Tribal Air Sensors Pilot Project

Kristen Benedict¹ & Brandy Toft² ¹ U.S. EPA, Office of Air Quality Planning and Standards ² Leech Lake Band of Ojibwe

December 2, 2015

Background

- Goal Assist the Tribe in understanding local-scale air quality issues and potential differences between local- and regional-scale particulate matter (PM)
- EPA lending three PM sensor devices to the Leech Lake Band of Ojibwe Tribe*
 - Evaluate potential benefits and determine limitations of continuous PM measurements
 - Examine sensor precision by comparing data collected among sensors
 - Examine sensor accuracy by comparing sensor data with local Federal Reference Method (FRM) data
 - Evaluate spatial gradients in concentrations near PM emission sources
- * The equipment and monitoring data collected during the study are not intended for regulatory purposes

Monitoring Study Design

- Collocation study to occur periodically over ~4-6 months
 - Monitoring began in late October 2015
- Quality Assurance Project Plan (QAPP)
 - Category IV QAPP intended for education and outreach initiatives
- Two phases
 - Periodic collocation of the sensors with an existing $PM_{2.5}$ FRM
 - Use of existing gravimetric PM_{2.5} FRM managed by the Tribe
 - The instrument reports 24-hour average PM_{2.5} concentrations on a one-in-six day schedule
 - Periodic mobile monitoring near local sources to examine the impact of sources on local air quality and nearby PM concentration gradients

Siting & Logistical Considerations

- Tribal federal reference method (FRM) monitor is in a remote "background" location
 - Power onsite
 - No communications
 - manual storage and data download required
 - Staff make routine weekly visits
 - FRM PM, NADP Hg, Meteorological
 - No shelter available

Selection of Sensors

- PM sensor models
 - RTI MicroPEM (Quantity = 1) Reports concentration in µg/m³ every 10 seconds for direct comparison with FRM
 - Performance evaluated by EPA
 - Moderate-cost (~\$2,900)
 - Durable
 - AirBeam (Quantity = 2)
 - Reports particle counts every minute for qualitative comparison with FRM and comparisons with one another
 - Performance evaluated by EPA
 - Low-cost, easy to use (~\$250)
 - Good mobility for examining spatial gradients near sources

Data Quality Objectives

Data Quality Indicator (DQI) goals for the project – automatic checks by DMS

Sensor	Assessment	Criteria	Corrective Actions
RTI	(1) PM concentration	(1) Maximum > 200 μ g/m ³ ;	Data will be flagged in database
MicroPEM	(2) Sticking check	Minimum <-5 μg/m ³	for review by analyst.
	(3) RH check ^a	(2) > 3 hours	
	(4) Data completeness	(3) $RH > 95\%$	
	(5) FRM check	(4) 75% completeness (by hour and hours in day)	
		(5) $\pm 5 \mu g/m^{3 b}$	
AirBeam	(1) Particle count	(1) Maximum >1000 hpcf ^c	Data will be flagged in database
	(2) Sticking check	(2) > 3 hours	for review by analyst.
	(3) Buddy check	(3) ± 100 hpcf	
	(4) Temperature check	(4) Temperature outside range of	
	(5) RH check	32° to 122°F	
	(6) Data completeness	(5) $RH > 95\%$	
		(6) 75% completeness (by hour	
		and hours in day)	

^a The RTI MicroPEM itself does not measure relative humidity. MicroPEM data will be flagged when the AirBeam reports that the relative humidity exceeds 95%.

^b The \pm 5 µg/m³ criteria for the FRM check may be fine-tuned with experience.

^c hpcf: hundreds of particles per cubic foot.

Field Deployment

Lessons Learned to Date

- MicroPEM calibration issues (in lab and field)
 - Related to software, contacted RTI for assistance
- MicroPEM computer connection & timestamp issues (in lab and field)
 - Issue were diagnosed, data was retrieved
 - Time has not been kept accurately possibly due to dead batteries
- One of the AirBeams has been working intermittently (in field)
 - In field troubleshooting included cable replacement, change of port connection to the computer, etc but sensor has now been disconnected for testing indoors to diagnose problem
 - Significant data loss has occurred

Next Steps

- Continue field deployment of sensors
- Final report will document study design, data collected, results of data analysis, project challenges, and other lessons learned
 - 21 comparison data sets
- Data collection will likely conclude at the end of February 2016
- Highly anticipated study
 - Present at 2016 National Tribal Forum
 - Fielding Tribal questions

Questions? Brandy Toft Air Quality Specialist air@lldrm.org 218-335-7429

Kristen Benedict benedict.kristen@epa.gov 919-541-1394