| NonEGU<br>Point | Starch Mfg; Combined<br>Operations                   | NLNBFSMCO                       | Low NOx Burner and Flue Gas<br>Recirculation            | 55                        | NOX < 365 tpy: \$5,532<br>NOX > 365 tpy: \$4,284 |                                | This control is the use of low NOx burner (LNB) technology and flue gas recirculation (FGR) to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pechan 1998a, EPA 1993a                                                |
|                 |                                                      |                                 |                                                         |                           |                                                  |                                | This control is applicable to small (<1 ton per OSD) starch manufacturing with uncontrolled NOx emissions greater than 10 tons per year. The NOx source is generally a natural gas-fired dryer. Therefore, applicable control technologies are assumed to be LNB with FGR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |
|                 |                                                      |                                 |                                                         |                           |                                                  |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b).                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        |
| NonEGU<br>Point | ICI Boilers - Oil                                    | NLNBIBO                         | Low NOx Burner                                          | 47.5                      | NOX > 25 tpy: \$1,499                            |                                | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction<br>between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bodnarik 2011, MACTEC<br>2005b, EPA 2000e, OTC-<br>LADCO 2010, NESCAUM |
|                 |                                                      |                                 |                                                         |                           |                                                  |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b).                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2009, EPA 2018, ERG<br>2010                                            |
|                 |                                                      |                                 |                                                         |                           |                                                  |                                | These technologies are prevalent in the electric power industry as well as in Industrial, Commercial and Institutional (ICI) boilers at present and<br>increasingly used by ICIs, even at small sizes i.e., less than 10 MMBtu/hr (NESCAUM 2009).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                        |
| NonEGU          | Iron & Steel - In-Process                            | NINBISIPCC                      | Low NOx Burner                                          | 50                        | NOX < 365 tpy: \$3,815                           |                                | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pechan 1998a, EPA                                                      |
| Point           | Combustion - Natural Gas<br>or Coke Oven Process Gas |                                 |                                                         |                           | NOX > 365 tpy: \$3,122                           |                                | between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.<br>This control is applicable to operations with in-process combustion (Natural Gas or Coke Oven Process Gas) in the Iron & Steel industry with<br>uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2002b                                                                  |
| NonEGU<br>Point | Iron & Steel Mills -<br>Annealing                    | NLNBNISAN                       | Low NOx Burner and Selective<br>Non-Catalytic Reduction | 80                        | \$2,983                                          |                                | This control is the use of low NOx burner (LNB) technology and selective non-catalytic reduction (SNCR) to reduce NOx emissions. LNBs reduce the<br>amount of NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the<br>amount of oxygen available in another. SNCR controls are post-combustion control technologies based on the chemical reduction of nitrogen<br>oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pechan 1998a, EPA<br>1994e, EPA 2002b                                  |
|                 |                                                      |                                 |                                                         |                           |                                                  |                                | This control is applicable to iron and steel annealing operations with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                        |
|                 |                                                      |                                 |                                                         |                           |                                                  |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNB's create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNB's create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b).                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                        |
|                 |                                                      |                                 |                                                         |                           |                                                  |                                | SNCR is the reduction of NOx in flue gas to N2 and water vapor. This reduction is done with a nitrogen based reducing reagent, such as ammonia or<br>urea. The reagent can react with a number of flue gas components. However, the NOx reduction reaction is favored for a specific temperature range<br>and in the presence of oxygen (EPA 2002b). Both ammonia and urea are used as reagents. The cost of the reagent represents a large part of the<br>annual costs of an SNCR system. Ammonia is generally less expensive than urea. However, the choice of reagent is also based on physical properties<br>and operational considerations (EPA 2002b). Ammonia can be utilized in either aqueous or anhydrous form. Anhydrous ammonia is a gas at<br>atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored<br>under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. |                                                                        |
|                 |                                                      |                                 |                                                         |                           |                                                  |                                | Urea based systems have several advantages, including several safety aspects. Urea is a nontoxic, less volatile liquid that can be stored and handled more safely than ammonia. Urea solution droplets can penetrate farther into the flue gas when injected into the boiler, enhancing mixing (EPA 2002b). Because of these advantages, urea is more commonly used than ammonia in large boiler applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                        |
|                 |                                                      |                                 |                                                         |                           |                                                  |                                | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected reagent and the combustion gases; uncontrolled NOx concentration level; molar ratio of injected reagent to uncontrolled NOx ; and ammonia slip.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                        |
| EGU             | Utility Boiler - Coal/Wall                           | NLNBOUBCW                       | Low NOx Burner and Over Fire<br>Air                     | 72                        | DC > 25 MW: \$698                                |                                | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction<br>between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EPA 2013, SRA 2016, EPA 2018                                           |
|                 |                                                      |                                 |                                                         |                           |                                                  |                                | This control applies to wall fired (coal) utility boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                        |
|                 |                                                      |                                 |                                                         |                           |                                                  |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b).                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        |
| NonEGU<br>Point | Sec Alum Prod; Smelting<br>Furn/Reverb               | NLNBSASF                        | Low NOx Burner                                          | 50                        | \$989                                            |                                | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction<br>between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pechan 1998a, EPA 1994e                                                |
|                 |                                                      |                                 |                                                         |                           |                                                  |                                | This control is applicable to secondary aluminum production operations with smelting furnaces and uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |
|                 |                                                      |                                 |                                                         |                           |                                                  |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a luel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b).                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        |

| Sector          | Source Category                             | Control Measure<br>Abbreviation | Emission Reduction Measure                          | Control<br>Efficiency (%) | Cost Effectiveness (2018\$/ton<br>) reduced)     | Other Pollutants<br>Controlled | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | References                              |
|-----------------|---------------------------------------------|---------------------------------|-----------------------------------------------------|---------------------------|--------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| NonEGU<br>Point | Iron & Steel Mills -<br>Annealing           | NLNBSISAN                       | Low NOx Burner and Selective<br>Catalytic Reduction | 90                        | \$7,076                                          |                                | This control is the use of low NOx burner (LNB) technology and selective catalytic reduction (SCR) to reduce NOx emissions. LNBs reduce the<br>amount of NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the<br>amount of oxygen available in another. SCR controls are post-combustion control technologies based on the chemical reduction of nitrogen oxides<br>(NOx) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the NOx removal efficiency, which allows the<br>process to occur at lower temperatures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pechan 1998a, EPA<br>1994e, EPA 2002b   |
|                 |                                             |                                 |                                                     |                           |                                                  |                                | This control is applicable to iron and steel annealing operations with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |
|                 |                                             |                                 |                                                     |                           |                                                  |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNB's create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNB's create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b).<br>Selective Catalytic Reduction (SCR) has been widely applied to stationary source, fossil fuel-fired, combustion units for emission control since the<br>early 1970s. SCR is typically implemented on units requiring a higher level of NOx control than achievable by SNCR or other combustion controls<br>(EPA 2002b). Like SNCR, SCR is based on the chemical reduction of the NOx molecule. The primary difference between SNCR and SCR is that SCR<br>uses a metal-based catalyst to increase the rate of reaction (EPA 2002b). A nitrogen based reducing reagent, such as amonia or urea, is injected<br>into the flue gas. The reagent reacts selectively with the flue gas NOx within a specific temperature range and in the presence of the catalyst and<br>oxygen to reduce the NOx. |                                         |
|                 |                                             |                                 |                                                     |                           |                                                  |                                | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency is accompanied by a significant increase in capital and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or anhydrous ammonia as the reagent. Anhydrous ammonia is a gas at atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to increase surface area (EPA 2002b).                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
|                 |                                             |                                 |                                                     |                           |                                                  |                                | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of<br>reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected<br>reagent and the combustion gases; uncontrolled NOX concentration level; molar ratio of injected reagent to uncontrolled NOX, ammonia slip;<br>catalyst activity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deactivation; and catalyst management (EPA 2001).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |
| NonEGU<br>Point | Asphaltic Conc; Rotary<br>Dryer; Conv Plant | NLNBUACCP                       | Low NOx Burner                                      | 50                        | NOX < 365 tpy: \$3,815<br>NOX > 365 tpy: \$3,122 |                                | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction<br>between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pechan 1998a, EPA<br>1993a, Pechan 2006 |
|                 |                                             |                                 |                                                     |                           |                                                  |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| NonEGU<br>Point | Conv Coating of Prod;<br>Acid Cleaning Bath | NLNBUCCAB                       | Low NOx Burner                                      | 50                        | NOX < 365 tpy: \$3,815<br>NOX > 365 tpy: \$3,122 |                                | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction<br>between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pechan 1998a, EPA 1993                  |
|                 |                                             |                                 |                                                     |                           |                                                  |                                | The source of emissions for acid cleaning baths come from heating of the baths.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |
|                 |                                             |                                 |                                                     |                           |                                                  |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| NonEGU<br>Point | Coal Cleaning-Thrml<br>Dryer; Fluidized Bed | NLNBUCCFB                       | Low NOx Burner                                      | 50                        | NOX < 365 tpy: \$1,338<br>NOX > 365 tpy: \$268   |                                | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction<br>between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pechan 1998a, EPA<br>1994d, Pechan 2006 |
|                 |                                             |                                 |                                                     |                           |                                                  |                                | Thermal dryers are a direct-heat device.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |
|                 |                                             |                                 |                                                     |                           |                                                  |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| NonEGU<br>Point | Ceramic Clay Mfg; Drying                    | NLNBUCCMD                       | Low NOx Burner                                      | 50                        | NOX < 365 tpy: \$3,815<br>NOX > 365 tpy: \$3,122 |                                | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction<br>between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pechan 1998a, EPA<br>1994b, Pechan 2006 |
|                 |                                             |                                 |                                                     |                           |                                                  |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |

| Sector          | Source Category                             | Control Measure<br>Abbreviation | Emission Reduction Measure | Control<br>Efficiency (%) |                                                  | Other Pollutants<br>Controlled | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | References                                                      |
|-----------------|---------------------------------------------|---------------------------------|----------------------------|---------------------------|--------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| NonEGU<br>Point | Surf Coat Oper;Coating<br>Oven Htr;Nat Gas  | NLNBUCHNG                       | Low NOx Burner             | 50                        | NOX < 365 tpy: \$3,815<br>NOX > 365 tpy: \$3,122 |                                | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction<br>between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                               | Pechan 1998a, EPA<br>1993a, Pechan 2006                         |
|                 |                                             |                                 |                            |                           |                                                  |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). |                                                                 |
| NonEGU<br>Point | Cement Manufacturing -<br>Wet or Dry        | NLNBUCMWD                       | Low NOx Burner             | 27                        | \$653                                            |                                | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction<br>between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                               | EPA 1994b, ECR 2000                                             |
|                 |                                             |                                 |                            |                           |                                                  |                                | This control applies to wet-process cement manufacturing operations with indirect-fired kilns (SCC 30500706) with uncontrolled NOx emissions greater than 10 tons per year. This control applies to dry-process cement manufacturing operations with indirect-fired kilns with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                             |                                                                 |
|                 |                                             |                                 |                            |                           |                                                  |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). |                                                                 |
|                 | Fuel Fired Equip;<br>Furnaces; Natural Gas  | NLNBUFFNG                       | Low NOx Burner             | 50                        | \$989                                            |                                | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction<br>between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                               | Pechan 1998a, EPA<br>1994e, EPA 2002b                           |
|                 |                                             |                                 |                            |                           |                                                  |                                | This control applies to natural gas fired equipment with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 |
|                 |                                             |                                 |                            |                           |                                                  |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). |                                                                 |
| NonEGU<br>Point | Fbrglass Mfg; Txtle-Type<br>Fbr; Recup Furn | NLNBUFMTF                       | Low NOx Burner             | 40                        | \$2,931                                          |                                | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction<br>between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                               | Pechan 1998a, EPA 199                                           |
|                 |                                             |                                 |                            |                           |                                                  |                                | This control is applicable to textile-type fiberglass manufacturing operations with recuperative furnaces and uncontrolled NOx emissions greater than 10 tons per year. Recuperative furnaces may be gas- or oil-fired.                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |
|                 |                                             |                                 |                            |                           |                                                  |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). |                                                                 |
| NonEGU<br>Point | Ammonia - NG-Fired<br>Reformers             | NLNBUFRNG                       | Low NOx Burner             | 50                        | NOX < 365 tpy: \$1,422<br>NOX > 365 tpy: \$937   |                                | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction<br>between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                               | Pechan 1998a, EPA<br>2002b, EPA 1994d, INC<br>2008, Pechan 2006 |
|                 |                                             |                                 |                            |                           |                                                  |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). | 2008, Fechan 2000                                               |
| NonEGU<br>Point | Ammonia - Oil-Fired<br>Reformers            | NLNBUFROL                       | Low NOx Burner             | 50                        | NOX < 365 tpy: \$694<br>NOX > 365 tpy: \$746     |                                | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction<br>between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                               | Pechan 2006                                                     |
|                 |                                             |                                 |                            |                           |                                                  |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). |                                                                 |
| NonEGU<br>Point | Glass Manufacturing -<br>Container          | NLNBUGMCN                       | Low NOx Burner             | 40                        | \$1,436                                          |                                | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction<br>between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                               | Pechan 1998a, EPA<br>1994c, EC 2013, EPA<br>2018, RTI 2014      |
|                 |                                             |                                 |                            |                           |                                                  |                                | This control is applicable to container glass manufacturing operations with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2010, 111 2014                                                  |
|                 |                                             |                                 |                            |                           |                                                  |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). |                                                                 |

| Sector          | Source Category                     | Control Measure<br>Abbreviation | Emission Reduction Measure | Control<br>Efficiency (% |                                                                                           | Other Pollutants<br>Controlled | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | References                                                      |
|-----------------|-------------------------------------|---------------------------------|----------------------------|--------------------------|-------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| NonEGU<br>Point | Glass Manufacturing -<br>Flat       | NLNBUGMFT                       | Low NOx Burner             | 40                       | \$573                                                                                     |                                | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction<br>between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.<br>This control is applicable to flat glass manufacturing operations with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                           | Pechan 1998a, EPA<br>1994c, EC 2013, EPA<br>2018, RTI 2014      |
|                 |                                     |                                 |                            |                          |                                                                                           |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |
|                 |                                     |                                 |                            |                          |                                                                                           |                                | Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b).                                                                                                                                               |                                                                 |
| NonEGU<br>Point | Glass Manufacturing -<br>Pressed    | NLNBUGMPD                       | Low NOx Burner             | 40                       | \$2,601                                                                                   |                                | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction<br>between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                               | Pechan 1998a, EPA 199                                           |
|                 |                                     |                                 |                            |                          |                                                                                           |                                | This control is applicable to pressed glass manufacturing operations with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 |
|                 |                                     |                                 |                            |                          |                                                                                           |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). |                                                                 |
| NonEGU<br>Point | Gas Turbines - Natural<br>Gas       | NLNBUGTNG                       | Low NOx Burner             | 84                       | NOX < 365 tpy: \$850<br>NOX > 365 tpy: \$173                                              |                                | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction<br>between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                               | Pechan 1998a, EPA<br>2002b, EPA 1993b, EPA<br>2018, RTI 2014    |
|                 |                                     |                                 |                            |                          |                                                                                           |                                | This control applies to large (83.3 MW to 161 MW) natural gas fired turbines with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2010, 1112014                                                   |
|                 |                                     |                                 |                            |                          |                                                                                           |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). |                                                                 |
| NonEGU<br>Point | ICI Boilers - Coal/Wall             | NLNBUIBCW                       | Low NOx Burner             | 47.5                     | 25tpy < NOX < 100 tpy: \$8,057<br>100tpy < NOX < 250 tpy: \$2,694                         |                                | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction<br>between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                               | Bodnarik 2011, MACTE<br>2005b, OTC-LADCO 201                    |
|                 |                                     |                                 |                            |                          | NOX > 250 tpy: \$909                                                                      |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). | NESCAUM 2009, EPA<br>2018, ERG 2010, EPA<br>2000e               |
|                 |                                     |                                 |                            |                          |                                                                                           |                                | These technologies are prevalent in the electric power industry as well as in Industrial, Commercial and Institutional (ICI) boilers at present and<br>increasingly used by ICIs, even at small sizes i.e., less than 10 MMBtu/hr (NESCAUM 2009).                                                                                                                                                                                                                                                                                                                                                    |                                                                 |
| NonEGU<br>Point | ICI Boilers - Gas                   | NLNBUIBG                        | Ultra Low NOx Burner       | 75                       | 25tpy < NOX < 50 tpy: \$8,605<br>50tpy < NOX < 100 tpy: \$4,603<br>NOX > 100 tpy: \$2,451 |                                | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                                  | Staudt 2011, Bodnarik<br>2011, MACTEC 2005b,<br>OTC-LADCO 2010, |
|                 |                                     |                                 |                            |                          | NOX > 100 (p). 42,451                                                                     |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). | NESCAUM 2009, EPA<br>2018, ERG 2010, EPA<br>2000e               |
|                 |                                     |                                 |                            |                          |                                                                                           |                                | These technologies are prevalent in the electric power industry as well as in Industrial, Commercial and Institutional (ICI) boilers at present and<br>increasingly used by ICIs, even at small sizes i.e., less than 10 MMBtu/hr (NESCAUM 2009).                                                                                                                                                                                                                                                                                                                                                    |                                                                 |
| NonEGU<br>Point | Iron & Steel Mills -<br>Annealing   | NLNBUISAN                       | Low NOx Burner             | 50                       | \$989                                                                                     |                                | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                                  | Pechan 1998a, EPA<br>1994e, EPA 2002b                           |
|                 |                                     |                                 |                            |                          |                                                                                           |                                | This control is applicable to iron and steel annealing operations with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 |
|                 |                                     |                                 |                            |                          |                                                                                           |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). |                                                                 |
| NonEGU<br>Point | Iron & Steel Mills -<br>Galvanizing | NLNBUISGV                       | Low NOx Burner             | 50                       | \$850                                                                                     |                                | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction<br>between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                               | Pechan 1998a, EPA<br>1994e, EPA 2002b                           |
|                 |                                     |                                 |                            |                          |                                                                                           |                                | This control is applicable to iron and steel galvanizing operations with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 |
|                 |                                     |                                 |                            |                          |                                                                                           |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). |                                                                 |

| Sector          | Source Category                           | Control Measure<br>Abbreviation | Emission Reduction Measure |    |                                                  | Other Pollutants<br>Controlled | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | References                                           |
|-----------------|-------------------------------------------|---------------------------------|----------------------------|----|--------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| lonEGU<br>Point | Iron & Steel Mills -<br>Reheating         | NLNBUISRH                       | Low NOx Burner             | 66 | \$520                                            |                                | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction<br>between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                               | Pechan 1998a, EPA<br>1994e, EPA 2002b                |
|                 |                                           |                                 |                            |    |                                                  |                                | This control is applicable to iron and steel reheating operations with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |
|                 |                                           |                                 |                            |    |                                                  |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). |                                                      |
| lonEGU<br>'oint | Lime Kilns                                | NLNBULMKN                       | Low NOx Burner             | 30 | \$971                                            |                                | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                                  | Pechan 1998a, EPA<br>2002b, EPA 1994b<br>Pechan 2006 |
|                 |                                           |                                 |                            |    |                                                  |                                | This control is applicable to lime kilns with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |
|                 |                                           |                                 |                            |    |                                                  |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess ai to cool the combustion process or to reduce available oxyge in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b).   |                                                      |
| NonEGU<br>Point | In-Process Fuel Use;<br>Natural Gas; Gen  | NLNBUNGGN                       | Low NOx Burner             | 50 | NOX < 365 tpy: \$3,815<br>NOX > 365 tpy: \$3,122 |                                | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction<br>between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                               | Pechan 1998a, EPA<br>1993a, EPA 2002b                |
|                 |                                           |                                 |                            |    |                                                  |                                | This control is applicable to operations with in-process natural gas usage and uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |
|                 |                                           |                                 |                            |    |                                                  |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). |                                                      |
| NonEGU<br>Point | In-Process; Process Gas;<br>Coke Oven Gas | NLNBUPGCO                       | Low NOx Burner             | 50 | NOX < 365 tpy: \$3,815<br>NOX > 365 tpy: \$3,122 |                                | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction<br>between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                               | Pechan 1998a, EPA<br>2002b                           |
|                 |                                           |                                 |                            |    |                                                  |                                | This control is applicable to operations with in-process coke oven gas usage and uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |
|                 |                                           |                                 |                            |    |                                                  |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). |                                                      |
| NonEGU<br>Point | In-Process Fuel Use;<br>Residual Oil; Gen | NLNBUROGN                       | Low NOx Burner             | 37 | NOX < 365 tpy: \$4,370<br>NOX > 365 tpy: \$1,231 |                                | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction<br>between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                               | Pechan 1998a, EPA<br>1993a, EPA 2002b                |
|                 |                                           |                                 |                            |    |                                                  |                                | This control is applicable to operations with in-process residual oil usage and uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |
|                 |                                           |                                 |                            |    |                                                  |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). |                                                      |
| NonEGU<br>Point | Steel Foundries; Heat<br>Treating Furn    | NLNBUSFHT                       | Low NOx Burner             | 50 | \$989                                            |                                | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction<br>between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                               | Pechan 1998a, EPA<br>1994e, EPA 2002b                |
|                 |                                           |                                 |                            |    |                                                  |                                | This control is applicable to heat treating operations at steel foundries with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |
|                 |                                           |                                 |                            |    |                                                  |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). |                                                      |
| NonEGU<br>Point | Space Heaters - Distillate<br>Oil         | NLNBUSHDO                       | Low NOx Burner             | 50 | NOX < 365 tpy: \$2,046<br>NOX > 365 tpy: \$3,590 |                                | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                                  | Pechan 1998a, EPA<br>1994d                           |
|                 |                                           |                                 |                            |    |                                                  |                                | This control is applicable to distillate oil-fired space heaters with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |
|                 |                                           |                                 |                            |    |                                                  |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). |                                                      |

| Conton           | Sauraa Catagomi                            | Control Measure           |                                                                 | Control       | Cost Effectiveness (2018\$/ton                   |            | Preservician Natas Counsts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Deferences                      |
|------------------|--------------------------------------------|---------------------------|-----------------------------------------------------------------|---------------|--------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Sector<br>NonEGU | Source Category<br>Space Heaters - Natural | Abbreviation<br>NLNBUSHNG | Emission Reduction Measure<br>Low NOx Burner                    | Efficiency (% | NOX < 365 tpy: \$1,422                           | Controlled | Description/Notes/Caveats This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction                                                                                                                                                                                                                                                                                                                                                                                                                                    | References<br>Pechan 1998a, EPA |
| Point            | Gas                                        | NUNBUSHING                | Low NOX Burner                                                  | 50            | NOX < 365 tpy: \$1,422<br>NOX > 365 tpy: \$1,127 |            | Inscontrol is the use of low NOX burner (LNB) technology to reduce NOX emissions. LNBs reduce the amount of NOX created from reaction<br>between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                                 | 1998a, EPA<br>1994d             |
|                  |                                            |                           |                                                                 |               |                                                  |            | This control is applicable to natural gas-fired space heaters with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |
|                  |                                            |                           |                                                                 |               |                                                  |            | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). |                                 |
| EGU              | Utility Boiler - Coal/Wall                 | NLNBUUBCW                 | Low NOx Burner                                                  | 57            | DC > 25 MW: \$646                                |            | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction<br>between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                               | EPA 2013, SRA 2016, EPA<br>2018 |
|                  |                                            |                           |                                                                 |               |                                                  |            | This control applies to wall fired (coal) utility boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
|                  |                                            |                           |                                                                 |               |                                                  |            | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). |                                 |
| EGU              | Utility Boiler -<br>Coal/Tangential        | NLNC1UBCT                 | Low NOx Coal-and-Air Nozzles<br>with cross-Coupled Overfire Air | 42            | DC > 25 MW: \$440                                |            | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                                  | EPA 2013, SRA 2016, EPA 2018    |
|                  | ,                                          |                           | · · · · · · · ·                                                 |               |                                                  |            | This control applies to wall fired (coal) utility boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
|                  |                                            |                           |                                                                 |               |                                                  |            | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). |                                 |
| EGU              | Utility Boiler -<br>Coal/Tangential        | NLNC2UBCT                 | Low NOx Coal-and-Air Nozzles<br>with separated Overfire Air     | 47            | DC > 25 MW: \$549                                |            | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction<br>between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.                                                                                                                                                                                                                                                                                                               | EPA 2013, SRA 2016, EPA<br>2018 |
|                  |                                            |                           |                                                                 |               |                                                  |            | This control applies to wall fired (coal) utility boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
|                  |                                            |                           |                                                                 |               |                                                  |            | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). |                                 |
| EGU              | Utility Boiler -                           | NLNC3UBCT                 | Low NOx Coal-and-Air Nozzles                                    | 62            | DC > 25 MW: \$490                                |            | This control is the use of low NOx burner (LNB) technology to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 2013, SRA 2016, EPA         |
|                  | Coal/Tangential                            |                           | with Cross-Coupled and<br>Separated Overfire Air                |               |                                                  |            | between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another.<br>This control applies to wall fired (coal) utility boilers                                                                                                                                                                                                                                                                                                                                                                                             | 2018                            |
|                  |                                            |                           |                                                                 |               |                                                  |            | This control appress to than mea (coas) durity boners                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
|                  |                                            |                           |                                                                 |               |                                                  |            | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNBs create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNBs create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b). |                                 |

| Sector          | Source Category         | Control Measure<br>Abbreviation | Emission Reduction Measure                                | Control | Cost Effectiveness (2018\$/ton                                                               | Other Pollutants<br>Controlled | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | References                                                                                                                                                                        |
|-----------------|-------------------------|---------------------------------|-----------------------------------------------------------|---------|----------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NonEGU<br>Point | ICI Boilers - Coal/Wall | NLNSCRIBCW                      | Ultra Low NOx Burner and<br>Selective Catalytic Reduction | 91      | 25tpy < NOX < 100 tpy: \$17,697<br>100tpy < NOX < 250 tpy: \$6,312<br>NOX > 250 tpy: \$2,343 | Controlleu                     | This control is the use of low NOx burner (LNB) technology and selective catalytic reduction (SCR) to reduce NOx emissions. LNBs reduce the<br>amount of NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the<br>amount of oxygen available in another. SCR controls are post-combustion control technologies based on the chemical reduction of nitrogen oxides<br>(NOx) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the NOx removal efficiency, which allows the<br>process to occur at lower temperatures.                                                                                                                                                                                                                                                                                                       | Bodnarik 2011, MACTEC<br>2005b, OTC-LADCO 2010,                                                                                                                                   |
|                 |                         |                                 |                                                           |         |                                                                                              |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNB's create a luel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNB's create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b).                                                                                                                                                                                                                                                                                                                                        | 2005b, OTC-LADCO 2010<br>NESCAUM 2009, EPA<br>2018, ERG 2010, EPA<br>2000e<br>Bodnarik 2011, MACTEC<br>2005b, OTC-LADCO 2010<br>NESCAUM 2009, EPA<br>2018, ERG 2010, EPA<br>2000e |
|                 |                         |                                 |                                                           |         |                                                                                              |                                | Selective Catalytic Reduction (SCR) has been widely applied to stationary source, fossil fuel-fired, combustion units for emission control since the<br>early 1970s. SCR is typically implemented on units requiring a higher level of NOx control than achievable by SNCR or other combustion controls<br>(EPA 2002b). Like SNCR, SCR is based on the chemical reduction of the NOX molecule. The primary difference between SNCR and SCR is that SCR<br>uses a metal-based catalyst to increase the rate of reaction (EPA 2002b). A nitrogen based reducing reagent, such as ammonia or urea, is injected<br>into the file gas. The reagent reacts selectively with the flue gas NOx within a specific temperature range and in the presence of the catalyst and<br>oxygen to reduce the NOx.                                                                                                                                               |                                                                                                                                                                                   |
|                 |                         |                                 |                                                           |         |                                                                                              |                                | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency is accompanied by a significant increase in capital and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or anhydrous ammonia as the reagent. Anhydrous ammonia is a gas at atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to increase surface area (EPA 2002b). |                                                                                                                                                                                   |
|                 |                         |                                 |                                                           |         |                                                                                              |                                | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected reagent and the combustion gases; uncontrolled NOx concentration level; molar ratio of injected reagent to uncontrolled NOx; ammonia slip; catalyst selectivity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deactivation; and catalyst management (EPA 2001).                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                   |
| NonEGU<br>Point | ICI Boilers - Gas       | NLNSCRIBG                       | Ultra Low NOx Burner and<br>Selective Catalytic Reduction | 91      | 25tpy < NOX < 50 tpy: \$31,198<br>50tpy < NOX < 100 tpy: \$17,166<br>NOX > 100 tpy: \$9,300  |                                | This control is the use of low NOx burner (LNB) technology and selective catalytic reduction (SCR) to reduce NOx emissions. LNBs reduce the<br>amount of NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the<br>amount of oxygen available in another. SCR controls are post-combustion control technologies based on the chemical reduction of nitrogen oxides<br>(NOx) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the NOx removal efficiency, which allows the<br>process to occur at lower temperatures.                                                                                                                                                                                                                                                                                                       | 2018, ERG 2010, EPA                                                                                                                                                               |
|                 |                         |                                 |                                                           |         |                                                                                              |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNB's create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-tick LNB's create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b).                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                   |
|                 |                         |                                 |                                                           |         |                                                                                              |                                | Selective Catalytic Reduction (SCR) has been widely applied to stationary source, fossil fuel-fired, combustion units for emission control since the<br>early 1970s. SCR is typically implemented on units requiring a higher level of NOx control than achievable by SNCR or other combustion controls<br>(EPA 2002b). Like SNCR, SCR is based on the chemical reduction of the NOx molecule. The primary difference between SNCR and SCR is that SCR<br>uses a metal-based catalyst to increase the rate of reaction (EPA 2002b). A nitrogen based reducing reagent, such as ammonia or urea, is injected<br>into the flue gas. The reagent reacts selectively with the flue gas NOx within a specific temperature range and in the presence of the catalyst and<br>oxygen to reduce the NOx.                                                                                                                                               |                                                                                                                                                                                   |
|                 |                         |                                 |                                                           |         |                                                                                              |                                | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency is accompanied by a significant increase in capital and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or anhydrous ammonia as the reagent. Anhydrous ammonia is a gas at atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to increase surface area (EPA 2002b). |                                                                                                                                                                                   |
|                 |                         |                                 |                                                           |         |                                                                                              |                                | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected reagent and the combustion gases; uncontrolled NOx concentration level; molar ratio of injected reagent to uncontrolled NOx; ammonia slip; catalyst selectivity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deactivation; and catalyst management (EPA 2001).                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                   |

| Sector                    | Source Category                      | Control Measure<br>Abbreviation | Emission Reduction Measure                                       | Control | Cost Effectiveness (2018\$/ton                                                               | Other Pollutants<br>Controlled | Description Notes (Causets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Poforoncoc                                                                                            |
|---------------------------|--------------------------------------|---------------------------------|------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Sector<br>NonEGU<br>Point | Source Category<br>ICI Boilers - Oil | NLNSCRIBO                       | Ultra Low NOx Burner and<br>Selective Catalytic Reduction        | 91      | oj reduced)<br>NOX > 25 tpy: \$4,076                                                         | Controlled                     | Description/Notes/Caveats<br>This control is the use of low NOx burner (LNB) technology and selective catalytic reduction (SCR) to reduce NOx emissions. LNBs reduce the<br>amount of NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the<br>amount of oxygen available in another. SCR controls are post-combustion control technologies based on the chemical reduction of nitrogen oxides<br>(NOx) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the NOx removal efficiency, which allows the<br>process to occur at lower temperatures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bodnarik 2011, MACTEC<br>2005b, EPA 2000e, OTC-<br>LADCO 2010, NESCAUM<br>2009, EPA 2018, ERG<br>2010 |
|                           |                                      |                                 |                                                                  |         |                                                                                              |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNB's create a leul-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNB's create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2005b, EPA 2000e, OTC-<br>LADCO 2010, NESCAUM<br>2009, EPA 2018, ERG<br>2010                          |
|                           |                                      |                                 |                                                                  |         |                                                                                              |                                | Selective Catalytic Reduction (SCR) has been widely applied to stationary source, fossil fuel-fired, combustion units for emission control since the<br>early 1970s. SCR is typically implemented on units requiring a higher level of NOx control than achievable by SNCR or other combustion controls<br>(EPA 2002b). Lide SNCR, SCR is based on the chemical reduction of the NOX molecule. The primary difference between SNCR and SCR is that SCR<br>uses a metal-based catalyst to increase the rate of reaction (EPA 2002b). A nitrogen based reducing reagent, such as ammonia or urea, is injected<br>into the flue gas. The reagent reacts selectively with the flue gas NOx within a specific temperature range and in the presence of the catalyst and<br>oxygen to reduce the NOx.                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                       |
|                           |                                      |                                 |                                                                  |         |                                                                                              |                                | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency is accompanied by a significant increase in capital and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or anhydrous ammonia as the reagent. Anhydrous ammonia is a gas at atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia is the transported and stored under pressure (EPA 2002b). Aqueous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to increase surface area (EPA 2002b).                                                                                                                                                               |                                                                                                       |
|                           |                                      |                                 |                                                                  |         |                                                                                              |                                | The rate of reaction determines the amount of N0x removed from the flue gas. The important design and operational factors that affect the rate of reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected reagent and the combustion gases; uncontrolled N0x concentration level; molar ratio of injected reagent to uncontrolled N0x; ammonia slip; catalyst activity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deactivation; and catalyst management (EPA 2001).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                       |
| NonEGU<br>Point           | ICI Boilers - Coal/Wall              | NLNSNCRIBCW                     | Ultra Low NOx Burner and<br>Selective Non-Catalytic<br>Reduction | 69.5    | 25tpy < NOX < 100 tpy: \$12,875<br>100tpy < NOX < 250 tpy: \$4,877<br>NOX > 250 tpy: \$2,143 |                                | This control is the use of low NOx burner (LNB) technology and selective non-catalytic reduction (SNCR) to reduce NOx emissions. LNBs reduce the amount of NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the amount of oxygen available in another. SNCR controls are post-combustion control technologies based on the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2005b, EPA 2000e, OTC-<br>LADCO 2010, NESCAUM<br>2009, EPA 2018, ERG                                  |
|                           |                                      |                                 |                                                                  |         |                                                                                              |                                | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNB's create a leul-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNB's create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2010                                                                                                  |
|                           |                                      |                                 |                                                                  |         |                                                                                              |                                | SNCR is the reduction of NOx in flue gas to N2 and water vapor. This reduction is done with a nitrogen based reducing reagent, such as ammonia or<br>urea. The reagent can react with a number of flue gas components. However, the NOx reduction reaction is favored for a specific temperature range<br>and in the presence of oxygen (EPA 2002b). Both ammonia and urea are used as reagents. The cost of the reagent represents a large part of the<br>annual costs of an SNCR system. Ammonia is generally less expensive than urea. However, the choice of reagent represents a large part of the<br>annual costs of an SNCR system. Ammonia is generally less expensive than urea. However, the choice of reagent sis based on physical properties<br>and operational considerations (EPA 2002b). Ammonia can be utilized in either aqueous or anhydrous form. Anhydrous ammonia is a gas at<br>atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored<br>under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. |                                                                                                       |
|                           |                                      |                                 |                                                                  |         |                                                                                              |                                | Urea based systems have several advantages, including several safety aspects. Urea is a nontoxic, less volatile liquid that can be stored and handled<br>more safely than ammonia. Urea solution droplets can penetrate farther into the flue gas when injected into the boiler, enhancing mixing (EPA<br>2002b). Because of these advantages, urea is more commonly used than ammonia in large boiler applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                       |
|                           |                                      |                                 |                                                                  |         |                                                                                              |                                | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected reagent and the combustion gases; uncontrolled NOx concentration level; molar ratio of injected reagent to uncontrolled NOx; and ammonia slip.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                       |

| Sector          | Source Category                                             | Control Measure<br>Abbreviation | <b>Emission Reduction Measure</b>                                                      |       |                                                                                             | Controlled | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | References                                                                                                                                                                                                                                                                                       |
|-----------------|-------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NonEGU<br>Point | ICI Boilers - Gas                                           | NLNSNCRIBG                      | Low NOx Burner and Selective<br>Non-Catalytic Reduction                                | 69.5  | 25tpy < NOX < 50 tpy: \$21,826<br>50tpy < NOX < 100 tpy: \$12,047<br>NOX > 100 tpy: \$6,740 |            | This control is the use of low NOx burner (LNB) technology and selective non-catalytic reduction (SNCR) to reduce NOx emissions. LNBs reduce the<br>amount of NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the<br>amount of oxygen available in another. SNCR controls are post-combustion control technologies based on the chemical reduction of nitrogen<br>oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2005b, EPA 2000e, OTO<br>LADCO 2010, NESCAUM<br>2009, EPA 2018, ERG                                                                                                                                                                                                                              |
|                 |                                                             |                                 |                                                                                        |       |                                                                                             |            | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNB's create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNB's create a fuel leuk secondary combustion zone. Staged-fuel LNB's create a fuel leuk secondary combustion zone. Staged-fuel LNB's create a fuel leuk secondary combustion zone. Staged-fuel LNB's create a fuel leuk secondary combustion zone. Staged-fuel LNB's create a fuel leuk secondary combustion zone. Staged-fuel LNB's create a fuel leuk secondary combustion zone. Staged-fuel LNB's create a fuel leuk secondary combustion zone. Staged-fuel LNB's create a fuel leuk secondary combustion zone. Staged-fuel LNB's create a fuel leuk secondary combustion zone. Staged-fuel LNB's create a fuel leuk secondary combustion zone. Staged-fuel LNB's create a fuel-fuel leuk secondary combustion zone. Staged-fuel LNB's create a fuel-fuel leuk secondary combustion zone. Staged-fuel LNB's create a fuel-fuel leuk secondary combustion zone. Staged-fuel LNB's create a fuel-fuel leuk secondary combustion zone fuel fuel leuk secondary combustion zone secondary combustion zone secondary combustion zone fuel fuel leuk secondary combustion zone fuel-fuel leuk secondary combustion zone fuel-fuel leuk secondary combustion zone fuel-fuel leuk secondary combustion zone fuel-fuel-fuel-fuel-fuel-fuel-fuel-fuel- | 2010                                                                                                                                                                                                                                                                                             |
|                 |                                                             |                                 |                                                                                        |       |                                                                                             |            | SNCR is the reduction of NOx in flue gas to N2 and water vapor. This reduction is done with a nitrogen based reducing reagent, such as ammonia or<br>urea. The reagent can react with a number of flue gas components. However, the NOx reduction reaction is favored for a specific temperature range<br>and in the presence of oxygen (EPA 2002b). Both ammonia and urea are used as reagents. The cost of the reagent represents a large part of the<br>annual costs of an SNCR system. Ammonia is generally less expensive than urea. However, the choice of reagent is also based on physical properties<br>and operational considerations (EPA 2002b). Ammonia can be utilized in either aqueous or anhydrous form. Anhydrous ammonia is a gas at<br>atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored<br>under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bodnarik 2011, MACTEC<br>2005b, EPA 2000e, OTC-<br>LADCO 2010, NESCAUM<br>2009, EPA 2018, ERG<br>2010<br>Bodnarik 2011, MACTEC<br>2005b, EPA 2018, ERG<br>2010<br>Bodnarik 2011, MACTEC<br>2005b, EPA 2000e, OTC-<br>LADCO 2010, NESCAUM<br>2009, EPA 2018, ERG<br>2010<br>ECR 2000<br>EPA 2007b |
|                 |                                                             |                                 |                                                                                        |       |                                                                                             |            | Urea based systems have several advantages, including several safety aspects. Urea is a nontoxic, less volatile liquid that can be stored and handled<br>more safely than ammonia. Urea solution droplets can penetrate farther into the flue gas when injected into the boiler, enhancing mixing (EPA<br>2002b). Because of these advantages, urea is more commonly used than ammonia in large boiler applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                  |
|                 |                                                             |                                 |                                                                                        |       |                                                                                             |            | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected reagent and the combustion gases; uncontrolled NOx concentration level; molar ratio of injected reagent to uncontrolled NOx ; and ammonia slip.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  |
| NonEGU<br>Point | ICI Boilers - Oil                                           | NLNSNCRIBO                      | Low NOx Burner and Selective<br>Non-Catalytic Reduction                                | 69.5  | NOX > 25 tpy: \$3,361                                                                       |            | This control is the use of low NOx burner (LNB) technology and selective non-catalytic reduction (SNCR) to reduce NOx emissions. LNBs reduce the<br>amount of NOx created from reaction between fuel nitrogen and oxygen by lowering the temperature of one combustion zone and reducing the<br>amount of oxygen available in another. SNCR controls are post-combustion control technologies based on the chemical reduction of nitrogen<br>oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2005b, EPA 2000e, OTC-<br>LADCO 2010, NESCAUM<br>2009, EPA 2018, ERG                                                                                                                                                                                                                             |
|                 |                                                             |                                 |                                                                                        |       |                                                                                             |            | LNBs are designed to "stage" combustion so that two combustion zones are created, one fuel-rich combustion and one at a lower temperature.<br>Staging techniques are usually used by LNB to supply excess air to cool the combustion process or to reduce available oxygen in the flame zone.<br>Staged-air LNB's create a fuel-rich reducing primary combustion zone and a fuel-lean secondary combustion zone. Staged-fuel LNB's create a lean<br>combustion zone that is relatively cool due to the presence of excess air, which acts as a heat sink to lower combustion temperatures (EPA 2002b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2010                                                                                                                                                                                                                                                                                             |
|                 |                                                             |                                 |                                                                                        |       |                                                                                             |            | SNCR is the reduction of NOx in flue gas to N2 and water vapor. This reduction is done with a nitrogen based reducing reagent, such as ammonia or<br>urea. The reagent can react with a number of flue gas components. However, the NOx reduction reaction is favored for a specific temperature range<br>and in the presence of oxygen (EPA 2002b). Both ammonia and urea are used as reagents. The cost of the reagent regresents a large part of the<br>annual costs of an SNCR system. Ammonia is generally less expensive than urea. However, the choice of reagent is also based on physical properties<br>and operational considerations (EPA 2002b). Ammonia can be utilized in either aqueous or anhydrous form. Anhydrous ammonia is a gas at<br>atmospheric pressure and normal temperatures. Three are safety issues with the use of anhydrous ammonia, as it must be transported and stored<br>under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |
|                 |                                                             |                                 |                                                                                        |       |                                                                                             |            | Urea based systems have several advantages, including several safety aspects. Urea is a nontoxic, less volatile liquid that can be stored and handled more safely than ammonia. Urea solution droplets can penetrate farther into the flue gas when injected into the boiler, enhancing mixing (EPA 2002b). Because of these advantages, urea is more commonly used than ammonia in large boiler applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                  |
|                 |                                                             |                                 |                                                                                        |       |                                                                                             |            | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected reagent and the combustion gases; uncontrolled NOx concentration level; molar ratio of injected reagent to uncontrolled NOx ; and ammonia slip.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  |
| NonEGU<br>Point | Cement Manufacturing -<br>Wet or Dry                        | NMKFRCMWD                       | Mid-Kiln Firing                                                                        | 41    | \$82                                                                                        |            | This control is the use of mid-kiln firing to reduce NOx emissions. This control applies to wet-process or dry-process cement manufacturing with<br>uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ECR 2000                                                                                                                                                                                                                                                                                         |
| NonEGU<br>Point | External Combustion<br>Boilers, Elec Gen, Nat Gas           | NNGRECBNG                       | Natural Gas Reburn                                                                     | 50    | \$2,821                                                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EPA 2007b                                                                                                                                                                                                                                                                                        |
|                 |                                                             |                                 |                                                                                        |       |                                                                                             |            | This control applies to non-tangentially fired Natural Gas external combustion boilers with capacity of at least 100 Million BTU/hr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                  |
|                 |                                                             |                                 |                                                                                        |       |                                                                                             |            | In a reburn boiler, fuel is injected into the upper furnace region to convert the N0x formed in the primary combustion zone to molecular N2 and H2O. In general, the overall process occurs within three zones of the boiler; the combustion zone, the gas reburning zone, and the burnout zone (ERG 2000). In the combustion zone the amount of fuel is reduced and the burners may be operated at the lowest excess air level. In the gas reburning zone the fuel not used in the combustion zone is injected to create a fuel-rich region where radicals can react with N0x to form molecular Nitrogen. In the burnout zone a separate overfire air system redirects air from the primary combustion zone to ensure complete combustion of unreacted fuel leaving the reburning zone. Operational parameters that affect the performance of reburn include reburn zone stoichiometry, residence time in the reburn zone, reburn fuel carrier gas and temperature and O2 levels in the burnout zone (ERG 2000).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  |
| NonEGU<br>Point | Industrial NG ICE, SCCs<br>with technology not<br>specified | NNSCRAFRIINGNS                  | 5 Non-Selective Catalytic<br>Reduction or Adjust Air Fuel<br>Ratio and Ignition Retard | 39    | NOX < 365 tpy: \$2,219<br>NOX > 365 tpy: \$772                                              |            | This control measure is for natural gas fired internal combustion engines where the firing technology is not specified as to Rich Burn or Lean Burn.<br>Existing control measures are applied based on the estimated percentage of lean-burn engines (15%), and rich-burn engines (15%). Adjust Air to<br>Fuel Ratio and Ignition Retard (NAFRIICGS) is used for lean-burn engines and NSCR (NNSCRING14) is used for rich-burn engines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                  |
| NonEGU<br>Point | specified<br>Industrial NG ICE, 4cycle<br>(rich)            | NNSCRINGI4                      | Ratio and Ignition Retard<br>Non-Selective Catalytic<br>Reduction                      | 90    | \$610                                                                                       |            | Fuel Kato and ignition Retard (NAP KIILCS) is used for ican-burn engines and NSCR (NNSCRINIc4) is used for rich-burn engines.<br>MSCR is achieved by placing a catalyst in the exhaust stream of the engine. The exhaust passes over the catalyst, usually a noble metal (platinum,<br>rhodium or palladium) which reduces the reactants to N2, CO2 and H2C (NJDEP 2003). Typical exhaust temperatures for effective removal of NOx<br>are 800-1200 degrees Fahrenheit. An oxidation catalyst using additional air can be installed downstream of the NSCR catalyst for additional CO and<br>VOC control. This includes 4-cycle naturally aspirated engines and some 4-cycle turbocharged engines. Engines operating with NSCR require<br>air/fuel control to maintain high reduction effectiveness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ЕРА 2007Ь, NJDEP 2003                                                                                                                                                                                                                                                                            |
| NonEGU<br>Point | Industrial NG ICE, SCCs<br>with technology not<br>specified | NNSCRLCNGNS                     | Non-Selective Catalytic<br>Reduction or Layered<br>Combustion                          | 95.95 | \$4,924                                                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EPA 2007b, OTC 2012,<br>INGAA 2014, CSRA 2016                                                                                                                                                                                                                                                    |

| Soctor           | Source Category                                  | Control Measure<br>Abbreviation | Emission Reduction Measure                            | Control | Cost Effectiveness (2018\$/ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Other Pollutants<br>Controlled | Description Notes (Causate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | References                                                                                      |
|------------------|--------------------------------------------------|---------------------------------|-------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Sector<br>NonEGU | Source Category<br>Industrial NG ICE, SCCs       | Abbreviation<br>NNSCRLECNGNS    | Emission Reduction Measure<br>Non-Selective Catalytic | 87.45   | second se | controlled                     | Description/Notes/Caveats This control measure is for natural gas fired internal combustion engines where the firing technology is not specified as to Rich Burn or Lean Burn.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 2007b, CARB 2001,                                                                           |
| Point            | with technology not<br>specified                 | MISCREECINGINS                  | Reduction or Low Emission<br>Combustion               | 67.45   | \$007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                | Existing control measure is to natural gas ince matching connoise on tegines where use ming econnoise is not specified as to fich burn of lean burn.<br>Existing control measures are applied based on the estimated percentage of lean-burn engines (85%) and rich-burn engines (15%). Low emission combustion (NLECICEGAS) is used for lean-burn engines and NSCR (NNSCRINGI4) is used for rich-burn engines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | INGAA 2014, CSRA 2016                                                                           |
| NonEGU<br>Point  | Nitric Acid<br>Manufacturing                     | NNSCRNAMF                       | Non-Selective Catalytic<br>Reduction                  | 98      | \$954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                | NSCR is achieved by placing a catalyst in the exhaust stream of the engine. The exhaust passes over the catalyst, usually a noble metal [platinum, rhodium or palladium] which reduces the reactants to N2, CO2 and H20 (NJDEP 2003). Typical exhaust temperatures for effective removal of N0x are 800-1200 degrees Fahrenheit. An oxidation catalyst using additional air can be installed downstream of the NSCR catalyst for additional CO and VOC control. This includes 4-cycle naturally aspirated engines and some 4-cycle turbocharged engines. Engines operating with NSCR require air/fuel control to maintain high reduction effectiveness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pechan 2006, NJDEP<br>2003                                                                      |
| NonEGU<br>Point  | Glass Manufacturing -<br>General                 | NOEASGMGN                       | Oxygen Enriched Air Staging                           | 65      | \$797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                | Developed by the Gas Technology Institute (GTI), Oxygen-Enriched Air Staging (OEAS) is a retrofit that provides NOx reduction on all endport and<br>sideport airfired regenerative glass melters. OEAS nvolves reducing the amount of primary combustion air entering through the firing port. The<br>lower air to fuel ratio decreases NOx formation in the flame, but incomplete combustion generates carbon monoxide and leaves some hydrocarbons<br>unburned. Air or oxygenenriched air is injected into the furnace near the exhaust port to complete combustion in a second stage within the furnace<br>in order to assure complete combustion and heat release. The second stage completes combustion without increasing NOx production. The process<br>is the most economical control technology for NOx emissions because fuel consumption is not increased. The technology also has no effect upon<br>glass quality or furnace superstructure, and can even increase furnace productivity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DOE 2002, EPA 2010, EPA<br>2012                                                                 |
| NonEGU<br>Point  | Petroleum Refinery Gas-<br>Fired Process Heaters | NPRGPHE02C                      | Excess 03 Control                                     | 37      | NOX > 25 tpy: \$70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                | Petroleum Refinery Gas-Fired Process Heaters; Excess 02 Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MACTEC 2005x, CSRA<br>2017, EPA 2015, EPA<br>2018                                               |
| NonEGU<br>Point  | Petroleum Refinery Gas-<br>Fired Process Heaters | NPRGPHSC95                      | SCR-95%                                               | 84      | NOX > 25 tpy: \$12,352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | Petroleum Refinery Gas-Fired Process Heaters; SCR-95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MACTEC 2005x, CSRA<br>2017, EPA 2015, EPA<br>2018                                               |
| NonEGU<br>Point  | Petroleum Refinery Gas-<br>Fired Process Heaters | NPRGPHSCR                       | Selective Catalytic Reduction                         | 71      | NOX > 25 tpy: \$10,798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | Petroleum Refinery Gas-Fired Process Heaters; Selective Catalytic Reduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MACTEC 2005x, CSRA<br>2017, EPA 2015, EPA<br>2018                                               |
| NonEGU<br>Point  | Petroleum Refinery Gas-<br>Fired Process Heaters | NPRGPHULNB                      | Ultra-Low NOx Burner                                  | 53      | NOX > 25 tpy: \$1,803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                | Petroleum Refinery Gas-Fired Process Heaters; Ultra Low NOX Burners                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MACTEC 2005x, CSRA<br>2017, EPA 2015, EPA<br>2018                                               |
| NonPoint         | Industrial Coal<br>Combustion                    | NR25COL96                       | RACT to 25 tpy (Low NOx<br>Burner)                    | 21      | NOX > 25 tpy: \$2,341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                | The RACT control technology used is the addition of a low NOx burner to reduce NOx emissions. This standard applies to sources with boilers fueled<br>by coal that emit over 25 tpy NOx.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                 |
| NonPoint         | Industrial NG<br>Combustion                      | NR25NGC96                       | RACT to 25 tpy (Low NOx<br>Burner)                    | 31      | NOX > 25 tpy: \$1,335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                | The RACT control technology used is the addition of a low NOx burner to reduce NOx emissions. This standard applies to sources with boilers fueled<br>by natural gas that emit over 25 tpy NOx.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pechan 2006, Pechan<br>1998x, Pechan 1996                                                       |
| NonPoint         | Industrial Oil Combustion                        | n NR250IL96                     | RACT to 25 tpy (Low NOx<br>Burner)                    | 36      | NOX > 25 tpy: \$2,046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                | The RACT control technology used is the addition of a low NOx burner to reduce NOx emissions. This standard applies to sources with boilers fueled<br>by oil that emit over 25 tpy NOx.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pechan 2006, Pechan<br>1998x, Pechan 1996                                                       |
| NonPoint         | Industrial Coal<br>Combustion                    | NR50COL96                       | RACT to 50 tpy (Low NOx<br>Burner)                    | 21      | NOX > 50 tpy: \$2,341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                | The RACT control technology used is the addition of a low NOx burner to reduce NOx emissions. This standard applies to sources with boilers fueled<br>by coal that emit over 50 tpy NOx.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pechan 2006, Pechan<br>1998x, Pechan 1996                                                       |
| NonPoint         | Industrial NG<br>Combustion                      | NR50NGC96                       | RACT to 50 tpy (Low NOx<br>Burner)                    | 31      | NOX > 50 tpy: \$1,335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                | The RACT control technology used is the addition of a low NOx burner to reduce NOx emissions. This standard applies to sources with boilers fueled<br>by natural gas that emit over 50 tpy NOx.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pechan 2006, Pechan<br>1998x, Pechan 1996                                                       |
| NonPoint         | Industrial Oil Combustion                        | n NR500IL96                     | RACT to 50 tpy (Low NOx<br>Burner)                    | 36      | NOX > 50 tpy: \$2,046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                | The RACT control technology used is the addition of a low NOx burner to reduce NOx emissions. This standard applies to sources with boilers fueled<br>by oil that emit over 50 tpy NOx.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pechan 2006, Pechan<br>1998x, Pechan 1996                                                       |
| EGU              | Utility Boiler -<br>Coal/Tangential              | NSCR_UBCTx                      | Selective Catalytic Reduction                         | 90      | 25 MW < DC < 99 MW: \$2,674<br>100 MW < DC < 299 MW: \$2,269<br>300 MW < DC < 499 MW: \$2,269<br>500 MW < DC < 499 MW: \$2,083<br>DC > 700 MW: \$2,019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | This control is the use of selective catalytic reduction add-on controls to tangentially coal-fred utility boilers for the reduction of NOx emissions.<br>SCR controls are post-combustion control technologies based on the chemical reduction of nitrogen oxides (NOx) with a nitrogen based reducing<br>reagent, such as ammonia or urea, to reduce the NOx into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase<br>the NOx removal efficiency, which allows the process to occur at lower temperatures.<br>Like SNCR, SCR is based on the chemical reduction of the NOx molecule. The primary difference between SNCR and SCR is that SCR uses a metal-<br>based catalyst to increase the rate of reaction (EPA 2002b). A nitrogen based reducing reagent, such as ammonia or urea, is injected into the flue<br>gas. The reagent reacts selectively with the flue gas NOx within a specific temperature range and in the presence of the catalyst and oxygen to<br>reduce the NOx. Selective Catalytic Reduction (SCR) systems are among the post-combustion NOx control systems that can be effective in<br>controlling mercury. This is based on recent pilot-scale tests that indicate that SNCR and SCR systems are apong the post-combustion NOx control systems that can be effective in<br>controlling mercury. This is based on recent pilot-scale tests that indicate that SNCR and SCR systems are a possible<br>result of ammonia on Hy ash mercury reactions. In the SCR process, a catalyst (such as vanadium, ltanium, platinum, or zeolite) is used in a bed<br>reactor, and the NOx reduction occurs at the surface of the catalyst bed used in the help ead reducing agent (diluted ammonia or urea, which generates<br>ammonia in the process). The ammonia mixture is injected into the flue gas upstream of the metal catalyst bed reactor, which is located upstream<br>of a PM or SO2 control device (usually between the economizer outlet and air heater inlet, where temperatures range from 230 to 400oC). Recent<br>pilot-scale tests indicate that SCR systems can enhance Hg captu | EPA 1998c, EPA 2001,<br>EPA 2004, MassDEP<br>2002, EPA 2017, EPA<br>2013, SRA 2016, EPA<br>2018 |

| Sector | Source Category                         | Control Measure<br>Abbreviation | Emission Reduction Measure    | Control<br>Efficiency (% | Cost Effectiveness (2018\$/ton<br>%) reduced) | Other Pollutants<br>Controlled | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | References                                                                                                         |
|--------|-----------------------------------------|---------------------------------|-------------------------------|--------------------------|-----------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| EGU    | Utility Boiler - Oil-<br>Gas/Tangential | NSCR_UBOT                       | Selective Catalytic Reduction | 80                       | DC > 25 MW: \$1,621                           |                                | This control is the selective catalytic reduction of NOx through add-on controls to tangentially fired (oil/gas) utility boilers. SCR controls are post-<br>combustion control technologies based on the chemical reduction of nitrogen oxides (NOx) with a nitrogen based reducing reagent, such as<br>ammonia or urea, to reduce the NOx into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the NOx removal<br>efficiency, which allows the process to occur at lower temperatures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EPA 2010c, EPA 1998c,<br>EPA 2017, EPA 2013, EPA<br>2018                                                           |
|        |                                         |                                 |                               |                          |                                               |                                | This control applies to tangentially natural-gas fired electricity generation sources with nameplate capacity greater than 100 MW.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EPA 2010c, EPA 1998c,<br>EPA 2017, EPA 2013, EP<br>2018<br>EPA 2010c, EPA 1998c,<br>EPA 2017, EPA 2013, EP<br>2018 |
|        |                                         |                                 |                               |                          |                                               |                                | Selective Catalytic Reduction (SCR) has been widely applied to stationary source, fossil fuel-fired, combustion units for emission control since the<br>early 1970s. SCR is typically implemented on units requiring a higher level of NOx control than achievable by SNCR or other combustion controls<br>(EPA 2002b). Like SNCR, SCR is based on the chemical reduction of the NOx molecule. The primary difference between SNCR and SCR is that SCR<br>uses a metal-based catalyst to increase the rate of reaction (EPA 2002b). A nitrogen based reducing reagent, such as ammonia or urea, is injected<br>into the flue gas. The reagent reacts selectively with the flue gas NOx within a specific temperature range and in the presence of the catalyst and<br>oxygen to reduce the NOx.                                                                                                                                                                                                                        |                                                                                                                    |
|        |                                         |                                 |                               |                          |                                               |                                | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency is accompanied by a significant increase in capital and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or anhydrous ammonia as the reagent. Anhydrous ammonia is a gas at atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as the transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to increase surface area (EPA 2002b). |                                                                                                                    |
|        |                                         |                                 |                               |                          |                                               |                                | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of<br>reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected<br>reagent and the combustion gases; uncontrolled NOX concentration level; molar ratio of injected reagent to uncontrolled NOX, ammonia slip;<br>catalyst activity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deactivation; and catalyst management (EPA 2001).                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                    |
| GU     | Utility Boiler - Oil-<br>Gas/Wall       | NSCR_UBOW                       | Selective Catalytic Reduction | 80                       | DC > 25 MW: \$1,621                           |                                | This control is the selective catalytic reduction of N0x through add-on controls to wall fired (oil/gas) utility boilers. SCR controls are post-<br>combustion control technologies based on the chemical reduction of nitrogen oxides (N0x) with a nitrogen based reducing reagent, such as<br>ammonia or urea, to reduce the N0x into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the N0x removal<br>efficiency, which allows the process to occur at lower temperatures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EPA 2017, EPA 2013, EPA                                                                                            |
|        |                                         |                                 |                               |                          |                                               |                                | Applies to large (>100 million Btu/hr) natural-gas fired electricity generation sources with nameplate capacity greater than 100 MW, excluding tangentially fired sources.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                    |
|        |                                         |                                 |                               |                          |                                               |                                | Selective Catalytic Reduction (SCR) has been widely applied to stationary source, fossil fuel-fired, combustion units for emission control since the<br>early 1970s. SCR is typically implemented on units requiring a higher level of NOx control than achievable by SNCR or other combustion controls<br>(EPA 2002b). Like SNCR, SCR is based on the chemical reduction of the NOx molecule. The primary difference between SNCR and SCR is that SCR<br>uses a metal-based catalyst to increase the rate of reaction (EPA 2002b). A nitrogen based reducing reagent, such as ammonia or urea, is injected<br>into the flue gas. The reagent reacts selectively with the flue gas NOx within a specific temperature range and in the presence of the catalyst and<br>oxygen to reduce the NOx.                                                                                                                                                                                                                        |                                                                                                                    |
|        |                                         |                                 |                               |                          |                                               |                                | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency is accompanied by a significant increase in capital and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or anhydrous ammonia as the reagent. Anhydrous ammonia is a gas at atmospheric pressure and normal temperatures are safety issues with the use of anhydrous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to increase surface area (EPA 2002b).                                                                                 |                                                                                                                    |
|        |                                         |                                 |                               |                          |                                               |                                | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected reagent and the combustion gases; uncontrolled NOx concentration level; molar ratio of injected reagent to uncontrolled NOx; ammonia slip; catalyst activity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deactivation; and catalyst management (EPA 2001).                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                    |

|                 |                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                         | _                                         |                                              |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                      |
|-----------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sector          | Source Category                 | Control Measure<br>Abbreviation                                                                                                                                                                                                                                                                                                                                                                                                                                                | Emission Reduction Measure                                                                                                                                                                                                                                                                                                                                                              | Control<br>Efficiency (%                  | Cost Effectiveness (2018\$/ton<br>) reduced) | Other Pollutants<br>Controlled | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | References                                                                                                                                                                                                           |
| NonEGU<br>Point | Cement Manufacturing -<br>Dry2  | NSCRCMDY                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Selective Catalytic Reduction                                                                                                                                                                                                                                                                                                                                                           | 85                                        | \$5,844                                      |                                | This control is the selective catalytic reduction of NOx through add-on controls. SCR controls are post-combustion control technologies based on<br>the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the<br>NOx removal efficiency, which allows the process to occur at lower temperatures. This control applies to dry-process cement manufacturing and<br>Natural Gas Cement Kilns with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pechan 2006, EPA 2017                                                                                                                                                                                                |
|                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         |                                           |                                              |                                | Selective Catalytic Reduction (SCR) has been widely applied to stationary source, fossil fuel-fired, combustion units for emission control since the<br>early 1970s. SCR is typically implemented on units requiring a higher level of NOx control than achievable by SNCR or other combustion controls<br>(EPA 2002b). Lide SNCR, SCR is based on the chemical reduction of the NOX molecule. The primary difference between SNCR and SCR is that SCR<br>uses a metal-based catalyst to increase the rate of reaction (EPA 2002b). A nitrogen based reducing reagent, such as ammonia or urea, is injected<br>into the flue gas. The reagent reacts selectively with the flue gas NOx within a specific temperature range and in the presence of the catalyst and<br>oxygen to reduce the NOx.                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                      |
|                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         |                                           |                                              |                                | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency and the lower and broader temperature ranges. However, the decrease in reaction temperature and increase in efficiency is accompanied by a significant increase in capital and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or anhydrous ammonia as the reagent. Anhydrous ammonia is a gas at atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to increase surface area (EPA 2002b).                        | h<br>d<br>Pechan 1998a, EPA<br>2002b, EPA 1993b, EPA<br>2010c, DOE 1999.<br>EmeraChem Power 2008<br>CH2MHill 2002a, RDC<br>2001, EPA 2008d, EPA<br>2018, RTI 2014<br>d<br>f<br>EPA 2007a, Pechan<br>1996a, EPA 2002b |
|                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         |                                           |                                              |                                | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of<br>reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected<br>reagent and the combustion gases; uncontrolled NOX concentration level; molar ratio of injected reagent to uncontrolled NOX, ammonia slip;<br>catalyst activity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deactivation; and catalyst management (EPA 2001).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                      |
| NonEGU<br>Point | Gas Turbines - Natural<br>Gas   | as Turbines - Natural NSCRDGTNG SCR + DLN Combustion 94.6 DC > 26 MW: \$564 This control is the selective catalytic reduction of NOx through add-on controls. SCR controls are post-combustion control techn<br>as DC < 26 MW: \$2,603 the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H20). The SCR utilizes a catalyst<br>DC < 26 MW: \$1,431 NOx removal efficiency, which allows the process to occur at lower temperatures. | This control is the selective catalytic reduction of N0x through add-on controls. SCR controls are post-combustion control technologies based on<br>the chemical reduction of nitrogen oxides (N0x) into molecular nitrogen (N2) and water vapor (H20). The SCR utilizes a catalyst to increase the<br>N0x removal efficiency, which allows the process to occur at lower temperatures. | 2002b, EPA 1993b, EPA<br>2010c, DOE 1999, |                                              |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                      |
|                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         |                                           |                                              |                                | This control applies to natural gas fired turbines with NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CH2MHill 2002a, RDC                                                                                                                                                                                                  |
|                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         |                                           |                                              |                                | Selective Catalytic Reduction (SCR) has been widely applied to stationary source, fossil fuel-fired, combustion units for emission control since the<br>early 1970s. SCR is typically implemented on units requiring a higher level of NOx control than achievable by SNCR or other combustion controls<br>(EPA 2002b). Like SNCR, SCR is based on the chemical reduction of the NOx molecule. The primary difference between SNCR and SCR is that SCR<br>uses a metal-based catalyst to increase the rate of reaction (EPA 2002b). A nitrogen based reducing reagent, such as ammonia or urea, is injected<br>into the flue gas. The reagent reacts selectively with the flue gas NOx within a specific temperature range and in the presence of the catalyst and<br>oxygen to reduce the NOx.                                                                                                                                                                                                                                                                                             | 2001, EPA 2008d, EPA                                                                                                                                                                                                 |
|                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         |                                           |                                              |                                | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency and the lower and broader<br>temperature ranges. However, the decrease in reaction temperature and increase in efficiency is accompanied by a significant increase in capital<br>and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or<br>anhydrous ammonia as the reagent. Anhydrous ammonia is a gas at atmospheric pressure and normal temperatures. There are safety issues with<br>the use of anhydrous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia gas the arealy transported and<br>stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase<br>with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to<br>increase surface area (EPA 2002b). |                                                                                                                                                                                                                      |
|                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         |                                           |                                              |                                | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected reagent and the combustion gases; uncontrolled NOx concentration level; molar ratio of injected reagent to uncontrolled NOx; ammonia slip; catalyst activity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deactivation; and catalyst management (EPA 2001).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                      |
| NonEGU<br>Point | Ammonia - NG-Fired<br>Reformers | NSCRFRNG                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Selective Catalytic Reduction                                                                                                                                                                                                                                                                                                                                                           | 90                                        | \$3,421                                      |                                | This control is the selective catalytic reduction of NOx through add-on controls. SCR controls are post-combustion control technologies based on<br>the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the<br>NOx removal efficiency, which allows the process to occur at lower temperatures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                      |
|                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         |                                           |                                              |                                | Applies to natural-gas fired reformers involved in the production of ammonia with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                      |
|                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         |                                           |                                              |                                | Selective Catalytic Reduction (SCR) has been widely applied to stationary source, fossil fuel-fired, combustion units for emission control since the<br>early 1970s. SCR is typically implemented on units requiring a higher level of NOx control than achievable by SNCR or other combustion controls<br>(EPA 2002b). Lide SNCR, SCR is based on the chemical reduction of the NOX molecule. The primary difference between SNCR and SCR is that SCR<br>uses a metal-based catalyst to increase the rate of reaction (EPA 2002b). A nitrogen based reducing reagent, such as ammonia or urea, is injected<br>into the flue gas. The reagent reacts selectively with the flue gas NOx within a specific temperature range and in the presence of the catalyst and<br>oxygen to reduce the NOx.                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                      |
|                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         |                                           |                                              |                                | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency and the lower and broader temperature ranges. However, the decrease in reaction temperature and increase in efficiency is accompanied by a significant increase in capital and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or anhydrous ammonia as the reagent. Anhydrous ammonia is a gas at atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to increase surface area (EPA 2002b).                        | 2002b, EPA 1993b, EPA<br>2010c, DOE 1999,<br>EmeraChem Power 200<br>CH2MHill 2002a, RDC<br>2001, EPA 2008d, EPA<br>2018, RTI 2014<br>EPA 2007a, Pechan                                                               |
|                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         |                                           |                                              |                                | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected reagent and the combustion gases; uncontrolled NOx concentration level; molar ratio of injected reagent to uncontrolled NOx; ammonia slip; catalyst activity; catalyst selectivity; pressure drop across the catalyst; catalyst prich; catalyst deactivation; and catalyst management (EPA 2001).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                      |

| Contract         | 6                                      | Control Measure          |                                                             | Control             | Cost Effectiveness (2018\$/ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Deferment                                                       |
|------------------|----------------------------------------|--------------------------|-------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Sector<br>NonEGU | Source Category<br>Ammonia - Oil-Fired | Abbreviation<br>NSCRFROL | Emission Reduction Measure<br>Selective Catalytic Reduction | Efficiency (%<br>80 | ) reduced)<br>NOX < 365 tpy: \$2,567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Controlled | Description/Notes/Caveats This control is the selective catalytic reduction of NOx through add-on controls. SCR controls are post-combustion control technologies based on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | References<br>Pechan 2006                                       |
| Point            | Reformers                              |                          |                                                             |                     | NOX > 365 tpy: \$1,405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the<br>NOx removal efficiency, which allows the process to occur at lower temperatures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |
|                  |                                        |                          |                                                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | Applies to oil fired reformers involved in the production of ammonia with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |
|                  |                                        |                          |                                                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | Selective Catalytic Reduction (SCR) has been widely applied to stationary source, fossil fuel-fired, combustion units for emission control since the<br>early 1970s. SCR is typically implemented on units requiring a higher level of NOx control than achievable by SNCR or other combustion controls<br>(EPA 2002b). Like SNCR, SCR is based on the chemical reduction of the NOX molecule. The primary difference between SNCR and SCR is that SCR<br>uses a metal-based catalyst to increase the rate of reaction (EPA 2002b). A nitrogen based reducing reagent, such as ammonia or urea, is injected<br>into the file gas. The reagent reacts selectively with the flue gas NOx within a specific temperature range and in the presence of the catalyst and<br>oxygen to reduce the NOx.                                                                                                                                               |                                                                 |
|                  |                                        |                          |                                                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency is accompanied by a significant increase in capital and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or anhydrous ammonia as the reagent. Anhydrous ammonia is a gas at atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to increase surface area (EPA 2002b). |                                                                 |
|                  |                                        |                          |                                                             |                     | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of<br>reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected<br>reagent and the combustion gases; uncontrolled NOx concentration level; molar ratio of injected reagent to uncontrolled NOx camonia slip;<br>catalyst activity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deactivation; and catalyst management (EPA 2001). |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |
| NonEGU<br>Point  | Glass Manufacturing -<br>Container     | NSCRGMCN                 | Selective Catalytic Reduction                               | 75                  | \$2,135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | This control is the selective catalytic reduction of NOx through add-on controls. SCR controls are post-combustion control technologies based on<br>the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the<br>NOx removal efficiency, which allows the process to occur at lower temperatures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pechan 1998a, EPA<br>1994c, EC 2013, EPA<br>2018, RTI 2014      |
|                  |                                        |                          |                                                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | Applies to glass-container manufacturing processes with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                 |
|                  |                                        |                          |                                                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | Selective Catalytic Reduction (SCR) has been widely applied to stationary source, fossil fuel-fired, combustion units for emission control since the<br>early 1970s. SCR is typically implemented on units requiring a higher level of NOx control than achievable by SNCR or other combustion controls<br>(EPA 2002b). Like SNCR, SCR is based on the chemical reduction of the NOX molecule. The primary difference between SNCR and SCR is that SCR<br>uses a metal-based catalyst to increase the rate of reaction (EPA 2002b). A nitrogen based reducing reagent, such as ammonia or urea, is injected<br>into the flue gas. The reagent reacts selectively with the flue gas NOx within a specific temperature range and in the presence of the catalyst and<br>oxygen to reduce the NOx.                                                                                                                                               | 1<br>Pechan 1998a, EPA<br>1994c, EC 2013, EPA<br>2018, RTI 2014 |
|                  |                                        |                          |                                                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency is accompanied by a significant increase in capital and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or anhydrous ammonia as the reagent. Anhydrous ammonia is a gas at atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to increase surface area (EPA 2002b). |                                                                 |
|                  |                                        |                          |                                                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of<br>reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected<br>reagent and the combustion gases; uncontrolled NOx concentration level; molar ratio of injected reagent to uncontrolled NOx common slip;<br>catalyst activity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deactivation; and catalyst management (EPA 2001).                                                                                                                                                                                                                                                                                                                                    |                                                                 |

| Sector          | Source Category                  | Control Measure<br>Abbreviation | Emission Reduction Measure    | Control<br>Efficiency (% | Cost Effectiveness (2018\$/ton<br>b) reduced) | Other Pollutants<br>Controlled | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | References                                                                                                                                                                                                                                                                             |
|-----------------|----------------------------------|---------------------------------|-------------------------------|--------------------------|-----------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NonEGU<br>Point | Glass Manufacturing -<br>Flat    | NSCRGMFT                        | Selective Catalytic Reduction | 75                       | \$1,055                                       |                                | This control is the selective catalytic reduction of NOx through add-on controls. SCR controls are post-combustion control technologies based on<br>the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the<br>NOx removal efficiency, which allows the process to occur at lower temperatures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pechan 1998a, EPA<br>1994c, EC 2013, EPA<br>2018, RTI 2014                                                                                                                                                                                                                             |
|                 |                                  |                                 |                               |                          |                                               |                                | Applies to large(>1 ton NOx per OSD) flat-glass manufacturing operations with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                        |
|                 |                                  |                                 |                               |                          |                                               |                                | Selective Catalytic Reduction (SCR) has been widely applied to stationary source, fossil fuel-fired, combustion units for emission control since the<br>early 1970s. SCR is typically implemented on units requiring a higher level of NOx control than achievable by SNCR or other combustion controls<br>(EPA 2002b). Like SNCR, SCR is based on the chemical reduction of the NOx molecule. The primary difference between SNCR and SCR is that SCR<br>uses a metal-based catalyst to increase the rate of reaction (EPA 2002b). A nitrogen based reducing reagent, such as ammonia or urea, is injected<br>into the flue gas. The reagent reacts selectively with the flue gas NOx within a specific temperature range and in the presence of the catalyst and<br>oxygen to reduce the NOx.                                                                                                                                                                                                                                                                                                                              | Pechan 1998a, EPA<br>1994c, EC 2013, EPA<br>2018, RTI 2014<br>d<br>ePechan 1998a, EPA 1994c<br>Pechan 1998a, EPA 1994c<br>ePechan 1998a, EPA 1994c<br>ePechan 1998a, EPA 1994c<br>d<br>ePa 2017, Bodmarik<br>2011, MACTEC 2005b,<br>EPA 2010, NESCAUM 2009,<br>EPA 2010, ERG 2019<br>d |
|                 |                                  |                                 |                               |                          |                                               |                                | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency is accompanied by a significant increase in capital and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or anhydrous ammonia as the reagent. Anhydrous ammonia is a gas at atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to increase surface area (EPA 2002b).                                                                                                                                                                                |                                                                                                                                                                                                                                                                                        |
|                 |                                  |                                 |                               |                          |                                               |                                | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of<br>reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injecte<br>reagent and the combustion gases; uncontrolled NOx concentration level; molar ratio of injected reagent to uncontrolled NOx, ammonia slip;<br>catalyst activity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deactivation; and catalyst management (EPA 2001).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                        |
| NonEGU<br>Point | Glass Manufacturing -<br>Pressed | NSCRGMPD                        | Selective Catalytic Reduction | 75                       | \$4,388                                       |                                | This control is the selective catalytic reduction of NOx through add-on controls. SCR controls are post-combustion control technologies based on<br>the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the<br>NOx removal efficiency, which allows the process to occur at lower temperatures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pechan 1998a, EPA 1994c                                                                                                                                                                                                                                                                |
|                 |                                  |                                 |                               |                          |                                               |                                | Applies to pressed-glass manufacturing operations with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                        |
|                 |                                  |                                 |                               |                          |                                               |                                | Selective Catalytic Reduction (SCR) has been widely applied to stationary source, fossil fuel-fired, combustion units for emission control since the<br>early 1970s. SCR is typically implemented on units requiring a higher level of NOx control than achievable by SNCR or other combustion controls<br>(EPA 2002b). Like SNCR, SCR is based on the chemical reduction of the NOx molecule. The primary difference between SNCR and SCR is that SCR<br>uses a metal-based catalyst to increase the rate of reaction (EPA 2002b). A nitrogen based reducing reagent, such as ammonia or urea, is injected<br>into the flue gas. The reagent reacts selectively with the flue gas NOx within a specific temperature range and in the presence of the catalyst and<br>oxygen to reduce the NOx.                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                        |
|                 |                                  |                                 |                               |                          |                                               |                                | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency is accompanied by a significant increase in capital and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or anhydrous ammonia as the reagent. Anhydrous ammonia is a gas at atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to increase surface area (EPA 2002b).                                                                                                                                                                                |                                                                                                                                                                                                                                                                                        |
|                 |                                  |                                 |                               |                          |                                               |                                | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of<br>reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected<br>reagent and the combustion gases; uncontrolled NOx concentration level; molar ratio of injected reagent to uncontrolled NOx; ammonia slip;<br>catalyst activity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deactivation; and catalyst management (EPA 2001).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                        |
| NonEGU<br>Point | ICI Boilers - Coal               | NSCRICBC                        | Selective Catalytic Reduction | 90                       | \$8,194                                       |                                | This control is the selective catalytic reduction of NOx through add-on controls. SCR controls are post-combustion control technologies based on the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the NOx removal efficiency, which allows the process to occur at lower temperatures. Selective Catalytic Reduction (SCR) has been widely applied to stationary source, fossi fluch-fred, combustion units for emission control since the early 1970s. SCR is typically implemented on units requiring a higher level of NOx control than achievable by SNCR or other combustion controls (EPA 2002b). Like SNCR, SCR is based on the chemical reduction of the NOx molecule. The primary difference between SNCR and SCR is that SCR uses a metal-based catalyst to increase the rate of reaction (EPA 2002b). A sufficient catalyst is injected in to the flue gas. The reagent reacts selectively with the flue gas NOx within a specific temperature range and in the presence of the catalyst and oxygen to reduce the NOx. | 2011, MACTEC 2005b,<br>EPA 2000e, OTC-LADCO<br>2010, NESCAUM 2009,                                                                                                                                                                                                                     |
|                 |                                  |                                 |                               |                          |                                               |                                | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency and the lower and broader temperature ranges. However, the decrease in reaction temperature and increase in efficiency is accompanied by a significant increase in capital and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or anhydrous ammonia is a gas at atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to increase surface area (EPA 2002b).         |                                                                                                                                                                                                                                                                                        |
|                 |                                  |                                 |                               |                          |                                               |                                | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected reagent and the combustion gases; uncontrolled NOx concentration level; molar ratio of injected reagent and uncontrolled NOx concentration level; molar ratio of injected reagent and NOx; ammonia slip; catalyst activity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deactivation; and catalyst management (EPA 2001). A SCR will impose an energy impact on the host boiler. The losses attributable to this technology include: compressor, reactor pressure loss, and steam i.e., sootblowing (NESCAUM 2009).                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                        |

| Sector          | Source Category                      | Control Measure<br>Abbreviation | Emission Reduction Measure    | Control | Cost Effectiveness (2018\$/ton<br>%) reduced)    | Other Pollutants<br>Controlled | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | References                                                                                                     |
|-----------------|--------------------------------------|---------------------------------|-------------------------------|---------|--------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| NonEGU<br>Point | ICI Boilers - Gas                    | NSCRICBG                        | Selective Catalytic Reduction | 90      | \$11,441                                         |                                | This control is the selective catalytic reduction of NOx through add-on controls. SCR controls are post-combustion control technologies based on<br>the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the<br>NOx removal efficiency, which allows the process to occur at lower temperatures. Selective Catalytic Reduction (SCR) has been widely applied to<br>stationary source, fossi fluct-fired, combustion units for emission control since the early 1970s. SCR is typically implemented on units requiring a<br>higher level of NOx control than achievable by SNCR or other combustion controls (EPA 2002b). Like SNCR, SCR is based on the chemical reduction<br>of the NOx molecule. The primary difference between SNCR and SCR is that SCR uses a metal-based catalyst to increase the race of reaction (EPA<br>2002b). A nitrogen based reducing reagent, such as ammonia or urea, is injected into the flue gas. The reagent reacts selectively with the flue gas<br>NOx within a specific temperature range and in the presence of the catalyst and oxygen to reduce the NOx.  | EPA 2017, Bodnarik<br>2011, MACTEC 2005b,<br>EPA 2000e, OTC-LADCO<br>2010, NESCAUM 2009,<br>EPA 2018, ERG 2019 |
|                 |                                      |                                 |                               |         |                                                  |                                | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency is accompanied by a significant increase in capital and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or anhydrous ammonia as the reagent. Anhydrous ammonia is a gas at atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to increase surface area (EPA 2002b).                                                                                                                                                                                                                                            |                                                                                                                |
|                 |                                      |                                 |                               |         |                                                  |                                | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of<br>reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected<br>reagent and the combustion gases; uncontrolled NOx concentration level; molar ratio of injected reagent to uncontrolled NOx, amonia slip;<br>catalyst activity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deactivation; and catalyst management (EPA 2001). A<br>SCR will impose an energy impact on the host boiler. The losses attributable to this technology include: compressor, reactor pressure loss, and<br>steam i.e., southowing (NESCAUM 2009).                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |
| NonEGU<br>Point | ICI Boilers - Oil                    | NSCRICBO                        | Selective Catalytic Reduction | 90      | \$8,914                                          |                                | This control is the selective catalytic reduction of NOx through add-on controls. SCR controls are post-combustion control technologies based on<br>the chemical reduction of nitrogen oxides (NOX) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the<br>NOx removal efficiency, which allows the process to occur at lower temperatures. Selective Catalytic Reduction (SCR) has been widely applied to<br>stationary source, fossil fuel-fired, combustion units for emission control since the early 1970s. SCR is typically implemented on units requiring a<br>higher level of NOx control than achievable by SNRC or other combustion controls (EPA 2002b). Like SNCR, SCR is based on the chemical reduction<br>of the NOx molecule. The primary difference between SNCR and SCR is that SCR uses a metal-based catalyst to increase the rate of reaction (EPA<br>2002b). A nitrogen based reducing reagent, such as ammonia or urea, is injected in to the flue gas. The reagent reacts selectively with the flue gas<br>NOx within a specific temperature range and in the presence of the catalyst and oxygen to reduce the NOx. | EPA 2017, Bodnarik<br>2011, MACTEC 2005b,<br>EPA 2000e, OTC-LADCO<br>2010, NESCAUM 2009,<br>EPA 2018, ERG 2019 |
|                 |                                      |                                 |                               |         |                                                  |                                | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency is accompanied by a significant increase in capital and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or anhydrous ammonia as the reagent. Anhydrous ammonia is a gas at atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to increase surface area (EPA 2002b).                                                                                                                                                                                                                                            |                                                                                                                |
|                 |                                      |                                 |                               |         |                                                  |                                | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected reagent and the combustion gases; uncontrolled NOx concentration level; molar ratio of injected reagent to uncontrolled NOx, ammonia slip; catalyst activity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deativation; and catalyst management (EPA 2001). A SCR will impose an energy impact on the host boiler. The losses attributable to this technology include: compressor, reactor pressure loss, and steam i.e., southolwing (NESACMU 2009).                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |
| NonEGU<br>Point | Lean Burn ICE - NG                   | NSCRICE4SNG                     | Selective Catalytic Reduction | 90      | \$4,013                                          |                                | SCR can be used on Lean Burn, NG engines. Assumed SCR can meet NOx emissions of 0.89 g/bh-hr. This is a Known technology, however there is indication that applicability is engine/unit specific.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OTC 2012, SJVAPCD 2003,<br>CARB 2001, EPA 2018,<br>RTI 2014                                                    |
| NonEGU<br>Point | ICE - Diesel                         | NSCRICEDS                       | Selective Catalytic Reduction | 90      | NOX < 365 tpy: \$11,747                          |                                | SCR can be used on Diesel engines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EPA 2010a, RTI 2014                                                                                            |
| NonEGU<br>Point | Internal Combustion<br>Engines - Oil | NSCRICOL                        | Selective Catalytic Reduction | 80      | NOX < 365 tpy: \$4,058<br>NOX > 365 tpy: \$1,595 |                                | This control is the selective catalytic reduction of NOx through add-on controls. SCR controls are post-combustion control technologies based on<br>the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the<br>NOx removal efficiency, which allows the process to occur at lower temperatures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPA 1993c, Pechan 1998a                                                                                        |
|                 |                                      |                                 |                               |         |                                                  |                                | Applies to oil-fired internal combustion engines with NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                |
|                 |                                      |                                 |                               |         |                                                  |                                | Selective Catalytic Reduction (SCR) has been widely applied to stationary source, fossil fuel-fired, combustion units for emission control since the<br>early 1970s. SCR is typically implemented on units requiring a higher level of NOx control than achievable by SNCR or other combustion controls<br>(EPA 2002b). Like SNCR, SCR is based on the chemical reduction of the NOX molecule. The primary difference between SNCR and SCR is that SCR<br>uses a metal-based catalyst to increase the rate of reaction (EPA 2002b). A nitrogen based reducing reagent, such as ammonia or urea, is injected<br>into the flue gas. The reagent reacts selectively with the flue gas NOx within a specific temperature range and in the presence of the catalyst and<br>oxygen to reduce the NOx.                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                |
|                 |                                      |                                 |                               |         |                                                  |                                | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency and the lower and broader temperature ranges. However, the decrease in reaction temperature and increase in efficiency is accompanied by a significant increase in capital and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or anhydrous ammonia as the reagent. Anhydrous ammonia is a gas at atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to increase surface area (EPA 2002b).                                                                                                                     |                                                                                                                |
|                 |                                      |                                 |                               |         |                                                  |                                | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected reagent and the combustion gases; uncontrolled NOx concentration level; molar ratio of injected reagent to uncontrolled NOx; ammonia slip; catalyst activity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deactivation; and catalyst management (EPA 2001).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |

| Sector          | Source Category                                                                             | Control Measure<br>Abbreviation | Emission Reduction Measure    | Control<br>Efficiency | Cost Effectiveness (2018\$/ton<br>(%) reduced) | Other Pollutants<br>Controlled | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | References                                                                  |
|-----------------|---------------------------------------------------------------------------------------------|---------------------------------|-------------------------------|-----------------------|------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| NonEGU<br>Point | Iron & Steel Mills -<br>Annealing2                                                          | NSCRISAN                        | Selective Catalytic Reduction | 90                    | \$7,618                                        |                                | This control is the selective catalytic reduction of NOx through add-on controls. SCR controls are post-combustion control technologies based on<br>the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the<br>NOx removal efficiency, which allows the process to occur at lower temperatures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pechan 1998a, EPA<br>1993a, EPA 2002b, EPA<br>2007a, EPA 2007g, EPA<br>2001 |
|                 |                                                                                             |                                 |                               |                       |                                                |                                | Applies to iron and steel annealing operations with NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2001                                                                        |
|                 |                                                                                             |                                 |                               |                       |                                                |                                | Selective Catalytic Reduction (SCR) has been widely applied to stationary source, fossil fuel-fired, combustion units for emission control since the<br>early 1970s. SCR is typically implemented on units requiring a higher level of NOx control than achievable by SNCR or other combustion controls<br>(EPA 2020b). Like SNCR, SCR is based on the chemical reduction of the NOX molecule. The primary difference between SNCR and SCR is that SCR<br>uses a metal-based catalyst to increase the rate of reaction (EPA 2002b). A nitrogen based reducing reagent, such as ammonia or urea, is injected<br>into the flue gas. The reagent reacts selectively with the flue gas NOx within a specific temperature range and in the presence of the catalyst and<br>oxygen to reduce the NOx.                                                                                                                                                                                                                                   |                                                                             |
|                 |                                                                                             |                                 |                               |                       |                                                |                                | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency is accompanied by a significant increase in capital and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or anhydrous ammonia as the reagent. Anhydrous ammonia is a gas at atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to increase surface area (EPA 2002b).                                                                                     |                                                                             |
|                 |                                                                                             |                                 |                               |                       |                                                |                                | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of<br>reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected<br>reagent and the combustion gases; uncontrolled NOx concentration level; molar ratio of injected reagent to uncontrolled NOx concentration level; molar ratio of injected reagent and NOx; ammonia slip;<br>catalyst activity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deactivation; and catalyst management (EPA 2001).                                                                                                                                                                                                                                                                                                                                                         |                                                                             |
| NonEGU<br>Point | Iron & Steel - In-Process<br>Combustion -<br>Bituminous Coal                                | NSCRISIPCC                      | Selective Catalytic Reduction | 90                    | \$4,377                                        |                                | This control is the selective catalytic reduction of NOx through add-on controls. SCR controls are post-combustion control technologies based on the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the NOx removal efficiency, which allows the process to occur at lower temperatures. This control is applicable to operations with in-process combustion (Bituminous Coal) in the Iron & Steel industry with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EPA 2007a, EPA 2010b                                                        |
| NonEGU<br>Point | Iron & Steel - In-Process<br>Combustion - Natural Gas<br>and Process Gas - Coke<br>Oven Gas |                                 | Selective Catalytic Reduction | 90                    | \$7,161                                        |                                | This control is the selective catalytic reduction of N0x through add-on controls. SCR controls are post-combustion control technologies based on the chemical reduction of nitrogen oxides (N0x) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the N0x removal efficiency, which allows the process to occur at lower temperatures. This control is applicable to operations with in-process combustion (Natural Gas and Process Gas- Coke Oven Gas) in the Iron & Steel industry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPA 2007a, EPA 2010b                                                        |
| NonEGU<br>Point | Iron & Steel - In-Process<br>Combustion - Residual<br>Oil                                   | NSCRISIPCO                      | Selective Catalytic Reduction | 90                    | \$6,446                                        |                                | This control is the selective catalytic reduction of NOx through add-on controls. SCR controls are post-combustion control technologies based on the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the NOx removal efficiency, which allows the process to occur at lower temperatures. This control is applicable to operations with in-process combustion (Residual Oil) in the Iron & Steel industry with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EPA 2007a, EPA 2010b                                                        |
| NonEGU<br>Point | Nitric Acid<br>Manufacturing2                                                               | NSCRNAMF                        | Selective Catalytic Reduction | 90                    | \$1,174                                        |                                | This control is the selective catalytic reduction of NOx through add-on controls. SCR controls are post-combustion control technologies based on<br>the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the<br>NOx removal efficiency, which allows the process to occur at lower temperatures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pechan 1998a, EPA 1991,<br>EPA 2002b, EPA 2007a,<br>EPA 2007g, EPA 2001     |
|                 |                                                                                             |                                 |                               |                       |                                                |                                | Applies to nitric acid manufacturing operations with NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             |
|                 |                                                                                             |                                 |                               |                       |                                                |                                | Selective Catalytic Reduction (SCR) has been widely applied to stationary source, fossil fuel-fired, combustion units for emission control since the<br>early 1970s. SCR is typically implemented on units requiring a higher level of NOx control than achievable by SNCK or other combustion controls<br>(EPA 2002b). Like SNCR, SCR is based on the chemical reduction of the NOX molecule. The primary difference between SNCR and SCR is that SCR<br>uses a metal-based catalyst to increase the rate of reaction (EPA 2002b). A nitrogen based reducing reagent, such as ammonia or urea, is injected<br>into the flue gas. The reagent reacts selectively with the flue gas NOx within a specific temperature range and in the presence of the catalyst and<br>oxygen to reduce the NOx.                                                                                                                                                                                                                                   |                                                                             |
|                 |                                                                                             |                                 |                               |                       |                                                |                                | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency and the lower and broader temperature ranges. However, the decrease in reaction temperature and increase in efficiency is accompanied by a significant increase in capital and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or anhydrous ammonia is a gas at atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia is it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase with a support structure. Nost catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to increase surface area (EPA 2002b). |                                                                             |
|                 |                                                                                             |                                 |                               |                       |                                                |                                | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected reagent and the combustion gases; uncontrolled NOx concentration level; molar ratio of injected reagent to uncontrolled NOx; ammonia slip; catalyst activity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deactivation; and catalyst management (EPA 2001).                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             |

| Sector          | Source Category                   | Control Measure<br>Abbreviation | Emission Reduction Measure                           | Control | Cost Effectiveness (2018\$/ton                                              | Other Pollutants<br>Controlled | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | References                                                                                                    |
|-----------------|-----------------------------------|---------------------------------|------------------------------------------------------|---------|-----------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| NonEGU<br>Point | Gas Turbines - Natural<br>Gas     | NSCRSGTNG                       | Selective Catalytic Reduction<br>and Steam Injection | 95      | Teuteury<br>DC > 26 MW: \$824<br>DC < 26 MW: \$3,716<br>DC < 26 MW: \$1,995 | Controlled                     | This control is the selective catalytic reduction of N0x through add-on controls. SCR controls are post-combustion control technologies based on<br>the chemical reduction of nitrogen oxides (N0x) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the<br>NOx removal efficiency, which allows the process to occur at lower temperatures. Selective Catalytic Reduction (SCR) has been widely applied to<br>stationary source, fossi flech-fred, combustion units for emission control since the early 1970s. SCR is typically implemented on units requiring a<br>higher level of NOx control than achievable by SNCR or other combustion controls (EPA 2002b). Like SNCR, SCR is based on the chemical reduction<br>of the N0x molecule. The primary difference between SNCR and SCR is that SCR uses a metal-based catalyst to increase the rate of reaction (EPA<br>2002b). An itrogen based reducing reagent, such as ammonia or urea, is injected into the flue gas. The reagent reacts selectively with the flue gas<br>NOx within a specific temperature range and in the presence of the catalyst and oxygen to reduce the NOx. | Pechan 1998a, EPA<br>2002b, EPA 1993b, EPA<br>2010c, DOE 1999,<br>EmeraChem Power 2008,<br>EPA 2018, RTI 2014 |
|                 |                                   |                                 |                                                      |         |                                                                             |                                | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency is adjust companied by a significant increase in capital and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or anhydrous ammonia as the reagent. Anhydrous ammonia is a gas at atmospheric pressure and normal temperatures are safety issues with the use of anhydrous ammonia is it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored stored start of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to increase surface area (EPA 2002b).   |                                                                                                               |
|                 |                                   |                                 |                                                      |         |                                                                             |                                | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of<br>reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected<br>reagent and the combustion gases; uncontrolled NOX concentration level; molar ratio of injected reagent to uncontrolled NOX, ammonia slip;<br>catalyst activity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deactivation; and catalyst management (EPA 2001).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                               |
|                 |                                   |                                 |                                                      |         |                                                                             |                                | This control applies to natural gas fired turbines with NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                               |
| NonEGU<br>Point | Space Heaters - Distillate<br>Oil | NSCRSHDO                        | Selective Catalytic Reduction                        | 80      | NOX < 365 tpy: \$4,821<br>NOX > 365 tpy: \$2,619                            |                                | This control is the selective catalytic reduction of NOx through add-on controls. SCR controls are post-combustion control technologies based on<br>the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). The SCR utilizes a catalyst to increase the<br>NOx removal efficiency, which allows the process to occur at lower temperatures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pechan 1998a, EPA<br>1994d, EPA 2001                                                                          |
|                 |                                   |                                 |                                                      |         |                                                                             |                                | Applies to distillate oil-fired space heaters with NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                               |
|                 |                                   |                                 |                                                      |         |                                                                             |                                | Selective Catalytic Reduction (SCR) has been widely applied to stationary source, fossil fuel-fired, combustion units for emission control since the<br>early 1970s. SCR is typically implemented on units requiring a higher level of NOx control than achievable by SNCR or other combustion controls<br>(EPA 2002b). Like SNCR, SCR is based on the chemical reduction of the NOx molecule. The primary difference between SNCR and SCR is that SCR<br>uses a metal-based catalyst to increase the rate of reaction (EPA 2002b). A nitrogen based reducing reagent, such as ammonia or urea, is injected<br>into the flue gas. The reagent reacts selectively with the flue gas NOx within a specific temperature range and in the presence of the catalyst and<br>oxygen to reduce the NOx.                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                               |
|                 |                                   |                                 |                                                      |         |                                                                             |                                | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency is accompanied by a significant increase in capital and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or anhydrous ammonia as the reagent. Anhydrous ammonia is a gas at atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to increase surface area (EPA 2002b).                                                                                                                                                                                                                                          |                                                                                                               |
|                 |                                   |                                 |                                                      |         |                                                                             |                                | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of<br>reduction include: reaction temperature range; residence time available in the optimum temperature range, degree of mixing between the injected<br>reagent and the combustion gases; uncontrolled NOX concentration level; molar ratio of injected reagent to uncontrolled NOX, amounda slip;<br>catalyst activity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deactivation; and catalyst management (EPA 2001).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                               |
| NonEGU<br>Point | Space Heaters - Natural<br>Gas    | NSCRSHNG                        | Selective Catalytic Reduction                        | 80      | NOX < 365 tpy: \$4,960<br>NOX > 365 tpy: \$2,098                            |                                | This control is the selective catalytic reduction of N0x through add-on controls. SCR controls are post-combustion control technologies based on<br>the chemical reduction of nitrogen oxides (N0x) into molecular nitrogen (N2) and water vapor (H20). The SCR utilizes a catalyst to increase the<br>N0x removal efficiency, which allows the process to occur at lower temperatures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pechan 1998a, EPA<br>1994d, EPA 2001                                                                          |
|                 |                                   |                                 |                                                      |         |                                                                             |                                | Applies to natural gas fired space heaters with NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                               |
|                 |                                   |                                 |                                                      |         |                                                                             |                                | Selective Catalytic Reduction (SCR) has been widely applied to stationary source, fossil fuel-fired, combustion units for emission control since the<br>early 1970s. SCR is typically implemented on units requiring a higher level of NOx control than achievable by SNCR or other combustion controls<br>(EPA 2002b). Like SNCR, SCR is based on the chemical reduction of the NOX molecule. The primary difference between SNCR and SCR is that SCR<br>uses a metal-based catalyst to increase the rate of reaction (EPA 2002b). A nitrogen based reducing reagent, such as ammonia or urea, is injected<br>into the flue gas. The reagent reacts selectively with the flue gas NOx within a specific temperature range and in the presence of the catalyst and<br>oxygen to reduce the NOx.                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                               |
|                 |                                   |                                 |                                                      |         |                                                                             |                                | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency is advantages of the SCR process over SNCR, the higher NOx reduction efficiency is asignificant increase in capital and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or anhydrous ammonia as the reagent. Anhydrous ammonia is a gas at atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to increase surface area (EPA 2002b).                                                                                                                                                                          |                                                                                                               |
|                 |                                   |                                 |                                                      |         |                                                                             |                                | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of reduction include: reaction temperature range; residence time available in the optimum temperature range, degree of mixing between the injected reagent and the combustion gases; uncontrolled NOx concentration level; molar ratio of injected reagent and NOx; annonia slip; catalyst activity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deactivation; and catalyst management (EPA 2001).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |

|                  |                                             | Control Measure |                                                      | Control       | Cost Effectiveness (2018\$/ton                                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                         |
|------------------|---------------------------------------------|-----------------|------------------------------------------------------|---------------|-------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Sector<br>NonEGU | Source Category                             | Abbreviation    | Emission Reduction Measure                           | Efficiency (% |                                                                   | Controlled | Description/Notes/Caveats This control is the selective catalytic reduction of NOx through add-on controls in combination with water injection. SCR controls are post-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | References                                                                              |
| Point            | Gas Turbines - Natural<br>Gas               | NSCRWGTNG       | Selective Catalytic Reduction<br>and Water Injection | 94.1          | DC > 26 MW: \$1,547<br>DC < 26 MW: \$4,034<br>DC < 26 MW: \$1,981 |            | This control is the selective catarytic reduction of NOx through add-on controls in combination with water injection. SLK controls are post-<br>combustion control technologies based on the chemical reduction of nitrogen oxides (NOX) into molecular nitrogen (N2) and water vapor (H2O).<br>The SCR utilizes a catalyst to increase the NOx removal efficiency, which allows the process to occur at lower temperatures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pechan 1998a, EPA<br>2002b, EPA 1993b, EPA<br>2010c, DOE 1999,<br>EmeraChem Power 2008. |
|                  |                                             |                 |                                                      |               |                                                                   |            | This control applies to natural gas-fired gas turbines with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EPA 2008d, EPA 2018,<br>RTI 2014                                                        |
|                  |                                             |                 |                                                      |               |                                                                   |            | Selective Catalytic Reduction (SCR) has been widely applied to stationary source, fossil fuel-fired, combustion units for emission control since the<br>early 1970s. SCR is typically implemented on units requiring a higher level of NOx control than achievable by SNCR or other combustion controls<br>(EPA 2002b). Lide SNCR, SCR is based on the chemical reduction of the NOX molecule. The primary difference between SNCR and SCR is that SCR<br>uses a metal-based catalyst to increase the rate of reaction (EPA 2002b). A nitrogen based reducing reagent, such as ammonia or urea, is injected<br>into the flue gas. The reagent reacts selectively with the flue gas NOx within a specific temperature range and in the presence of the catalyst and<br>oxygen to reduce the NOx.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | K112014                                                                                 |
|                  |                                             |                 |                                                      |               |                                                                   |            | The use of a catalyst results in two advantages of the SCR process over SNCR, the higher NOx reduction efficiency and the lower and broader temperature ranges. However, the decrease in reaction temperature and increase in efficiency is accompanied by a significant increase in capital and operating costs (EPA 2002b). The cost increase is due to the large amount of catalyst required. The SCR system can utilize either aqueous or anhydrous ammonia as the reagent. Anhydrous ammonia is a gas at atmostheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Today, catalyst formulations include single component, multi-component, or active phase with a support structure. Most catalyst formulations contain additional compounds or supports, providing thermal and structural stability or to increase surface area (EPA 2002b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |
|                  |                                             |                 |                                                      |               |                                                                   |            | The rate of reaction determines the amount of NOx removed from the flue gas. The important design and operational factors that affect the rate of reduction include: reaction temperature range; residence time available in the optimum temperature range; degree of mixing between the injected reagent and the combustion gases; uncontrolled NOx concentration level; molar ratio of injected reagent to uncontrolled NOx; ammonia slip; catalyst activity; catalyst selectivity; pressure drop across the catalyst; catalyst pitch; catalyst deactivation; and catalyst management (EPA 2001).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |
| NonEGU<br>Point  | Cement Manufacturing -<br>Dry               | NSNCNCMDY       | Selective Non-Catalytic<br>Reduction - Ammonia       | 50            | \$1,474                                                           |            | This control is the reduction of NOx emission through ammonia based selective non-catalytic reduction add-on controls. SNCR controls are post-<br>combustion control technologies based on the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O).<br>SNCR is the reduction of NOx in flue gas to N2 and water vapor. This reduction is done with a nitrogen based reducing reagent, such as ammonia or<br>urea. The reagent can react with a number of flue gas components. However, the NOx reduction reaction is favored for a specific temperature range<br>and in the presence of oxygen (EPA 2002b). Both ammonia and urea are used as reagents. The cost of the reagent represents a large part of the<br>annual costs of an SNCR system. Ammonia is generally less expensive than urea. However, the choice of reagent is also based on physical propertie<br>and operational considerations (EPA 2002b). Ammonia can be utilized in either aqueous or anhydrous form. Anhydrous ammonia is a gas at<br>atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous form. Anhydrous ammonia is a gas at<br>atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored<br>under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Urea based<br>systems have several advantages, including several safety aspects. Urea is a nontoxic, less volatile liquid that can be stored and handled more safely<br>than ammonia. Urea solution droplets can penetrate farther into the flue gas when nijected into the boiler, enhancing mixing (EPA 2002b). Because<br>of these advantages, urea is more commonly used than ammonia in large boiler applications.                                                                                                                                           |                                                                                         |
| NonEGU<br>Point  | In-Process; Bituminous<br>Coal; Cement Kiln | NSNCRBCCK       | Selective Non-Catalytic<br>Reduction                 | 50            | \$1,335                                                           |            | This control applies to dry-process cement manufacturing operations with uncontrolled NOx emissions greater than 10 tons per year.<br>This control is the reduction of NOx emission through selective non-catalytic reduction add-on controls. SNCR controls are post-combustion<br>control technologies based on the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor. This reduction is done with a nitrogen based reducing reagent, such as ammonia or urea. The<br>reduction of NOx in flue gas to N2 and water vapor. This reduction is done with a nitrogen based reducing reagent, such as ammonia or urea. The<br>reagent can react with a number of flue gas components. However, the NOx reduction reaction is favored for a specific temperature range and in the<br>presence of oxygen (EPA 2002b). Both ammonia and urea are used as reagents. The cost of the reagent represents a large part of the annual costs of<br>an SNCR system. Anmonia is generally less expensive than urea. However, the choice of reagent is also based on physical properties and<br>operational considerations (EPA 2002b). Ammonia can be utilized in either aqueous or anhydrous form. Anhydrous ammonia is a gas at<br>atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored<br>under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Urea based<br>systems have several advantages, including several safety aspects. Urea is a nontoxic, less volatile liquid that can be stored and handled more safely<br>than ammonia. Urea solution droplets can penetrate farther into the flue gas when injected into the boiler, enhancing mixing (EPA 2002b). Because<br>of these advantages, urea is more commonly used than ammonia in large boiler applications.                                                                                |                                                                                         |
| NonEGU<br>Point  | In-Process Fuel<br>Use;Bituminous Coal; Ger | NSNCRBCGN<br>a  | Selective Non-Catalytic<br>Reduction                 | 40            | NOX < 365 tpy: \$2,185<br>NOX > 365 tpy: \$1,630                  |            | This control applies to bituminous coal-fired cement kilns with uncontrolled NOx emissions greater than 10 tons per year.<br>This control is the reduction of NOx emission through selective non-catalytic reduction add-on controls. SNCR controls are post-combustion<br>control technologies based on the chemical reduction of nitrogen oxides (NO <sub>x</sub> ) into molecular nitrogen (N2) and water yapor. (H2O). SNCR is the<br>reduction of NOx in flue gas to N2 and water yapor. This reduction is done with a nitrogen based reducing reagent, such as ammonia or urea. The<br>reagent can react with a number of flue gas components. However, the NOx reduction reaction is favored for a specific temperature range and in the<br>presence of oxygen (EPA 2002b). Both ammonia and urea are used as reagents. The cost of the reagent represents a large part of the annual costs of<br>an SNCR system. Ammonia is generally less expensive than urea. However, the choice of reagent is also based on physical properties and<br>operational considerations (EPA 2002b). Aumonia can be utilized in either aqueous or anhydrous form. Anhydrous ammonia is a gas at<br>atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored and<br>under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at concentration of 29.4% ammonia in water. Urea based<br>systems have several advantages, including several safety aspects. Urea is a nontoxic, less volatile liquid that can be stored and handled more safely<br>than ammonia. Urea solution droplets can penetrate farther into the flue gas when injected into the boller, enhancing mixing (EPA 2002b). Because<br>of these advantages, urea is more commonly used than ammonia in arge bielier applications.<br>This control applies to operations with general (in process) bituminous coal use and uncontrolled NOx emissions greater than 10 tons per year. |                                                                                         |

| Sector          | Source Category                                | Control Measure<br>Abbreviation | Emission Reduction Measure           | Control<br>Efficiency (% | Cost Effectiveness (2018\$/ton<br>) reduced) | Other Pollutants<br>Controlled | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | References                                            |
|-----------------|------------------------------------------------|---------------------------------|--------------------------------------|--------------------------|----------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| NonEGU<br>Point | In-Process, Bituminous<br>Coal; Lime Kiln      | NSNCRBCLK                       | Selective Non-Catalytic<br>Reduction | 50                       | \$1,335                                      |                                | This control is the reduction of NOx emission through selective non-catalytic reduction add-on controls. SNCR controls are post-combustion<br>control technologies based on the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). SNCR is the<br>reduction of NOx in flue gas to N2 and water vapor. This reduction is done with a nitrogen based reducing reagent, such as ammonia or urea. The<br>reagent can react with a number of flue gas components. However, the NOx reduction reaction is forwored for a specific temperature range and in the<br>presence of oxygen (EPA 2002b). Both ammonia and urea are used as reagents. The cost of the reagent represents a large part of the annual costs of<br>an SNCR system. Ammonia is generally less expensive than urea. However, the choice of reagent is also based on physical properties and<br>operational considerations (EPA 2002b). Annumonia can be utilized in either aqueous or anhydrous form. Anhydrous ammonia is age as at<br>atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored<br>under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Urea based<br>systems have several advantages, including several safety aspects. Urea is a nontoxic, less volatile liquid that can be stored and handled more safely<br>than ammonia. Urea solution droplets can penetrate farther into the flue gas when injected into the boiler, enhancing mixing (EPA 2002b). Because<br>of these advantages, urea is more commonly used than ammonia in large boiler applications.                                                                                                                      | Pechan 1998a, EPA<br>2002b, EPA 1994b,<br>Pechan 2006 |
| NonEGU<br>Point | Comm./Inst. Incinerators                       | NSNCRCIIN                       | Selective Non-Catalytic<br>Reduction | 45                       | \$1,960                                      |                                | This control applies to bituminous coal-fired lime kilns with uncontrolled NOx emissions greater than 10 tons per year.<br>This control is the reduction of NOx emission through selective non-catalytic reduction add-on controls. SNCR controls are post-combustion<br>control technologies based on the chemical reduction of nitrogen oxides (NOX) into molecular nitrogen (N2) and water vapor (H2O). SNCR is the<br>reduction of NOx in flue gas to N2 and water vapor. This reduction is done with a nitrogen based reducing reagent, such as ammonia or urea. The<br>reagent can react with a number of flue gas components. However, the NOx erduction reaction is favored for a specific temperature range and in the<br>presence of oxygen (EPA 2002b). Both ammonia and urea are used as reagents. The cost of the reagent represents a large part of the annual costs of<br>an SNCR system. Ammonia is generally less expensive than urea. However, the choice of reagent is also based on physical properties and<br>operational considerations (EPA 2002b). Ammonia can be utilized in either aqueous or anhydrous form. Anhydrous ammonia is a gas at<br>atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored<br>under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at concentration of 29.4% ammonia in water. Urea based<br>systems have several advantages, including several safety aspects. Urea is a nontoxic, less volatile liquid that can be stored and handled more safely<br>than ammonia. Urea solution droplets can penetrate farther into the flue gas when injected into the boiler, enhancing mixing (EPA 2002b). Because<br>of these advantages, urea is more commonly used than ammonia in large boiler applications. | Pechan 1998a, EPA<br>2002b, Radian 1994               |
| NonEGU<br>Point | Cement Manufacturing -<br>Dry                  | NSNCRCMDY                       | Selective Non-Catalytic<br>Reduction | 50                       | \$1,335                                      |                                | This control applies to commercial/institutional incinerators with uncontrolled NOx emissions greater than 10 tons per year.<br>This control is the reduction of NOx emission through urea based selective non-catalytic reduction add-on controls. SNCR controls are post-<br>combustion control technologies based on the chemical reduction of nitrogen oxiza (NOX) into molecular nitrogen (N2) and water vapor (H2O).<br>SNCR is the reduction of NOx in flue gas to N2 and water vapor. This reduction is done with a nitrogen based reducing reagent, such as ammonia or<br>urea. The reagent can react with a number of flue gas components. However, the NOx reduction is favored for a specific temperature range<br>and in the presence of oxygen (EPA 2002b). Urea based systems have several advantages, including several safety aspects. Urea is a nontoxic, less<br>volatile liquid that can be stored and handled more safely than ammonia. Urea solution droplets can penetrate farther into the flue gas when<br>injected into the boiler, enhancing mixing (EPA 2002b). Because of these advantages, urea is more commonly used than ammonia in large boiler<br>applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EPA 2017, EPA 2016b,<br>Pechan 2006                   |
| NonEGU<br>Point | By-Product Coke Mfg;<br>Oven Underfiring       | NSNCRCMOU                       | Selective Non-Catalytic<br>Reduction | 60                       | \$2,844                                      |                                | This control applies to dry-process cement manufacturing with uncontrolled NOx emissions greater than 10 tons per year.<br>This control is the reduction of NOx emission through selective non-catalytic reduction add-on controls. SNCR controls are post-combustion<br>control technologies based on the chemical reduction of nitrogen oxides (NOX) into molecular nitrogen (Xi2) and water vapor. (H2O). SNCR is the<br>reduction of NOX in flue gas to N2 and water vapor. This reduction is done with a nitrogen based reducing reagent, such as ammonia or urea. The<br>reagent can react with a number of flue gas components. However, the NOX reduction reaction is favored for a specific temperature range and in the<br>presence of oxygen (EPA 2002b). Both ammonia and urea are used as reagents. The cost of the reagent represents a large part of the annual costs of<br>an SNCR system. Ammonia is generally less expensive than urea. However, the choice of reagent is also based on physical properties and<br>operational considerations (EPA 2002b). Aqueous ammonia is query lissues with the use of anhydrous ammonia is a gas at<br>atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored at<br>systems have several advantages, including several safety aspects. Urea is a nontoxic, less volatile liquid that can be stored and handled more safely<br>than ammonia. Urea solution droplets can penetrate farther into the flue gas when injected into the boiler, enhancing mixing (EPA 2002b). Because<br>of these advantages, urea is more commonily used than ammonia in large boiler applications.                                                                                                                                                 | Pechan 1998a, EPA 1994e                               |
| NonEGU<br>Point | Cement Manufacturing -<br>Wet                  | NSNCRCMWT                       | Selective Non-Catalytic<br>Reduction | 50                       | \$1,335                                      |                                | This control applies to all by-product coke manufacturing operations with oven underfiring and uncontrolled NOx emissions greater than 10 tons per year.<br>This control is the reduction of NOx emission through urea based selective non-catalytic reduction add-on controls. SNCR controls are post-combustion control technologies based on the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). SNCR is the reduction of NOx in flue gas to N2 and water vapor. This reduction is done with a nitrogen based reducing reagent, such as ammonia or urea. The reagent can react with a number of flue gas components. However, the NOx reduction reaction is favored for a specific temperature range and in the presence of oxygen (EPA 2002b). Urea based systems have several advantages, including several safety aspects. Urea is an ontoxic, less volatile liquid that can be stored and handled more safely than ammonia. Urea solution droplets can penetrate farther into the flue gas when injected into the boiler, enhancing mixing (EPA 2002b). Because of these advantages, urea is more commonly used than ammonia in large boiler applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EPA 2016b, EPA 2017,<br>Pechan 2006                   |
| NonEGU<br>Point | External Combustion<br>Boilers, Elec Gen, Coal | NSNCRECBC                       | Selective Non-Catalytic<br>Reduction | 40                       | \$1,642                                      |                                | This control applies to wet-process cement manufacturing with uncontrolled NOx emissions greater than 10 tons per year.<br>This control is the reduction of NOx emission through selective non-catalytic reduction add-on controls to wall fired (coal) utility boilers. SNCR controls are post-combustion control technologies based on the chemical reduction of nitrogen oxides (NOX) with a nitrogen based reducing reagent, such as ammonia or urea, to reduce the NOx into molecular nitrogen (N2) and water vapor (H2O). SNCR is the reduction of NOx emission through based reducing reagent, such as ammonia or urea, to reduce the NOx into molecular nitrogen (N2) and water vapor (H2O). SNCR is the reduction of NOx in flue gas to N2 and water vapor. This reduction is done with a nitrogen based reducing reagent, such as ammonia or urea. The reagent can react with a number of flue gas components. However, the NOx reduction reaction is favored for a specific temperature range and in the presence of oxygen (EPA 2002b). Both ammonia and urea are used as reagents. The cost of the reagent represents a large part of the annual costs of an SNCR system. Ammonia is generally less expensive than urea. However, the choice of reagent is also based on physical properties and operational considerations (EPA 2002b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ЕРА 2007Ъ                                             |

| Sector          | Source Category                                                      | Control Measure<br>Abbreviation | Emission Reduction Measur            | Control<br>e Efficiency (% | Cost Effectiveness (2018\$/ton<br>) reduced)     | Other Pollutants<br>Controlled | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | References                                                                                                      |
|-----------------|----------------------------------------------------------------------|---------------------------------|--------------------------------------|----------------------------|--------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| NonEGU<br>Point | External Combustion<br>Boilers, Elec Gen, Dis Oil                    | NSNCRECBDO                      | Selective Non-Catalytic<br>Reduction | 50                         | \$5,838                                          | conconcu                       | This control is the reduction of NOx emission through selective non-catalytic reduction add-on controls to wall fired (coal) utility boilers. SNCR<br>controls are post-combustion control technologies based on the chemical reduction of nitrogen oxides (NOX) with a nitrogen based reducing<br>reagent, such as ammonia or urea, to reduce the NOx into molecular nitrogen (N2) and water vapor (H2O). SNCR is the reduction of NOx in flue gas<br>to N2 and water vapor. This reduction is done with a nitrogen based reducing reagent, such as ammonia or urea. The reagent can react with a<br>number of flue gas components. However, the NOx reduction reaction is favored for a specific temperature range and in the presence of oxygen<br>(EPA 2002b). Both ammonia and urea are used as reagents. The cost of the reagent represents a large part of the annual costs of an SNCR system.<br>Ammonia is generally less expensive than urea. However, the choice of reagent is also based on physical properties and operational considerations<br>(EPA 2002b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 2007b                                                                                                       |
|                 |                                                                      |                                 |                                      |                            |                                                  |                                | This control applies to distillate oil external combustion boilers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 |
| NonEGU<br>Point | External Combustion<br>Boilers, Elec Gen, Res Oil<br>and Solid Waste | NSNCRECBROSW                    | Selective Non-Catalytic<br>Reduction | 50                         | \$3,231                                          |                                | This control is the use of selective non-catalytic reduction add-on controls to wall fired (oil/gas) utility boilers for the reduction of NOx emissions.<br>SNCR controls are post-combustion control technologies based on the chemical reduction of nitrogen oxides (NOx) with a nitrogen based reducing<br>reagent, such as ammonia or urea, to reduce the NOx into molecular nitrogen (N2) and water vapor (H2O). SNCR is the reduction of NOx in flue gas<br>to N2 and water vapor. This reduction is done with a nitrogen based reducing reagent, such as ammonia or urea. The reagent can react with a<br>number of flue gas components. However, the NOX reduction reaction is favored for a specific temperature range and in the presence of oxygen<br>(EPA 2002b). Both ammonia and urea are used as reagents. The cost of the reagent represents a large part of the annual costs of an SNCR system.<br>Ammonia is generally less expensive than urea. However, the choice of reagent is also based on physical properties and operational considerations<br>(EPA 2002b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ЕРА 2007Ь                                                                                                       |
| NonEGU<br>Point | Ammonia - NG-Fired<br>Reformers                                      | NSNCRFRNG                       | Selective Non-Catalytic<br>Reduction | 50                         | NOX + 365 tpy: \$6,711<br>NOX > 365 tpy: \$2,723 |                                | This control is the reduction of NOx emission through selective non-catalytic reduction add-on controls. SNCR controls are post-combustion<br>control technologies based on the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). SNCR is the<br>reduction of NOx in flue gas to N2 and water vapor. This reduction is down with a nitrogen based reducing reagent, such as amonia or urea. The<br>reagent can react with a number of flue gas components. However, the NOx reduction reaction is favored for a specific temperature range and in the<br>presence of oxygen (EPA 2002b). Both ammonia and urea are used as reagents. The cost of the reagent represents a large part of the annual costs of<br>an SNCR system. Ammonia is generally less expensive than urea. However, the choice of reagent is also based on physical properties and<br>operational considerations (EPA 2002b). Antonia can be utilized in either aqueous or anhydrous form. Anhydrous ammonia is ag as at<br>atmospheric pressure (EPA 2002b). Aqueous ammonia is generally transported and stored and stored<br>under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Urea based<br>systems have several advantages, including several safety aspects. Urea is a nontoxic, less volatile liquid that can be stored and handled more safely<br>than ammonia. Urea solution droplets can penetrate frather into the flue gas when injected into the boiler, enhancing mixing (EPA 2002b). Because<br>of these advantages, urea is more commonly used than ammonia in large boiler applications.                                                                                                                                                              | Pechan 1998a, EPA<br>2002b, EPA 1994d                                                                           |
|                 |                                                                      |                                 |                                      |                            |                                                  |                                | This control applies to ammonia production natural gas fired reformers with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |
| NonEGU<br>Point | Ammonia - Oil-Fired<br>Reformers                                     | NSNCRFROL                       | Selective Non-Catalytic<br>Reduction | 50                         | NOX < 365 tpy: \$4,474<br>NOX > 365 tpy: \$1,821 |                                | This control is the reduction of NOx emission through selective non-catalytic reduction add-on controls. SNCR controls are post-combustion<br>control technologies based on the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). SNCR is the<br>reduction of NOx in flue gas to N2 and water vapor. This reduction is done with a nitrogen based reducing reagent, such as ammonia or urea. The<br>reagent can react with a number of flue gas components. However, the NOx reduction reaction is forvered for a specific temperature range and in the<br>presence of oxygen (EPA 2002b). Both ammonia and urea are used as reagents. The cost of the reagent represents a large part of the annual costs of<br>an SNCR system. Ammonia is generally less expensive than urea. However, the choice of reagent is also based on physical properties and<br>operational considerations (EPA 2002b). Annmonia can be utilized in either aqueous or anhydrous form. Anhydrous ammonia is a gas at<br>atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored<br>under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Urea based<br>systems have several advantages, including several safety aspects. Urea is a nontoxic, less volatile liquid that can be stored and handled more safely<br>than ammonia. Urea solution droplets can penetrate farther into the flue gas when nijected into the boiler, enhancing mixing (EPA 2002b). Because<br>of these advantages, urea is more commonly used than ammonia in large boiler applications.                                                                                                              | Pechan 2006                                                                                                     |
|                 |                                                                      |                                 |                                      |                            |                                                  |                                | This control applies to ammonia production natural gas fired reformers with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |
| NonEGU<br>Point | ICI Boilers - Coal                                                   | NSNCRICBC                       | Selective Non-Catalytic<br>Reduction | 35                         | \$8,410                                          |                                | This control is the reduction of NOx emission through selective non-catalytic reduction add-on controls. SNCR controls are post-combustion<br>control technologies based on the chemical reduction of nitrogen oxides (NOX) into molecular nitrogen (XI2) and water vapor (H2O). SNCR is the<br>reduction of NOx in flue gas to N2 and water vapor. This reduction is done with a nitrogen based reducing reagent, such as ammonia or urea. The<br>reagent can react with a number of flue gas components. However, the NOx reduction reaction is favored for a specific temperature range and in the<br>presence of oxygen (EPA 2002b). SNCR operates in the upper furnce region of the boiler at a temperature between 1600 to 2100 F (MACTEC<br>2005b). Both ammonia and urea are used as reagents. The cost of the reagent represents a large part of the annual costs of an SNCR System.<br>Ammonia is generally less expensive than urea. However, the choice of reagent is also based on physical properties and operational considerations<br>(EPA 2002b). Ammonia can be utilized in either aqueous or anhydrous form. Anhydrous ammonia is age as at atmospheric pressure and normal<br>temperatures. There are safety issues with the use of anhydrous form. Anhydrous ammonia is ages at atmospheric pressure (EPA 2002b).<br>Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Urea based systems have several advantages,<br>including several safety aspects. Urea is a nontoxic, less volatile liquid that can be stored and handled more safely than ammonia. Urea solution<br>droplets can penetrate farther into the flue gas when injected into the boiler, enhancing mixing (EPA 2002b). Because of these advantages, urea is<br>more commonly used than ammonia in large boiler applications. | Bodnarik 2011, MACTEC<br>2005b, EPA 2000e, OTC-<br>LADCO 2010, NESCAUM<br>2009, EPA 2017, EPA<br>2018, ERG 2019 |
|                 |                                                                      |                                 |                                      |                            |                                                  |                                | A SNCR will impose an energy impact on the host boiler. The losses attributable to this technology include: compressor power (air atomization/mixing), steam (if steam atomization/mixing), dry gas loss (air injection into furnace), and water evaporation loss (NESCAUM 2009).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 |

| Sector          | Source Category                                           | Control Measure<br>Abbreviation | Emission Reduction Measure           |    |          | Other Pollutants<br>Controlled | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | References                                                                                                      |
|-----------------|-----------------------------------------------------------|---------------------------------|--------------------------------------|----|----------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| NonEGU<br>Point | ICI Boilers - Gas                                         | NSNCRICBG                       | Selective Non-Catalytic<br>Reduction | 35 | \$11,071 |                                | This control is the reduction of NOx emission through selective non-catalytic reduction add-on controls. SNCR controls are post-combustion<br>control technologies based on the chemical reduction of nitrogen oxides (NOX) into molecular nitrogen (N2) and water vapor (H2O). SNCR is the<br>reduction of NOx in flue gas to N2 and water vapor. This reduction is done with a nitrogen based reducing reagent, such as ammonia or urea. The<br>reagent can react with a number of flue gas components. However, the NOx reduction reaction is favored for a specific temperature range and in the<br>presence of oxygen (EPA 2002b). SNCR operates in the upper furnace region of the boilter at a temperature between 1600 to 2100 F (MACTEC<br>2005b). Both ammonia and urea are used as reagents. The cost of the reagent represents a large part of the annual costs of an SNCR system.<br>Ammonia is generally less expensive than urea. However, the choice of reagent is also based on physical properties and operational considerations<br>(EPA 2002b). Ammonia can be utilized in either aqueous or anhydrous form. Anhydrous ammonia is a gas at atmospheric pressure adh ormal<br>temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored under pressure (EPA 2002b).<br>Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Urea based systems have several advantages,<br>including several safety aspects. Ure ais a nontoxic, less volatile liquid that can be stored and handled more safely than ammonia. Urea solution<br>droplets can penetrate farther into the flue gas when injected into the boiler, enhancing mixing (EPA 2002b). Because of these advantages, urea is<br>more commonly used than ammonia in large boiler. The losses attributable to this technology include: compressor power (air<br>atomization/mixing), stemu (if stema atomization/mixing), dry gas loss (air injection into furnace), and water evaporation loss (NESCAUM 2009). | Bodnarik 2011, MACTEC<br>2005b, EPA 2000e, OTC-<br>LADCO 2010, NESCAUM<br>2009, EPA 2017, EPA<br>2018, ERG 2019 |
| NonEGU<br>Point | ICI Boilers - Oil                                         | NSNCRICBO                       | Selective Non-Catalytic<br>Reduction | 35 | \$9,537  |                                | This control is the reduction of NOx emission through selective non-catalytic reduction add-on controls. SNCR controls are post-combustion control technologies based on the chemical reduction of nitrogen oxides (NOX) into molecular nitrogen (N2) and water vapor (H2O). SNCR is the reduction of NOx in flue gas to N2 and water vapor. This reduction is done with a nitrogen based reducing reagent, such as ammonia or urea. The reagent can react with a number of flue gas components. However, the NOx reduction reaction is favored for a specific temperature range and in the presence of oxygen (EPA 2002b). SNCR operates in the upper furnace region of the boiler at a temperature between 1600 to 2100 F (MACTEC 2005b). Both ammonia and urea are used a reagents. The cost of the reagent can regent perpersues a large part of the annual costs of an SNCR system. Ammonia is generally less expensive than urea. However, the choice of reagent is also based on physical properties and operational considerations (EPA 2002b). There are safety issues with the use of anhydrous ammonia, as it must be transported and stored under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in are. There asefety than ammonia. Urea 304tic at a obticer dand handled more safety than ammonia. Urea 304tic and external safety apacets. Urea is a nontoxic, less volatile liquid that can be stored and handled more safety than ammonia. Urea 304tic applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bodnarik 2011, MACTEC<br>2005b, EPA 2000e, OTC-<br>LADCO 2010, NESCAUM<br>2009, EPA 2017, EPA<br>2018, ERG 2019 |
|                 |                                                           |                                 |                                      |    |          |                                | A SNCR will impose an energy impact on the host boiler. The losses attributable to this technology include: compressor power (air atomization/mixing), steam (if steam atomization/mixing), dry gas loss (air injection into furnace), and water evaporation loss (NESCAUM 2009).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |
| NonEGU<br>Point | Industrial Incinerators,<br>Municipal Waste<br>Combustors | NSNCRIIMWC                      | Selective Non-Catalytic<br>Reduction | 45 | \$1,960  |                                | This control is the reduction of NOx emission through selective non-catalytic reduction add-on controls. SNCR controls are post-combustion<br>control technologies based on the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). SNCR is the<br>reduction of NOx in flue gas to N2 and water vapor. This reduction is done with a nitrogen based reducing reagent, such as ammonia or urea. The<br>reagent can react with a number of flue gas components. However, the NOx reduction reaction is favored for a specific temperature range and in the<br>presence of oxygen (EPA 2002b). Both ammonia and urea are used as reagents. The cost of the reagent represents a large part of the annual costs of<br>an SNCR system. Ammonia is generally less expensive than urea. However, the choice of reagent is also based on physical properties and<br>operational considerations (EPA 2002b). Ammonia can be utilized in either aqueous or anhydrous form. Anhydrous ammonia is ages at<br>atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored<br>under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at concentration of 29.4% ammonia in water. Urea based<br>systems have several advantages, including several safety aspects. Urea is a nontoxic, less volatile liquid that can be stored and handled more safely<br>than ammonia. Urea solution droplets can penetrate farther into the flue gas when injected into the boiler, enhancing mixing (EPA 2002b). Because<br>of these advantages, urea is more commonly used than ammonia in large boiler applications.                                                                                                                                                                                                                                                                                                                                       | Pechan 1998a, EPA<br>2002b, Radian 1994                                                                         |
| NonEGU<br>Point | Iron & Steel Mills -<br>Annealing                         | NSNCRISAN                       | Selective Non-Catalytic<br>Reduction | 60 | \$2,844  |                                | This control applies to industrial incinerators IC boilers with uncontrolled NOx emissions greater than 10 tons per year.<br>This control is the reduction of NOx emission through selective non-catalytic reduction add-on controls. SNCR controls are post-combustion<br>control technologies based on the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor. (H2O) SNCR is the<br>reduction of NOx in flue gas to N2 and water vapor. This reduction is done with a nitrogen based reducing reagent, such as ammonia or urea. The<br>reagent can react with a number of flue gas components. However, the NOx reduction reaction is doneed for a specific temperature range and in the<br>presence of oxygen (EPA 2002b). Both ammonia and urea are used as reagents. The cost of the reagent represents a large part of the annual costs of<br>an SNCR system. Ammonia is generally less expensive than urea. However, the choice of reagent is also based on physical properties and<br>operational considerations (EPA 2002b). Ammonia can builtized in either aqueous or anhydrous ammonia is a gas at<br>atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored and<br>under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Urea based<br>systems have several advantages, including several safety aspects. Urea is a nontoxic, less volatile liquid that can be stored and handled more safely<br>than ammonia. Urea solution droplets can penetrate farther into the flue gas when injected into the boller, enhancing mixing (EPA 2002b). Because<br>of these advantages, urea is more commonly used than ammonia in larger boiler applications.                                                                                                                                                                                                                     | Pechan 1998a, EPA<br>1993a, EPA 1994e, EPA<br>2002b                                                             |
| NonEGU<br>Point | Medical Waste<br>Incinerators                             | NSNCRMWIN                       | Selective Non-Catalytic<br>Reduction | 45 | \$7,821  |                                | This control applies to iron and steel mill annealing operations with uncontrolled NOx emissions greater than 10 tons per year.<br>This control is the reduction of NOx emission through selective non-catalytic reduction add-on controls. SNCR controls are post-combustion<br>control technologies based on the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). SNCR is the<br>reduction of NOx in flue gas to N2 and water vapor. This reduction is done with a nitrogen based reducing reagent, such as ammonia or urea. The<br>reagent can react with a number of flue gas components. However, the NOx reduction reaction is favored for a specific temperature range and in the<br>presence of oxygen (EPA 2002b). Both ammonia and urea are used as reagents. The cost of the reagent represents a large part of the annual costs of<br>an SNCR system. Ammonia is generally tess expensive than urea. However, the choice of reagent is also based on physical properties and<br>operational considerations (EPA 2002b). Ammonia can be utilized in either aqueous or anhydrous form. Anhydrous ammonia is agas at<br>atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored<br>under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at concentration of 29.4% ammonia in water. Urea based<br>systems have several advantages, including several safety aspects. Urea is a nontoxic, less volatile liquid that can be stored and handled more safely<br>than ammonia. Urea solution droplets can penetrate farther into the flue gas when injected into the boiler, enhancing mixing (EPA 2002b). Because<br>of these advantages, urea is more commonly used than ammonia in large boiler applications.<br>This control applies to medical waste incinerators with uncontrolled NOx emissions greater than 10 tons per year.                                                                               | Pechan 1998a, EPA<br>2002b, STAPPA-ALAPCO<br>1994                                                               |

| Sector          | Source Category                         | Control Measure<br>Abbreviation | Emission Reduction Measure           | Control<br>Efficiency (%) | Cost Effectiveness (2018\$/ton<br>) reduced)                                                                                                           | Other Pollutants<br>Controlled | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | References                                 |
|-----------------|-----------------------------------------|---------------------------------|--------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| NonEGU<br>Point | Space Heaters - Distillate<br>Oil       | NSNCRSHDO                       | Selective Non-Catalytic<br>Reduction | 50                        | NOX < 365 tpy: \$8,047<br>NOX > 365 tpy: \$3,278                                                                                                       |                                | This control is the reduction of NOx emission through selective non-catalytic reduction add-on controls. SNCR controls are post-combustion<br>control technologies based on the hemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). SNCR is the<br>reduction of NOx in flue gas to N2 and water vapor. This reduction is done with a nitrogen based reducing reagent, such as ammonia or urea. The<br>reagent can react with a number of flue gas components. However, the NOx reduction reaction is fourored for a specific temperature range and in the<br>presence of oxygen (EPA 2002b). Both ammonia and urea are used as reagents. The cost of the reagent represents a large part of the annual costs of<br>an SNCR system. Ammonia is generally less expensive than urea. However, the choice of reagent is also based on physical properties and<br>operational considerations (EPA 2002b). Annmonia can be utilized in either aqueous or anhydrous form. Anhydrous ammonia is age as at<br>atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored<br>under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Urea based<br>systems have several advantages, including several safety aspects. Urea is a nontoxic, less volatile liquid that can be stored and handled more safely<br>than ammonia. Urea solution droplets can penetrate farther into the flue gas when injected into the bolier, enhancing mixing (EPA 2002b). Because<br>of these advantages, urea is more commonly used than ammonia in large bolier applications. | Pechan 1998a, EPA<br>1994d                 |
|                 |                                         |                                 |                                      |                           |                                                                                                                                                        |                                | This control applies to distillate oil-fired space heaters with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |
| NonEGU<br>Point | Space Heaters - Natural<br>Gas          | NSNURSHING                      | Selective Non-Catalytic<br>Reduction | 50                        | NOX < 365 tpy: \$6,711<br>NOX > 365 tpy: \$2,723                                                                                                       |                                | This control is the reduction of NOx emission through selective non-catalytic reduction add-on control. SNCR controls are post-combustion<br>control technologies based on the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). SNCR is the<br>reduction of NOx in flue gas to N2 and water vapor. This reduction is done with a nitrogen based reducing reagent, such as ammonia or urea. The<br>reagent can react with a number of flue gas components. However, the NOx reduction reaction is favored for a specific temperature range and in the<br>presence of oxygen (EPA 2002b). Both ammonia and urea are used as reagents. The cost of the reagent represents a large part of the annual costs of<br>an SNCR system. Ammonia is generally less expensive than urea. However, the choice of reagent is also based on physical properties and<br>operational considerations (EPA 2002b). Anmonia can be utilized in either aqueous or anhydrous form. Anhydrous ammonia is a gas at<br>atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored<br>under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Urea based<br>systems have several advantages, including several safety safexts. Urea is a nontoxic, less volatile liquid that can be stored and handled more safely<br>than ammonia. Urea solution droplets can penetrate farther into the flue gas when injected into the boiler, enhancing mixing (EPA 2002b). Because<br>of these advantages, urea is more commonly used than ammonia in large boiler applications.    | Pechan 1998a, EPA<br>1994d                 |
| NonEGU          | Solid Waste                             | NSNCRSWIN                       |                                      | 45                        | \$1,960                                                                                                                                                |                                | This control applies to natural gas fired space heaters with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pechan 1998a, EPA                          |
| Point           | Joing Gov/Other<br>Incin;Sludge         | NSICES WIT                      | Selective Non-Catalytic<br>Reduction | 13                        |                                                                                                                                                        |                                | This control is the reduction of NOx emission through selective non-catalytic reduction add-on controls. SNCR controls are post-combustion<br>control technologies based on the chemical reduction of nitrogen oxides (NOx) into molecular nitrogen (N2) and water vapor (H2O). SNCR is the<br>reduction of NOx in flue gas to N2 and water vapor. This reduction is done with a nitrogen based reducing reagent, such as ammonia or urea. The<br>reagent can react with a number of flue gas components. However, the NOx reduction reaction is favored for a specific temperature range and in the<br>presence of oxygen (EPA 2002b). Both ammonia and urea are used as reagents. The cost of the reagent represents a large part of the annual costs of<br>an SNCR system. Ammonia is generally less expensive than urea. However, the choice of reagent is also based on physical properties and<br>operational considerations (EPA 2002b). Annonaia can be utilized in either aqueous or anhydrous form. Anhydrous ammonia is ages at<br>atmospheric pressure and normal temperatures. There are safety issues with the use of anhydrous ammonia, as it must be transported and stored<br>under pressure (EPA 2002b). Aqueous ammonia is generally transported and stored at a concentration of 29.4% ammonia in water. Urea based<br>systems have several advantages, including several safety aspects. Urea is a nontoxic, less volatile liquid that can be stored and handled more safely<br>than ammonia. Urea solution droplets can penetrate farther into the flue gas when injected into the boiler, enhancing mixing (EPA 2002b). Because<br>of these advantages, urea is more commonly used than ammonia in large boiler applications.   | 2002b, Radian 1994                         |
|                 |                                         |                                 |                                      |                           |                                                                                                                                                        |                                | This control applies to solid waste disposal operations with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |
| EGU             | Utility Boiler -<br>Coal/Tangential     | NSNCRUBCTx                      | Selective Non-Catalytic<br>Reduction | 25                        | 25 MW < DC < 99 MW: \$3,470<br>100 MW < DC < 299 MW: \$2,821<br>300 MW < DC < 499 MW: \$2,624<br>500 MW < DC < 699 MW: \$2,546<br>DC > 700 MW: \$2,447 |                                | This control is the use of selective non-catalytic reduction add-on controls to reduce NOx emissions from tangentially coal-fired utility boilers.<br>SNCR controls are post-combustion control technologies based on the chemical reduction of nitrogen oxides (NOx) with a nitrogen based reducing<br>reagent, such as ammonia or urea, to reduce the NOx into molecular nitrogen (N2) and water vapor (H2O). SNCR is the reduction of NOx in flue gas<br>to N2 and water vapor. This reduction is done with a nitrogen based reducing reagent, such as ammonia or urea. The reagent can react with a<br>number of flue gas components. However, the NOx reduction reaction is flavored for a specific temperature range and in the presence of oxygen<br>(EPA 2002b). Both ammonia and urea are used as reagents. The cost of the reagent represents a large part of the annual costs of an SNCR system.<br>Ammonia is generally less expensive than urea. However, the choice of reagent is also based on physical properties and operational considerations<br>(EPA 2002b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |
|                 |                                         |                                 |                                      |                           |                                                                                                                                                        |                                | This control applies to bituminous/subbituminous coal-fired electricity generation sources, including sources with atmospheric fluidized bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            |
| NonEGU          | Gas Turbines - Natural                  | NSTINGTNG                       | Steam Injection                      | 80                        | DC > 26 MW: \$723                                                                                                                                      |                                | combustion.<br>This control is the use of steam injection to reduce NOx emissions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pechan 1998a, ERG 2000,                    |
| Point           | Gas                                     |                                 |                                      |                           | DC < 26 MW: \$2,443<br>DC < 26 MW: \$1,186                                                                                                             |                                | This control applies to small (3.3 MW to 34.4MW) natural gas-fired gas turbines with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EPA 1993b, DOE 1999,<br>EPA 2018, RTI 2014 |
|                 |                                         |                                 |                                      |                           |                                                                                                                                                        |                                | Steam is injected into the gas turbine, reducing the temperatures in the NOx-forming regions. The steam can be injected into the fuel, the<br>combustion air or directly into the combustion chamber (ERG 2000).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |
| NonEGU          | Adipic Acid                             | NTHRDADMF                       | Thermal Reduction                    | 81                        | \$728                                                                                                                                                  |                                | This control is the application of Thermal Reduction controls to Adipic Acid Manufacturing sources to reduce NOx emissions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pechan 2006                                |
| Point<br>NonEGU | Manufacturing<br>Gas Turbines - Natural | NWTINGTNG                       | Water Injection                      | 72                        | DC > 34.4 MW: \$1,055                                                                                                                                  |                                | This control is the use of water injection to reduce NOx emissions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pechan 1998a, ERG 2000,                    |
| Point           | Gas                                     |                                 |                                      |                           | DC < 34.4 MW: \$2,588<br>DC < 34.4 MW: \$1,446                                                                                                         |                                | This control applies to small (3.3 MW to 34.4MW) natural gas-fired gas turbines with uncontrolled NOx emissions greater than 10 tons per year.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EPA 1993b, DOE 1999,<br>EPA 2018, RTI 2014 |
|                 |                                         |                                 |                                      |                           |                                                                                                                                                        |                                | Water is injected into the gas turbine, reducing the temperatures in the NOx-forming regions. The water can be injected into the fuel, the combustion air or directly into the combustion chamber (ERG 2000).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            |

| Conton   | Source Category      | Control Measure<br>Abbreviation | Emission Reduction Measure | Control       | Cost Effectiveness (2018\$/ton |             | Description/Notes/Caveats                                                                                                                            | References          |
|----------|----------------------|---------------------------------|----------------------------|---------------|--------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Sector   |                      |                                 |                            | Efficiency (% |                                |             |                                                                                                                                                      |                     |
| NonPoint | Beef Cattle Feedlots | PCATFWAT                        | Watering                   | 50            | \$532                          | PM2.5 (25%) | Control of fugitive dust emissions from agricultural (cattle) feedlots is most often performed by watering from either stationary sprinklers or from | Pechan 2006, Pechan |
|          |                      |                                 |                            |               |                                |             | water trucks.                                                                                                                                        | 1998x, Peters 1977  |
|          |                      |                                 |                            |               |                                |             |                                                                                                                                                      |                     |
|          |                      |                                 |                            |               |                                |             | This control is applicable to beef cattle feedlots.                                                                                                  |                     |

| Sector          | Source Category                                          | Control Measure<br>Abbreviation | Emission Reduction Measure                    | Control<br>Efficiency ( | Cost Effectiveness (2018\$/ton<br>%) reduced) | Other Pollutants<br>Controlled          | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | References            |
|-----------------|----------------------------------------------------------|---------------------------------|-----------------------------------------------|-------------------------|-----------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| NonPoint        | Small Boilers                                            | PANTUSMBLRxx                    | Annual tune-up at up to 25% RP                |                         | \$7,747                                       |                                         | Annual tune-ups for small boilers at up to 25% RP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HARC 2015, GDIT 2020a |
| NonPoint        | Small Boilers                                            | PAUDSMBLRxx                     | Energy audit at up to 25% RP                  | 15                      | \$12,215                                      |                                         | Energy audits for small boilers at up to 25% RP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HARC 2015, GDIT 2020a |
| NonPoint        | Fireplaces, Hydronic                                     | PBBFPHHWDSxx                    |                                               | 75                      | \$9,995                                       | CO (75%), CO2                           | State and local air quality agencies forecast next day air quality levels. When it is expected to be near or above the 24-hr PM2.5 NAAQS, limited (e.g.,                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |
|                 | Heaters, Wood Stoves                                     |                                 | Ban at up to 25% RP                           |                         |                                               |                                         | wood pellet only) or full curtailment of wood burning is required. A public awareness campaign and enforcement are critical. Assumes up to 25% rule penetration.                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
| NonPoint        | Small Boilers                                            | PBITUSMBLRxx                    | Biennial tune-up at up to 25%<br>RP           | 22                      | \$5,988                                       |                                         | Biennial tune-ups for small boilers at up to 25% RP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HARC 2015, GDIT 2020a |
| Fires           | Household burning                                        | PCHIPHB                         | Substitute chipping for burning               | 50                      | \$5,060                                       |                                         | This control is the adoption of chipping rather than burning for household burning to reduce PM2.5 emissions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 2007x             |
| Fires           | Open burning                                             | PCHIPOB                         | Substitute chipping for burning               | 100                     | \$5,060                                       |                                         | This control is the adoption of chipping rather than burning for open burning to reduce PM2.5 emissions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EPA 2007x             |
| NonPoint        | Commercial Cooking                                       | PCOCHRBxx                       | Catalytic oxidizers at up to 25%<br>RP        | 83                      | \$7,601                                       |                                         | Catalytic oxidizers (up to 25% RP) are the most common control option for conveyor chain driven charbroilers. These controls are not effective<br>with underfired charbroilers, deep fat fryers, griddles or other cooking devices because the temperatures of the exhaust heat are too low to create<br>the catalytic process required.                                                                                                                                                                                                                                                 | HARC 2015, GDIT 2020a |
| NonPoint        | Construction Activities                                  | PCSCONSTxx                      | Chemical Stablizer at up to 25%<br>RP         | 84                      | \$2,845,176                                   |                                         | Apply chemical stabilizers to up to 25% of unpaved roads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HARC 2015, GDIT 2020a |
| NonPoint        | Unpaved Roads                                            | PCSUNPAVEDxx                    | Chemical Stablizer at up to 25%<br>RP         | 84                      | \$31,478                                      |                                         | Apply chemical stabilizers to up to 25% of unpaved roads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HARC 2015, GDIT 2020a |
| NonPoint        | Fireplaces                                               | PCTGLGFPLxx                     | Convert to Gas Logs at up to 25% RP           | 100                     | \$12,146                                      | CO (100%), CO2<br>(100%), VOC<br>(100%) | Incentives by various air districts in CA have helped retrofit thousands of open fireplaces to gas log sets. In addition to vented gas log sets, the option exists to install vented gas stove inserts into a wood-burning fireplace. Unlike gas logs, which provide little heat, a gas stove insert can be an efficient and clean way to a heat a room. The cost per ton of PM2.5 reductions will likely be greater as gas stove inserts cost more than gas log sets. Assumes up to 25% rule penetration.                                                                               | EPA 2013b, GDIT 2020a |
| NonPoint        | Construction Activities                                  | PDCPCONSTxx                     | Dust Control Plan at up to 25%<br>RP          | 25                      | \$379,557                                     |                                         | Dust control plan at up to 25% RP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HARC 2015, GDIT 2020a |
| NonPoint        | Unpaved Roads                                            | PDSUNPAVEDxx                    | Dust Suppressants at up to 25%<br>RP          | 60                      | \$43,612                                      |                                         | Apply dust suppressants to up to 25% of unpaved roads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HARC 2015, GDIT 2020a |
| NonPoint        | Wood Stoves                                              | PECWSWDSTVxx                    | EPA-certified wood stove at up<br>to 25% RP   | 60                      | \$11,374                                      | CO (60%), CO2<br>(60%), VOC (60%)       | Implement a program and provide incentives to replace old uncertified wood stoves with new EPA-certified wood stoves. Education on proper wood stove use (e.g., burn only dry wood) and maintenance is critical. See for more info: http://www.epa.gov/burnwise. Assumes up to 25% rule penetration.                                                                                                                                                                                                                                                                                     | EPA 2013b, GDIT 2020a |
| NonPoint        | Fireplaces                                               | PEP2QUFPLxx                     | EPA Phase 2 Qualified Units at up to 25% RP   | 70                      | \$10,490                                      | CO (70%), CO2<br>(70%), VOC (70%)       | If new fireplace construction is allowed, approve only EPA Phase 2 qualified models. Under the EPA Wood-burning Fireplace Program, cleaner wood<br>burning fireplaces are qualified when their PM2.5 emissions are at or below the Phase 2 PM2.5 emissions level. For a list of Phase 2 qualified cleaner<br>burning fireplaces, go to: http://www.epa.gov/burnwise/fireplacelist.html. Cost per ton value (\$9,500/ton) indicates value incremental cost of<br>installing a Phase 2 qualified RWC appliance instead of a non-Phase 2 RWC appliance. Assumes up to 25% rule penetration. |                       |
| NonPoint        | Commercial Cooking                                       | PESPCCxx                        | Electrostatic Precipitator at up<br>to 25% RP | 99                      | \$12,916                                      |                                         | An ESP consists of a two stage process: First, the exhaust stream gets charged in the first stage; then the charged particles are then collected in second stage.                                                                                                                                                                                                                                                                                                                                                                                                                        | HARC 2015, GDIT 2020a |
| NonEGU<br>Point | ICI Boilers and Heaters -<br>Solid Fuels                 | PESPICICOAL                     | Electrostatic Precipitator-All<br>Types       | 95                      | \$1,821                                       |                                         | This measure includes all types of electrostatic precipitators (ESP). Cost and cost effectiveness values were developed for combustion processes<br>using coal, petroleum coke or solid waste as the fuel source.                                                                                                                                                                                                                                                                                                                                                                        | GDIT 2019             |
| NonEGU<br>Point | ICI Boilers and Heaters -<br>Gas and Oil                 | PESPICIGAS                      | Electrostatic Precipitator-All<br>Types       | 95                      | \$17,524                                      |                                         | This measure includes all types of electrostatic precipitators (ESP). Cost and cost effectiveness values were developed for combustion processes<br>using natural gas, process gas, residual oil or distillate oil as the fuel source.                                                                                                                                                                                                                                                                                                                                                   | GDIT 2019             |
| NonEGU          | ICI Boilers and Heaters -                                | PESPICIWOOD                     | Electrostatic Precipitator-All                | 95                      | \$1,876                                       |                                         | This measure includes all types of electrostatic precipitators (ESP). Cost and cost effectiveness values were developed for combustion processes                                                                                                                                                                                                                                                                                                                                                                                                                                         | GDIT 2019             |
| Point           | Wood                                                     |                                 | Types                                         |                         |                                               |                                         | using wood or bagasse as the fuel source.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| NonEGU<br>Point | Generic Industrial<br>Processes - MMD of 1.0<br>microns  | PESPIPSIZE1                     | Electrostatic Precipitator-All<br>Types       | 95                      | \$2,756                                       |                                         | This measure includes all types of electrostatic precipitators (ESP). Cost and cost effectiveness values were developed for industrial processes<br>using a generic particle size distribution with a mass mean diameter of 1.0 microns.                                                                                                                                                                                                                                                                                                                                                 | GDIT 2019             |
| NonEGU<br>Point | Generic Industrial<br>Processes - MMD of 10.0<br>microns | PESPIPSIZE10                    | Electrostatic Precipitator-All<br>Types       | 95                      | \$1,503                                       |                                         | This measure includes all types of electrostatic precipitators (ESP). Cost and cost effectiveness values were developed for industrial processes<br>using a generic particle size distribution with a mass mean diameter of 10.0 microns.                                                                                                                                                                                                                                                                                                                                                | GDIT 2019             |
| NonEGU<br>Point | Generic Industrial<br>Processes - MMD of 5.0<br>microns  | PESPIPSIZE5                     | Electrostatic Precipitator-All<br>Types       | 95                      | \$1,729                                       |                                         | This measure includes all types of electrostatic precipitators (ESP). Cost and cost effectiveness values were developed for industrial processes<br>using a generic particle size distribution with a mass mean diameter of 5.0 microns.                                                                                                                                                                                                                                                                                                                                                 | GDIT 2019             |
| NonEGU<br>Point | ICI Boilers and Heaters -<br>Solid Fuels                 | PFFICICOAL                      | Fabric Filter-All Types                       | 99                      | \$1,570                                       |                                         | This measure includes all types of fabric filters (FF). Cost and cost effectiveness values were developed for combustion processes using coal,<br>petroleum coke or solid waste as the fuel source.                                                                                                                                                                                                                                                                                                                                                                                      | GDIT 2019             |
| NonEGU<br>Point | ICI Boilers and Heaters -<br>Gas and Oil                 |                                 | Fabric Filter-All Types                       | 99                      | \$5,366                                       |                                         | This measure includes all types of fabric filters (FF). Cost and cost effectiveness values were developed for combustion processes using natural gas, process gas, residual oil or distillate oil as the fuel source.                                                                                                                                                                                                                                                                                                                                                                    | GDIT 2019             |
| NonEGU<br>Point | ICI Boilers and Heaters -<br>Wood                        | PFFICIWOOD                      | Fabric Filter-All Types                       | 99                      | \$905                                         |                                         | This measure includes all types of fabric filters (FF). Cost and cost effectiveness values were developed for combustion processes using wood or bagasse as the fuel source.                                                                                                                                                                                                                                                                                                                                                                                                             | GDIT 2019             |
| NonEGU<br>Point | Generic Industrial<br>Processes - MMD of 1.0<br>microns  | PFFIPSIZE1                      | Fabric Filter-All Types                       | 99                      | \$1,091                                       |                                         | Displayed as use net version of the structure of fabric filters (FF). Cost and cost effectiveness values were developed for industrial processes using a generic particle size distribution with a mass mean diameter of 1.0 microns.                                                                                                                                                                                                                                                                                                                                                    | GDIT 2019             |
| NonEGU<br>Point | Generic Industrial<br>Processes - MMD of 10.0<br>microns | PFFIPSIZE10                     | Fabric Filter-All Types                       | 99                      | \$1,168                                       |                                         | This measure includes all types of fabric filters (FF). Cost and cost effectiveness values were developed for industrial processes using a generic<br>particle size distribution with a mass mean diameter of 10.0 microns.                                                                                                                                                                                                                                                                                                                                                              | GDIT 2019             |
| NonEGU<br>Point | Generic Industrial<br>Processes - MMD of 5.0<br>microns  | PFFIPSIZE5                      | Fabric Filter-All Types                       | 99                      | \$1,139                                       |                                         | This measure includes all types of fabric filters (FF). Cost and cost effectiveness values were developed for industrial processes using a generic<br>particle size distribution with a mass mean diameter of 5.0 microns.                                                                                                                                                                                                                                                                                                                                                               | GDIT 2019             |

| Sector               | Source Category                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Control Measure<br>Abbreviation | Emission Reduction Measure                                   | Control<br>Efficiency (% | Cost Effectiveness (2018\$/ton<br>%) reduced)                                                                                                          | Other Pollutants<br>Controlled    | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | References                                        |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| EGU                  | Utility Boilers - Coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PFFPJUBCx                       | Fabric Filter (Pulse Jet Type)                               | 99                       | 25 MW < DC < 99 MW: \$3,210<br>100 MW < DC < 299 MW: \$2,608<br>300 MW < DC < 499 MW: \$2,373<br>500 MW < DC < 699 MW: \$2,228<br>DC > 700 MW: \$2,084 | PM10 (99%)                        | This control is the addition of a pulse-jet cleaned fabric filter to reduce PM emissions from waste entreams from coal-fired utility boliers. In a fabric filter, filter gas is passed through a tightly woven or felted fabric, collecting PM by sieving and other mechanisms. Particulate-laden gas flows into the filter bag from the outside to the inside. The particles collected on the outside drop into a hopper below the fabric filter. During pulse-jet cleaning, a short burst of high pressure air is injected into the bags, dislodging the dust cake.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                                              |                          |                                                                                                                                                        |                                   | This control applies to electricity generation sources powered by pulverized dry-bottom and bituminous/subbituminous coal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                                              |                          |                                                                                                                                                        |                                   | This control is the addition of a pulse-jet cleaned fibric filter to reduce PM emissions from wate streams from coal-fired utility bolts;<br>In a fabric PL age is a possed through a tightly woven of felted fibric collecting PM by sieving and other mechanisms. Patric filters any be<br>differ bag to pressure aris in single effect in the bag, individual filter units together in a group. Bag are the most common type of filters may be<br>the form of heat critings on the passed through a tightly woven or felted fibric collecting PM by sieving and other mechanisms. Patric filters is a<br>relatively new type of their fifter, the gas is passed through a tightly woven or felted fibric collecting PM by sieving and other mechanisms. Patric filters is a<br>relatively new type of their fifter, at the patrice size of the pass 42 approx. This cleaning mechanisms approx min popularity because<br>can track tight dust loadings, operate at constant pressure drop, and occupy less space than other types of faint; fifters, effect collected on the bag. The gas flows from the oxidies to the inside of the bags, and then out the gas columet. The patricise collected on the bay the gas flows from the oxidies to the inside of the bags, and then out the gas columet. The patricise collected on the bay the gas flows from the oxidies drop, and estably and the patricises and the bay. The gas flows in the size of the bags and the size to the size of the bags the gas dropset bid to the bay the gas flows the fabric filter (FIA 1996b). During pulse-jet cleaning a short burst of high pressure are in singerial to the bay the gas flows the fabric filter (FIA 1997b). During pulse-jet cleaning the dust case act three the patrice size and the size that the patrice size and the size that the patrice size and the size of the bas dropset for the size of the the patrice size and the size that the patrice size and the size that the patrice size and the size the size of the size and the size that the patrice size and the size that the patrice size and the size that the pat |                                                   |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                                              |                          |                                                                                                                                                        |                                   | There are several unique attributes of pulse-jet cleaning. The cleaning pulse is very brief allowing the flow of dusty gas to continue during cleaning.<br>The bags not being cleaned continue to filter, taking on extra duty from the bags being cleaned (EPA 2000c). Pulse-jet cleaning is more intense and<br>occurs with greater frequency than the other fabric filter cleaning methods. The cleaning dislodges nearly all of the dust cake each time the bag is<br>pulsed. Pulse-jet filters, as a result, do not rely on a dust cake to provide filtration. Felted (non-woven) fabrics are used in these types of filters<br>because they do not require a dust cake. Since bags cleaned by the pulse-jet method do not need to be isolated for cleaning, pulsejet cleaned fabric<br>filters do not need extra compartments to maintain adequate filtration during cleaning, Also, because of the intense and frequent nature of the<br>cleaning, they can treat higher gas flow rates with higher dust loadings. Consequently, fabric filters cleaned by the pulse-jet method can be smaller<br>than other filters in the treatment of the same amount of gas and dust, making higher gas-to-cloth ratios achievable (EPA 1998b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                                              |                          |                                                                                                                                                        |                                   | Fabric filters are useful for collecting particles with resistivities either too low or too high for collection with electrostatic precipitators. Fabric filters are useful in controlling particulate matter less than or equal to 10 micrometers in diameter (PM10) and particulate matter less than or equal to 2.5 micrometers in diameter (PM2.5). Fabric filters may be good candidates for collecting fly ash from low-sulfur coals or containing high unburned carbon levels and are relatively difficult to collect with electrostatic precipitators. (EPA 2000c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |
| NonPoint             | Paved Roads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PGBTPAVEDxx                     | Gravel bed trackout at up to<br>25% RP                       | 46                       | \$614,870                                                                                                                                              |                                   | Reduce silt from trackout by requiring 50 foot of gravel that is 3 inches deep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HARC 2015, GDIT 2020a                             |
| NonPoint<br>NonPoint | Unpaved Roads<br>Commercial Cooking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PGVUNPAVEDxx<br>PHEPACCxx       | Apply Gravel at up to 25% RP<br>HEPA filters at up to 25% RP | 40<br>90                 | \$65,418<br>\$14,093                                                                                                                                   |                                   | Apply 4 inches of gravel to up to 25% of unpaved roads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HARC 2015, GDIT 2020a<br>HARC 2015, GDIT 2020a    |
|                      | , in the second s |                                 |                                                              |                          |                                                                                                                                                        |                                   | disposable bag that collects smaller particles and the final filter collects finest particles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   |
| NonPoint             | Hydronic Heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PICHHHHTRxx                     | Install Cleaner Hydronic<br>Heaters at up to 25% RP          | 90                       | \$817                                                                                                                                                  | CO (90%), CO2<br>(90%), VOC (90%) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 2013b, GDIT 2020a                             |
| NonPoint             | Hydronic Heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PIRDSHHTRxx                     | Install Retrofit Devices at up to 25% RP                     |                          | \$1,082                                                                                                                                                | CO (60%), CO2<br>(60%), VOC (60%) | provide incentives to replace old uncertified wood stoves with new EPA-certified wood stoves. Education on proper wood stove use (e.g., burn only dry wood) and maintenance is critical. Assumes up to 25% rule penetration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |
| NonPoint             | Fireplaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PIRDVCFPLxx                     | Install Retrofit Devices at up to<br>25% RP                  | 70                       | \$10,490                                                                                                                                               | CO (70%), CO2<br>(70%), VOC (70%) | Provide incentives to encourage use of fireplace retrofit devices. Under the EPA Wood-burning Fireplace Program, retrofit devices are qualified<br>when their PM2.5 emissions are at or below the program Phase 2 PM2.5 emissions level. For a list of Phase 2 qualified retrofits, go to:<br>http://www.epa.gov/burnwise/fireplacelist.html. Assumes up to 25% rule penetration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 2013b, GDIT 2020a                             |
| NonPoint             | Open Burning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PLNDFILBRN                      | Substitution of landfilling for<br>open burning              | 75                       | \$5,060                                                                                                                                                | PM10 (75%)                        | This control is the substitution of landfilling for open burning to reduce PM emissions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EPA 2006e                                         |
| NonPoint             | Cooling Towers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PMPCOOLxx                       | Implement maintenance plan a<br>up to 25% RP                 | t 36.9                   | \$12,211                                                                                                                                               |                                   | Implement maintenance plan at up to 25% RP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HARC 2015, GDIT 2020a                             |
| NonPoint             | Cooling Towers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PNDECOOLxx                      | Install new drift eliminator at<br>up to 25% RP              | 79                       | \$4,443                                                                                                                                                |                                   | Install new drift eliminator at up to 25% RP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HARC 2015, GDIT 2020a                             |
| NonPoint             | Wood Stoves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PNGSTWDSTVxx                    | New gas stove or gas logs at up                              | 99                       | \$8,272                                                                                                                                                | CO (99%), CO2                     | Implement an incentive program to replace old, uncertified wood stoves with new gas stoves or gas logs. Incentives to switch to a wood pellet stove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EPA 2013b, GDIT 2020a                             |
| NonPoint             | Paved Roads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PPGTPAVEDxx                     | to 25% RP<br>Pipe grid trackout at up to 25%                 | 80                       | \$985,122                                                                                                                                              | (99%), VUC (99%)                  | are another good option. See for more info: http://www.epa.gov/burnwise/how-to-guide.html. Assumes up to 25% rule penetration.<br>Reduce silt from trackout by requiring apipe grid system that shakes the accumulated dirt and mud from trucks leaving construction sites.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HARC 2015, GDIT 2020a                             |
| NonPoint             | Paved Roads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PPIPAVEDxx                      | RP<br>Pave interior roads at up to                           | 42                       | \$177,259                                                                                                                                              |                                   | Reduce silt from trackout by requiring 100 foot of paved road be installed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HARC 2015, GDIT 2020a                             |
| Fires                | Prescribed Burning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PPRBRNFULM                      | 25% RP<br>Increase Fuel Moisture                             | 50                       | \$5,253                                                                                                                                                | PM10 (50%)                        | Prescribed burning is defined as the intentional burning of forest and range lands. For forestry burning, increasing the fuel moisture will decrease particulate emissions by decreasing the amount of fuel burned. This control is annifcable to prescribed burning for forest management.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pechan 2006, EPA 1992a,<br>BLS 1994x, Hardy 1997x |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                                              |                          |                                                                                                                                                        |                                   | Decreasing PM emissions is accomplished by either removing lighter and direr fuels or burning in early spring when moisture levels are naturally higher. Emission reductions estimates range from 30 to more than 50 percent (EPA 1992a, Hardy 1997x). Reductions will vary significantly depending on a given area. Variation is based on current burn schedule and method, along with the characteristics of the material to be burned.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |
| NonPoint             | Paved Roads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PPSPAVEDxx                      | Pave existing shoulders at up to<br>25% RP                   | 60                       | \$159,310                                                                                                                                              |                                   | Construction of 4 foot paved or stabilized shoulders at up to 25% RP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HARC 2015, GDIT 2020a                             |
| NonPoint             | Unpaved Roads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PPVUNPAVEDxx                    | Pave Unpaved Roads at up to<br>25% RP                        | 95                       | \$91,274                                                                                                                                               |                                   | Pave up to 25% of unpaved roads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HARC 2015, GDIT 2020a                             |
| NonPoint             | Cooling Towers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PRDECOOLxx                      | Replace existing drift                                       | 74                       | \$5,996                                                                                                                                                |                                   | Replace existing drift eliminator at up to 25% RP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HARC 2015, GDIT 2020a                             |
| NonPoint             | Wood Stoves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PROWSWDSTVxx                    | eliminator at up to 25% RP<br>Remove old wood stoves at up   | 70                       | \$5,889                                                                                                                                                | CO (70%), CO2                     | Implement an incentive program (usually voluntary) where cash (e.g., \$250) is given in return for turning in a wood stove. Assumes up to 25% rule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EPA 2013b, GDIT 2020a                             |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 | to 25% RP                                                    |                          |                                                                                                                                                        | (70%), VOC (70%)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HARC 2015, GDIT 2020a                             |
| NonPoint             | Commercial Cooking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PSBCCxx                         | Smokeless Broiler at up to 25%<br>RP                         | 53                       | \$7,751                                                                                                                                                |                                   | The smokeless broiler is an alternative to traditional underfired broiler. Since it is not a direct flame broiler, it has fewer emissions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TIARC 2013, GDTT 2020a                            |

|                 |                                                          | Control Measure |                                                       | Control | Cost Effectiveness (2018\$/ton | Other Pollutants |                                                                                                                                                                                                                            |                       |
|-----------------|----------------------------------------------------------|-----------------|-------------------------------------------------------|---------|--------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Sector          | Source Category                                          | Abbreviation    | Emission Reduction Measure                            |         |                                | Controlled       | Description/Notes/Caveats                                                                                                                                                                                                  | References            |
| NonPoint        | Construction Activities                                  | PSPCONSTxx      | Sprinkler System for Soil<br>Moisture at up to 25% RP | 68.6    | \$482,890                      |                  | Sprinkler system to add water to increase soil moisture at up to 25% RP                                                                                                                                                    | HARC 2015, GDIT 2020a |
| NonPoint        | Paved Roads                                              | PTCDPAVEDxx     | Trackout control devices at up<br>to 25% RP           | 46      | \$307,082                      |                  | A device that removes the mud, dust, silt and other particles from vehicles and construction equipment as it is leaving a construction area but before it enters a paved road.                                             | HARC 2015, GDIT 2020a |
| NonPoint        | Construction Activities                                  | PTRCONSTxx      | Truck System for Soil Moisture<br>at up to 25% RP     | 68.6    | \$1,236,807                    |                  | Water trucks to add water to increase soil moisture at up to 25% RP                                                                                                                                                        | HARC 2015, GDIT 2020a |
| NonEGU<br>Point | ICI Boilers and Heaters -<br>Solid Fuels                 | PVSICICOAL      | Venturi Scrubber                                      | 90      | \$1,234                        |                  | This measure includes all types of dry and wet scrubbers. Cost and cost effectiveness values were developed for combustion processes using coal,<br>petroleum coke or solid waste as the fuel source.                      | GDIT 2019             |
| NonEGU<br>Point | ICI Boilers and Heaters -<br>Gas and Oil                 | PVSICIGAS       | Venturi Scrubber                                      | 90      | \$9,684                        |                  | This measure includes all types of dry and wet scrubbers. Cost and cost effectiveness values were developed for combustion processes using natural gas, process gas, residual oil or distillate oil as the fuel source.    | GDIT 2019             |
| NonEGU<br>Point | ICI Boilers and Heaters -<br>Wood                        | PVSICIWOOD      | Venturi Scrubber                                      | 90      | \$1,279                        |                  | This measure includes all types of dry and wet scrubbers. Cost and cost effectiveness values were developed for combustion processes using wood<br>or bagasse as the fuel source.                                          | GDIT 2019             |
| NonEGU<br>Point | Generic Industrial<br>Processes - MMD of 1.0<br>microns  | PVSIPSIZE1      | Venturi Scrubber                                      | 90      | \$1,693                        |                  | This measure includes all types of dry and wet scrubbers. Cost and cost effectiveness values were developed for industrial processes using a generic particle size distribution with a mass mean diameter of 1.0 microns.  | GDIT 2019             |
| NonEGU<br>Point | Generic Industrial<br>Processes - MMD of 10.0<br>microns | PVSIPSIZE10     | Venturi Scrubber                                      | 90      | \$1,102                        |                  | This measure includes all types of dry and wet scrubbers. Cost and cost effectiveness values were developed for industrial processes using a generic particle size distribution with a mass mean diameter of 10.0 microns. | GDIT 2019             |
| NonEGU<br>Point | Generic Industrial<br>Processes - MMD of 5.0<br>microns  | PVSIPSIZE5      | Venturi Scrubber                                      | 90      | \$1,161                        |                  | This measure includes all types of dry and wet scrubbers. Cost and cost effectiveness values were developed for industrial processes using a generic particle size distribution with a mass mean diameter of 5.0 microns.  | GDIT 2019             |
| NonPoint        | Unpaved Roads                                            | PWATUNPAVEDxx   | Apply Water at up to 25% RP                           | 18.1    | \$713,640                      |                  | Apply water to up to 25% of unpaved roads                                                                                                                                                                                  | HARC 2015, GDIT 2020a |
| NonPoint        | Commercial Cooking                                       | PWSCCxx         | Wet scrubber at up to 25% RP                          | 90      | \$19,940                       |                  | Wet scrubbers rely on an atomized stream of liquid to capture particulate pollutants from an exhaust stream.                                                                                                               | HARC 2015, GDIT 2020a |

| Sector          | Source Category                                                                                 | Control Measure<br>Abbreviation | Emission Reduction Measure                                                | Control<br>Efficiency (% | Cost Effectiveness (2018\$/ton<br>) reduced)                                                                                                                                          | Other Pollutants<br>Controlled           | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | References                            |
|-----------------|-------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| NonEGU<br>Point | Petroleum Refinery<br>Catalytic and Thermal<br>Cracking Units                                   | SCATPETCRK                      | Catalyst Additive                                                         | 43                       | \$1,945                                                                                                                                                                               |                                          | This control is the use of catalyst additives in fuel to reduce SO2 emissions from catalytic cracking and thermal cracking units at petroleum refineries.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MARAMA 2007, Eaglesor<br>et al. 2004x |
| NonPoint        | Residential Nonpoint<br>Source                                                                  | SCHMADDHOM                      | Chemical Additives to Waste                                               | 75                       | \$3,201                                                                                                                                                                               |                                          | This control is the use of chemical additives to the waste produced by residential distillate oil combustion to control SO2 emissions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pechan 2006                           |
| NonEGU<br>Point | ICI Boilers - Bituminous<br>Coal                                                                | SDSICIBBC                       | Dry Scrubber                                                              | 95.2                     | \$1,041                                                                                                                                                                               |                                          | Dry Scrubber - In dry scrubbers (also called spray dryer absorbers), the flue gases are introduced into an absorbing tower (dryer) where the gases<br>are contacted with a finely atomized alkaline slurry [usually a calcium-based sorbent such as Ca(04)2 or Ca(). Acid gases are absorbed by the slurry<br>mixture, and react to form solid salts. The heat of the flue gas is used to evaporate all the water droplets leaving a non-saturated (i.e. dry) flue gas<br>exiting the absorber tower. The effect of cooling and humidifying the hot gas stream increases collection efficiency over simple dry injection. Since<br>spray dryer absorbers only remove gases, a separate device is always required to remove particles. The particulate control devices are generally<br>fabric filters or electrostatic precipitators (ESPs). Reference: Costs developed using Air Pollution Control Cost Estimation Spreadsheet For Wet and<br>Dry Scrubbers for Acid Gas Control (May 2021).                                               |                                       |
| NonEGU<br>Point | ICI Boilers - Gas                                                                               | SDSICIBG                        | Dry Scrubber                                                              | 90                       | \$21,830                                                                                                                                                                              |                                          | Dry Scrubber - In dry scrubbers (also called spray dryer absorbers), the flue gases are introduced into an absorbing tower (dryer) where the gases<br>are contacted with a finely atomized alkaline slurry [usually a calcium-based sorbent such as Ca(04)2 or Ca(). Acid gases are absorbed by the slurry<br>mixture, and react to form solid salts. The heat of the flue gas is used to evaporate all the water droplets leaving a non-saturated (i.e. dry) lue gas<br>exiting the absorber tower. The effect of cooling and humidifying the hot gas stream increases collection efficiency over simple dry injection. Since<br>spray dryer absorbers only remove gases, a separate device is always required to remove particles. The particulate control devices are generally<br>fabric filters or electrostatic precipitators (ESPs).                                                                                                                                                                                                 | ERG 2019                              |
| NonEGU<br>Point | ICI Boilers - Oil                                                                               | SDSICIBO                        | Dry Scrubber                                                              | 90                       | \$17,969                                                                                                                                                                              |                                          | Dry Scrubber - In dry scrubbers (also called spray dryer absorbers), the flue gases are introduced into an absorbing tower (dryer) where the gases<br>are contacted with a finely atomized alkaline slurry [usually a calcium-based sorbent such as Ca(04)2 or Ca0). Acid gases are absorbed by the slurry<br>mixture, and react to form solid salts. The heat of the flue gas is used to evaporate all the water droplets leaving a non-saturated (i.e. dry) lue gas<br>exiting the absorber tower. The effect of cooling and humidifying the hot gas stream increases collection efficiency over simple dry injection. Since<br>spray dryer absorbers only remove gases, a separate device is always required to remove particles. The particulate control devices are generally<br>fabric filters or electrostatic precipitators (ESPs).                                                                                                                                                                                                 |                                       |
| NonEGU<br>Point | ICI Boilers -<br>Subbituminous Coal                                                             | SDSICIBSBC                      | Dry Scrubber                                                              | 83.9                     | \$2,724                                                                                                                                                                               |                                          | Dry Scrubber - In dry scrubbers (also called spray dryer absorbers), the flue gases are introduced into an absorbing tower (dryer) where the gases<br>are contacted with a finely atomized alkaline slurry [usually a calcium-based sorbent such as Ca(04)2 or Ca(). Acid gases are absorbed by the slurry<br>mixture, and react to form solid salts. The heat of the flue gas is used to evaporate all the water droplets leaving a non-saturated (i.e. dry) flue gas<br>exiting the absorber tower. The effect of cooling and humidifying the hot gas stream increases collection efficiency over simple dry injection. Since<br>spray dryer absorbers only remove gases, a separate device is always required to remove particles. The particulate control devices are generally<br>fabric filters or electrostatic precipitators (ESPs). Reference: Costs developed using Air Pollution Control Cost Estimation Spreadsheet For Wet and<br>Dry Scrubbers for Acid Gas Control (May 2021).                                               |                                       |
| NonPoint        | Stationary Source Fuel<br>Combusion                                                             | SFUELSFC                        | Fuel Switching                                                            | 75                       | \$3,398                                                                                                                                                                               | PM10 (80%),<br>PM2.5 (80%)               | This control transfers a home-heating oil fuel control to industrial boilers by substituting "red dye" distillate oil for high-sulfur fuel. Distillate has<br>500 ppm versus 2,500 to 3,000 ppm for high-sulfur diesel. The control applies to industrial stationary source distillate oil combustion sources.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 2007x                             |
| NonEGU<br>Point | ICI Boilers                                                                                     | SICIRIBxx                       | Increased Caustic Injection Rate<br>for Existing Dry Injection<br>Control | e 70                     | Cost per ton varies by flow rate<br>and fuel type. Total cost is<br>estimated using equation.                                                                                         |                                          | Increased Caustic Injection - This control measure involves an increase in the alkaline sorbent used for scrubbing flue gases to remove SO2.<br>Depending on the application, the two most important sorbents are lime and sodium hydroxide (also known as caustic soda). Lime is typically used<br>on large coal-or oil-fred bollers as found in power plants, as it is very much less expensive than caustic soda. The problem is that it results in a<br>slurry being circulated through the scrubber instead of a solution. This makes it harder on the equipment. A spray tower is typically used for this<br>application. The use of lime results in a altury of calcium sulfile (CaSO3) that must be disposed of. Fortunately, calcium sulfite can be oxidized to<br>produce by-product gypsum (CaSO4 * 2H2O) which is marketable for use in the building products industry.<br>Caustic soda is limited to smaller combustion units because it is more expensive than lime, but it has the advantage that it forms a solution rather | ERG 2015                              |
|                 |                                                                                                 |                                 |                                                                           |                          |                                                                                                                                                                                       |                                          | than a slurry. This makes it easier to operate. It produces a "spent caustic" solution of sodium sulfite/bisulfite (depending on the pH), or sodium<br>sulfate that must be disposed of. This is not a problem in a kraft pulp mill for example, where this can be a source of makeup chemicals to the<br>recovery cycle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
| EGU             | Utility Boilers -<br>Bituminous/Subbitumin<br>ous Coal                                          | SLSDUBCx                        | Lime Spray Dryer                                                          | 92                       | 25 MW < DC < 49 MW: \$1,956<br>50 MW < DC < 99 MW: \$1,956<br>100 MW < DC < 299 MW: \$1,457<br>300 MW < DC < 499 MW: \$1,292<br>500 MW < DC < 699 MW: \$1,236<br>DC > 700 MW: \$1,229 |                                          | This control is the application of a Lime Spray Dryer to Utility Boilers to reduce SO2 emissions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EPA 2013                              |
| EGU             | Utility Boilers -<br>Bituminous/Subbitumin<br>ous Coal                                          | SLSFOUBCx                       | Limestone Forced Oxidation                                                | 96                       | 25 MW < DC < 99 MW: \$1,421<br>100 MW < DC < 299 MW: \$1,022<br>300 MW < DC < 499 MW: \$894<br>500 MW < DC < 699 MW: \$831<br>DC > 700 MW: \$761                                      |                                          | This control is the application of a Lime Spray Dryer to Utility Boilers to reduce SO2 emissions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EPA 2013                              |
| NonPoint        | Residential Heating                                                                             | SLSFRESHET                      | Low Sulfur Fuel                                                           | 75                       | \$3,201                                                                                                                                                                               | NOx (10%), PM10<br>(80%), PM2.5<br>(80%) | This measure is a switch from high-sulfur (2,500 ppm sulfur content) to low-sulfur (500 ppm) home heating oil for residential users.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NESCAUM 2005                          |
| NonEGU<br>Point | NonEGUs                                                                                         | SPBSNONEGU                      | Packed Bed Scrubber                                                       | 99                       | \$344                                                                                                                                                                                 | (0070)                                   | Packed Bed Scrubber - Packed tower absorbers are the most common approach to removing acidic gases from flue gas. The large wetted area<br>provided by the packing makes it possible to achieve very high removal efficiencies at a relatively low capital and operating costs. Costs developed<br>using Air Pollution Control Cost Estimation Spreadsheet For Wet and Dry Scrubbers for Acid Gas Control (May 2021).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GDIT 2021                             |
| NonEGU<br>Point | Sulfur Recovery Plants -<br>Elemental Sulfur (Claus:<br>Stage w/o control (92-<br>95% removal)) |                                 | Sulfur Recovery and/or Tail Gas<br>Treatment                              | s 99.8                   | \$1,115                                                                                                                                                                               |                                          | This control is the application of Sulfur recover and/or tail gas treatment controls to Sulfur Recovery Plant sources to reduce SO2 emissions.<br>This control applies to uncontrolled elemental Sulfur Recovery plants (Claus: 3 Stage (92-95% removal)).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pechan 2006                           |
| NonEGU<br>Point | Sulfur Recovery Plants -<br>Elemental Sulfur (Claus:<br>Stage w/o control (95-<br>96% removal)) |                                 | Sulfur Recovery and/or Tail Gas<br>Treatment                              | s 99.8                   | \$1,115                                                                                                                                                                               |                                          | This control is the application of Sulfur recover and/or tail gas treatment controls to Sulfur Recovery Plant sources to reduce SO2 emissions.<br>This control applies to uncontrolled elemental Sulfur Recovery plants (Claus: 3 Stage (95-96% removal)).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pechan 2006                           |
| NonEGU<br>Point | Sulfur Recovery Plants -<br>Elemental Sulfur (Claus:                                            |                                 | Sulfur Recovery and/or Tail Gas<br>Treatment                              | s 99.5                   | \$1,115                                                                                                                                                                               |                                          | This control is the application of Sulfur recover and/or tail gas treatment controls to Sulfur Recovery Plant sources to reduce SO2 emissions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pechan 2006                           |

| Sector          | Source Category                  | Control Measure<br>Abbreviation | Emission Reduction Measure | Control<br>Efficiency (% | Cost Effectiveness (2018\$/ton<br>%) reduced) | Other Pollutants<br>Controlled | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | References |
|-----------------|----------------------------------|---------------------------------|----------------------------|--------------------------|-----------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| NonEGU<br>Point | ICI Boilers - Bituminous<br>Coal |                                 | Wet Scrubber               | 95.2                     | \$1,267                                       |                                | Wet Scrubber - This describes a variety of devices that remove pollutants from a furnace flue gas or from other gas streams. In a wet scrubber, the<br>polluted gas stream is brought into contact with the scrubbing liquid, by spraying it with the liquid, by forcing it through a pool of liquid, or by some<br>other contact method, so as to remove the pollutants. The design of wet scrubbers or any air pollution control device depends on the industrial<br>process conditions and the nature of the air pollutants involved. Inlet gas characteristics and dust properties (if particles are present) are of<br>primary importance. Scrubbers can be designed to collect particulate matter and/or gaseous pollutants. The versatility of wet scrubbers allows<br>them to be built in numerous configurations, all designed to provide good contact between the liquid and polluted gas stream.<br>Wet scrubbers remove dust particles by capturing them in liquid droplets. The droplets are then collected, the liquid dissolving or absorbing the<br>pollutant eases. Any droplets that are in the scrubber index teas must be scaracted from the outlet gas stream by means of another device referred to       |            |
|                 |                                  |                                 |                            |                          |                                               |                                | as an site liminator or entrainment separator (these terms are interchangeable). Also, the resultant scrubbing liquid must be treated prior to any<br>ultimate discharge or being reused in the plant. A wet scrubber's ability to collect small particles is often directly proportional to the power input<br>into the scrubber. Low energy devices such as spray towers are used to collect small particles is often directly proportional to the power input<br>into the scrubber. Low energy devices such as spray towers are used to collect small particles is often directly proportional to the power input<br>into the scrubber. Low energy devices such as spray towers are used to collect particles larger than 5 micrometers. To obtain high efficiency<br>removal of 1 micrometer (to relss) particles generally requires high energy devices such as venturi scrubbers or augemeted devices such as<br>condensation scrubbers. Additionally, a properly designed and operated entrainment separator or mist eliminator is important to achieve high<br>removal efficiencies. The greater the number of liquid droplets that are not captured by the mist eliminator the higher the potential emission levels.   |            |
|                 |                                  |                                 |                            |                          |                                               |                                | Wet scrubbers that remove gaseous pollutants are referred to as absorbers. Good gas-to-liquid contact is essential to obtain high removal<br>efficiencies in absorbers. A number of wet scrubber designs are used to remove gaseous pollutants, with the packed tower and the plate tower being<br>the most common. If the gas stream contains both particle matter and gases, wet scrubbers are generally the only single air pollution control device<br>that can remove both pollutants. Wet scrubbers can achieve high removal efficiencies for either particles or gases and, in some instances, can<br>achieve a high removal efficiency for both pollutants in the same system. However, in many cases, the best operating conditions for particles<br>collection are the poorest for gas removal.                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| NonEGU<br>Point | ICI Boilers - Gas                | SWSICIBG                        | Wet Scrubber               | 95                       | \$4,825                                       | PM10 (50%),<br>PM2.5 (50%)     | Wet Scrubber - This describes a variety of devices that remove pollutants from a furnace flue gas or from other gas streams. In a wet scrubber, the<br>polluted gas stream is brought into contact with the scrubbing liquid, by spraying it with the liquid, by forcing it through a pool of liquid, or by some<br>other contact method, so as to remove the pollutants. The design of wet scrubbers or any air pollution control device depends on the industrial<br>process conditions and the nature of the air pollutants involved. Inlet gas characteristics and dust properties (if particles are present) are of<br>primary importance. Scrubbers can be designed to collect particulate matter and/or gaseous pollutants. The versatility of wet scrubbers allows<br>them to be built in numerous configurations, all designed to provide good contact between the liquid and polluted gas stream.                                                                                                                                                                                                                                                                                                                     | ERG 2019   |
|                 |                                  |                                 |                            |                          |                                               |                                | Wet scrubbers remove dust particles by capturing them in liquid droplets. The droplets are then collected, the liquid dissolving or absorbing the<br>pollutant gases. Any droplets that are in the scrubber inlet gas must be separated from the outet gas stream by means of another device referred to<br>as a mist eliminator or entrainment separator (these terms are interchangeable). Also, the resultant scrubbing liquid must be treated prior to any<br>ultimate discharge or being reused in the plant. A wet scrubber's ability to collect small particles is often directly proportional to the power input<br>into the scrubber. Low energy devices such as spray towers are used to collect particles larger than 5 micrometers. To obtain high efficiency<br>removal of 1 micrometer (or less) particles generally requires high energy devices such as venturi scrubbers. Additionally, a properly designed and operated entrainment separator or mist eliminator is important to achieve high<br>removal efficiencies. The greater the number of liquid droplets that are not captured by the mist eliminator the higher the potential emission levels.                                                       |            |
|                 |                                  |                                 |                            |                          |                                               |                                | Wet scrubbers that remove gaseous pollutants are referred to as absorbers. Good gas-to-liquid contact is essential to obtain high removal<br>efficiencies in absorbers. A number of wet scrubber designs are used to remove gaseous pollutants, with the packed tower and the plate tower being<br>the most common. If the gas stream contains both particle matter and gases, wet scrubbers are generally the only single air pollution control device<br>that can remove both pollutants. Wet scrubbers can achieve high removal efficiencies for either particles or gases and, in some instances, can<br>achieve a high removal efficiency for both pollutants in the same system. However, in many cases, the best operating conditions for particles<br>collection are the poorest for gas removal.                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| NonEGU<br>Point | ICI Boilers - Oil                | SWSICIBO                        | Wet Scrubber               | 95                       | \$4,184                                       | PM10 (94%),<br>PM2.5 (94%)     | Wet Scrubber - This describes a variety of devices that remove pollutants from a furnace flue gas or from other gas streams. In a wet scrubber, the<br>polluted gas stream is brought into contact with the scrubbing liquid, by spraying it with the liquid, by forcing it through a pool of liquid, or by some<br>other contact method, so as to remove the pollutants. The design of wet scrubbers or any air pollution control device depends on the industrial<br>process conditions and the nature of the air pollutants involved. Inlet gas characteristics and dust properties (if particles are present) are of<br>primary importance. Scrubbers can be designed to collect particulate matter and/or gaseous pollutants. The versatility of wet scrubbers allows<br>them to be built in numerous configurations, all designed to provide good contact between the liquid and polluted gas stream.                                                                                                                                                                                                                                                                                                                     | ERG 2019   |
|                 |                                  |                                 |                            |                          |                                               |                                | Wet scrubbers remove dust particles by capturing them in liquid droplets. The droplets are then collected, the liquid dissolving or absorbing the<br>pollutant gases. Any droplets that are in the scrubber inlet gas must be separated from the outel gas stream by means of another device referred to<br>as a mist eliminator or entrainment separator (these terms are interchangeable). Also, the resultant scrubbing liquid must be treated prior to any<br>ultimate discharge or being reused in the plant. A wet scrubber's ability to collect small particles is often directly proportional to the power input<br>into the scrubber. Low energy devices such as spray towers are used to collect particles larger than 5 micrometers. To obtain high efficiency<br>removal of 1 micrometer (or less) particles generally requires high energy devices such as venturi scrubbers. Low energy devices such as<br>condensation scrubbers. Additionally, a properly designed and operated entrainment separator or mist eliminator is important to achieve high<br>removal efficiencies. The greater the number of liquid droplets that are not captured by the mist eliminator the higher the potential emission levels. |            |
|                 |                                  |                                 |                            |                          |                                               |                                | Wet scrubbers that remove gaseous pollutants are referred to as absorbers. Good gas-to-liquid contact is essential to obtain high removal<br>efficiencies in absorbers. A number of wet scrubber designs are used to remove gaseous pollutants, with the packed tower and the plate tower being<br>the most common. If the gas stream contains both particle matter and gases, wet scrubbers are generally the only single air pollution control device<br>that can remove both pollutants. Wet scrubbers can achieve high removal efficiencies for either particles or gases and, in some instances, can<br>achieve a high removal efficiency for both pollutants in the same system. However, in many cases, the best operating conditions for particles<br>collection are the poorest for gas removal.                                                                                                                                                                                                                                                                                                                                                                                                                       |            |

|                 |                                     | Control Measure |                            | Control | Cost Effectiveness (2018\$/ton | Other Pollutants |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|-----------------|-------------------------------------|-----------------|----------------------------|---------|--------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Sector          | Source Category                     | Abbreviation    | Emission Reduction Measure |         |                                | Controlled       | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | References |
| NonEGU<br>Point | ICI Boilers -<br>Subbituminous Coal | SWSICIBSBC      | Wet Scrubber               | 83.9    | \$3,784                        |                  | Wet Scrubber - This describes a variety of devices that remove pollutants from a furnace flue gas or from other gas streams. In a wet scrubber, the pollutant gas stream is brought into contact with the scrubbing liquid, by spraying it with the liquid, by forcing it through a pool of liquid, or by some other contact method, so as to remove the pollutants. The design of wet scrubbers or any air pollution control device depends on the industrial process conditions and the nature of the air pollutants involved. Inlet gas characteristics and dust properties (if particles are present) are of primary importance. Scrubbers can be designed to collect particulate matter ad/or gaseous pollutants. The versatility of wet scrubbers allows them to be built in numerous configurations, all designed to provide good contact between the liquid and polluted gas stream. Wet scrubbers are in the scrubber inlet gas must be separated from the outlet gas stream by means of another device referred to as a mist eliminator or entrianment separator (these terms are interchangeable). Also, the resultant scrubbing liquid must be treated prior to any ultimat discharge or being reused in the plant. A wet scrubber's ability to collect small particles is often directly proportional to the power input into the scrubber. Low energy devices such as spray towers are used to calter particles larger than 5 micrometers. To obtain high efficiency removal of 1 micrometer (or less) particle's generally requires high energy devices such as venturi scrubbers or augmented devices such as condensation scrubbers. Additionally, a properly designed and operated entrainment separator or mist eliminator the higher the potential emission levels. Wet scrubbers that remove gaseous pollutants, with the packed tower and the plate tower being the most eliminator is important to achieve high removal efficiencies in absorbers. Additionally, a properly designs are used to remove gaseous pollutants, with the packed tower and the plate tower being there were the number of liq |            |

| Sector          | Source Category                                   | Control Measure<br>Abbreviation | Emission Reduction Measure                                                     | Control<br>Efficiency (% | Cost Effectiveness (2018\$/ton<br>) reduced) | Other Pollutants<br>Controlled | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | References           |
|-----------------|---------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------|--------------------------|----------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| NonEGU<br>Point | Flexible Package Printing                         | 3 VAOCFPP                       | Add-on controls, work<br>practices, and material<br>reformulation/substitution | 67                       | \$3,433                                      |                                | EPA issued a CTG for Flexible Package Printing in 2006 that includes recommended control techniques. EPA's recommended emission limits are<br>based on the 1978 CTG for graphic arts (which included rotogravure printing and flexographic printing) and on the 1996 NESHAP. This CTG<br>provides control recommendations for reducing VOC emissions from (1) inks, coatings, adhesives and (2) cleaning materials used in flexible<br>packaging printing. EPA recommendations for reducing VOC emissions from (1) inks, coatings, adhesives and (2) cleaning materials used in flexible<br>packaging printing. EPA recommendations for operations that emit at least (1) 25 typ of VOC from inks, and for<br>operations that emit at least (2) 15 lb/day of VOC due to fountain solutions and cleaning materials (before consideration of controls). The approach<br>to reducing VOC emissions from inks, coatings, and adhesives includes adding/improving add-on controls with an overall emission reduction of 65<br>to 80 percent (depending on the first installation date of the equipment) and material reformulation/substitution (low- and no-VOC inks, coatings,<br>and adhesives) with an 80 percent overall emissions reduction level. The recommended approach to reduce VOC emissions from cleaning materials<br>includes use of work practices (keeping solvent containers closed, conducting cleaning operations, conveying cleaning materials in closed<br>containers, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EPA 2006c            |
| NonEGU<br>Point | Generic NonEGU                                    | VCAGENVOC                       | Carbon Adsorber                                                                | 99                       | \$1,349                                      |                                | This control measure and associated costs was developed based on EPA's Control Cost Manual, Section 3 - VOC Controls, Section 3.1 - VOC Recapture<br>Controls, Chanter 1 - Carbon Adsorbers; and associated control cost calculation spreadsheet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GDIT 2020b, EPA 2017 |
| NonEGU<br>Point | Generic NonEGU                                    | VCOXGENVOC                      | Catalytic Oxidizer                                                             | 99                       | \$2,335                                      |                                | This control measure and associated costs was developed based on EPA's Control Cost Manual, Section 3 - VOC Controls, Section 3.2 - VOC<br>Destruction Controls, Chapter 2 - Incinerators and Oxidizers; and associated control cost calculation spreadsheet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GDIT 2020b, EPA 2017 |
| NonEGU<br>Point | Miscellaneous Metal and<br>Plastic Parts Coatings | VCTRMMPPC                       | Coating Reformulation                                                          | 35                       | \$2,155                                      |                                | In the 2008 EPA CTG for miscellaneous metal and plastic parts coatings three options were recommended for controlling VOC emissions: (1) VOC content limits for each coating category based on the use of low-VOC content coatings and specified application methods to achieve good transfer efficiency; (2) equivalent VOC emission rate limits based on the use of a combination of low-VOC coatings, specified application methods, and add-on controls; or (3) an overall VOC control efficiency of 90 percent for facilities that choose to use add-on controls instead of low-VOC Coating starting and add-on controls; or (3) an overall VOC control efficiency (2) equivalent VOC control efficiency (2) equivalent VOC control efficiency (2) equivalent VOC emission and that in practice, facilities with choose to use add-on controls instead of low-VOC Content coating saterials alternative. In addition, EPA recommended work practices to further reduce VOC emissions from coating as are last to minize amissions from cleaning materials used in miscellaneous metal product and plastic part surface coating porcesses. The recommendations in this CTG are similar to the South Coast regulations governing miscellaneous metal product and plastic part surface coating operations, and Michigan Rule 336.1632.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EPA 2008a            |
| NonEGU<br>Point | Flat Wood Paneling<br>Coatings                    | VLVMAFWPC                       | Low-VOC materials coatings<br>and Add-On Controls                              | 90                       | \$3,188                                      |                                | EPA issued a new CTG for flat wood paneling coating facilities in 2006. The 2006 CTG recommends emission limits for the inks, coatings and<br>adhesives used by the flat wood paneling coating facilities and work practices for cleaning materials used. The low-VOC materials recommendation<br>for inks, coatings and adhesives include an emission limit of 2.1 lbs. per gallon of materials. Should product performance requirements or other<br>needs dictate the use of higher-VOC coatings than this, a facility could choose to use add-on control equipment to meet an overall control efficiency<br>of 90 percent. Add-on devices include oxidizers and solvent recovery systems. The CTG also recommends work practices for use in all flat wood<br>paneling coating facilities meeting the 15 lb per day threshold. The new CTG emission limits for this source category are based on the rules in Placer<br>County (Rule 238) and SCAMD (Rule 1104) in California.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ЕРА 2006Ь            |
| NonEGU<br>Point | Paper Film and Foil<br>Coatings                   | VLVMAPFFC                       | Low-VOC coating materials<br>and/or add-on controls                            | 90                       | \$1,471                                      |                                | DeP issued a 2007 CTG for paper, film and foil coatings. Previous federal actions that affected this source category included a 1977 CTG for<br>controlling VOC emissions from surface coating of paper, the 1983 NSPS for surface coating of pressure sensitive tape and labels (a subset of this<br>category), and a 2002 NESHAP for paper and other web coating. EPA recommends applying the control recommendations for coatings only o<br>individual paper, film and foil surface coating lines with the potential to emit at least 25 try of VOC from coatings, prior to controls. EPA<br>recommends an overall VOC control efficiency of 90% as RACT for each coating line. This level of control is based on current rules in San Diego and<br>Ventura air districts in California, as well as the NSPS. The CTG does not recommend the 95 percent control level that is currently required by the<br>NESHAP and seven State's regulations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 2007f            |
| NonEGU<br>Point | Flat Wood Paneling<br>Coatings                    | VLVMFWPC                        | Low-VOC materials coatings                                                     | 60                       | \$2,329                                      |                                | EPA issued a new CTG for flat wood paneling coating facilities in 2006. The 2006 CTG recommends emission limits for the inks, coatings and<br>adhesives used by the flat wood paneling coating facilities and work practices for cleaning materials used. The low-VOC materials recommendation<br>for inks, coatings and adhesives include an emission limit of 2.1 lbs. per gallon of materials. The CTG also recommends work practices for use in all<br>flat wood paneling coating facilities meeting the 15 lb per day threshold. The new CTG emission limits for this source category are based on the<br>rules in Placer County (Rule 238) and SCAMOD (Rule 1104) in California.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EPA 2006b            |
| NonEGU<br>Point | Large Appliance Surface<br>Coating                | VLVMLASC                        | Low-VOC coating materials                                                      | 30                       | \$613                                        |                                | In 2007, EPA issued a CTG for large appliance coatings. EPA developed this new CTG after considering the 1977 CTG, the 1982 NSPS, the 2002<br>NESHAP, and existing State and local VOC emission reduction approaches for this category. The new CTG applies to facilities with 15 lbs per day or<br>more of VOC emissions from large appliance coating operations. There are two main sources of VOC emissions from large appliance to a strain strain and (2) evaporation of VOC from the cleaning materials. To control VOC emissions from large appliance coating operations: (1) evaporation of VOC from the coatings; and (2) evaporation of VOC from the cleaning materials. To control VOC emissions from large appliance coating operations: (1) evaporation of VOC from the coatings; (2) evaporation of VOC from the use of low-VOC coatings or a combination of coatings and ad-on control's; and (3) an overall control efficiency of 90 percent for add-on control's. EPA expects that in practice, facilities will choose the low-VOC coating gather at large applicance category (SCAMOR Rule 1107).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 2007d            |
| NonEGU<br>Point | Metal Furniture Coatings                          | 5 VLVMMFC                       | Low-VOC coating materials                                                      | 35                       | \$245                                        |                                | Draws addrec dagging (according to the table) and the table of table of table of table of the table of table of table of the table of the table of table of table of table of table of table of the table of ta | EPA 2007e            |
| NonEGU<br>Point | Miscellaneous Industrial<br>Adhesives             | VLVMMIA                         | Low VOC Adhesives and<br>Improved Application Methods                          | 64                       | \$322                                        |                                | This control is based on EPA's 2008 Control Techniques Guidelines for Miscellaneous Industrial Adhesives. It recommends 85 percent VOC<br>reduction through the use of low-VOC content adhesives and specified application methods with good adhesive transfer efficiency; or through the<br>use of a combination of low-VOC adhesives, specified application methods, and add-on controls. The control efficiency is not 85 percent because<br>there are a number of exceptions for certain types of adhesives and adhesives primer application processes. Because the exceptions are for types of<br>processes are at a sub-SCC trevel, the modeled reduction is lower than 85 percent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EPA 2008c, EPA 1995b |
| NonEGU<br>Point | Fabric Printing/ Coating<br>and Dyeing            | VPTENFPCD                       | Permanent Total Enclosure<br>(PTE)                                             | 97                       | \$1,992                                      |                                | A permanent total enclosure (PTE) completely surrounds a source of emissions such that all VOC emissions are captured and contained for discharge to a control device. Fabric printing and coating is performed in the textile manufacturing industry in order to: prepare fiber and subsequently manufacture yarn, finish fiber, yarn, fabrics, and knit apparel; coat, waterproof, or otherwise treat fabrics; perform integrated manufacturing of knit apparel and other finished articles from yarn; and manufacture felt goods, nonwoven fabrics, and miscellaneous textiles. The EPA evaluated VOC emission control options for the fabric optimiting and coating industry including the use of a PTE in conjunction with a thermal oxidizer in the MACT standard-setting process for this source category. The option presented here has applicability to fabric printing/coating processes that use "high" VOC content materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pechan 2006          |

| Sector          | Source Category                             | Control Measure<br>Abbreviation | Emission Reduction Measure                                          | Control<br>Efficiency (% | Cost Effectiveness (2018\$/ton<br>) reduced) | Other Pollutants<br>Controlled | Description/Notes/Caveats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | References           |
|-----------------|---------------------------------------------|---------------------------------|---------------------------------------------------------------------|--------------------------|----------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| NonEGU<br>Point | Metal Can Surface<br>Coating                | VPTENMCSC                       | Permanent Total Enclosure<br>(PTE)                                  | 95                       | \$11,538                                     |                                | A permanent total enclosure (PTE) completely surrounds a source of emissions such that all VOC emissions are captured and contained for discharge to a control device.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pechan 2006          |
|                 |                                             |                                 |                                                                     |                          |                                              |                                | A metal can is defined as a usually cylindrical metal container, but governmental agencies and industry groups use differing criteria to identify cans<br>including shape, materials, capacity, phase of product contained, and material thickness (gauge). Decorative tins, bottle caps and jar lids are also<br>included in the can coating category since many of these items are coated on the same line where can coating takes place. Cans consist of can bodies<br>and can ends. Metal can surface coating facilities include two-piece beverage can body facilities, twopiece food can body assembly facilities, sheepiece more of a body assembly facilities, twopiece food can body assembly facilities, and end lining facilities. EPA evaluated VOC emission control options for the two-piece beverage can, twopiece food can ads heetcoating facilities<br>using a PTE in conjunction with a thermal oxidizer in the MACT standard-setting process for this source category. The option presented here has<br>applicability to processes that use "high" VOC content materials (solvent-horme materials).                                                                                                                                                                                                                                                                                                                                                                          |                      |
| NonEGU<br>Point | Metal Furniture Surface<br>Coating          | VPTENMFSC                       | Permanent Total Enclosure<br>(PTE)                                  | 95                       | \$28,339                                     |                                | A permanent total enclosure (PTE) completely surrounds a source of emissions such that all VOC emissions are captured and contained for discharge to a control device.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pechan 2006          |
|                 |                                             |                                 |                                                                     |                          |                                              |                                | Metal furniture surface coating operations involve: surface preparation of the metal furniture prior to coating application; preparation of a coating<br>for application (e.g., mixing in additives, dissolving resins); application of a coating to metal furniture; flashoff, drying, and curing following coating<br>application; (e.g., mixing in additives, dissolving application; storage of coatings, additives, and cleaning materials; conveyance of<br>coatings, additives, and cleaning materials from storage areas to mixing areas or to coating application areas, either manually or by automated<br>means; and handling and conveyance of waste materials generated by the surface coating operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |
|                 |                                             |                                 |                                                                     |                          |                                              |                                | The EPA evaluated VOC emission control options for the metal furniture coating industry including the use of a PTE in conjunction with a thermal<br>oxidizer in the MACT standard-setting process for this source category. The option presented here has applicability to processes that use "high"<br>VOC content materials (solvent-borne materials).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |
| NonEGU<br>Point | Paper and Other Web<br>Coating              | VPTENPOWC                       | Permanent Total Enclosure<br>(PTE)                                  | 95                       | \$2,204                                      |                                | A permanent total enclosure (PTE) completely surrounds a source of emissions such that all VOC emissions are captured and contained for<br>discharge to a control device. The paper and other web coating category includes the surface coating of pressure sensitive tapes and labels,<br>photographic film, industrial and decorative leminates, feavible viny products, flexible packaging, abrasive products and folding paperboard boxes<br>(flexible packaging, flexible viny) products and folding paperboard boxes emissions are also treated in the paper printing source category). The EPA<br>evaluated VOC emission control options for the paper and other web coating industry including the use of a PTE in conjunction with a regenerative<br>thermal oxidizer in the MACT standard-setting process for this source category.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pechan 2006          |
| NonEGU<br>Point | Product and Package<br>Rotogravure Printing | VPTENPPRS                       | Permanent Total Enclosure<br>(PTE)                                  | 96                       | \$20,459                                     |                                | A permanent total enclosure (PTE) completely surrounds a source of emissions such that all VOC emissions are captured and contained for<br>discharge to a control device. Product and packaging rotogravure includes folding cartons, flexible packaging, labels and wrappers, gift wraps, wall<br>coverings, vinyl printing, decorative laminates, floor coverings, tissue products and miscellaneous specialty products such as cigarette tipping<br>paper. The EPA evaluated VOC emission control options for the Product and Package rotogravure printing industry including the use of a PTE in<br>conjunction with a solvent concentrator in the MACT standard-setting process for this source category.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pechan 2006          |
| NonEGU<br>Point | Generic NonEGU                              | VRTOGENVOC                      | Regenerative Thermal Oxidizer                                       | - 99                     | \$2,581                                      |                                | This control measure and associated costs was developed based on EPA's Control Cost Manual, Section 3 - VOC Controls, Section 3.2 - VOC Destruction Controls, Chapter 2 - Incinerators and Oxidizers; and associated control cost calculation spreadsheet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GDIT 2020b, EPA 2017 |
| NonEGU<br>Point | Fiberglass Boat<br>Manufacturing            | VSOLSFBM                        | Solvent substitution, non-<br>atomized resin application<br>methods | 35                       | \$5,149                                      |                                | EPA issued a CTG during 2008 that provides control recommendations for reducing VOC emissions from the use of gel coats, resins, and materials<br>used to clean application equipment in fiberglass boat manufacturing operations. The CTG recommends the use of low-VOC content (monomers to furthe<br>non-monomer VOC) resin and gel coats with specified application methods. The CTG recommends the use of covers on mixing containers to furthe<br>reduce VOC emissions from gel coats and resins. The CTG also recommends the use of low-VOC and low vapor pressure cleaning materials. Because<br>the CTG recommendations are based on the 2001 NESHAP for boat manufacturing, those facilities that are major sources of HAP are already<br>complying with the 2001 NESHAP and have already adopted these control measures. Because the 2001 NESHAP does not apply to area sources, area<br>source fiberglass boat manufacturing facilities are not currently required to implement the measures provided in the NESHAP and recommended in<br>the CTG. There are boat manufacturing facilities in zone nonatainment areas that meet the applicability threshold in the CTG and would provide<br>VOC emission reductions when the CTG recommended controls are applied. These control approaches are recommended for all fiberglass boat<br>manufacturing facilities where total actual VOC emissions from all fiberglass boat manufacturing operations are equal to or exceed 15 lb/day. | EPA 2008b            |
| NonEGU<br>Point | Miscellaneous Industrial<br>Adhesives       | VSOLSMIA                        | Solvent Substitution                                                | 64                       | \$325                                        |                                | EPA issued a CTG for miscellaneous industrial adhesives in 2008. This provides information for states to consider in determining RACT. EPA's<br>recommended emission limits are based on the OTC Model Rule for Adhesives and Sealants. The emission limits in the OTC rule were the same as<br>California ARB RACT standards, which were based on numerous California district rules. EPA recommends that the control approaches suggested<br>apply to each miscellaneous industrial adhesive application process at a facility where the total actual VOC emission from all application processes,<br>including related cleaning activities at that facility are equal to or exceed 15 lbs per day before consideration of controls. EPA recommends specific<br>VOC emission limits based on application processes. There are two options for achieving recommended emission limits; 10) through the use of low-<br>VOC content adhesives and specified application methods with good adhesive transfer efficiency; or (2) through the use of a combination of low-<br>VOC calhesive, specified methods and add-on controls. As an alternative to the emission limits; 11) through the use of low-<br>VOC adhesive. EPA expected that in practice, facilities will choose the low-VOC materials alternative.                                                                                                                                                                                   | EPA 2008c            |
| NonEGU<br>Point | Generic NonEGU                              | VVRUGENVOC                      | Vapor Recovery Unit                                                 | 97                       | \$25,356                                     |                                | This control measure and associated costs was developed based on EPA's Control Cost Manual, Section 3 - VOC Controls, Section 3.1 - VOC Recapture<br>Controls, Chapter 2 - Refrigerated Condensers; and associated control cost calculation spreadsheet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GDIT 2020b, EPA 2017 |

| Key                   | Reference                                                                                                                                                                                                                                                                                                                                            |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Axe 1999x             | Axe, 1999: D. Axe, IMC Agrico Feed Ingredients, personal communication with S. Roe, E.H. Pechan & Associates, Inc., June 1999.                                                                                                                                                                                                                       |
| BAAQMD 2010           | Bay Area Air Quality Management District, 2010. Preliminary Determination of Compliance. Marsh Landing Generating Station. March 2010. Available at:                                                                                                                                                                                                 |
| •                     | http://www.energy.ca.gov/sitingcases/marshlanding/documents/other/2010-03-24_Bay_Area_AQMD_PDOC.pdf                                                                                                                                                                                                                                                  |
| BLS 1994x             | BLS, 1994: U.S. Department of Labor, Bureau of Labor Statistics, Producer Price Indices, Washington DC. Various issues 1985 through 1994.                                                                                                                                                                                                            |
| Bodnarik 2011         | Bodnarik, Andy. September 29, 2011. Personal Communication with Andy Bodnarik of Ozone Transport Commission to Bryan Lange of ERG.                                                                                                                                                                                                                   |
| CARB 2001             | CARB 2001. Determination of Reasonably Available Control Technology and Best Available Retrofit Control Technology for Stationary Spark-Ignited Internal Combustion Engines.<br>California Environmental Protection Agency, Air Resources Board, Stationary Source Division, Emissions Assessment Branch, Process Evaluation Section. November 2001. |
| CARB 2004             | CARB, 2004. California Environmental Protection Agency. Air Resources Board. Report to the Legislature. Gas-Fired Power Plant NOx Emission Controls and Related Environmental<br>Impacts. Stationary Source Division. May 2004. Available at: http://www.arb.ca.gov/research/apr/reports/l2069.pdf                                                   |
| CH2MHill 2002a        | CH2MHill, 2002. "Walnut Energy Center Application for Certification." Prepared for California Energy Commission. November 2002. Available at:<br>www.energy.ca.gov/sitingcases/turlock/documents/applicant_files/volume_2/App_08.01E_Eval_Control.pdf.                                                                                               |
| CSRA 2016             | CSRA, 2016: Update of NOx Control Measure Data in the CoST Control Measure Database, Draft Report - December 27, 2016, Source Category - Gas-Fired IC Engines in Oil & Gas Inventory                                                                                                                                                                 |
| CSRA 2017             | CSRA, 2017: Update of Default Cost per Ton Values in the CoST CMDB - Equation Type 12 Draft Final Report - March 27, 2017                                                                                                                                                                                                                            |
| DOE 1999              | Onsite Sycom Energy Corporation, 1999. "Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines." Prepared for U.S. Department of Energy. Environmental Programs<br>Chicago Operations Office. November 5, 1999. Available at: https://www1.eere.energy.gov/manufacturing/distributedenergy/pdfs/gas_turbines_nox_cost_analysis.pdf    |
| DOE 2002              | Oxygen Enriched Air Staging a Cost-effective Method For Reducing NOx Emissions. Industrial Technologies. April 2002. Available at:<br>http://www1.eere.energy.gov/manufacturing/resources/glass/pdfs/airstaging.pdf                                                                                                                                  |
| Eagleson et al. 2004x | Eagleson, Scott T., Hutter, Edward, Dharia, Dilip J., John, Ramash B. and Singhania, Sudhanshu, "Economic Advantages in Controlling Refinery FCCU Atmospheric Emissions", presented at the XII Refinery Technology Meet, September 23-25                                                                                                             |
| EC 2013               | Best Available Techniques (BAT) Reference Document for the Manufacture of Glass. European Commission 2013. Available at:<br>http://eippcb.jrc.ec.europa.eu/reference/BREF/GLS_Adopted_03_2012.pdf                                                                                                                                                    |
| ECR 2000              | EC/R, 2000: EC/R Incorporated, "NOx Control Technologies for the Cement Industry," prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC, September 2000.                                                                                                                                                                    |
| EmeraChem Power 2008  | EmeraChem Power, 2008. Attachment in email from Jeff Valmus, EmeraChem Power, to Weyman Lee, BAAQMD. Request for EMx Cost Information. September 8, 2008. Available at: http://www.baaqmd.gov/~/media/Files/Engineering/Public%20Notices/2010/18404/Footnotes/EMx%20BACT%20economic%20analysis%20f inal09072008.ashx                                 |
| EPA 1991              | EPA, 1991: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, "Alternative Control Techniques Document Nitric and Adipic Acid Manufacturing Plants," EPA-450/3-91-026, Research Triangle Park, NC, January 1991.                                                                                                    |
| EPA 1992a             | EPA, 1992: U.S. Environmental Protection Agency, "Prescribed Burning Background Document," Office of Air Quality Planning and Standards, Research Triangle Park, NC,<br>September 1992.                                                                                                                                                              |
| EPA 1993a             | EPA, 1993: U.S. Environmental Protection Agency, Emissions Standard Division, Office of Air Quality Planning and Standards, "Alternative Control Techniques Document NOx Emissions from Process Heaters," EPA-453/R-93-034, Research Triangle Park, NC, September 1993.                                                                              |
| EPA 1993b             | EPA, 1993: U.S. Environmental Protection Agency, Emissions Standard Division, Office of Air Quality Planning and Standards, "Alternative Control Techniques Document NOx<br>Emissions from Stationary Gas Turbines," EPA,-453/R-93-007, Research Triangle Park, NC, January 1993.                                                                    |
| EPA 1993c             | EPA, 1993: U.S. Environmental Protection Agency, Emissions Standard Division, Office of Air Quality Planning and Standards, "Alternative Control Techniques Document NOx<br>Emissions from Stationary Reciprocating Internal Combustion Engines," EPA,-453/R-93-032, Research Triangle Park, NC, July 1993.                                          |
| EPA 1994b             | EPA, 1994: U.S. Environmental Protection Agency, Emissions Standard Division, Office of Air Quality Planning and Standards, "Alternative Control Techniques Document NOx Emissions from Cement Manufacturing," EPA,-453/R-94-004, Research Triangle Park, NC, March 1994.                                                                            |
| EPA 1994c             | EPA, 1994: U.S. Environmental Protection Agency, Emissions Standard Division, Office of Air Quality Planning and Standards, "Alternative Control Techniques Document NOx Emissions from Glass Manufacturing," EPA,-453/R-94-037, Research Triangle Park, NC, June 1994.                                                                              |
| EPA 1994d             | EPA, 1994: U.S. Environmental Protection Agency, Emissions Standard Division, Office of Air Quality Planning and Standards, "Alternative Control Techniques Document NOx Emissions from Industrial/Commercial/Institutional (ICI) Boilers," EPA-453/R-94-022, Research Triangle Park, NC, June 1994.                                                 |
| EPA 1994e             | EPA, 1994: U.S. Environmental Protection Agency, Emissions Standard Division, Office of Air Quality Planning and Standards, "Alternative Control Techniques Document NOx Emissions from Iron and Steel Mills," EPA-453/R-94-065, Research Triangle Park, NC, September 1994.                                                                         |
| EPA 1995b             | EPA, 1995: U.S. Environmental Protection Agency, National Emission Standards for Hazardous Air Pollutants: Printing and Publishing Industry Background Information for Proposed Standards, February 1995.                                                                                                                                            |

| Key                    | Reference                                                                                                                                                                                                                                                                                                                                                              |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EPA 1996e              | EPA, 1998: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, "OAQPS Control Cost Manual," Fifth Edition, Chapter 5, EPA 453/B-96-001,                                                                                                                                                                                                |
|                        | Research Triangle Park, NC. December 1998.                                                                                                                                                                                                                                                                                                                             |
| EPA 1998b              | EPA, 1998: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, "Stationary Source Control Techniques Document for Fine Particulate Matter,: EPA-                                                                                                                                                                                       |
|                        | 452/R-97-001, Research Triangle Park, NC., October 1998.                                                                                                                                                                                                                                                                                                               |
| EPA 1998c              | EPA, 1998: U.S. Environmental Protection Agency, Office of Air and Radiation, "Analyzing Electric Power Generation Under the CAAA," Washington, DC, March 1998.                                                                                                                                                                                                        |
| EPA 2000c              | EPA, 2000: U.S. Environmental Protection Agency, Center on Air Pollution, "Air Pollution Technology Fact Sheet - Fabric Filter - Pulse-Jet Cleaned Type," April 2000.                                                                                                                                                                                                  |
| EPA 2000e              | EPA, 2000: U.S. Environmental Protection Agency, Office of Research and Development, "Coal Utility Environmental Cost (CUECost) Version 3.0" [computer program], February                                                                                                                                                                                              |
|                        | 2000.                                                                                                                                                                                                                                                                                                                                                                  |
| EPA 2001               | EPA, 2001: U.S. Environmental Protection, Office of Research and Development, "Cost of Selective Catalytic Reduction (SCR) Application for NOx Control on Coal-Fired Boilers,"<br>EPA-600/R-01-087, Research Triangle Park, NC, October 2001.                                                                                                                          |
| EPA 2002b              | EPA, 2002: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, "EPA Air Pollution Control Cost Manual," 6th ed., EPA/452/B-02-001, Research<br>Triangle Park, NC, January 2002.                                                                                                                                                        |
| EPA 2004               | EPA, 2004: U.S Environmental Protection Agency, Clean Air Market Division, "Updating Performance and Cost of NOx Control Technologies in the Integrated Planning Model" Paper # 137                                                                                                                                                                                    |
| EPA 2006b              | EPA, 2006: U.S. Environmental Protection Agency, "Control Techniques Guidelines for Flat Wood Paneling Coatings," EPA 453/R-06-004, September 2006.                                                                                                                                                                                                                    |
| EPA 2006c              | EPA, 2006: U.S. Environmental Protection Agency, "Control Techniques Guidelines for Flexible Package Printing," Office of Air Quality Planning and Standards, Research Triangle                                                                                                                                                                                        |
|                        | Park, NC, EPA 453/R-06-003, September 2006.                                                                                                                                                                                                                                                                                                                            |
| EPA 2006e              | EPA, 2006: U.S. Environmental Protection Agency, "Regulatory Impact Analysis: 2006 National Ambient Air Quality Standards for Particle Pollution". October 6, 2006.                                                                                                                                                                                                    |
|                        | http://www.epa.gov/ttn/ecas/ria.html                                                                                                                                                                                                                                                                                                                                   |
| EPA 2006g              | EPA, 2006: U.S. Environmental Protection Agency, Clean Air Markets Division, "Documentation for EPA Base Case 2006 (V.3.0) Using the Integrated Planning Model," Washington,                                                                                                                                                                                           |
|                        | DC, November 2006.                                                                                                                                                                                                                                                                                                                                                     |
| EPA 2007a              | "Control Measure Cost Calculation SummaryforNonEGUpointNOxcontrolsozoneRIA.xls" spreadsheet provided by Larry Sorrels (Sorrels.Larry@epamail.epa.gov) via email to Alison                                                                                                                                                                                              |
|                        | Eyth (eyth@unc.edu) 04-Sep-2007.                                                                                                                                                                                                                                                                                                                                       |
| EPA 2007b              | "Naess_conversion.xls" spreadsheet provided by Darryl Weatherhead (Weatherhead.Darryl@epamail.epa.gov) via email to Alison Eyth (eyth@unc.gov) 04-Jun-2007                                                                                                                                                                                                             |
| EPA 2007d              | EPA, 2007: U.S. Environmental Protection Agency, "Control Techniques Guidelines for Large Appliance Coatings," Office of Air Quality Planning and Standards, Research Triangle Park, NC, EPA 453/R-07-004, September 2007.                                                                                                                                             |
| EPA 2007e              | EPA, 2007: U.S. Environmental Protection Agency, "Control Techniques Guidelines for Metal Furniture Coatings," Office of Air Quality Planning and Standards, Research Triangle Park, NC, EPA 453/R-07-005, September 2007.                                                                                                                                             |
| EPA 2007f              | EPA, 2007: U.S. Environmental Protection Agency, "Control Techniques Guidelines for Paper, Film, and Foil Coatings," Office of Air Quality Planning and Standards, Research<br>Triangle Park, NC, EPA 453/R-07-003, September 2007.                                                                                                                                    |
| EPA 2007g              | EPA, 2007: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards Health and Environmental Impact Division, Air Benefit-Cost Group "Regulatory<br>Impact Analysis of the Proposed Revisions to the National Ambient Air Quality Standards for Ground-Level Ozone," EPA-452/R-07-008, Research Triangle Park, North Carolina, July<br>2007. |
| EPA 2007h              | EPA, 2007: Alternative Control Techniques Document Update - NOx Emissions from New Cement Kilns                                                                                                                                                                                                                                                                        |
| EPA 2007x              | "PMDevelopmentMeasuresList.xls" spreadsheet provided by David Misenheimer (Misenheimer.David@epamail.epa.gov) via email to Alison Eyth (eyth@unc.edu) 27-Aug-2007.                                                                                                                                                                                                     |
| EPA 2008a              | EPA, 2008: U.S. Environmental Protection Agency, "Control Techniques Guidelines for Miscellaneous Metal and Plastic Parts Coatings," Office of Air Quality Planning and Standards,                                                                                                                                                                                     |
| EPA 2008b              | Research Triangle Park, NC, EPA-453/R-08-003, September 2008.<br>EPA, 2008: U.S. Environmental Protection Agency, "Control Techniques for Fiberglass Boat Manufacturing Materials," EPA-453/R-08-004, September 2008.                                                                                                                                                  |
| EPA 20080<br>EPA 2008c | EPA, 2008: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, "Control Techniques Guidelines for Miscellaneous Industrial Adhesives," Research                                                                                                                                                                                        |
| EPA 20080              | Triangle Park, NC, September 2008.                                                                                                                                                                                                                                                                                                                                     |
| EPA 2008d              | Energy and Environmental Analysis (An ICF International Company), 2008. Technology Characterization: Gas Turbines. Prepared for Environmental Protection Agency Climate                                                                                                                                                                                                |
| Ernzooda               | Protection Partnership Division. December 2008. Available at: http://www.epa.gov/chp/documents/catalog_chptech_gas_turbines.pdf                                                                                                                                                                                                                                        |
| EPA 2010               | Saint-Gobain Containers Inc. Clean Air Act Settlement (https://www.epa.gov/enforcement/saint-gobain-containers-inc-clean-air-act-settlement) required the installation of OEAS                                                                                                                                                                                         |
|                        | on glass furnaces.                                                                                                                                                                                                                                                                                                                                                     |
| EPA 2010a              | EPA 2010. Alternative Control Techniques Document: Stationary Diesel Engines. March 5, 2010.                                                                                                                                                                                                                                                                           |
| EPA 2010b              | EPA, 2010: "NOX CONTROL STRATEGIES IN THE IRON AND STEEL INDUSTRY (11-11-10).pdf", pdf document provided by Donnalee Jones (jones.donnalee@epamail.epa.gov) via email to Amy Vasu 11/16/10.                                                                                                                                                                            |
| EPA 2010c              | US EPA, 2010: Clean Air Markets Division. "Documentation for EPA Base Case 2010 (V4.1), Using the Integrated Planning Model," Washington, DC., August 2010.                                                                                                                                                                                                            |
| LI A 2010L             | 05 ETA, 2010. Gean full Markets Division. Documentation for ELA Dase Case 2010 (V4.1), Using the Integrated Flatming Model, Washington, De, August 2010.                                                                                                                                                                                                               |

| Кеу          | Reference                                                                                                                                                                                                                            |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EPA 2012     | Owens-Brockway Glass Container Inc. Clean Air Act Settlement (https://www.epa.gov/enforcement/owens-brockway-glass-container-inc-settlement) required the installation of                                                            |
|              | OEAS on glass furnaces.                                                                                                                                                                                                              |
| EPA 2013     | EPA, 2013: Clean Air Markets Division. "Documentation for Base Case v.5.13: Emission Control Technologies Using the Integrated Planning Model," Washington, DC., November                                                            |
|              | 2013. https://www.epa.gov/airmarkets/documentation-base-case-v513-emission-control-technologies                                                                                                                                      |
| EPA 2013b    | U.S. Environmental Protection Agency (EPA). Strategies for Reducing Residential Wood Smoke. Publication No. EPA-456/B-13-001. Revised March 2013.                                                                                    |
|              | https://www.epa.gov/sites/production/files/documents/strategies.pdf                                                                                                                                                                  |
| EPA 2015     | EPA, 2015: U.S. Environmental Protection Agency. 2015. "Assessing NOx Controls for Gas-Fired Process Heaters at Petroleum Refineries."                                                                                               |
| EPA 2016     | EPA, 2016: U.S. Environmental Protection Agency, Office of Air and Radiation, "Final Technical Support Document (TSD) for the Cross-State Air Pollution Rule for the 2008 Ozone                                                      |
|              | NAAQS, Assessment of Non-EGU NOx Emission Controls, Cost of Controls, and Time for Compliance Final TSD," Final, August 2016.                                                                                                        |
|              | https://www.epa.gov/sites/production/files/2017-05/documents/final_assessment_of_non-egu_nox_emission_controls_cost_of_controls_and_time_for_compliance_final_tsd.pdf                                                                |
| EPA 2016b    | See: EPA Cement Manufacturing Enforcement Initiative (https://www.epa.gov/enforcement/cement-manufacturing-enforcement-initiative ) for cement plant settlements that have                                                           |
|              | required the installation of SNCR on a number of preheater, preheater/precaliner, and wet process cement kilns.                                                                                                                      |
| EPA 2017     | EPA Air Pollution Control Cost Manual, 7th Edition, 2017. https://www.epa.gov/economic-and-cost-analysis-air-pollution-regulations/cost-reports-and-guidance-air-                                                                    |
|              | pollution#cost manual                                                                                                                                                                                                                |
| EPA 2018     | EPA, 2018: U.S. EPA, Control Strategy Tool Cost Equations Document                                                                                                                                                                   |
| EPA 2021     | EPA, 2021: "EPA Air Pollution Control Cost Manual, Section 5 (SO2 and Acid Gas Controls), Chapter 1 (Wet and Dry Scrubbers for Acid Gas Control)", April 2021.                                                                       |
|              | https://www.epa.gov/economic-and-cost-analysis-air-pollution-regulations/cost-reports-and-guidance-air-pollution                                                                                                                     |
| ERG 2000     | ERG, 2000: Eastern Research Group, Inc., "How to Incorporate the Effects of Air Pollution Control Device Efficiencies and Malfunctions into Emission Inventory Estimates,"                                                           |
|              | prepared for Emission Inventory Improvement Program, Point Sources Committee, July 2000.                                                                                                                                             |
| ERG 2010     | ERG, 2010: Evaluation and Development of NOx Control Technologies Cost Equations for Industrial/Commercial/Institutional Boilers                                                                                                     |
| ERG 2015     | ERG, 2013: Eastern Research Group, Inc., "SO2 and PM Cost Equations for Industrial, Commercial, and Institutional (ICI) Boilers and Process Heaters," prepared for U.S.                                                              |
|              | Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC, March 2013.                                                                                                               |
| ERG 2017     | ERG, 2017: Eastern Research Group, Inc., "EMx Cost Findings", Revised July 2017 prepared for U.S. Environmental Protection Agency, Air Economics Group, Research Triangle Park,                                                      |
|              | NC, July 2017.                                                                                                                                                                                                                       |
| ERG 2019     | ERG, 2019: "Documentation of Cost Equation Development Procedures for ICI Boilers," memo prepared for U.S. Environmental Protection Agency, Office of Air Quality Planning                                                           |
| FTC 2014     | and Standards, Research Triangle Park, NC, August 8, 2019 (last revised September 24, 2019).                                                                                                                                         |
| ETS 2014     | ETS, Inc., 2014: NOx Reclaim BARCT Independent Evaluation of Cost Analysis Performed by SCAQMD Staff for BARCT in the Non-refinery Sector                                                                                            |
| GDIT 2019    | GDIT, 2019: General Dynamics Information Technology, "CoST PM25 Control Measures Report," prepared for U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC, October 2019. |
| GDIT 2020a   | GDIT, 2020: General Dynamics Information Technology, CoST PM2.5 Nonpoint Control Measures Report, prepared for U.S. Environmental Protection Agency, Office of Air Quality                                                           |
|              | Planning and Standards, Research Triangle Park, NC, March 2020.                                                                                                                                                                      |
| GDIT 2020b   | GDIT, 2020: General Dynamics Information Technology, CoST VOC Control Measures Report, Revised November 2020, prepared for U.S. Environmental Protection Agency, Office of                                                           |
|              | Air Quality Planning and Standards, Research Triangle Park, NC, November 2020.                                                                                                                                                       |
| GDIT 2021    | GDIT, 2021: "CoST SO2 Control Measures, September 2021", prepared for U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle                                                          |
|              | Park, NC, September 2021.                                                                                                                                                                                                            |
| HARC 2015    | Houston Advanced Research Center and Texas Environmental Research Consortium. Fine Particulate Matter in Harris County. April 30, 2015.                                                                                              |
|              | https://pm25.harcresearch.org/assets/FinalReport.pdf                                                                                                                                                                                 |
| Hardy 1997x  | Hardy, 1997: C. Hardy, Intermountain Research Station, USDA Forest Service, Forest Service Fire Research Library, Missoula, MT, personal communication with M. Cohen, E.H.                                                           |
|              | Pechan & Associates, Inc. February 1997.                                                                                                                                                                                             |
| INCOG 2008   | Indian Nations Council of Governments (INCOG), 2008: Indian Nations Council of Governments (INCOG), "Tulsa Metropolitan Area 8-Hour Ozone Flex Plan: 2008 8-03 Flex                                                                  |
|              | Program," March 6, 2008. url: http://www.epa.gov/ozoneadvance/pdfs/Flex-Tulsa.pdf                                                                                                                                                    |
| INGAA 2014   | INGAA 2014. Availability and Limitations of NOx Emission Control Resources for Natural Gas - Fired Reciprocating Engine Prime Movers Used in the Interstate Natural Gas                                                              |
|              | Transmission Industry; Interstate Natural Gas Association of America; July 2014. See: http://www.ingaa.org/File.aspx?id=22780                                                                                                        |
| MACTEC 2005b | MACTEC Engineering and Consulting, Inc. March 30, 2005. Midwest Regional Planning Organization - Boiler Best Available Retrofit Technology Engineering Analysis                                                                      |
| MACTEC 2005x | Cost estimates from MACTEC BART Analysis Report, 2005, for gas-fired process heaters                                                                                                                                                 |
| MARAMA 2007  | Assessment of Control Technology Options for Petroleum Refineries in the Mid-Atlantic Region. Final Technical Support Document. Prepared by MACTEC Federal Programs, Inc.                                                            |
|              | for MARAMA. January 31, 2007.                                                                                                                                                                                                        |

| Key                  | Reference                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| MassDEP 2002         | Massachusetts, 2002: Commonwealth of Massachusetts, Department of Environmental Protection, Executive Office of Environmental Affairs, Division of Planning and Evaluation,                                                                                                                                      |  |  |  |  |  |  |  |  |
|                      | Bureau of Waste Prevention, "Evaluation Of The Technological and Economic Feasibility of Controlling and Eliminating Mercury Emissions from the Combustion of Solid Fossil                                                                                                                                       |  |  |  |  |  |  |  |  |
|                      | Fuel, Pursuant To 310 CMR 7.29 - Emissions Standards For Power Plants," Downloaded from http://www.state.ma.us/dep/bwp/daqc/daqcpubs.htm#other, December 2002.                                                                                                                                                   |  |  |  |  |  |  |  |  |
| McCubbin et al. 2002 | Donald R. McCubbin, Benjamin J. Apelberg, Stephen Roe, and Frank Divita, 2002: Livestock Ammonia Management and Particulate-Related Health Benefits, Environmental Science &                                                                                                                                     |  |  |  |  |  |  |  |  |
|                      | Technology 2002 36 (6), 1141-1146 DOI: 10.1021/es010705g                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
| Moore 1999x          | Moore, 1999: P.A. Moore, Jr., University of Arkansas, personal communication with S. Roe, E.H. Pechan & Associates, Inc., June 1999                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| NESCAUM 2005         | Low Sulfur Heating Oil in the Northeast States: An Overview of Benefits, Costs, and Implementation Issues. NESCAUM, Boston, MA. December 2005.                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| NESCAUM 2009         | Northeast States for Coordinated Air Use Management. November 2008 (revised January 2009). Applicability and Feasibility of NOx, SO2, and PM Emissions Control Technologies for Industrial, Commercial, and Institutional Boilers.                                                                               |  |  |  |  |  |  |  |  |
| NJDEP 2003           | NJDEP, 2003: "State of the Art (SOTA) Manual for Reciprocating Internal Combustion Engines", State of New Jersey Department of Environmental Protection, Division of Air Quality, 2003.                                                                                                                          |  |  |  |  |  |  |  |  |
| OTC-LADCO 2010       | Ozone Transport Commission & Lake Michigan Air Directors Consortium. May 25, 2010. Draft - Evaluation of Control Options for Industrial, Commercial and Institutional Boilers,<br>Technical Support Document.                                                                                                    |  |  |  |  |  |  |  |  |
| OTC 2012             | OTC 2012. Technical Information Oil and Gas Sector, Significant Stationary Sources of NOx Emissions. Final. October 17, 2012.                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
| Pechan 1996          | Pechan, 1996: E.H. Pechan & Associates, "The Emission Reduction and Cost Analysis Model for NOx (ECRAM-NOx)," Revised Documentation, prepared for U.S. Environmental Protection Agency, Ozone Policy and Strategies Group, Research Triangle Park, NC, September 1996.                                           |  |  |  |  |  |  |  |  |
| Pechan 1998a         | Pechan, 1998: E.H. Pechan & Associates, Inc., "Ozone Transport Rulemaking Non-Electricity Generating Unit Cost Analysis," prepared for U.S. Environmental Protection Agency,<br>Office of Air Quality Planning and Standards, Innovative Strategies and Economics Group, Research Triangle Park, September 1998. |  |  |  |  |  |  |  |  |
| Pechan 1998x         | Pechan, 1998: E.H. Pechan & Associates, Inc., "Clean Air Act Section 812 Prospective Cost Analysis - Draft Report," prepared for Industrial Economics, Inc., Cambridge, MA, September 1998.                                                                                                                      |  |  |  |  |  |  |  |  |
| Pechan 2006          | "AirControlNET v.4.1 Documentation Report." Prepared for US EPA, OAQPS, RTP, NC 27711. Prepared by E.H. Pechan & Associates, Inc., 5528-B Hempstead Way, Springfield, VA 22151. Pechan Report No.06.05.003/9011.002. May 2006.                                                                                   |  |  |  |  |  |  |  |  |
| Peters 1977          | Peters, 1977: J.A. Peters, and T. R. Blackwood, Monsanto Research Corporation, "Source Assessment: Beef Cattle Feedlots," prepared for U.S. Environmental Agency, Office of Research and Development, Research Triangle Park, NC, June 1977.                                                                     |  |  |  |  |  |  |  |  |
| Radian 1994          | EPA, 1994: U.S. Environmental Protection Agency, Radian Corporation, "Alternative Control Techniques Document NOx Emissions from Municipal Waste Combustion," EPA-<br>600/R-94-208, Research Triangle Park, NC, December 1994.                                                                                   |  |  |  |  |  |  |  |  |
| RDC 2001             | Resource Dynamics Corporation, 2001. "Assessment of Distributed Generation Technology Applications." Prepared for Maine Public Utilities Commission. February 2001. Available at: http://www.distributed-generation.com/Library/Maine.pdf                                                                        |  |  |  |  |  |  |  |  |
| RTI 2014             | RTI, 2014: Update of NOx Control Measure Data in the CoST Control Measure Database for Four Industrial Source Categories: Ammonia Reformers, NonEGU Combustion Turbines, Glass Manufacturing, and Lean Burn Reciprocating Internal Combustion Engines, Revised Draft Report (October 2014)                       |  |  |  |  |  |  |  |  |
| SJVAPCD 2003         | SJVAPCD 2003. RULE 4702 - Internal Combustion Engines - Phase 2. Appendix B, Cost Effectiveness Analysis for Rule 4702 (Internal Combustion Engines - Phase 2). San Joaquin Valley Air Pollution Control District. July 17, 2003. www.arb.ca.gov/pm/pmmeasures/ceffect/rules/sjvapcd_4702.pdf                    |  |  |  |  |  |  |  |  |
| SRA 2016             | SRA, 2016: SRA International, Inc. "2016 Updates to the Assessment of Reasonable Progress for Regional Haze in MANE-VU Class I Areas: Chapter 2 Source Category Analysis for Electric Generating Units,", January 2016.                                                                                          |  |  |  |  |  |  |  |  |
| STAPPA-ALAPCO 1994   | STAPPA/ALAPCO, 1994: State and Territorial Air Pollution Program Administrators/Association of Local Air Pollution Officials, "Controlling Nitrogen Oxides Under the Clean Air Act: A Menu of Options," Washington, DC, July 1994.                                                                               |  |  |  |  |  |  |  |  |
| Staudt 2011          | Andover Technology Partners. Cost of Emission Control Technologies, presentation by Jim Staudt, PhD, at the ICAC-MARAMA Meeting, May 18-19, 2011.<br>http://www.marama.org/presentations/2011_ICACAdvancesCT/Staudt_MARAMA_051811.pdf                                                                            |  |  |  |  |  |  |  |  |