BOILER NUMBER ONE EMISSIONS TEST REPORT

L'ANSE WARDEN ELECTRIC COMPANY, LLC.

157 South Main Street L'Anse, Michigan 49946

November 2015

W.O. No. 14464.007.003

RENEWABLE OPERATING PERMIT REPORT CERTIFICATION

MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY

AIR QUALITY DIVISION

RENEWABLE OPERATING PERMIT REPORT CERTIFICATION

Authorized by 1994 P.A. 451, as amended. Failure to provide this information may result in civil and/or criminal penalties.

Reports submitted pursuant to R 336.1213 (Rule 213), subrules (3)(c) and/or (4)(c), of Michigan's Renewable Operating Permit (ROP) program must be certified by a responsible official. Additional information regarding the reports and documentation listed below must be kept on file for at least 5 years, as specified in Rule 213(3)(b)(ii), and be made available to the Department of Environmental Quality, Air Quality Division upon request.

Source Name	L'Anse Warden Electric C	ompany LLC			County	Baraga
Source Address	157 S. Main Street			City	L'Anse	
AQD Source ID (SRN)	B4260	ROP No.	MI-ROP-B4260-20	011	ROP Section	on No
Please check the approp						
☐ Annual Compliand	ce Certification (Pursua	nt to Rule 213(4))(c))			
1. During the ent	rovide inclusive dates): tire reporting period, this s n of which is identified and ed in the ROP.			erms and co		
term and condition deviation report(s	ntire reporting period this on of which is identified an .). The method used to de indicated and described o	nd included by the transformed included by the transformed by the termine compliation of the termine compliation of the termine compliation of the termine compliation of the termine complexity of	nis reference, EXCE nce for each term a	EPT for the	deviations id	entified on the enclosed
				(0)())		
Semi-Annual (or I	More Frequent) Report C	ertification (Pu	rsuant to Rule 213	(3)(C))		
☐ 1. During the en	provide inclusive dates): tire reporting period, ALL tese requirements or any o	From monitoring and a other terms or co	To ssociated recordker nditions occurred.		ements in the	ROP were met and no
2. During the entire reporting period, all monitoring and associated recordkeeping requirements in the ROP were met and no deviations from these requirements or any other terms or conditions occurred, EXCEPT for the deviations identified on the enclosed deviation report(s).						
	Kiestien					
	rovide inclusive dates): g reports or other applicat	From	To quired by the ROP	are attached	l as describe	ā:

I certify that, based on information and belief formed after reasonable inquiry, the statements and information in this report and the supporting enclosures are true, accurate and complete

James R. Richardson	Technical Manager	907-885-7187		
Name of Responsible Official (print or type)	Title	Phone Number		
James & hichardon		11/20/15		
Signature of Responsible Official		Date		

TABLE OF CONTENTS

Section

Page

1.	INTR	ODUC	ΓΙΟΝ1-1
	1.1	PLAN	T INFORMATION1-1
	1.2	TESTI	NG FIRM INFORMATION
	1.3	COMP	LIANCE TEST PARAMETERS 1-2
2.	SUMN	MARY	OF TEST RESULTS
3.	DESC	RIPTI	ON OF PROCESS AND SAMPLING LOCATIONS
	3.1	PROC	ESS OVERVIEW
		3.1.1	BASIC OPERATING PARAMETERS
		3.1.2	PROCESS CAPACITY
	3.2	AIR PO	OLLUTION CONTROL EQUIPMENT
		3.2.1	
		3.2.2	RATED CAPACITY AND EFFICIENCY
	3.3	REFE	RENCE METHOD TEST LOCATION
		3.3.1	FLUE GAS PARAMETERS
4.	SAMI	PLING .	AND ANALYTICAL PROCEDURES
	4.1	PRE-T	EST DETERMINATIONS
	4.2	PARTI	CULATE AND HYDROGEN CHLORIDE SAMPLING
		METH	OD – EPA METHODS 5 AND 26A
	4.3	PARTI	ICULATE MATTER ≤ 10 MICRON SAMPLING TRAIN
		4.3.1	PM ₁₀ Sample Recovery
		4.3.2	
	4.4	LEAD	SAMPLING METHOD – EPA METHOD 12
	4.5	VOC, I	NO _X , SO ₂ , AND O ₂ /CO ₂ CONTINUOUS EMISSIONS
		MONI	TORING SYSTEM
		4.5.1	VOC, NO _x , SO ₂ , and O ₂ /CO ₂ Monitoring Procedures
5.	QUAI		SSURANCE/QUALITY CONTROL
	5.1		ITY CONTROL PROCEDURES
	5.2		TREAM SAMPLING QA PROCEDURES
		5.2.1	Stack Gas Velocity/Volumetric Flow Rate QA Procedures
		5.2.2	Moisture and Sample Gas Volume QA Procedures
		5.2.3	Isokinetic Sampling Train QA Procedures
		5.2.4	Sample Identification and Custody
		5.2.5	Data Reduction and Validation QC Checks
	5.3	REFE	RENCE METHOD CEMS QA/QC CHECKS
APPE	NDIX	A	DETAILED TEST RESULTS
APPE	NDIX	B	RAW TEST DATA
APPE	NDIX	С	OPERATING DATA
APPE	NDIX	D	LABORATORY REPORTS
APPE	NDIX I	E	EXAMPLE CALCULATIONS

APPENDIX F QUALITY CONTROL DATA

LIST OF FIGURES

Section	Page
Figure 3-1 CEMS and Reference Method Test Location	3-3
Figure 4-1 EPA Method 5 and 26A Particulate and Hydrogen Chloride Sampling Train	4-3
Figure 4-2 EPA Method 201A/202 Sampling Train	4-6
Figure 4-3 EPA Method 12 Metals Sampling Train	4-11
Figure 4-4 Reference Method Sampling System	4-14

LIST OF TABLES

Section	Page
Table 1-1 Summary of Compliance Test Parameters	. 1-2
Table 2-1 Boiler No. 1 Compliance Test Results Summary	. 2-2

1. INTRODUCTION

Weston Solutions, Inc. (WESTON) was retained by L'Anse Warden Electric Company, LLC (LWEC) to perform a compliance emissions testing program on the Boiler No. 1 exhaust duct at the LWEC facility located in L'Anse, Baraga County, Michigan. Boiler No. 1 was previously a coal, oil, and gas-fired steam generating station and has been converted to burn biomass.

The facility has historically operated under the State of Michigan Renewable Operating Permit (ROP) Number MI-ROP-B4260-2004, which was transferred to LWEC effective 5 July 2007. A revised ROP, number MI-ROP-B4260-2004a, was issued on 19 February 2008. Construction activities were authorized under Permit to Install (PTI) 168-07, issued on 29 October 2007. PTI 168-07 was replaced by PTI 168-07A on 30 May 2008. The facility received PTI 168-07B, issued on 15 April 2010, which modified certain emission limits and material throughput rates and governed operations through 31 December 2010. PTI 168-07C was issued on 26 October 2011 (to allow the boiler to use up to 0.25 tons per hour of penta wood in addition to the current fuel mix), and PTI 168-07D was approved on 25 October 2012 to incorporate the existing wood chipping process into the ROP and revise the next required performance testing date. Boiler Number 1 is identified as EUBOILER #1 in the PTI. On 28 October 2010, ROP #MI-ROP-B4260-2011 was issued and took effect on 1 January 2011.

This report provides a detailed description of the boiler operating conditions, emissions testing methods, analytical procedures and continuous monitoring parameters that were collected or employed during the tests.

1.1 PLANT INFORMATION

L'Anse Warden Electric Company, LLC 157 South Main Street L'Anse, Michigan 49946 Mr. JR Richardson Phone: 906-885-7187

1.2 TESTING FIRM INFORMATION

Weston Solutions, Inc. 1400 Weston Way West Chester, PA 19380 Mr. Ken Hill Phone: 610-701-3043

1.3 COMPLIANCE TEST PARAMETERS

Table 1-1 provides a summary of the compliance test parameters, associated test methods, and respective emission limits.

Table 1-1

Analytical Parameters and Test Method	Reporting Units	Limit			
PM/HCl (EPA 5 and 26A)	gr/dscf, ppmvd, lb/MMBtu, lb/hr	PM 0.06 lb/MMBtu, 19.2 lb/hr, HCl 2.17 lb/hr			
PM ₁₀ (EPA 201A-202)	gr/dscf, lb/hr	15.4 lb/hr			
Lead (EPA 12)	ug/m ³ , lb/hr	0.02 lb/hr			
O ₂ /CO ₂ (EPA 3/3A)	%	N/A			
NOx (EPA 7E)	ppmvd, lb/hr	145 lb/hr			
SO ₂ (EPA 6C)	ppmvd, lb/hr	290 lb/hr			
VOC (EPA 18 and 25A)	ppmvd @ 7% O_2 (measured as methane), lb/hr	50 ppmvd @ 7% O ₂ , 9.1 lb/hr			

Summary of Compliance Test Parameters

Following this Introduction, a summary of the test results can be found in Section 2. Section 3 provides a description of the process and sampling locations. Section 4 provides a description of the sampling and analytical procedures, and Section 5 provides the quality assurance and quality control procedures used throughout the test program. Detailed test results, raw test data, operating data, laboratory reports, example calculations, and quality control data can be found in Appendices A-F, respectively.

2. SUMMARY OF TEST RESULTS

WESTON performed the emissions testing program on Boiler No. 1 on 23-24 September 2015 and 3-5 November 2015. Three test runs were performed for each parameter while the unit was operating at maximum normal load.

A summary of the test results and emissions limits are presented in Table 2-1. Preliminary data from the September 2015 test event indicated HCl emissions may have been in excess of permitted emission limitations. Accordingly, a second HCl test program was conducted on 3-5 November 2015 during two separate conditions. Testing was performed following the guidelines set forth in the previously approved test protocol (dated April 2015) and respective Michigan Department of Environmental Quality (MDEQ) correspondence letter. The HCl results from the November test program demonstrate compliance with the permitted emission limit. At the time of this writing, LWEC is in the process of preparing a separate letter report of findings explaining the reasons believed to contribute to the higher HCl results reported from the September test program. All other test results from the September test program were within the allowable criteria.

Additionally, upon final review of the field data, WESTON discovered an error in the PM_{10} isokinetic sampling program for Run 2. Specifically, an incorrect pitot tube calibration factor (0.840 vs. 0.758) was inadvertently entered into the sampling program setup page. After correcting the pitot calibration factor data entry, the resulting isokinetic sampling rate and ΔP minimum velocity (ideal for the selected sampling nozzle) did not meet the acceptable criteria as per EPA Method 201A. Despite the error WESTON believes the PM_{10} results reported for Run 2 are still representative of the boiler emissions considering the filterable PM_{10} fraction tracks closely with the EPA Method 5 PM results (within 0.5 lb/hr) sampled concurrently with the PM_{10} test runs. The test results for all three PM_{10} runs were well below the allowable emission limit, with an average compliance margin of 73%.

There were no other operational or sampling complications during the field testing that impacted the test results. All test data are believed to be representative of the emissions encountered during the test periods.

All sample analyses were performed by Maxxam Analytical Services at their Burlington, Ontario laboratories. Additionally, audit samples for HCl (for both the September and November test

program) and lead were obtained from a Stationary Source Audit Sample (SSAS) provider. The audit sample results (provided in Appendix D) indicate all reported values for both test programs were within the acceptable limits of the known value.

D	Date	Reporting Units ¹	Run Number				Emission
Parameter			1	2	3	Average	Limit
РМ	9/24/15	lb/MMBtu lb/hr	0.005 1.54	0.005 1.42	0.009 2.79	0.006 1.92	0.06 19.2
HCl	9/24/15	lb/hr	4.10	6.75	4.73	5.19	2.17
HCl (Condition 1)	11/3-4/15	lb/hr	1.30	1.44	1.11	1.28	2.17
HCl (Condition 2)	11/5/15	lb/hr	1.45	1.63	1.72	1.60	2.17
PM ₁₀	9/24/15	lb/hr	4.36	3.62	4.66	4.21	15.4
Lead	9/23- 24/15	lb/hr	0.005	0.003	0.001	0.003	0.02
SO ₂	9/24/15	lb/hr	124	114	124	121	290
NOx	9/24/15	lb/hr	63.8	64.0	67.5	65.1	145
VOC	9/24/15	ppmvd @ 7% O ₂ lb/hr	1.4 0.24	1.8 0.31	0.7 0.12	1.3 0.22	50 9.1

Table 2-1Boiler No. 1 Compliance Test Results Summary

3. DESCRIPTION OF PROCESS AND SAMPLING LOCATIONS

3.1 PROCESS OVERVIEW

LWEC is a cogeneration facility, consisting of a single boiler generating process steam and electric power. The facility fires biomass, with limited natural gas use for startup and stabilization.

3.1.1 BASIC OPERATING PARAMETERS

The fuel feed to the boiler was regulated to meet process steam and electrical generation requirements. Excess air was regulated to meet boiler performance requirements. The fuel blend may be modified to improve combustion characteristics. Adjustments to air, fuel blend or load were made as necessary to conform to emissions monitoring limits.

3.1.2 PROCESS CAPACITY

The hourly boiler operating limit is 324 million British thermal units (MMBtu). The maximum annual heat input is 2,656,800 MMBtu, based on 8,200 hours of operation per year.

3.2 AIR POLLUTION CONTROL EQUIPMENT

Particulate emissions are controlled with a single chamber, three-field electrostatic precipitator (ESP).

3.2.1 OPERATING PARAMETERS

The precipitator electrical controls and rapping sequence, intensity and frequency are set for optimum performance and are not generally modified after this optimization exercise unless emissions issues are observed.

3.2.2 RATED CAPACITY AND EFFICIENCY

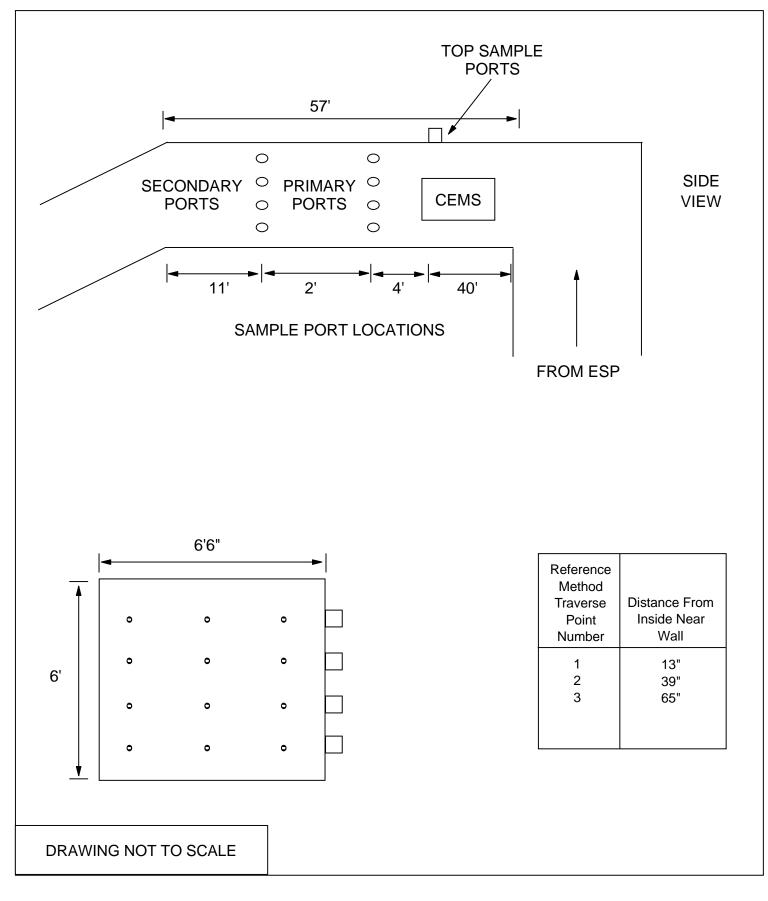
The original design specifications for the precipitator were: 98.1% efficiency at 110,000 actual cubic feet per minute (ACFM) at a temperature of 370°F.

3.3 REFERENCE METHOD TEST LOCATION

The reference method sample ports (two sets) are located on a section of rectangular ductwork that runs horizontally from the exit of the ESP prior to the exhaust stack. The rectangular ductwork is six feet by six feet six inches (6' x $6\frac{1}{2}$) and has a straight run of fifty-seven feet (57'). All dimensions and port locations were verified prior to testing.

Additionally, a third set of sample ports are located on top of the ESP outlet ductwork. These ports may also be used for sampling (reference method CEMS probe, for example).

Figure 3-1 presents a diagram of the CEMS and reference method test location.


3.3.1 FLUE GAS PARAMETERS

The expected flue gas parameters at this location are as follows:

Temperature: approximately 370 °F

Moisture: approximately 15% v/v

Volumetric Flow Rate: Up to about 125,000 ACFM

FIGURE 3-1 CEMS AND REFERENCE METHOD TEST LOCATION

4. SAMPLING AND ANALYTICAL PROCEDURES

The purpose of this section is to detail the stack sampling and analytical procedures utilized during the test program.

4.1 PRE-TEST DETERMINATIONS

Preliminary test data was obtained at the sampling location. Geometry measurements were measured and recorded, and traverse point distances verified. A preliminary velocity traverse was performed utilizing a calibrated "S" type pitot tube and an inclined manometer to determine velocity profiles. Flue gas temperatures were measured with a calibrated direct readout pyrometer equipped with a chromel-alumel thermocouple. Water vapor content (for the pre-test determinations) was based on previous test data.

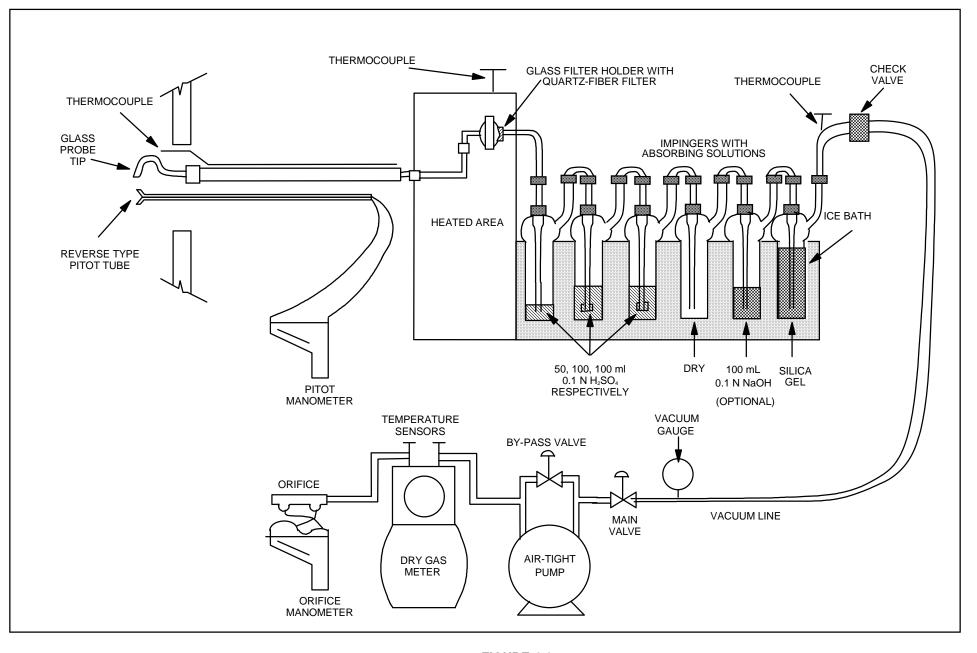
A check for the presence or absence of cyclonic flow was conducted at the test location. An average cyclonic flow check angle of $< 20^{\circ}$ verifies the suitability of the test site for obtaining representative samples.

Preliminary test data was used for nozzle sizing and sampling rate determinations for isokinetic sampling procedures.

Pre-test calibration of probe nozzles, pitot tubes, metering systems, and temperature measurement devices were performed as specified in Section 5 of EPA Method 5 test procedures.

4.2 PARTICULATE AND HYDROGEN CHLORIDE SAMPLING METHOD – EPA METHODS 5 AND 26A

The sampling train utilized to perform the particulate and hydrogen chloride sampling was a combined EPA Reference Method 5 and 26A sampling train (see Figure 4-1).


Particulate and Hydrogen Chloride Sampling Train

A calibrated glass nozzle was attached to a heated (>260°F) borosilicate probe. The probe was connected to a heated (>260°F) borosilicate filter holder containing a tared 9-cm quartz filter. The filter holder was connected to the first of six impingers by means of rigid glass connectors. The first moisture knockout impinger contained 50 ml of 0.1 normal sulfuric acid. The second and third impingers each contained 100 ml of 0.1 normal sulfuric acid. The fourth impinger was empty and the fifth impinger contained 100 ml of 0.1 normal sodium hydroxide. The sixth impinger contained 300 grams of dry silica gel. The second and third impingers were a standard Greenburg-Smith type; all other impingers were of a modified design. The first impinger was of a modified design with a shortened stem. All impingers were maintained in an ice bath. A control console with a leakless vacuum pump, a calibrated dry gas meter, a calibrated orifice, and inclined manometers were connected to the final impinger via an umbilical cord to complete the train. Flue gas velocities were measured with a calibrated "S" type pitot tube fastened alongside the sampling probe. Flue gas temperatures were monitored with a calibrated direct readout digital pyrometer equipped with a chromel-alumel thermocouple positioned near the sampling nozzle.

Filter box and impinger exit gas temperatures were monitored with a calibrated direct readout digital pyrometer equipped with chromel-alumel thermocouples positioned in the heated filter chamber and in the sample gas stream after the last impinger.

Particulate Sample Recovery

At the conclusion of each test, the sampling train was dismantled, the openings sealed, and the components transported to the field laboratory.

FIGURE 4-1 EPA METHOD 5 & 26A PARTICULATE MATTER AND HYDROCHLORIC ACID SAMPLING TRAIN

4-3

A consistent procedure was employed for sample recovery as follows:

- The quartz fiber filter(s) was removed from its holder with tweezers and placed in its original container (petri dish), along with any loose particulate and filter fragments (Sample type 1).
- The probe and nozzle were separated and the particulate rinsed with acetone into a borosilicate container with a Teflon-lined closure while brushing a minimum of three times. Particulate adhering to the brush was rinsed with acetone into the same container. The front-half of the filter holder and connecting glassware were rinsed with acetone while brushing a minimum of three times. The rinses were combined (Sample type 2).
- Acetone and filter samples were retained for blank analysis.

Each sample bottle was labeled to clearly identify its contents. The height of the fluid level was marked on each bottle. Sample integrity was assured by maintaining chain-of-custody records.

Particulate Analysis

The particulate analysis proceeded as follows:

- The filters (Sample type 1) and any loose fragments were desiccated for 24-hours and weighed to the nearest 0.1 milligram to a constant (± 0.5 mg) weight.
- The front-half acetone wash samples (Sample type 2) and an acetone blank were evaporated at ambient temperature and pressure in tared beakers then desiccated and weighed to constant 0.1-mg weight.

The total weight of material measured in the acetone-rinse fraction plus the weight of material collected on the quartz filter represents the total filterable particulate catch. Blank acetone corrections were made where appropriate for all sample weights.

Hydrogen Chloride Sample Recovery

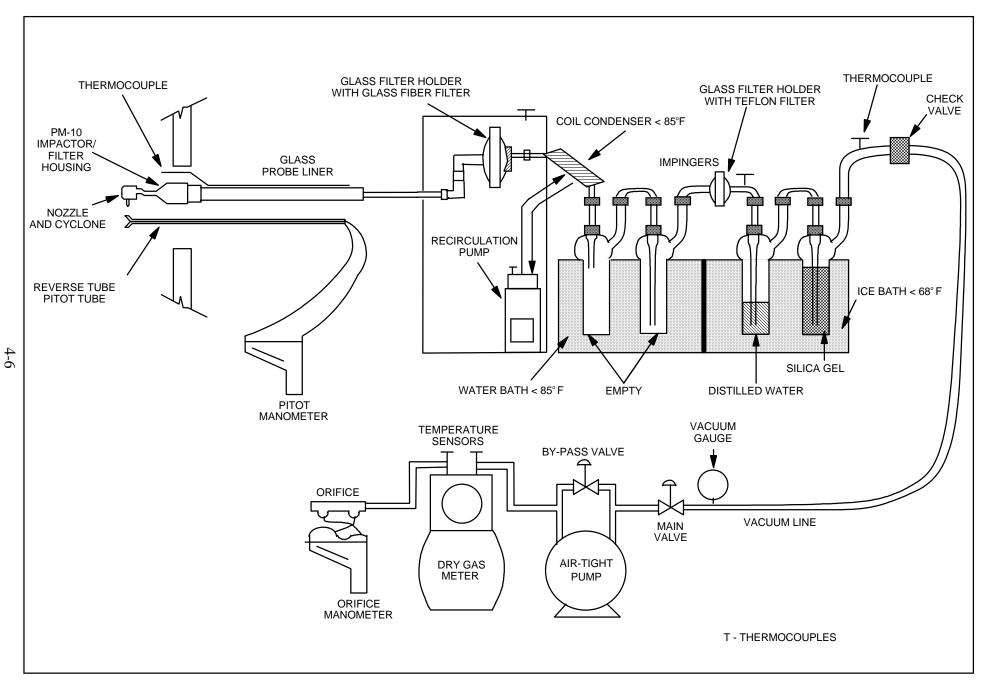
A consistent procedure was employed for sample recovery as follows:

• The contents of the first four impingers were measured to the nearest milliliter and the value recorded. The liquid along with a distilled water rinse of the impingers and glass connectors were placed into two separate (impingers 1 and 2, impingers 3 and 4) polyethylene sample containers, the height of liquid was marked on the bottle, and secured under documented chain-of-custody (sample type 1).

- The contents of the fifth impinger (sodium hydroxide) were measured to the nearest milliliter and the value recorded. The sample was retained; however, no analysis of this sample was performed.
- The silica gel was removed from the last impinger and immediately weighed to the nearest 0.5 g.
- Samples of 0.1N H₂SO₄ and distilled water were retained for blank analysis.

Each sample bottle was labeled to clearly identify its contents. The height of the fluid level was marked on each bottle. Sample integrity was assured by maintaining chain-of-custody records.

Hydrogen Chloride Analysis


Each sample was analyzed for chloride (Cl⁻) utilizing ion chromatography.

4.3 PARTICULATE MATTER ≤ 10 MICRON SAMPLING TRAIN

The PM_{10} sampling was performed using EPA Method 201A combined with EPA Method 202 (see Figure 4-2).

The sampling train consisted of the following components:

- A stainless steel nozzle with an inside diameter sized to sample isokinetically connected to a PM₁₀ cyclone separator.
- A heated borosilicate probe equipped with a calibrated thermocouple to measure flue gas temperature and a calibrated S-type pitot tube to measure flue gas velocity pressure.
- A heated (at stack temperature) borosilicate filter holder containing a tared quartz fiber filter followed by a water cooled coil condenser.
- An impinger train consisting of four impingers. The first and second impingers were empty and the third impinger contained 100 ml of distilled water. The fourth impinger contained 300 grams of 6-16 mesh dry silica gel. The first impinger had a shortened stem and served as a moisture drop out. The second, third, and fourth impingers were of a modified design. A glass filter holder containing a Teflon filter was placed between the second and third impingers. The filter exit temperature was monitored and maintained at 65°F to 85°F.

- A vacuum hose with adapter to connect the outlet of the impinger train to a control module.
- A control module containing a 3-cfm carbon vane vacuum pump, a calibrated dry gas meter (sample gas volume measurement device), a calibrated orifice (sample gas flow rate monitor), and inclined manometers (orifice and gas stream pressure indicators).
- A switchable calibrated digital pyrometer to monitor flue and sample gas temperatures.

Leak checks of the entire sampling train were performed prior to sampling. At test completion, a final leak check was performed at the sample probe inlet. Per EPA 201A procedures, no leak check of the PM_{10} cyclone was performed at test completion. This minimized particle bypass through the cyclone during the leak check.

4.3.1 PM₁₀ Sample Recovery

At the conclusion of each PM_{10} test, the sampling train was dismantled. The openings were sealed and the components transported to the field laboratory.

Following test completion and prior to the start of sample recovery, the condenser and impinger portion of the EPA 202 train was purged with ultra-high purity nitrogen for one hour at a rate of 20 liters per minute to expel dissolved sulfur dioxide. Prior to the purge, the short stem impinger in the moisture dropout was replaced with a long stem impinger and if necessary a known volume of DI water was added so that the water level was at least 1 cm above the impinger tip.

A consistent procedure was employed for sample recovery:

- 1. The pre-weighed quartz fiber filter was removed from the borosilicate filter housing with tweezers and placed in original containers (petri dish) along with any loose particulate and filter fragments (sample type 1).
- 2. The particulate adhering to the internal surfaces of the nozzle and cyclone inlet were rinsed with acetone into a borosilicate container while brushing a minimum of three times with acetone until no visible particulate remained. Particulate adhering to the brush was rinsed with acetone into the same container. The container was sealed with a Teflon lined closure (sample type 2 front half acetone No. 1).

- 3. The particulate adhering to the internal surfaces of the cyclone to filter holder connecting tube (cyclone exit) and filter holder were rinsed with acetone into a borosilicate container while brushing a minimum of three times until no visible particulate remained. Particulate adhering to the brush was rinsed with acetone into the same container. The container was sealed with a Teflon lined closure (sample type 3 front half acetone No. 2).
- 4. Following completion of the nitrogen purge, the total liquid content of impingers one, two and three were measured volumetrically and the sample placed in a borosilicate container (sample type 4).
- 5. The condenser, first and second impingers, front half of the Teflon filter holder, and connectors were rinsed two times with degassed (with nitrogen) distilled water. The rinsate was added to sample type 4.
- 6. Following the water rinses, the condenser, first and second impingers, front half of the Teflon filter holder, and connectors were rinsed once with acetone and then two times with hexane. The rinses were placed in a borosilicate container (sample type 5).
- 7. The silica gel was removed from the last impinger and immediately weighed to the nearest one-tenth g. The weight gain was recorded.
- 8. Acetone, PM_{10} filter, Teflon filter, distilled water and hexane blank samples were placed into a borosilicate/Teflon container or petri dish and sealed for gravimetric analysis.

In addition and as required by EPA 202, a blank train was set up, recovered and analyzed with the source samples.

Each container was labeled to clearly identify its contents. The height of the fluid level was marked on the container of each liquid sample to determine whether leakage occurred during transport.

4.3.2 PM₁₀ Sample Analysis

- 1. The filters and any loose fragments were desiccated for 24 hours and weighed to the nearest 0.1 mg to a constant weight of no more than 0.5 mg between 2 consecutive weighings with no less than six hours of desiccation time between weighings. As an alternative, the filters were heated to 105°C and desiccated prior to the first weighing. This option is an alternative procedure per EPA Method 5.
- 2. The front-half acetone wash samples (nozzle/cyclone rinse and cyclone exit/filter holder rinse) were evaporated at ambient temperature and pressure in tared

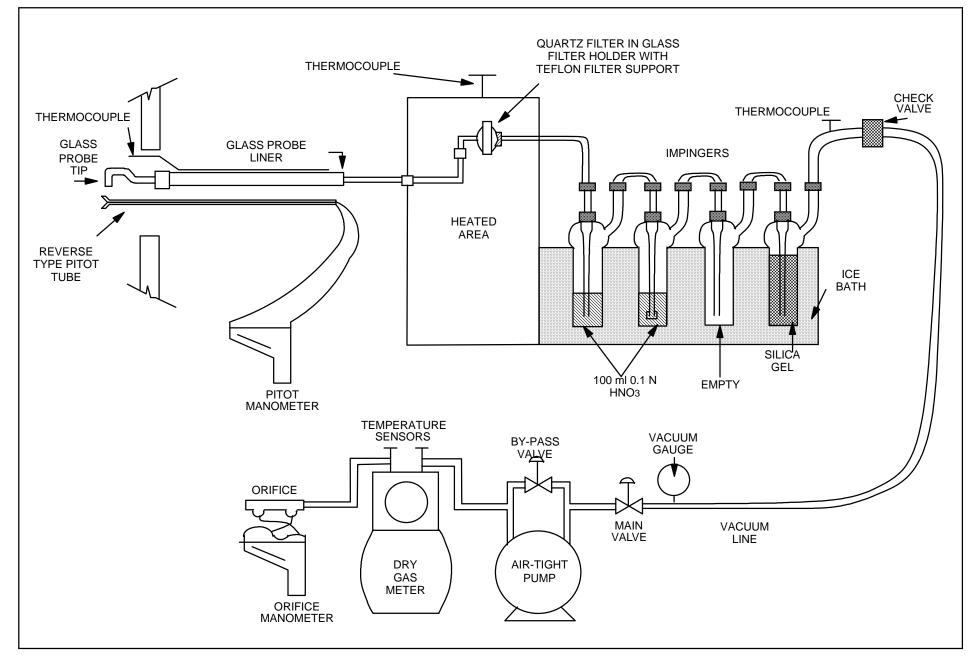
beakers and then desiccated to constant weight to the nearest 0.1 mg. Since the acetone No. 1 sample collects particulate greater than PM_{10} , analysis of this sample is optional.

- 3. The contents of sample type 4 were mixed with approximately 30 ml of hexane in a separatory funnel. After mixing, the organic phase was removed and retained in a tared beaker. Two separate additions of 30 ml of hexane were added to the separatory funnel and removed (following mixing and separation) to the tared beaker. The organic extract from Sample Type 4 was combined with the organic train rinse in sample type 4. The organic fraction was evaporated at room temperature (not to exceed 85°F) to approximately 10 ml. The resulting liquid was transferred to a preweighed tin, evaporated to dryness at room temperature (not to exceed 85°F), desiccated for 24 hours and weighed to a constant \pm 0.5 mg to the nearest 0.1 mg.
- 4. The resulting water (inorganic fraction) was placed in a tared beaker and taken to near dryness (~ 50 ml) on a hot plate and then evaporated to not less than 10 ml in an oven at 105°C. The sample was then allowed to evaporate to dryness at room temperature. After obtaining dryness, the residue was redissolved in 100 ml distilled water. The sample was titrated to a pH of 7.0 using NH₄OH (of known normality). The volume of titrant was recorded. The solution was then evaporated to approximately 10 ml. The resulting liquid was transferred to a preweighed tin, evaporated to dryness at room temperature (not to exceed 85°F), desiccated for 24 hours and weighed to a constant \pm 0.5 mg to the nearest 0.1 mg.
- 5. The water soluble condensable particulate matter from the Teflon filter was extracted from the filter using ultra-filtered water in an extraction tube and sonication bath. The aqueous extract was combined with the contents of Sample Type 4. The organic soluble condensable particulate matter from the Teflon filter was extracted from the filter using hexane in an extraction tube and sonication bath. The organic extract was combined with the contents of Sample 5.
- 6. The field blank train and blank samples of acetone, distilled water and hexane were analyzed as described above.

The total of the organic and inorganic fractions represents the condensable particulate catch. The PM_{10} includes the filterable PM_{10} particulate catch (front-half acetone sample No. 2 and filter) plus the organic and inorganic condensable.

4.4 LEAD SAMPLING METHOD – EPA METHOD 12

The sampling train utilized to perform lead sampling was assembled pursuant to EPA Method 12 (see Figure 4-3). A calibrated borosilicate nozzle was attached to a heated borosilicate probe. The probe was connected to a heated ($\sim 250^{\circ}$ F) borosilicate filter holder containing a low metals quartz fiber filter.


The filter holder was connected to the first of four impingers by a rigid borosilicate connector or flexible Teflon line. The first and second impingers each contained 100 ml of 0.1 N nitric acid (HNO₃), the third impinger was dry and the fourth impinger contained 300 grams of dry preweighed silica gel. The second impinger is a standard Greenburg-Smith type, all other impingers are of a modified design. All impingers were maintained in a crushed ice bath. A control console with a leakless vacuum pump, a calibrated dry gas meter, a calibrated orifice, and inclined manometers were connected to the final impinger via an umbilical cord to complete the train.

Probe, filter chamber and impinger exit gas temperatures were monitored with a calibrated direct readout pyrometer equipped with chromel-alumel thermocouples positioned in the probe exit, heated filter chamber and in the sample gas stream after the last impinger. Flue gas velocities were measured with a calibrated "S" type pitot tube fastened along side the sampling probe. Flue gas temperatures were monitored with a calibrated direct readout pyrometer equipped with a chromel-alumel thermocouple positioned near the sampling nozzle.

Leak checks were performed on the sampling apparatus according to reference method instruction, prior to and following each run.

Lead Sample Recovery

At the conclusion of each test, the sampling train was dismantled, the openings sealed, and the components transported to the field laboratory.

FIGURE 4-3 EPA METHOD 12 LEAD SAMPLING TRAIN

A consistent procedure was employed for sample recovery as follows:

- 1. The quartz fiber filter(s) was removed from its holder with tweezers and placed in a borosilicate sample bottle, along with any loose particulate and filter fragments (Sample type 1).
- 2. The internal surfaces of the nozzle, probe and front half of the filter holder were rinsed with 0.1 N HNO₃ into a borosilicate container while brushing a minimum of three times with a non-metallic (Teflon) brush. The brush was rinsed with 0.1 N HNO₃ into the same container. The container was sealed with a Teflon-lined closure (sample type 2).
- 3. The total volume of HNO_3 and condensate in impingers 1, 2 and 3 were measured to the nearest milliliter and the value recorded. The liquid was then placed in a borosilicate container along with a 0.1 N HNO_3 rinse (performed a minimum of two times) of the impingers, connectors, and back-half of the filter holder. The container was sealed with a Teflon lined closure (sample type 3).
- 4. The silica gel was removed from the last impinger and immediately weighed to the nearest tenth gram. The weight gain was recorded.
- 5. Nitric acid and filter blank samples were placed into borosilicate containers for analysis.

Each container was labeled to clearly identify its contents. The height of the fluid level was marked on the container of each liquid sample to determine whether or not leakage occurred during transport.

EPA Method 12 - Lead Analysis

Samples collected for lead analysis were contained in four different media:

- Front Half Nitric Acid
- Filter
- Back Half Nitric Acid

Following preparation of the filter, the lab combined the filter, front half nitric, and back half nitric acid impinger samples. The lead was solubilized by the addition of nitric acid and 30 percent hydrogen peroxide. Sample volumes were reduced to 50 ml on a hot plate. The sample was filtered and brought to a final volume and analyzed by Inductively Coupled Plasma/Mass Spectrophotometer (ICP/MS).

Results were reported in total μ g of lead. The source lead values were site blank corrected per Section 12.4 of EPA Method 12.

4.5 VOC, NO_X, SO₂, AND O₂/CO₂ CONTINUOUS EMISSIONS MONITORING SYSTEM

A diagram of the reference method sampling Continuous Emissions Monitoring System (CEMS) used to measure VOC, NO_x , SO_2 and O_2/CO_2 is presented in Figure 4-4. The system conformed to the requirements of EPA Reference Methods 25A, 7E, 6C, and 3A. A flame ionization analyzer was used to measure VOC (measured as methane) concentrations. A chemiluminescent analyzer was used to measure NO_x concentrations and a non-dispersive, ultraviolet light detection analyzer was used to measure SO_2 concentrations. A combination non-dispersive infrared (NDIR) and paramagnetic analyzer was used to measure CO_2 and O_2 concentrations, respectively.

Stack gas was withdrawn from the stack through a heated stainless steel probe and heated filter via a heated sample line maintaining a temperature of 250° F. The probe was inserted into a dedicated sample port at a single point in the gas stream. The outlet of the heated filter enclosure was connected to a sample conditioning system for moisture removal. The clean, dried sample was then transported to the analyzers via a Teflon_® sample line. A separate Teflon_® line was connected into the probe outlet for introduction of VOC, NO_x, SO₂, and O₂/CO₂ bias gases.

4.5.1 VOC, NO_x, SO₂, and O₂/CO₂ Monitoring Procedures

The VOC, NO_x , SO_2 , and O_2/CO_2 analyzers were calibrated daily by direct introduction of EPA Protocol calibration gases to the analyzers. These gases are prepared with a balance of nitrogen and nitrogen is also used as the zero gas. After the analyzer calibration, a system bias check was conducted by introducing the zero gas and one selected VOC, NO_x , SO_2 , and O_2/CO_2 calibration gas to the sample probe outlet.

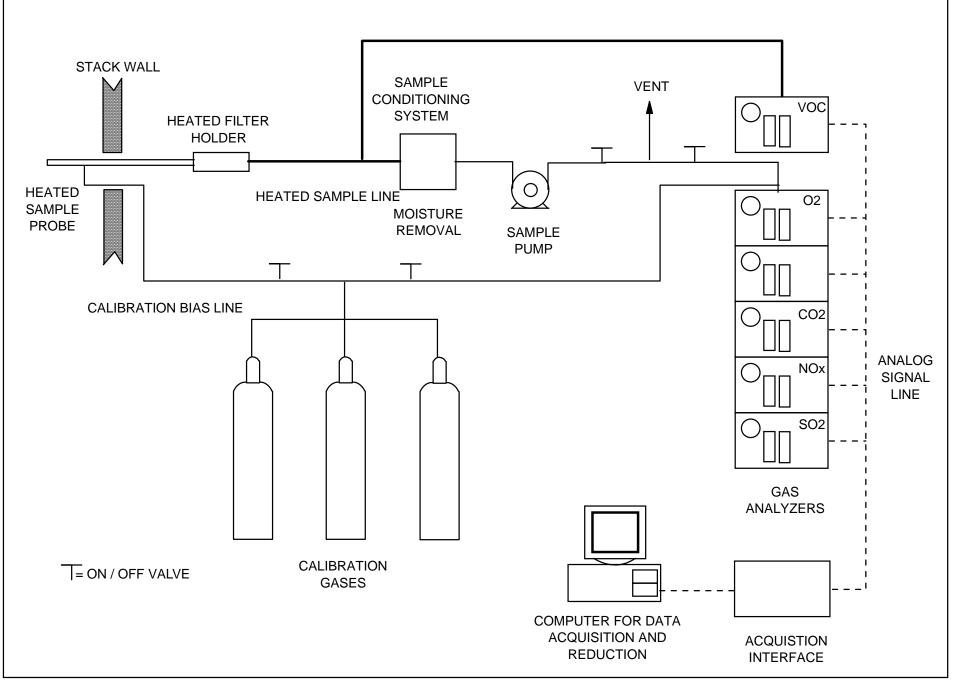


FIGURE 4-4 REFERENCE METHOD SAMPLING SYSTEM

Pursuant to EPA Reference Method 7E, an interference check and NO_2 to NO conversion efficiency demonstration is required. As per Section 8.2.7 of EPA Reference Method 7E, the interference check on WESTON's instrumental analyzers were previously performed (December 2014) and were not repeated for this test program. A NOx analyzer NO_2 to NO converter efficiency demonstration was performed prior to and after the test effort in accordance with Section 8.2.4.1 of EPA Reference Method 7E.

Additionally, an O_2 stratification check was conducted prior to the formal test runs in accordance with EPA Method 7E – Section 8.1.2.

Three formal test runs of one hour or longer were performed and coincided with the isokinetic sample runs. The bias check was repeated at the end of each test run to determine sampling system bias and instrument drift for each analyzer.

The output from the analyzers was directed to a data acquisition system and recorded by a computer equipped with data reduction software designed by WESTON. The software calculated the average one-minute measured concentrations which were used to compute an average concentration for the test run.

5. QUALITY ASSURANCE/QUALITY CONTROL

5.1 QUALITY CONTROL PROCEDURES

As part of the compliance test, WESTON implemented a QA/QC program. QA and QC are defined as follows:

- <u>Quality Control</u>: The overall system of activities whose purpose is to provide a quality product or service: for example, the routine application of procedures for obtaining prescribed standards of performance in the monitoring and measurement process.
- <u>Quality Assurance</u>: A system of activities whose purpose is to provide assurance that the overall quality control is being done effectively. Further,

The field team manager for stack sampling was responsible for implementation of field QA/QC procedures. Individual laboratory managers were responsible for implementation of analytical QA/QC procedures. The overall project manager oversees all QA/QC procedures to ensure that sampling and analyses meet the QA/QC requirements and that accurate data results from the test program.

5.2 GAS STREAM SAMPLING QA PROCEDURES

General QA checks that were conducted during testing and apply to all methods include the following:

- Performance of leak checks.
- Use of standardized forms, labels and checklists.
- Maintenance of sample traceability.
- Collection of appropriate blanks.
- Use of calibrated instrumentation.
- Review of data sheets in the field to verify completeness.
- Use of validated spreadsheets for calculation of results.

The following section details specific QA procedures applied to the isokinetic methods.

5.2.1 Stack Gas Velocity/Volumetric Flow Rate QA Procedures

The QA procedures followed for velocity/volumetric flow rate determinations followed guidelines set forth by EPA Method 2. Incorporated into this method, are sample point determinations by EPA Method 1, and gas moisture content determination by EPA Method 4. QA procedures for Methods 1 and 2 are discussed below.

Volumetric flow rates were determined during the isokinetic flue gas tests. The following QC steps were followed during these tests:

- The S-type pitot tube was visually inspected before sampling.
- Both legs of the pitot tube were leak checked before sampling.
- Proper orientation of the S-type tube was maintained while making measurements. The yaw and pitch axes of the S-type pitot tube were maintained at 90° to the flow.
- The manometer oil was leveled and zeroed before each run.
- Pitot tube coefficients were determined based on physical measurement techniques as delineated in Method 2.

5.2.2 Moisture and Sample Gas Volume QA Procedures

Gas stream moisture was determined as part of the isokinetic test trains. The following QA procedures were followed in determining the volume of moisture collected:

- Preliminary impinger train tare weights are weighed or measured volumetrically to the nearest 0.1 g or 1.0 ml.
- The balance is leveled and placed in a clean, motionless, environment for weighing.
- The indicating silica gel is fresh for each run and periodically inspected and replaced during runs if needed.
- The silica gel impinger gas temperature is maintained below 68°F.

The QA procedures that are followed in regards to accurate sample gas volume determination was:

• The dry gas meter is fully calibrated annually using an EPA approved intermediate standard device.

- Pre-test, port-change, and post-test leak-checks are completed (must be less than 0.02 cfm or 4 percent of the average sample rate).
- The gas meter is read to the thousandth of a cubic foot for all initial and final readings.
- Readings of the dry gas meter, meter orifice pressure (Delta H) and meter temperatures are taken at every sampling point.
- Accurate barometric pressures are recorded at least once per day.
- Pre- and Post-test dry gas meter checks are completed to verify the accuracy of the meter calibration constant (Y).

5.2.3 Isokinetic Sampling Train QA Procedures

The Quality Assurance procedures outlined in this section are designed to ensure collection of representative, high quality test parameter (HCl/HF) concentrations and mass emissions data. The sampling QA procedures followed to ensure representative measurements are:

- All glassware was prepared per reference method procedures.
- The sample rates must be within ± 10 percent of the true isokinetic (100 percent) rate.
- All sampling nozzles were manufactured and calibrated according to EPA standards.
- Recovery procedures are completed in a clean environment.
- Sample containers for liquids and filters were constructed of borosilicate or polyethylene with Teflon®-lined lids.
- At least one reagent blank of each type of solution or filter was retained and analyzed.
- All test train components from the nozzle through the last impinger are constructed of glass (with the exception of the filter support pad which is Teflon®).
- All recovery equipment (i.e., brushes, graduated cylinders, etc.) were non-metallic.

5.2.4 Sample Identification and Custody

Sample custody procedures for this program are based on EPA recommended procedures. Since samples are analyzed at remote laboratories, the custody procedures emphasize careful documentation of sample collection and field analytical data and the use of chain-of-custody records for samples being transferred. These procedures are discussed below.

The Field Team Manager is responsible for ensuring that all stack samples taken are accounted for and that all proper custody and documentation procedures are followed for the field sampling and field analytical efforts. The Field Team Manager is assisted in this effort by key sampling personnel involved in sample recovery.

Following sample collection, all stack samples are given a unique sample identification code. Stack sample labels are completed and affixed to the sample container. The sample volumes are determined and recorded and the liquid levels on each bottle are marked. Sample bottle lids are sealed on the outside with Teflon® tape to prevent leakage. Additionally, the samples were stored in a secure area until they were shipped.

As the samples are packed for travel, chain-of-custody forms are completed for each shipment. The chain-of-custody forms specifying the treatment of each sample are also enclosed in the sample shipment container.

5.2.5 Data Reduction and Validation QC Checks

All data and/or calculations for flow rates, moisture contents, and isokinetic rates, are made using a computer software program validated by an independent check. In addition, all calculations are spot checked for accuracy and completeness by the Field Team Leader.

In general, all measurement data are validated based on the following criteria:

- Process conditions during sampling or testing.
- Acceptable sample collection procedures.
- Consistency with expected or other results.
- Adherence to prescribed QC procedures.

Any suspect data is flagged and identified with respect to the nature of the problem and potential effect on the data quality.

5.3 REFERENCE METHOD CEMS QA/QC CHECKS

• Continuous emissions monitoring system (probe to sample conditioner) was checked for leaks prior to the testing.

- Pre and post-test calibration bias tests were performed as required by the reference methods.
- A permanent data record of analyzer response was made using computer software designed by WESTON.
- All calibration gases used met EPA Protocol standards.

APPENDIX A DETAILED TEST RESULTS

SEPTEMBER TEST PROGRAM

L'Anse Warden Electric Company Boiler No. 1 Summary of Particulate and Hydrogen Chloride Test Data and Test Results

TEST DATA			
Test run number	1	2	3
Location		Boiler No. 1	
Test date	9/24/15	9/24/15	9/24/15
Test time period	1135-1330	1513-1657	1756-1919
F-Factor	9561	9561	9561
SAMPLING DATA			
Sampling duration, min.	72	72	72
Barometric pressure, in. Hg	29.78	29.74	29.74
Avg. orifice press. diff., in H2O	1.65	1.65	1.75
Avg. dry gas meter temp., deg F	80.8	82.8	79.9
Avg. abs. dry gas meter temp., deg. R	541	543	540
Total liquid collected by train, ml	147.7	159.3	181.4
Std. vol. of H2O vapor coll., cu.ft.	6.953	7.499	8.540
Dry gas meter calibration factor	1.0017	1.0017	1.0017
Sample vol. at meter cond., dcf	46.030	45.851	47.060
Sample vol. at std. cond., dscf ⁽¹⁾	44.968	44.568	46.002
Percent of isokinetic sampling	98.8	98.7	100.6
GAS STREAM COMPOSITION DATA			
CO2, % by volume, dry basis	10.8	10.9	11.5
O2, % by volume, dry basis	9.2	9.1	8.7
N2, % by volume, dry basis	80.0	80.0	79.8
Molecular wt. of dry gas, lb/lb mole	30.10	30.11	30.19
H2O vapor in gas stream, prop. by vol.	0.134	0.144	0.157
Mole fraction of dry gas	0.866	0.856	0.843
Molecular wt. of wet gas, lb/lb mole	28.48	28.36	28.28
GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA			
Static pressure, in. H2O	-12.60	-12.30	-12.30
Static pressure, in. Hg	-0.926	-0.904	-0.904
Absolute pressure, in. Hg	28.85	28.84	28.84
Avg. temperature, deg. F	382 842	376 836	384 844
Avg. absolute temperature, deg.R Pitot tube coefficient	842 0.84	0.84	0.84
Total number of traverse points	12	12	12
Avg. gas stream velocity, ft./sec.	66.9	66.6	69.1
Stack/duct cross sectional area, sq.ft.	39.000	39.000	39.000
Avg. gas stream volumetric flow, wacf/min.	156484	155831	161695
Avg. gas stream volumetric flow, dscf/min.	81908	81199	82216
PARTICULATE LABORATORY REPORT DATA			
Front half acetone rinse, g	0.0029	0.0012	0.0056
Filter, g	0.0035	0.0047	0.0062
Total catch, g	0.0064	0.0059	0.0118
PARTICULATE EMISSIONS			
Conc., gr/dscf	0.0022	0.0020	0.0040
Mass rate, lb/hr	1.54	1.42	2.79
Mass rate, lb/MMBtu ⁽²⁾	0.005	0.005	0.009
HCI LABORATORY REPORT DATA			
Total HCl, mg	17.00	28.00	20.00
HCI EMISSIONS			
Concentration, lb/dscf	8.33E-07	1.39E-06	9.58E-07
Concentration, ppm/v	8.81	14.64	10.13
Mass rate, lb/hr	4.10	6.75	4.73
,			

(1) Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 inches Hg (760mm Hg).
 (2) Based on an F-factor (Fd) of 9561 scf/MMBtu.

L'Anse Warden Electric Company Boiler No. 1 Summary of $\ensuremath{PM_{10}}\xspace$ Test Data and Test Results

TEST DATA:				
Test run number	1	2	3	
Location		Boiler No. 1		
Test date	9/24/15	9/24/15	9/24/15	
Test time period	1126-1307	1448-1609	1752-1933	
SAMPLING DATA:				
Avg Sqrt Delta P, sqrt(inches H2O)	0.99315	0.90042	0.96375	
Sampling duration, min.	96.5	80.0	96.0	
Nozzle diameter, in.	0.173	0.173	0.173	
Cross sectional nozzle area, sq.ft.	0.000163	0.000163	0.000163	
Barometric pressure, in. Hg	29.78	29.74	29.74	
Avg. orifice press. diff., in H ₂ O	0.49 72.17	0.49 77.6	0.49 76.0	
Avg. dry gas meter temp., deg F Avg. abs. dry gas meter temp., deg. R	532	538	536	
Total liquid collected by train, ml	108.2	102.9	111.6	
Std. vol. of H_2O vapor coll., cu.ft.	5.09	4.84	5.25	
Dry gas meter calibration factor	1.0050	1.0050	1.0050	
Sample vol. at meter cond., dcf	34.300	30.148	33.565	
Sample vol. at std. cond., dscf ⁽¹⁾	34.069	29.600	33.056	
Percent of isokinetic sampling	104.6	122.2	106.6	
Particle Diam. with 50% penetration, um (PM_{10} cyclone)	10.18	9.71	10.24	
Cyclone flow rate (actual), cfm	0.661	0.704	0.659	
Delta P minimum, in H2O	0.545	0.623	0.533	
Delta P maximum, in H2O	1.707	1.904	1.672	
GAS STREAM COMPOSITION DATA:	10.0	10.5		
CO_2 , % by volume, dry basis	10.9	10.6	11.5	
O_2 , % by volume, dry basis	9.2	9.3	8.7	
N ₂ , % by volume, dry basis	79.9	80.1	79.8	
Molecular wt. of dry gas, lb/lb mole	30.11	30.07	30.19	
H_20 vapor in gas stream, prop. by vol.	0.130	0.141	0.137	
Mole fraction of dry gas	0.870	0.859	0.863	
Molecular wt. of wet gas, lb/lb mole	28.54	28.37	28.52	
GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA:				
Static pressure, in. H_2O	-9.60	-12.10	-12.30	
Absolute pressure, in. Hg	29.07	28.85	28.84	
Avg. temperature, deg. F	375.68	371.9	380.1	
Avg. absolute temperature, deg.R	836	832	840	
Pitot tube coefficient	0.758	0.758	0.758	
Total number of traverse points	12	12	12	
Avg. gas stream velocity, ft./sec. Stack/duct cross sectional area, sq.ft.	64.6	58.8	63.1 39.00	
Avg. gas stream volumetric flow, wacf/min.	39.00 151141	39.00 137652	147713	
Avg. gas stream volumetric flow, dscf/min. ⁽¹⁾	80693	72362	77171	
Avg. gas sucan volumente now, user/min.	80075	12302	//1/1	
LABORATORY REPORT DATA				
Acetone rinse less than PM10, g	0.0023	0.0015	0.0019	
Filter, g	0.0055	0.0045	0.0050	
H ₂ O Impinger (inorganic) residue, g	0.0061	0.0052	0.0082	
Solvent Impinger (organic) residue, g	< 0.0010	< 0.0010	< 0.0010	
Total PM_{10} catch, g ⁽²⁾	0.0139	0.0112	0.0151	
TOTAL PM ₁₀ EMISSIONS ⁽²⁾				Average
	0.0062	0.0058	0.0070	0.0064
Total PM ₁₀ Conc., gr/dscf	0.0063	0.0058	0.0070	0.0064
Filterable PM ₁₀ Conc., gr/dscf	0.0035	0.0031	0.0032	
Condensible PM ₁₀ Conc., gr/dscf	0.0028	0.0027	0.0038	
Filterable PM ₁₀ Emission rate, lb/hr	2.444	1.940	2.131	
Condensible PM_{10} Emission rate, lb/hr	1.911	1.681	2.532	
Total PM_{10} Emission rate, lb/hr	4.355	3.622	4.663	4.213
10				

(1) Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 inches Hg (760mm Hg).
 (2) Nondetect values are labeled as "<". Nondetect values are not total catch weights or emissions calculations.

L'Anse Warden Electric Company Boiler No. 1 Summary of EPA Method 12 (Lead) Test Data and Test Results

TEST DATA:				
Test run number	1	2	3	
Test date	09/23/15	09/23/15	09/24/15	
Test time period	1513-1623	1657-1808	0828-0940	
SAMPLING DATA:				
Sampling duration, min.	60	60	72	
Nozzle diameter, in.	0.235	0.235	0.235	
Cross sectional nozzle area, sq.ft.	0.000301	0.000301	0.000301	
Barometric pressure, in. Hg	29.58	29.58	29.78	
Avg. orifice press. diff., in H2O	1.36	1.57	1.63	
Avg. dry gas meter temp., deg F	73.9	75.5	65.2	
Avg. abs. dry gas meter temp., deg. R	534	536	525	
Total liquid collected by train, ml	133.8	130.6	139.6	
Std. vol. of H2O vapor coll., cu.ft.	6.3	6.1	6.6	
Dry gas meter calibration factor	1.0017	1.0017	1.0017	
Sample vol. at meter cond., dcf	35.908	37.180	44.056	
Sample vol. at std. cond., dscf ⁽¹⁾	35.271	36.431	44.321	
Percent of isokinetic sampling	94.8	99.0	94.9	
referre of isoknietie sampling	JH.0	<i>))</i> .0	ידע.	
GAS STREAM COMPOSITION DATA:				
CO2, % by volume, dry basis	10.7	11.0	11.1	
O2, % by volume, dry basis	9.2	9.1	9.1	
N2, % by volume, dry basis	80.1	79.9	79.8	
Molecular wt. of dry gas, lb/lb mole	30.08	30.12	30.14	
H2O vapor in gas stream, prop. by vol.	0.152	0.144	0.129	
Mole fraction of dry gas	0.848	0.856	0.871	
Molecular wt. of wet gas, lb/lb mole	28.2	28.4	28.6	
GAS STREAM VELOCITY AND VOLUMETRIC FLOV	V DATA:			
Static pressure, in. H2O	-12.60	-12.60	-12.40	
Static pressure, in. Hg	-0.926	-0.926	-0.912	
Absolute pressure, in. Hg	28.65	28.65	28.87	
Avg. temperature, deg. F	369.8	370.4	369.3	
Avg. absolute temperature, deg.R	830	830	829	
Pitot tube coefficient	0.84	0.84	0.84	
Total number of traverse points	12	12	12	
Avg. gas stream velocity, ft./sec.	66.4	65.2	67.1	
Stack/duct cross sectional area, sq.ft.	39.00	39.00	39.00	
Avg. gas stream volumetric flow, wacf/min.	155371	152518	157130	
Avg. gas stream volumetric flow, dscf/min. ⁽¹⁾	80296	79429	84032	
Avg. gas steam volumetre now, user/nim.	80290	19429	84032	
LABORATORY REPORT DATA				
LABORATORT REFORT DATA Lead, ug	15.90	9.60	5.30	
, "D	10.00	2.00	2.20	
LEAD EMISSIONS				Average
Concentration, lb/dscf	9.94E-10	5.81E-10	2.64E-10	6.13E-10
Mass Rate, lb/hr	0.005	0.003	0.001	0.003

(1) Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 inches Hg (760mm Hg).

L'Anse Warden Electric Company Boiler No. 1 Summary of VOC, NOx, and SO₂ Test Results

Run No.	Date	Time	Volumetric	Stack				CON	CENTRATIONS ANI	D EMISSIC	N RATES			
			Flow	Moisture	02	CO ₂		Total V		NC)x	SO) ₂	
			(dscfm) ¹	(%) ¹	(%)	(%)	(ppmvw)	(ppmvd)	(ppmvd @ 7% O ₂)	(lb/hr)	(ppmvd)	(lb/hr)	(ppmvd)	(lb/hr)
1	24-Sep-15	0828-0940	84,032	12.9	9.1	11.1	1.0	1.1	1.4	0.24	106	63.8	148	124
2	24-Sep-15	1135-1330	81,908	13.4	9.2	10.8	1.3	1.5	1.8	0.31	109	64.0	140	114
3	24-Sep-15	1513-1657	81,199	14.4	9.1	10.9	0.5	0.6	0.7	0.12	116	67.5	153	124
	Average		82,380	13.6 Allowable	9.1	10.9	0.9	1.1	1.3 50	0.22 9.1	110	65.1 145	147	121 290

¹ Volumetric flow and moisture content derived from the corresponding EPA Method 12 sample train for Run 1 and from the corresponding EPA Method 5/26A sampling train for Runs 2 and 3.

NOVEMBER TEST PROGRAM

L'Anse Warden Electric Company Boiler No. 1 Summary of Particulate and Hydrogen Chloride Test Data and Test Results Condition 1

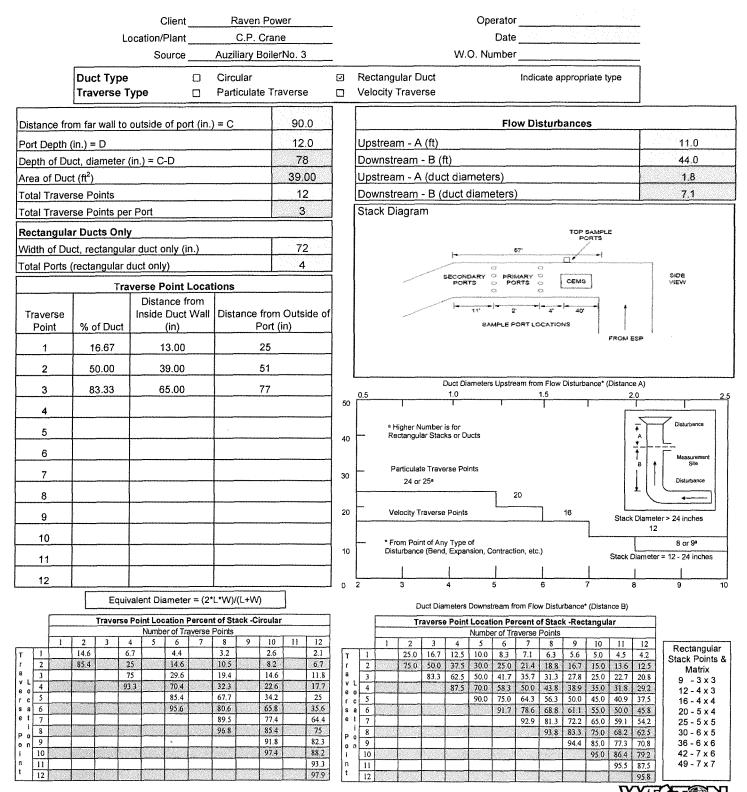
TEST DATA Test run number	C1-1	C1-2	C1-3
Location	CI-I	Boiler No. 1	C1-5
Test date	11/2/2015		11/4/2015
	11/3/2015	11/3/2015	11/4/2015
Test time period	1502-1614	1650-1756	0912-1020
F-Factor	9561	9561	9561
SAMPLING DATA			
Sampling duration, min.	60	60	60
Barometric pressure, in. Hg	29.51	29.51	29.44
Avg. orifice press. diff., in H2O	1.45	1.40	1.37
Avg. dry gas meter temp., deg F	79.8	72.3	66.0
Avg. abs. dry gas meter temp., deg. R	540	532	526
Total liquid collected by train, ml	157.6	142.7	148.5
Std. vol. of H2O vapor coll., cu.ft.	7.419	6.718	6.991
Dry gas meter calibration factor	0.9912	0.9912	0.9912
Sample vol. at meter cond., dcf	37.932	36.476	36.618
Sample vol. at std. cond., dscf ⁽¹⁾	36,393	35.478	35.958
Percent of isokinetic sampling	103.4	98.9	100.0
1 0			
GAS STREAM COMPOSITION DATA			
CO2, % by volume, dry basis	8.9	8.9	9.3
O2, % by volume, dry basis	11.4	11.6	11.1
N2, % by volume, dry basis	79.7	79.5	79.6
Molecular wt. of dry gas, lb/lb mole	29.88	29.89	29.93
H2O vapor in gas stream, prop. by vol.	0.169	0.159	0.163
Mole fraction of dry gas	0.831	0.841	0.837
Molecular wt. of wet gas, lb/lb mole	27.87	28.00	27.99
GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA			
Static pressure, in. H2O	-12.50	-12.50	-12.80
Static pressure, in. Hg	-0.919	-0.919	-0.941
Absolute pressure, in. Hg	28.59	28.59	28.50
Avg. temperature, deg. F	411	412	398
Avg. absolute temperature, deg.R	871	872	858
Pitot tube coefficient	0.84	0.84	0.84
Total number of traverse points	12	12	12
Avg. gas stream velocity, ft./sec.	67.5	68.1	67.6
Stack/duct cross sectional area, sq.ft.	39.000	39.000	39.000
Avg. gas stream volumetric flow, wacf/min.	158004	159327	158222
Avg. gas stream volumetric flow, dscf/min.	76005	77443	77639
HCI LABORATORY REPORT DATA			
Total HCl, mg	4.70	5.00	3.90
HCI EMISSIONS			
Concentration, lb/dscf	2.85E-07	3.11E-07	2.39E-07
,	2.85E-07	3.11E-07 3.28	2.39E-07 2.53
Concentration, ppm/v Mass rate, lb/hr	3.01 1.30	3.28 1.44	2.53
wiass rate, 10/111	1.30	1.44	1.11

Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 inches Hg (760mm Hg).
 Based on an F-factor (Fd) of 9561 scf/MMBtu.

L'Anse Warden Electric Company Boiler No. 1 Summary of Particulate and Hydrogen Chloride Test Data and Test Results Condition 2

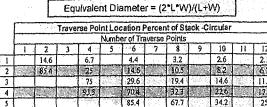
TEST DATA			
Test run number	C2-1	C2-2	C2-3
Location	02-1	Boiler No. 1	02-5
Test date	11/5/2015	11/5/2015	11/5/2015
Test time period	1057-1204	1225-1333	1400-1515
F-Factor	9561	9561	9561
1-1 400	5501	5501	2501
SAMPLING DATA			
Sampling duration, min.	60	60	60
Barometric pressure, in. Hg	29.26	29.18	29.09
Avg. orifice press. diff., in H2O	1.38	1.37	1.36
Avg. dry gas meter temp., deg F	69.6	73.9	75.2
Avg. abs. dry gas meter temp., deg. R	530	534	535
Total liquid collected by train, ml	152.0	131.9	138.4
Std. vol. of H2O vapor coll., cu.ft.	7.156	6.209	6.515
Dry gas meter calibration factor	0.9912	0.9912	0.9912
Sample vol. at meter cond., dcf	36.923	36.872	36.988
Sample vol. at std. cond., dscf ⁽¹⁾	35,793	35,356	35.275
Percent of isokinetic sampling	100.5	98.2	99.5
I B			
GAS STREAM COMPOSITION DATA			
CO2, % by volume, dry basis	11.3	11.2	11.2
O2, % by volume, dry basis	8.9	9.0	9.1
N2, % by volume, dry basis	79.8	79.8	79.7
Molecular wt. of dry gas, lb/lb mole	30.16	30.15	30.16
H2O vapor in gas stream, prop. by vol.	0.167	0.149	0.156
Mole fraction of dry gas	0.833	0.851	0.844
Molecular wt. of wet gas, lb/lb mole	28.14	28.34	28.26
GAS STREAM VELOCITY AND VOLUMETRIC FLOW DATA			
Static pressure, in. H2O	-12.70	-12.60	-12.50
Static pressure, in. Hg	-0.934	-0.926	-0.919
Absolute pressure, in. Hg	28.33	28.25	28.17
Avg. temperature, deg. F	398	400	407
Avg. absolute temperature, deg.R	858	860	867
Pitot tube coefficient	0.84	0.84	0.84
Total number of traverse points	12	12	12
Avg. gas stream velocity, ft./sec.	67.7	67.4	67.6
Stack/duct cross sectional area, sq.ft.	39.000	39.000	39.000
Avg. gas stream volumetric flow, wacf/min.	158351	157771	158099
Avg. gas stream volumetric flow, dscf/min.	76839	77751	76489
HCI LABORATORY REPORT DATA			
Total HCl, mg	5.10	5.60	6.00
HCIEMISSIONS	0.4.475.075	a 1075 07	
Concentration, lb/dscf	3.14E-07	3.49E-07	3.75E-07
Concentration, ppm/v	3.32	3.69	3.96
Mass rate, lb/hr	1.45	1.63	1.72

Standard conditions = 68 deg. F. (20 deg. C.) and 29.92 inches Hg (760mm Hg).
 Based on an F-factor (Fd) of 9561 scf/MMBtu.


APPENDIX B RAW TEST DATA

*

SEPTEMBER TEST PROGRAM


-

Sample and Velocity Traverse Point Data Sheet - Method 1

Sample and Velocity Traverse Point Data Sheet - Method 1 Operator LWEC Client Location/Plant L'Anse, MI Date 13-Jul-09 ESP Outlet W.O. Number Source **Duct Type** Circular Ø **Rectangular Duct** Indicate appropriate type D Particulate Traverse Traverse Type Velocity Traverse 3 pt CEM Traverse Distance from far wall to outside of port (in.) = C 90.0 **Flow Disturbances** 12.0 Upstream - A (ft) 11.00 Port Depth (in.) = D Depth of Duct, diameter (in.) = C-D 78.0 Downstream - B (ft) 44.0 39.00 Upstream - A (duct diameters) 1.8 Area of Duct (ft²) 12 Downstream - B (duct diameters) Total Traverse Points 7.1 Total Traverse Points per Port 3 Stack Diagram **Rectangular Ducts Only** 72 Width of Duct, rectangular duct only (in.) Total Ports (rectangular duct only) 4

	Trav	/erse Point Loca	tions
Traverse Point	% of Duct	Distance from Inside Duct Wall (in)	Distance from Outside of Port (in)
1	16.70	13.03	25.03
2	50.00	39.00	51.00
3	83.30	64.97	76.97
	4 N		
		الا با المحمد المحم المراجع المحمد المحم	a a chun a chun chui tha Na chun chun chui tha ch
		5.:	
		and and a second se	

95.0

65.8

77.4

85.4

91.8

97.4

i aw

93.3

97.9

11

80.6

89.5

96.8

ŝ,

4.

		1												- 1	*****
	4	10-	-			umber ar Stac	is for ks or (Ducts	А -	-1. 			10 - A. 10 - A.		T A
			· · ·											1.1	ŦT
	3				iculate 24 or 2		sə Pai	nts							
									20)				1 I	
	2	20		Velo	city Tra	verse	Points	:		· · · · · ·	1	6		L. Stack f	Diamete
5							÷		/		с., 1 А _К				12
	1	of	•				у Туре			i de la composition Característico					
		1		Distu	roance	(deno	, Ехра	nsion,	Contra	action,	elc.)		៍្លន	ack Dia	ameter
							L to			- 1. 			1919	1	
	0	2	••••••					5						أستحص	
		~				-		່ ວ						8	
		4 . 34 .	di s				4				-	'			
			à, c			t Diam	eters C			rom Fic	-	urbanc	e* (Dis		
			A., 4		Duc	·····		ownsti Locat	eam fi Ion Pe	rcent o	ow Dist of Stac	·····	, , , , , , , , , , , , , , , , , , ,	lance	
					Duc Ti	avers	e Point	ownsti Locat Numbr	eam fi Ion Pe	rom Fic	w Dist of Stac	k -Rec	tangul	tance I ar	
12					Duc Ti	avers J	e Point	ownsti Locat Numbe	eam fi Ion Pe ar of Tr 6	rom Fic rcent (averse	w Dist of Stac Points	k-Rec 9	tangul	ar 11	B) 12
2.1		ייייייייייייייייייייייייייייייייייייי			Duc Tr 2 25.0	avers 3 16.7	e Point 4 12.5	ownsti Locat Numbe 5	eam fi Ion Pe ar of Tr 6 8.3	rom Fic rcent c averse 7 7.1	ow Dist of Stac Points 8 6.3	k -Rec 9 5.6	tangul 10 5.0	lance 1 ar 11 4.5	B)
2.1		T t	2		Duc Ti	avers 3 16.7 50.0	4 12.5 37.5	Locat Numbr 5 10,0 30,0	eam fi ion Pe ar of Tr 6 8.3 25.0	rcent of rcent of averse 7	ow Dist of Stac Points 6.3 18.8	9 5.6 16.7	tangul 10 5.0 15.0	ar 11 4.5	B) 12 4.2 12.3
2.1 6.7 11.8		ייייייייייייייייייייייייייייייייייייי	2		Duc Tr 2 25.0	avers 3 16.7	4 12.5 37.5 62.5	00wnsti Locat Numbe 5 10.0 30.0 50.0	eam fi ion Pe ar of Tr 6 8.3 25.0 41.7	rom Fic rcent (averse 7 7.1 214 35.7	w Dist of Stac Points 6.3 18.8 31.3	9 5.6 16.7 27.8	10 5.0 15.0 25.0	11 ar 11 4.5 13.6 22.7	B) 12 4.2 12.3 20.8
2.1 67 11.8 17.7		T t	2 3 4		Duc Tr 2 25.0	avers 3 16.7 50.0	4 12.5 37.5	00wnsti Locat Numbr 5 10,0 30,0 50,0 70,0	eam fi ion Pe ar of Tr 6 8.3 25.0 41.7 58.3	rom Fic rcent (averse 7 7.1 214 35.7 50.0	w Dist of Stac Points 6.3 18.8 31.3 43.8	9 5.6 16.7	tangul 10 5.0 15.0	ar 11 4.5	B) 12 4.2 12.3
2.1 6.7 11.8 17.7 25		T t a v L	2		Duc Tr 2 25.0	avers 3 16.7 50.0	4 12.5 37.5 62.5	00wnsti Locat Numbe 5 10.0 30.0 50.0	eam fi ion Pe ar of Tr 6 8.3 25.0 41.7	rom Fic rcent (averse 7 7.1 214 35.7	w Dist of Stac Points 6.3 18.8 31.3	9 5.6 16.7 27.8	10 5.0 15.0 25.0	11 ar 11 4.5 13.6 22.7	B) 12 4.2 12.3 20.8
2.1 6.7 11.8 17.7 25 33.6		T f a v L e o f a f a	2 3 4 5 6		Duc Tr 2 25.0	avers 3 16.7 50.0	4 12.5 37.5 62.5	00wnsti Locat Numbr 5 10,0 30,0 50,0 70,0	eam fi ion Pe ar of Tr 6 8.3 25.0 41.7 58.3	rom Flo rcent o averse 7 7,1 214 35,7 50,0 64,3	w Dist of Stac Points 6.3 18.8 31.3 43.8	9 5.6 16.7 27.8 38.9	10 5.0 15.0 25.0 35.0	lance 1 ar 11 4.5 13.6 22.7 31.8	B) 12 4.2 12.5 20.8 29.2
2.1 67 11.8 17.7 25 13.0 64.4		T f a v L e o f e o	2 3 4 5		Duc Tr 2 25.0	avers 3 16.7 50.0	4 12.5 37.5 62.5	00wnsti Locat Numbr 5 10,0 30,0 50,0 70,0	eam fr ion Pe er of Tr 6 8.3 25.0 41.7 58.3 75.0	rom Flo rcent o averse 7 7,1 214 35,7 50,0 64,3	w Dist of Stac Points 8 6.3 18.8 31.3 43.8 56.3	9 5.6 16.7 27.8 38.9 50.0	tangul 10 5.0 1530 25.0 350 45.0	11 ar 11 4.5 13.6 22.7 31.8 40.9	B) 12 4.2 12.3 20.8 29.2 37.5
2.1 6.7 11.8 17.7 25 35.6 64.4 75		Traveorea teorea	2 3 4 5 6		Duc Tr 2 25.0	avers 3 16.7 50.0	4 12.5 37.5 62.5	00wnsti Locat Numbr 5 10,0 30,0 50,0 70,0	eam fr ion Pe er of Tr 6 8.3 25.0 41.7 58.3 75.0	rom Fic rcent (averse 7 7,1 214 35.7 500 64.3 76.6	w Dist of Stac Points 6.3 18.8 31.3 43.8 56.3 68.8	9 5.6 167 27.8 389 50.0 61.1	10 5.0 15.0 25.0 35.0 45.0 55.0	11 ar 136 22.7 318 40.9 500	B) 12 4.2 12.5 20.8 29.2 37.5 45.6
2.1 67 11.8 17.7 25 13.0 64.4		T f a v L e o f a f a	2 3 4 5 6 7		Duc Tr 2 25.0	avers 3 16.7 50.0	4 12.5 37.5 62.5	00wnsti Locat Numbr 5 10,0 30,0 50,0 70,0	eam fr ion Pe er of Tr 6 8.3 25.0 41.7 58.3 75.0	rom Fic rcent (averse 7 7,1 214 35.7 500 64.3 76.6	w Dist of Stac Points 6.3 18.8 31.3 43.8 56.3 68.8 81.3	9 5.6 16.7 27.8 38.9 50.0 61.1 72.2	10 5.0 1530 25.0 350 45.0 550 65.0	11 4.5 13.6 22.7 31.8 40.9 50.0 59.1	B) 12 4.2 12.5 20.8 29.2 37.5 45.6 54.2

ĉ

0

0

2

1.0

784

72

44

Duct Diameters Upstream from Flow Disturbance' (Distance A)

1.5

11

2.0

Stack Diameter > 24 inches 12

95.5 87.5

95.8

sure Site

8 or 9* Slack Diameter = 12 - 24 inches

9

Rectangular

Stack Points

& Matrix

9 - 3 x 3 12 - 4 x 3

16 - 4 x 4

20 - 5 x 4

25 - 5 x 5

30 - 6 x 5

36 - 6 x 6

42 - 7 x 6

49 - 7 x 7

10

Copyright Weston Solutions, Inc. 2007, v3.0 Q1_LWEC001_Opactiy_003777

1

2

5

6 7

8

9

10

11

12

a VL 8 p

L'Anse Warden Electric Company Particulate and Hydrogen Chloride Test Data Inputs

Test Data			
Run number	1	2	3
Location		Boiler No. 1	
Date	9/24/15	9/24/15	9/24/15
Time period	. 1135-1330	1513-1657	1756-1919
Operator	KH	BB	BB
Inputs For Calcs.			
Sq. rt. delta P	0.91981	0.91748	0.94598
Delta H	1.6467	1.6475	1.7450
Stack temp. (deg.F)	382.2	375.6	383.8
Meter temp. (deg.F)	80.8	82.8	79.9
Sample volume (act.)	46.030	45.851	47.060
Barometric press. (in.Hg)	29.78	29.74	29.74
Volume H2O imp. (ml)	133.0	146.0	163.0
Weight change sil. gel (g)	14.7	13.3	18.4
% CO2	10.8	10.9	11.5
% O2	9.2	9.1	8.7
% N	80.0	80.0	79.8
Area of stack (sq.ft.)	39.000	39.000	39.000
Sample time (min.)	72	72	72
Static pressure (in.H2O)	-12.60	-12.30	-12.30
Nozzle dia. (in.)	0.235	0.235	0.235
Meter box cal.	1.0017	1.0017	1.0017
Cp of pitot tube	0.84	0.84	0.84
Traverse Points	12	12	12
Particulate Laboratory Report Data			
Front half acetone rinse, g	0.0029	0.0012	0.0056
Filter, g	0.0035	0.0047	0.0062
Total catch, g	0.0064	0.0059	0.0118
HCl Laboratory Report Data			
HCl, mg	17.00	28.00	20.00
Total HCl, mg	17.00	28.00	20.00

11/18/2015 2:16 PM

.

ISOKIN	ETIC	FIELD	DATA SH			EPA M	lethod 5	5/26A -]	Part/H	CI			Page of	
Client	·	LWEC		Stack Conditi		Meter Box ID		26				K Factor	1.93	1.0
W.O.#				Assum		Meter Box Y	())		017					
Project ID Mode/Source II		LWEC Gas	% Moisture Impinger Vol (Meter Box De		-24	1714	Leak Chec		Initial	Mid-Poin	
Samp. Loc. ID	-7257		Silica gel (g)	rm)	Contraction and Contraction of the second	Probe ID / Lei Probe Materia	-	Br	bro	Leak Check			<u> </u>	<u> </u>
Run No.ID	- 20 1	1	CO2, % by Vo	1 1		Pitot / Thermo		PISE	00	Pitot good	(in ⊓g)		ý i ro	Contraction of the second seco
Test Method ID		M5/26A	O2, % by Vol			Pitot Coefficie		second design of the second de	84	Orsat good			1993 (100.	
Date ID		24SEP2015	Temperature ((°F)		Nozzle ID			<u></u>	Temp Cheo	ck	sa fin fingerie in the firstett	est Set	Post-Test Set
Source/Location	n	ESP Outlet	Meter Temp (LEADER CONTRACTOR OF THE OFFICE AND A DESCRIPTION OFFICIA AND A DESCRIPANTA AND A DESCRIPTION OFFICIA	Avg Nozzle D	ia (in)	0.2	35	Meter Box Te		68		70
Sample Date	41	24115	Static Press (i	n H ₂ O) 🐖 🏹	6 – 2.6	Area of Stack	(ft ²)	39	and the state of the second	Reference Te	emp	68.	5	71.0
Baro. Press (in	Hg)2	978			4 2	Sample Time		24	L	Pass/Fail (+/-	- 2°)	Pasa	/ Fail	Pass / Fail
Operator		KIL	Ambient Temp	o (°F) 🚺 🚺	66	Total Travers	e Pts		2	Temp Chang	je Response	í Ves	1/ no	yes / no
TRAVERSE POINT NO.	SAMPLE TIME (min) O	CLOCK TIME (plant time)	VELOCITY PRESSURE Delta P (in H2O)	ORIFICE PRESSURE Delta H (in H2O)	DRY GAS METER READING (ft ³)	STACK TEMP (°F)	DGM INLET TEMP (°F)	DGM OUTLET TEMP (°F)	PROBE TEMP (°F)	FILTER BOX TEMP (F)	IMPINGER EXIT TEMP (°F)	SAMPLE TRAIN VAC (in Hg)	and the	COMMENTS
	ž	11:32	j (2:06	592,7	317	<u> </u>	82	251	252	60	4,0		
AI	<u> </u>			2.43	Zan,u	221		27	250	252	89	4,5		
- 2	12			2.12	601.610	385		XZ	250	251	1-2/-	4,5		
5	-18-		<u> </u>		601.010	385	<u> </u>	106	_ 250	L G L	1 de	42		
(B)	0	tant			607.002		<u> </u>	· · · · · ·		<u> </u>	<u> </u>	<u> </u>		6 POKE NOZZ
C	<u> </u>	m	A (-						00	000	11	1111		4 Replaced
	6		6.75	1.45	606,6	379		21	252	255	64	4.0	(en)	ic good
2	12		0178	1.51	609,3	327		81	260	260	GC	35	4.6	2
2	_19_		6,26	1.47	613,395	389	<u> </u>	-Zi	260	260	60	4.0		
				· · · · · · · · · · · · · · · · · · ·							<u> </u>	<u> </u>		·
0			O.GE(Ku	2	613,795							·		
- 1	_6		0.66	L127	6665	379		80	260	261	62	13:0		
2	12		0.60	1.16	619.9	383		20	260	266	60	3,0		
3	18	1'504	0,55	1,06	6:22:90	324		30	760	261	61	3.0		7
					1						Ter			
ß	0	ISIN		*	672,475									
1	6		0,84	1.62	676.7	375	<u> </u>	30	260	259	66	4,0		
2	in,	DA		1.781-58	630,7	379	<u> </u>	20	261	267	64	45	[
2	18	1330	AIGG	1,83	634.92		<u>}</u>	81	259	258	164	415		
2	10	1220	0142	102		200	1	01	-67-6	610	101-	1-1-1-2-		
		·····		· · · · ·	1							1	· · · · ·	
				[`			<u> </u>			<u> </u>	+		
			· · · · · · · · · · · · · · · · · · ·				<u> </u>	L		<u> </u>				
				<u> </u>			<u> </u>	_		<u> </u>		<u> </u>		
							<u> </u>				<u></u>	<u> </u>	<u> </u>	
		ļ	ļ		/	4	1	L	/		ļ	<u> </u>		100.
		l	<u> </u>	/	/	/	<u>/</u>	L	/		1	L		
8		- 1994 - 1994	Avg Delta P	Avg Delta H	Total Volumer	Avg Ts V	Avg	190.23	Min/Max	Min/Max	Max Temp	Max Vac 4.5	Max Temp	
	5UO	U I	0185911	1.6-1000		382.16	M	00.00	23-1264	251/267				
Volumentaria	Southo		Avg Sqrt Delta P	Avg Sart Del H	Comments:						EPA 5/26A 1	from 40CFR P	art 60 App A	
			1 0 1/1%[1. 4. 700										

í.

til States C

-

nt),# ect ID de/Source ID np. Loc. ID No.ID t Method ID e ID rce/Location nple Date D. Press (in Hg) erator	LWEC Gas <u>556</u> OUT 2 M5/26A 24SEP20 ESP Ou c1/24/ 79, 5	% Moisture Impinger Vol Silica gel (g) CO2, % by V Q2, % by Vo Temperature utlet Meter Temp 75	Stack Condition Assum (ml) (ol (01 (01 (01 (01 (01 (01 (01 (01 (01 (01	ions hed Actual 133 190 144 133 103 153 2 9 1 2 9 1 1 -123	EPA M Meter Box ID Meter Box V Meter Box Del Probe ID / Len Probe Materia Pitot / Thermo Pitot Coefficie Nozzle ID Avg Nozzle Di Area of Stack Sample Time Total Traverse	l H ngth J couple ID ent ia (in) (ft ²)		2017 211714 aro 84 35	Leak Check Sample Trair Leak Check (Pitot good Orsat good Temp Chec Meter Box Te Reference To Pass/Fail (+/	n (ft ³) @ (in Hg) ck emp emp	K Factor Initial O C C Vest no Pre-T Pre-T	Page of H 93 Mid-Poin . C/2 . Ves no yes / no est Set 	it Final
POINT TIME NO	MPLE CLOCK E (min) (plant till) 0 151. (a) (b) (b) (c) (c) (c)	ime) PRESSURE Delta P (in H2O) 0.51 0.60	Delta H (in H20)	637,477 620.5 643.8	786 351	DGM INLET TEMP (°F)	DGM OUTLET TEMP (°F)	PROBE TEMP (*F) 259 261	FILTER BOX TEMP (F) ZSG ZSG	IMPING EXIT TEMP (°F)	SAMPLE TRAIN VAC (in Hg)		COMMENTS
	3 153 0 155 0 6 1 0 12 2 18 16 1 2 18 16 1	- <u>75</u> .75	1.12 7.74 1.48 1.59	647.080 647.142 650.6 654.4 654.4	369 		8/ 	259 259 261 261	261 261 259 259	61 68 62	2 - 33 MM		PAUSE FOR Ph 10 TRAIL
	0 161- 6 1 2 1 8 1635	- 90 - 90	1.73 1.85 1.63	656.116 656.116 666.1 666.1 670.300	375			265 261 261	255 255 255 255 255 763				
	0 163 6 2 65:	1.10	2.12 2.31 2.12	670-300 674.6 678.9 683.385	370 376 379			- 255 760 256	260 250 250	44 165 166			
					/								7
XXESIN		Avg Sqrt Delta P - 91748 AVG - 95583	Avg Delta HV i. (4750 Avg Sqrt Del Hy i. 27269	Comments:	Avg Ts v 375.58	NA Avg	178 92.83	Min/Max 255/ 263	Min/Max 250/Z&4	Max Temp 68 EPA 5/26A fi	Max Vac	Max Temp art 60 App A	

Ţ

		NATION AND AND AND AND AND AND AND AND AND AN	DATA SHI				etiiou S		Part/H(r		Page of	
ent O.#		LWEC		Stack Conditi Assum		Meter Box ID Meter Box Y		2	617			K Factor	197	2
o.# pject ID		LWEC	% Moisture	15		Meter Box Tel	н	<u> </u>		Leak Checl	ا د	Initial	Mid-Poin	∠ t Final
de/Source ID)	Gas	Impinger Vol (r	STATISTICS IN CONTRACTOR OF THE OWNER	and the second	Probe ID / Len		8131		Sample Train		017		1.00
mp. Loc. ID		OUT	Silica gel (g)	,		Probe Materia		All of the other all the second second	A second s	Leak Check (<u> </u>	- Jang Marana
n No.ID		3	CO2, % by Vo	12	11.5	Pitot / Thermo				Pitot good	3 (*****3/	Causin	-	· Gaine no
st Method ID		M5/26A	O2, % by Vol	q	8.7	Pitot Coefficie	nt	0.	.84	Orsat good	·	ىرى مىرىكىشىرۇللاش	- merena	
te ID		24SEP2015	Temperature (TO DESCRIPTION AND ADDRESS	0	Nozzle ID				Temp Chec	;k	Pre-T	est Set	Post-Tjest Set
urce/Location		ESP Outlet	Meter Temp (°			Avg Nozzle Di	• •			Meter Box Te		and the second	17	64
mple Date		7/24	Static Press (in	n H ₂ O) <u>-12</u>	51 6512	Brea of Stack	(ft ²)	3		Reference Te			7.5	63.3
ro. Press (in F	lg)	29.24	Ambient Temp	. <i>Р</i> Е)	67	Sample Time	, ,	<u> </u>		Pass/Fail (+/-	· ·	Pass	T Fail T no	Pass / Fail
erator		33)(F)	Q 1	Total Traverse	e Pis	<u> </u>	<u>L.</u>	Temp Chang	e Response	yes	=/-110	Cyes / IIO
RAVERSE	SAMPLE	CLOCK TIME	VELOCITY	ORIFICE	DRY GAS METER			DGM		FILTER	IMPINGER	SAMPLE		
Sector and the sector of the sector of the	TIME (min)	(plant time)	PRESSURE Delta	PRESSURE	READING (ft [*])	STACK	DGM INLET	OUTLET	PROBE	BOX TEMP	EXIT TEMP	TRAIN VAC		COMMENTS
NO.			P (in H2O)	Delta H (in H2O)	1	TEMP (°F)	TEMP ("F)	TEMP (°F)	TEMP ("F)	(F)	(°F)	(in Hg)		
	0	1756			683 685									
AL	<u> </u>	L	1.1	7.12	688.2	375	NA	60	255	260	65	5	ļ	
2	17		1.2	2.37	692.7	385		80	261	260	GG	5	<u> </u>	
3	18	1814	1.1	7.17	697.000	386	· · ·	80	258	252	66	5		
										-918 ¹⁰¹¹¹¹¹¹ 1-		şing		U=13.32
	0	8181	-		697.008			Second Second	1	-Manazar		<u> </u>		<u>7/</u>
BI	6	1	. 90	1.73	701.2	372		70 20	265	257	68	S		
2	12		1.00	1.93	705.1	385			262	239	46	3		an de
3	18	1835	1.10	2.12	709.432	386		60	257	259	63	5		
			(apple-streeting)	(mail) (provide all		-				(-	~		V= 12.42
	0	1890		allowed and the second	709.432	1		-			Transie.	-		
CI	6	1	- 85	1.64	713.3	387		20	260	259	64	4		
2	12		.83	1.64	717.1	384		8.0	260	256	63	4		
2	1%	1857	27	1.67	720.783			80	261	262	65	4		
			~						<u> </u>		~	~~~~	1	V=11.551
	0	1901			720.983	-		~					1	
0 1	6	1	.55	1.06	724.1	383		80	261	259	68	4	1	
	17	<u> </u>	.65	1.25	727 4	385		80	262	261	66	4	1	
	18	1919	TO	1.35	730.745			ÊO	259	260	64	i/	1	V= 9.76
	<u>· v</u>	<u> ````````````````````````````````````</u>											1	
		- · · · ·						1		<u>ن</u> .			1	
		1							1	· · · · ·				
		1						A State of S						
		1	1		1	1		<u> </u>	<u> </u>					
						1			7					
<u>-</u> <u>-</u>		+			Y	/	/		V		· · · · · · · · · · · · · · · · · · ·		1	
<u> </u>		1	Avg Sgrt Delta P.	Avg Delta H 1	Total Volume	Avg Ts 1	Avo	Tm /	Min/Max	Min/Max	Max Temp	Max Vac	Max Temp	
			Avg Sqrt Delta P	Avg Delta Hy	Total Volume J	383.45	NA	79.91	Min/Max 255/265	252/261	68	5		
vv.r.		AVG	9 15833		Comments:	<u>1 - 4 - 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - </u>	L			<u> </u>		rom 40CFR P	art 60 App A	à
<u> 11(3)</u>	<u>UN</u>	MVO		Avg Sqrt Del H 1.31296										
	OL	Same and the second		L	٤									

化化学 化

SAMPLE RECOVERY FIELD DATA

EPA Method 5/26A - Part/HCl

Client		LW	EC	_	W.O. #				
Location/Pla	ant	L'Anse	e, MI	Sou	rce & Location		ESP (Dutlet	
Run No.	_7				Sample Date	9/24/15	-	· · · · · · · · · · · · · · · · · · ·	E/24/15
Sample I.D.	LWEC - Gas -	OUT - 1 - M5/	26A		Analyst	FS		Filter Number	
,	<u> </u>				Impinge				<u> </u>
	1	2	3	4	5	6	7	Imp.Total 8	Total
Contents	0.1 H2SO4	0.1 H2SO4	0.1 H2SO4	Empty				Silica Gel	
Final	142	136	107 10	260011	100 96			314.7	
Initial	50	100	100	1000	100			200 300	
Gain	92	36	2	2	-4			133 14.7	
Impinger Cold	or 🥚	clew	a M		Labeled?			/	
Silica Gel Co	ndition	CARA	Bluc		Sealed?				
Run No.	2				Sample Date	9/2-11	5	Recovery Date	24/15
Sample I.D.			264		Analyst	FS		Filter Number	611
Gample I.D.	LWEC - Gas -	001 - 2 - MG/	207	• £355	· · · · · · · · · · · · · · · · · · ·				
-	1	2	3	4	Impinge				<u> </u>
Contents	0.1 H2SO4	∠ 0.1 H2SO4	0.1 H2SO4	Empty.	5	- 6	7	Imp.Total 8 Silica Gel	Total
	×/1 7	139	i/1/	10)	97			3/3.3	
Final			106		100				
Initial Gain	50 107	100 34	100	2	- 3			200 300	
		Jail	4		Labeled?		/		[
Impinger Cold		1 Pul	 ,						
Silica Gel Cor	ndition	Due			Sealed?				
Run No.	3	<u></u>			Sample Date	9/24/15	E	Recovery Date	012015
Sample I.D.	LWEC - Gas -	OUT - 3 - M5/2	26A	- All	Analyst	, FS		Filter Number	
					Impinge			2	
	1	2	3	4	5	6	7	Imp.Total 8	Total
Contents	0.1 H2SO4	0.1 H2SO4	0.1 H2SO4	Empty				Silica Gel	
Final	166	141	110	100	94			318,4	
Initial	50	100	100	100	100	N		200 300	
Gain	116	<u> 4/</u>	10	0	-9			163 18.4	
Impinger Cold	r L	leg			Labeled?			*	
Silica Gel Cor	dition	pluc			Sealed?			a 	
- Alberton		*							

Check COC for Sample IDs of Media Blanks

s. ₫

1

,

Number 2

Client: LWEC Location: L'Anse, MI Source: ESP Out	(Calibration 1		Project Number: Operator: FJS Date: 24 Sep 2015
	Method Conc. Units	O₂ EPA 3A %	CO ₂ EPA 3A %	
	Time	e: 11:35 to 1	3:30	
	R	un Averages	6	
		9.2	10.7	
	Pre-r	un Bias at 0	9:45	
	Zero Bias Span Bias Span Gas	0.0 11.9 12.0	0.0 8.6 8.8	
	Post-	run Bias at 1	3:48	
	Zero Bias Span Bias Span Gas	0.0 11.9 12.0	0.0 8.7 8.8	
Averages co	rected for the a	verage of th	e pre-run an	d post-run bias
	1*	9.2 No Correctior	10.8 1	

÷

 $\dot{4}_{F_n}$

Client: LWEC Location: L'Anse, MI Source: ESP Out	(Calibration 1		Project Number: Operator: FJS Date: 24 Sep 2015
	Method Conc. Units	0 ₂ EPA 3A %	CO₂ EPA 3A %	
	Time	e: 15:13 to 10	6:57	
	F	Run Averages	3	
		9.1	10.8	
	Pre-	run Bias at 1	3:48	
	Zero Bias Span Bias Span Gas	0.0 11.9 12.0	0.0 8.7 8.8	
	Post-	run Bias at 1	7:02	
	Zero Bias Span Bias Span Gas	0.0 11.9 12.0	0.1 8.7 8.8	
Averages co	rected for the a	verage of th	e pre-run an	d post-run bias
	*	9.1 No Correctior	10.9 1	

Client: LWEC Location: L'Anse, MI Source: ESP Out	Calibration 1		Project Number: Operator: FJS Date: 24 Sep 2015
Method Conc. Units	O₂ EPA 3A %	CO₂ EPA 3A %	
Tir	ne: 17:56 to 19	9:19	
	Run Averages	5	
	8.7	11.4	
Pre	e-run Bias at 1	7:02	
Zero Bias Span Bias Span Gas	0.0 11.9 12.0	0.1 8.7 8.8	
Pos	t-run Bias at 1	9:36	
Zero Bias Span Bias Span Gas	0.0 11.9 12.0	0.0 8.7 8.8	
Averages corrected for the	e average of th	e pre-run an	d post-run bias
	8.7 *No Correction	11.5 I	

SOURCE ID: DATE:	Boiler No. 1 9/24/15			CLIENT: FACILITY:	L'Anse Warden L'Anse, Mi
TEST CONDITIO				RUN:	1
Lor oonorin		According to the second s			1
		PM10-INPUT DATA FOR CALCU	I ATIONS		
		FINTU-INFUT DATA FOR CALCU	LATIONS	·····	······
		RUN			
		TEST PERIOD		1126-1307	
	Y	Meter Box y		a table of the second	
				1.0050	
	Delta H@	Meter Box Delta H@		2.3615	
	VM	Meter volume, ft^3		34.300	<u></u>
	<u>CO2</u>	CO2 concentration, %		10.9	
· · · · · · · · · · · · · · · · · · ·	02	Oxygen concentration, %		9.2	
	A	Nozzle diameter, inches		0.173	<u></u>
	A	Stack Area, sq. ft.		39.000	
	Pb	Barometric Pressure, inches Hg		29.78	<u></u>
	Pg	Static Pressure, inches H2O		-9.6	
		Impinger water collected, g		99	
		Silica Gel collected, g		9.2	
		Total Imp catch		108.2	
	Ср	Pitot Coeff		0.758	
	Delta P	Avg Sqrt Delta P, sqrt(inches H2O)		0.9932	
		Sample Time, min		96.5	
	Ts	Average Stack Temp.deg F		375.68	
	Ts	Average Stack Temp.deg R		835.68	
	Tm	Meter temperature		72.17	
	Delta H	Avg Delta H, inches H2O		0.49	
	O2(wet)	Oxygen concentrationWET		8.0	
	02(1101)	Nitrogen(+ CO) concentration		79.9	
	Bws	Fraction moisture content			(Ex. 4% = 0.04)
	2110	Moisture percentage		13.007	(LA. 470 - 0.04)
	Md	Mole fraction of wet gas		0.870	
	MWd	Molecular Weight(Dry)		30.11	
	MW	Molecular Weight(Wet)		28.54	
	Ps	Absolute Stack Pressure		20.54	
					In.rig
	MwPs/Ts	Intermediate Calc		0.993	L
	Ts/MwPs	Intermediate Calc		1.007	
	(Vmstd)	Standard Meter Volume, cu.ft		34.069	L
	Qs	Cyclone flowrate (actual), cfm		0.661	
	Us2.5	Viscosity of Stack gas		238.53	micropoise
	Dn	Nozzle diameter		0.173	inches
	Vn	Nozzle Velocity		67.521	ft/sec
	R min.	minimum R		0.711	
	R max.	maximum R		1.258	
	V min	minimum velocity		47.99	ft/sec
	V max	maximum velocity		84.95	ft/sec
	Delta p min.		0.545	in.H2O	
	Delta p max.			in.H2O	
RONT HALF AN	ALYTICAL DATA	· · · · · · · · · · · · · · · · · · ·			
		front half cyclone I0) >PM10, g (FHA1)		0.0053	
······································		vyclone 10 exit tube) <pm10, (fha2)<="" g="" td=""><td></td><td>0.0023</td><td></td></pm10,>		0.0023	
	Mass (filter) <p< td=""><td></td><td></td><td>0.0025</td><td></td></p<>			0.0025	
		NETO, 9	1	600005	L,,,,,,,,,,,,
	LYTICAL DATA	Γ	т		······································
NON TRALF ANA	H2O (inorganic	L posiduo a		0.0061	
	Mari (araanin)				
	MeCI (organic)	residue, g		<0.0010	

Q1_LWEC001_Opactiy_003786

٠

SOURCE ID:	Boiler No. 1		CLIENT:	L'Anse Warde
DATE:	9/24/15		FACILITY:	L'Anse, Mi
TEST CONDITION	l: [RUN:	2
	PM10-IN	PUT DATA FOR CALCULA	TIONS	
	······································			
		RUN	2	<u></u>
		TEST PERIOD	1448-1609	
	Y	Meter Box y	1.0050	
	Delta H@ VM	Meter Box Delta H@ Meter volume, ft^3	2.3615	
	CO2	CO2 concentration, %	10.6	
	02	Oxygen concentration, %	9.3	and the second data was a second data w
		Nozzle diameter, inches	0.173	
	A	Stack Area, sg. ft.	39.000	
· · · · · · · · · · · · · · · · · · ·	Pb	Barometric Pressure, inches Hg	29.74	
	Pg	Static Pressure, inches H2O	-12,1	
		Impinger water collected, g	85	
		Silica Gel collected, g	17.9	
		Total Imp catch	102.9	
	Ср	Pitot Coeff	0.758	
	Delta P	Avg Sqrt Delta P, sqrt(inches H2O)	0.9004	
		Sample Time, min	80	
	Ts	Average Stack Temp.deg F	371.93	
	Ts	Average Stack Temp.deg R	831.93	
	Tm	Meter temperature	77.64	
	Delta H	Avg Delta H, inches H2O	0.49	
	O2(wet)	Oxygen concentrationWET	8.0	<u> </u>
	Buo	Nitrogen(+ CO) concentration	80.1	(Ex. 40/ = 0.04
	Bws	Moisture percentage	14.066	(Ex. 4% = 0.04
	Md	Mole fraction of wet gas	0.859	
	MWd	Molecular Weight(Dry)	30.07	
	MW	Molecular Weight(Wet)	28.37	[
	Ps	Absolute Stack Pressure	28.85	lin Ha
	MwPs/Ts	Intermediate Calc	0.984	
	Ts/MwPs	Intermediate Calc	1.016	
	(Vmstd)	Standard Meter Volume, cu.ft	29.600	
	Qs	Cyclone flowrate (actual), cfm	0.704	
	Us2.5	Viscosity of Stack gas	236.82	micropoise
	Dn	Nozzle diameter	0.173	inches
	Vn	Nozzle Velocity	71.869	ft/sec
	R min.	minimum R	0.717	
	R max.	maximum R	1.254	
	V min	minimum velocity	51.54	ft/coc
	V max	maximum velocity	90.15	
	Vinax		00.10	10300
********	Delta p min.	0.623	in.H2O	
	Delta p max.		in.H2O	
RONT HALF ANA	LYTICAL DATA			
	Mass >PM 10 (front_half cyclone I0) >PM10, g (FHA1)	0.0050	
	Mass PM 10 (c	vclone 10 exit tube) <pm10, (fha2)<="" g="" td=""><td>0.0015</td><td></td></pm10,>	0.0015	
	Mass (filter) <pm< td=""><td>M10, g</td><td>0.0045</td><td></td></pm<>	M10, g	0.0045	
			·	
BACK HALF ANAL				
	H2O (inorganic		0.0052	
	MeCI (organic)	resiaue, g	<0.0010	
		1	1	

SOURCE ID:	Boiler No. 1		CLIENT:	L'Anse Warde
DATE:	9/24/15		FACILITY:	L'Anse, Mi
EST CONDITION:	<u></u>		RUN:	3
			TIONO	
	PM10-IN	PUT DATA FOR CALCULA	TIONS	
			<u> </u>	<u></u>
		RUN		
		TEST PERIOD	1752-1933	
	<u>Y</u>	Meter Box y	1.0050	
······	Delta H@	Meter Box Delta H@	2.3615	
	VM	Meter volume, ft^3	33.565	
	<u>CO2</u>	CO2 concentration, %	11.5	
	02	Oxygen concentration, %	8.7	
		Nozzle diameter, inches	0.173	
	<u> </u>	Stack Area, sq. ft.	39.000	
	Pb	Barometric Pressure, inches Hg	29.74	
	Pg	Static Pressure, inches H2O	-12.3	
	,,	Impinger water collected, g	94	
		Silica Gel collected, g	17.6	
	<u>^-</u>	Total Imp catch	111.6	
	Cp	Pitot Coeff	0.758	<u> </u>
	Delta P	Avg Sqrt Delta P, sqrt(inches H2O)	0.9638	<u> </u>
A		Sample Time, min	96	
	Ts	Average Stack Temp.deg F	380.09	
	Ts	Average Stack Temp.deg R	840.09	
	Tm	Meter temperature	76.00	
	Delta H	Avg Delta H, inches H2O	0.49	
	O2(wet)	Oxygen concentrationWET	7.5	
		Nitrogen(+ CO) concentration	79.8	
	Bws	Fraction moisture content		(Ex. 4% = 0.04
		Moisture percentage	13.715	
	Md	Mole fraction of wet gas	0.863	
	MWd	Molecular Weight(Dry)	30.19	
	MW	Molecular Weight(Wet)	28.52	
	Ps	Absolute Stack Pressure	28.84	in.Hg
	MwPs/Ts	Intermediate Calc	0.979	
	Ts/MwPs	Intermediate Calc	1.022	
	(Vmstd)	Standard Meter Volume, cu.ft	33.056	<u> </u>
			0.050	
	Qs	Cyclone flowrate (actual), cfm	0.659	
	Us2.5	Viscosity of Stack gas	238.64	micropoise
			0.470	to a base
	Dn	Nozzle diameter	0.173	inches
			67.000	64
	Vn	Nozzle Velocity	67.299	livsec
	R min. R max.	minimum R maximum R	0.710	·
	n max.		1.258	
	Vmin	minimum velocity	47.80	ft/coc
	V min V max	maximum velocity	<u>47.80</u> 84.68	
	v max		04.00	10360
	Delta p min.	0.633	in.H2O	
	Delta p max.		in.H2O	
	Dona p max.	1.072		<u> </u>
RONT HALF ANAL		1		
CONTRACTOR ANAL		front half cyclone I0) >PM10, g (FHA1)	0,0066	
		vclone 10 exit tube) <pm10, (fha2)<="" g="" td=""><td>0.0019</td><td></td></pm10,>	0.0019	
	Mass (filter) <pi< td=""><td></td><td>0.0050</td><td> </td></pi<>		0.0050	
	mass (mer/sri		0.0000	L
ACK HALF ANALY		Ι		Г
	H2O (inorganic) residue a	0.0082	
	MeCI (organic)		<0.0010	
	incon (organic)	l	10 00 10	
		<u> </u>		

SURI		FIELD /	DATA SHI			EPA M	Iethod 2			.10			Page of	
ent		LWEC		Stack Condition		Meter Box ID		_ 23		-)	K Factor		
/.O.#			<u> </u>	Assum	ned Actual	Meter Box Y		1.00	50		}	L		
roject ID		LWEC	% Moisture	15		Meter Box Del		2.36	<u>,15</u>	Leak Check		Initial	Mid-Point	
Mode/Source I		Gas	Impinger Vol (r	(ml)		Probe ID / Len		<u>f891</u>	<u> </u>	Sample Train		.016		.004
amp. Loc. ID			Silića gel (g)		105000000000000000000000000000000000000	Probe Materia			oro	Leak Check (@ (in Hg)	15	<u> </u>	6
Run No.ID		<u>́1</u> ТРМ40	CO2, % by Vol	ol <u>//</u> 9.1	· · · · · · · · · · · · · · · · · · ·	Pitot / Thermo	,	P891		Pitot good	NA	Ges / no	yes / no	Ges / no
est Method ID ate ID		TPM10 24SEP2015	O2, % by Vol Temperature (1000/1007/001007	Pitot Coefficier	Int	ایل ا 	<u>184 .758</u>	Orsat good		yes no	est Set	Post-Test Set
ource/Locatio		ESP Outlet	Meter Temp (°			Avg Nozzle ID	No (in)	. 17		Meter Box Te				
ample Date	and the second second second second second	9124115	Static Press (ir			Area of Stack			and the second se	Reference Te		65		68
aro. Press (in		24.78				Sample Time				Pass/Fail (+/-		Contractor of the second se	/ Fail	Eass / Fail
perator		s/L	Ambient Temp	،p (°F) 💰	5	Total Traverse		12			ge Response '		/ no	yes / no
	T		<u></u>	T	1	1	T	<u></u>	Г	T	T		ТТ	
TRAVERSE	SAMPLE	CLOCK TIME	VELOCITY	ORIFICE	DRY GAS METER	A DTACK		DGM	PROBE	FILTER	IMPINGER	SAMPLE	COND	
POINT	TIME (min)		PRESSURE Delta		READING (ft ³)			OUTLET		BOX TEMP	EXIT TEMP		FILTER Temp OUT	COMMENTS
NO.		1-1-1-1-1	P (in H2O)	Delta H (in H2O)		TEMP (°F)	TEMP (°F)	TEMP (°F)	TEMP (°F)	(F)	(°F)	(in Hg)	(F) 65-85 F	
- <u>A</u> /	0	1126	+	+'	96.074		ļ'	↓'	1		<u>↓'</u>	'		
	3.25	<u>ا</u>	.65	.49	983	366	Wa	67	256	157	61	1,0	69	
()	6.5	<u>ا</u>	.65	. 49		(13-25 37	5	68	253	254	59	1.0	69	
2	9.75	<u> </u>	, 70	. 49	100 5	3788	'	69	756	252	58	1.0	70	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	13.0	<u> </u>	,70	. 4 4	101.6	378		69	255	253	57	1.0	70	
3	16.25	· · · · · · · · · · · · · · · · · · ·	. 70	.49	102.7	380		70	252	249	56	1.0	69	
3	19.5	1146	. 70	. 49	163.824	381		70	253	251	55	1.0	69	
!	<u>ا</u>	1148	· · ·			-			-	·		-		
CL	23	1	. 80	,49	1045.9	377		70	255	253	55	10	71	
<u> </u>	26.50	· · · · · · · · · · · · · · · · · · ·	. 80	. 49	105.6	378		71	254	254	55	1.0	70	
2	30	· · · · · · · · · · · · · · · · · · ·	, 90	. 49	106.7	372		72	257	253	54	1.0	70	
r		1 .	190	.49	107.7	379		22	255	252		1.0	69	
3	37.0	· · · · · · · · · · · · · · · · · · ·	-94	.49	108.9	380		72	256	254	5-4	1.0	70	
3	40.5	1210	94	.49	110.6	382		72	254	253		1.0	70	,
B T	45.25	1211	1.1.1	. 49	112.4	376	1-1	73	255	254	55	1.0	69	
<u> </u>	500	r	+	44	114.0	376		73	254	155	56	1.0	70	
2	54.75	I	1.2	.40	115.9	376	+	73	256	256	55	1.0	70	
Ź	59.5	t'	1.6	.44	117.6	376	+	3	256	255	55	1.0	70	
	64	t'			119.0	281	+		252	256	55	0,1 1.2	69	
	······································	1238	1.0	.41		381			253	233	55		71	
<u>, 3</u>	69.5	1239	<u>  .0</u>	.49	121.3			74			1.5	1.0		
<u>k I</u>	73	1-2-1	10	. 49	122.3	370		74	254	256	157	1.0	69	
<u> </u>		<b>ب</b>	1.0	. 44	123.9	371	<u> </u>	74	252	254	57	1.0	70	
2	82.25	<b> '</b>	1.3	. 44	175.4	370		74	256	254	57	1.0	69	<u></u>
<u>ı</u>	37	<b></b> '	1.3	. 49	127.0	369	'	74	253	253	58	1.0	71	
3	11.75	Ĺ'	1.3	. 44	128.6	372		74	252	254	52	1.0	72	
3	94.50	1307	1:3	·49	130.374			74	253	253	60	1.0	72	
		· · · · · · · · · · · · · · · · · · ·	Avg Delta P	Avg Delta H	Total Volume	Avg Ts	Avç	g Tm	Min/Max	Min/Max	Max Temp	Max Vac	Max Temp	Artike and and a
TV.V.	RUCE	<u>។</u> រ		.49				······································	l	_ <u>_</u> ′	'			
			Avg Sort Delta P	Avg Sqrt Del H							EDA 201A -	and 202 from 4	0CFR Part 60 Ap	~~ ^

Q1_LWEC001_Opactiy_003789

SORIN		- and a statistic sector of the sector	DATA SHI				ethod	201A/20	2 - PM	10	-		Page of	
lient		LWEC		Stack Conditi		Meter Box ID		23				K Factor		
/.O.#				Assum	ed Actual	Meter Box Y		1.00			L			
roject ID	<del></del>	LWEC	% Moisture			Meter Box Del		2.3	615	Leak Checl	-	Initial	Mid-Point	A.
Node/Source ID		Gas	Impinger Vol (r	nl)		Probe ID / Ler	0	1991		Sample Train		.018		10
amp. Loc. ID			Silica gel (g)		10.5 10	Probe Materia		1891	010	Leak Check (	@ (In Hg)	15		
un No.ID		2 TPM10	CO2, % by Vol O2, % by Vol			Pitot / Thermo Pitot Coefficie	couple ID		<del>84</del> .75B	Pitot good	Na	ver / no	yes / no	G
est Method ID ate ID		4SEP2015	O2, % by Voi Temperature ( ⁰	PF) <b>375</b>		Nozzle ID	111		<u>. /30</u>	Orsat good			est Set	Post-Tes
ource/Location		SP Outlet	Meter Temp (°		-	Avg Nozzle D	ia (in)	.17	.3	Meter Box Te	-	75		79
ample Date	Contraction of the Contraction	2124115	Static Press (ir	And second s	-12.9	Area of Stack	. ,	29.		Reference Te		74	4	79
aro. Press (in H		29.78 2		- /	<u> </u>	Sample Time	(11)			Pass/Fail (+/-			/ Fail	Pass /
perator	" <u> </u>	SR V	Ambient Temp	(°F)		Total Traverse	e Pts	12	/	Temp Chang			/ no	ves /
		- V				-	I. State					<u> </u>		
TRAVERSE	SAMPLE	CLOCK TIME	VELOCITY	ORIFICE	DRY GAS METER	STACK	DGM INL	DGM	PROBE	FILTER	IMPING	SAMPLE	COND	
POINT T	IME (min)	(plant time)	PRESSURE Delta	PRESSURE	READING (ft ² )	TEMP (°F)	TEMP (1	, OUTLET	TEMP (°F)	BOX TEMP	EXIT TEMP	TRAIN VAC	FILTER Temp OUT	COMME
NO.		111110	P (m H20)	Delta H (in H2O)	133.836		11.1816 1.1	TEMP (°F)		(F)	(°F)	(in Hg)	(F) 65-85 F	
<u>x</u>	4.5	1448		116		370	NA	1.76	764	2/ 16011	534460	1.0	72	
<u>A    </u>				.49	135.5	380	1 1	75	269	255	60		72	
2	9			44	131.1	371	<u> </u>	76				1.0		
	1375		H01.2	. 49	133.7		┼──┼──	76	255	7.54	63	1.0	72	
	18.5		+012	. 49	140.4	371	<u> </u>	76	255	252	64	1.Q	72	
	22		.83	.49	141.3	370		77	253	252	64	1.0	74	
	25,5	1313	.83	.49	143.1	371		77	254	2.56	64	1.0	73	
	29	1514	. 36	. 44	144.(	370		77	252	254	63	1.0	72	
) i	32.5		,86	149	146.3	364		77	251	253	64	1.0	73	
72	36		-25	. 49	148.0	374		78	254	256	65	1.0	72	
2	19.5		.85	.49	149.6	378		78	252	254	65	1.0	69	
2	42.75		.70	-49	149.2	378		78	254	256	64	10	70	
3	216	1344	.76	49	150.1	377		78	254	252	64	1.0	71	
8 1	51	1544	,50	. 44	151.2	365		78	75,3	255	65	10	71	
2	53.25		.55	. 49	152 3	374		78	253	251	64	1.0	70	
2	566		.55	.49	153.9	374		79	253	253	64	1.0	69	
the second s	5875		,63	49	154.2	378		74	254	752	63	1.0	69	
	62	1352	.63	. 49	155.1	376	+	79	252	251	63	1.0	69	
	64.25	1852	.58	, 49	156.1	374		70	751	252	1.4	1.0	70	
1	66.5	18-	58	. 49	1580	373		71	252	253	64	1.0	70	
	69.75		.75	49	158.3	369	+	79	254	254	64	10	70	
	73 -		.75	44	160,2	371	┼──┼──	74	250	252	61	10	77.	
							+ +	79						
3	76.2	1609	,92	<u>. 49</u>	362.0	372	·	- 40	251	752	66	1.0	75	
	\$0	1004	.82	. 11	104.784	×27)	┼──┼──		100	107	61	1.0	74_	
					163984	<b> </b>	┼──┼──							
		·····	Ave Part Datta D	Ava Dalta Lt	Total Values		ļ		Min/Man	Min/Most	Max Temp	Max Vac	Max Temp	
			Avg Sqrt Delta P	Avg Delta H	Total Volume	Avg Ts	1 '	Avg Tm	Min/Max	Min/Max		Max Vac	Max remp	
50000				Avg Sqrt Del H	Comments:	1	1		<u>I</u>	<u> </u>	L	l	L	

30:148

Q1_LWEC001_Opactiy_003790

UNITE.		FIELD I	DATA SHI	EET		EPA M	ethod			10			Page of _	
nt		LWEC		Stack Conditi	ons	Meter Box ID		23				K Factor		
).#			<u></u>	Assum	ed Actual	Meter Box Y		(, 06	50		1			
ect ID .		LWEC	% Moisture	15		Meter Box Del		7.30	515	Leak Chec		Initial	Mid-Point	Fina
de/Source ID		Gas	Impinger Vol (r	ni)		Probe ID / Len	gth	<u>p891</u>		Sample Trair		.016		, 00
ıp. Loc. ID		OUT	Silica gel (g)			Probe Material		and the second statement of the se	oro	Leak Check (	@ (in Hg)	15		6
No.ID		3	CO2, % by Vol		11.3	_ Pitot / Thermoo		p&4 (	L	Pitot good		Wes / no	Nes / no	<u> (</u>
t Method ID		TPM10	O2, % by Vol	9.2	8.7	Pitot Coefficier	nt	<u> </u>	84,758	Orsat good	Nor	yes I no	yes / no.	Jes T
e ID		4SEP2015	Temperature (	2 10 10 10 10 10 10 10 10 10 10 10 10 10		Nozzle ID				Temp Cheo			est Set	Post-Test
rce/Location		SP Outlet	Meter Temp (°			Avg Nozzle Dia		173		Meter Box Te	· · · · ·	69		72
ple Date	9	124/13	Static Press (ir	1 H ₂ O)	- 12.3	_Area of Stack (	[ft ² )/	390	6	Reference Te		68		71.
o. Press (in Hg)		24.74		a ma	111	Sample Time		96		Pass/Fail (+/-	· ·		/ Fail -	Rang / F
rator	- 51	5	Ambient Temp	(°F) (4)9	<i>§</i> 63	_ Total Traverse	Pts	(2		Temp Chang	e Response (	64	/ no	🖗 🖓 🕺
AVERSE SA	MPLE	CLOCK TIME	VELOCITY	ORIFICE	DRY GAS METER	STACK	DGM INLE	DGM	PROBE	FILTER	IMPINGER	SAMPLE	COND FILTER	
OINT TIM	E (min)	(plant time)	PRESSURE Delta	PRESSURE	READING (ft [*] )	TEMP (°F)	TEMP (F		TEMP (°F)	BOX TEMP	EXIT TEMP	TRAIN VAC	Temp OUT	COMMEN
NO			P (in H2O)	Delta H (in H2O)		(Contraction (197)	Tenne ( c	TEMP (°F)	Lenne ( F)	(8)	(°F)	(in Hg)	(F) 65-85 F	
	0	1752			165.300		- 31.1					-		
	3.25		. 64	. 40(	166.7	364	MA	76	252	253	62	1.0	71	
1 6	,50		.64	. 49	167.8	37 (		76	250	252	62	1.0	72	·
2 10	0.0		.70	. પ૧	168.9	380		76	256	254	64	1.0	72	
21	3.5		70	. 49	170.0	390		76	254	252	65	1.0	71	
	6.75		.67	44	171.1	382		76	253	254	65	1.0	71	
	20.0	1812	.67	.49	172.2	382		76	257	254	66	1.0	72	
	35	1812	. 75	. 49	173.4	372		76	255	253	65	1.0	71	
	7.0	1010	.75		174.6	373		76	262	251	64	1.0	70	
	0.5			. 49		382			251	253	65	and the second	69	
			. 89	. 1/9	175,9			76	and the second division of the second divisio	Annual Contraction of the local division of		1.0	69	
	4		. 83	. 49	176.9	382		76	752	254	65	1.0		
	37.5		.82	. 44	178.3	384		76	254	252	66	1.0	69	
<u> </u>		1833	. 82	. 41	179.485	384		76	254	253	66	1.6	70	
- 40	4.5	1838	.72	. 41	180.7	376		76	255	254	64	1.0	72	
1 4	8.0		+72	. 49	182.0	378		76	252	251	63	10	71	
2 31	1.75		1.1	. 4a	183.7	381		76	251	253	63	1.5	70	
2 5			1.1	.44	185.2	381		76	254	252	63	10	71	
	1.25		1.2	49	186.9	385		116	254	253	64	1.0	72	
		1401	1.6	. 46	133.6	385		76	253	254	66	1.0	72	
		19:05	······		139.9			76		253	65	A	191	
	1.75	1903	1,(	.49		306			256	253	64	/.0	73	
	6.50		1.	. 42	191.5	385		76	255				72	
	50		1.3	• 44	193.4	378		76	254	250	64	1:0		
	656		1.3	.49	195.3	3 80		76	254	254	62	1.0	71	
	128		(,0	. 49	197.0	281		76	252	25%	62	(.0	72	
3 9	6	1933	1.0	. 49	198.865	381		76	254	252	<u>Ĝ</u>	1.63	71	
			Ava Sart Delta P	Avg Delta H	Total Volume	Avri Te	Δ	 va Tm	Min/Max	Min/Max	Max Temp	Max Vac	Max Temp	
			Avg Sqrt Delta P	- 49	33.565	Avg Ts 379	2	^{vg т} m						
				• • •		1 - 1 - 1			1	1	1	1917 L	CAN SERVICE AND SHORE	



Q1_LWEC001_Opactiy_003794

1

## SAMPLE RECOVERY FIELD DATA

EPA Method 201A/202 - PM10

	Client		LW	EC		W.O. #					
	Location/Pla	ant	L'Ans	e, MI	_ So	urce & Location		ESP (	Dutlet		
1340 51 pm	Run No.	<u>a</u> (			<u></u>	Sample Date	9/24/15		Recove	ery Date	9/24/13
19E	Sample I.D.	LWEC - Gas	- OUT - 1 - TPI	<b>V</b> 10		Analyst	FS	-	Filter N	lumber	Gas_
10/1						Impinge	er				
1341	 	1	2	3	4	5	6	7	Imp.Total	8	Total
1000 11 Am	Contents	Empty	Empty	Di H20						Silica Gel	-
) [ per	Final	102	え	95	30-					30EZ	,
10 %	Initial	0	0	100	0				200	300	
- 455-	Gain	102	2	75			1		99	9.2	108.2
455-	Impinger Cold	or	aler			Labeled?			-		_
	Silica Gel Co	ndition	Blue			Sealed?					
A	Run No.	2			, , ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	Sample Date	9/24/1	5	Recove	ry Date	9/4/15
uge 650 FIM DJ°F	Sample I.D.	LWEC - Gas	OUT - 2 - TPM	<i>M</i> 10	2	Analyst	FS	_	Filter N	lumber	606
120						Impinge	er				
		1	2	3	4	5	6	7	Imp.Total	8	Total
IM	Contents	Empty	Empty	Di H20	+					Silica Gel	
710-	Final	89	Ð	<u> </u>	. 					<u> 312 q</u>	
o p	Initial	0	0	> 100	0		11		200	300	
101	Gain	89	0	-4				l	85	179	102.4
150	Impinger Cold	or <u>C</u>	lear			Labeled?				^а е,	-
λαιτική Γιατική Γιατική	Silica Gel Cor	ndition	Jue			Sealed?					
	Run No.		••••••••••••••••••••••••••••••••••••••		<u></u>	Sample Date	7/24/15		Recove	ry Date	9/14/15 - <del>312312013</del>
	Sample I.D.	LWEC - Gas -	OUT - 3 - TPN	/10		Analyst	FS	4.	Filter N	umber	607
		1985 1				Impinge	er		-		
0	Contraction of	1	2	3	4	5	6	7	Imp Total	8	Total
AN	Contents	Empty	Empty	Di H20	+	·				Silica Gel	
220	Final	94	0	100		ŧ			ļļ	317.6	ļ
7	Initial	0	0	100	0				200	300	ļ
2-2082 52-2082 54m	Gain	94	0	6	<u> </u>				94	17.6	
190 F	Impinger Colo	r' (4	in			Labeled?	U				_
	Silica Gel Con	dition	Bine	·······		Sealed?					

Check COC for Sample IDs of Media Blanks

Client: LWEC Location: L'Anse, MI Source: ESP Out	С	alibration		Project Number: Operator: Date:	FJS 24 Sep 2015
Metho Conc.		<b>O₂</b> EPA 3A %	<b>CO₂</b> EPA 3A %		
	Time:	11:26 to 1	3:07		
	Ru	ın Average	S		
		9.1	10.7		
	Pre-ru	n Bias at (	9:45		
Zero E Span I Span (	Bias	0.0 11.9 12.0	0.0 8.6 8.8		
	Post-rı	un Bias at	13:48		
Zero B Span B Span C	Bias	0.0 11.9 12.0	0.0 8.7 8.8		
Averages corrected f	for the av	erage of th	e pre-run and	l post-run bias	
	*N(	9.2 o Correctio	10.9 า	· · ·	
					د



Client: <b>LWEC</b> Location: <b>L'Anse, MI</b> Source: <b>ESP Out</b>	Calibration 1		Project Number: Operator: <b>FJS</b> Date: <b>24 Sep 2015</b>
Method Conc. Units	<b>O₂</b> EPA 3A %	<b>CO</b> ₂ EPA 3A %	
Tir	ne: 14:48 to 10	6:09	
	Run Averages	3	
	9.3	10.5	
Pre	-run Bias at 1	3:48	
Zero Bias Span Bias Span Gas	0.0 11.9 12.0	0.0 8.7 8.8	
Pos	t-run Bias at 1	7:02	
Zero Bias Span Bias Span Gas	0.0 11.9 12.0	0.1 8.7 8.8	
Averages corrected for the	average of th	e pre-run an	d post-run bias
	9.3 *No Correctior	10.6 1	
,			



Client: LWEC Location: L'Anse, Mi Source: ESP Out	Calibration 1		Project Number: Operator: <b>FJS</b> Date: <b>24 Sep 2015</b>
Method Conc. Units	<b>O</b> ₂ EPA 3A %	<b>CO₂</b> EPA 3A %	
 Tir	me: 17:52 to 19:	33	
	Run Averages		
	8.7	11.3	
Pre	e-run Bias at 17	:02	
Zero Bias Span Bias Span Gas	0.0 11.9 12.0	0.1 8.7 8.8	
Pos	st-run Bias at 19	:36	
Zero Bias Span Bias Span Gas	0.0 11.9 12.0	0.0 8.7 8.8	
Averages corrected for the	e average of the	pre-run an	d post-run bias
	8.7 *No Correction	11.5	



## L'Anse Warden Electric Company Boiler No. 1 EPA Method 12 (Lead) Test Data Inputs

Test Data			
Run number	1	2	3
Date	09/23/15	09/23/15	09/24/15
Time period	1513-1623	1657-1808	0828-0940
Operator	TB	TB	SR
Inputs For Calcs.			
Sq. rt. delta P	0.91318	0.89806	0.93259
Delta H	1.35500	1.56583	1.63458
Stack temp. (deg.F)	369.8	370.4	369.3
Meter temp. (deg.F)	73.9	75.5	65.2
Sample volume (act.)	35.908	37.180	44.056
Barometric press. (in.Hg)	29.58	29.58	29.78
Volume H2O imp. (ml)	125	122	131
Weight change sil. gel (g)	8.8	8.6	8.6
% CO2	10.7	11.0	11.1
% O2	9.2	9.1	9.1
% N	80.1	79.9	79.8
Area of stack (sq.ft.)	39.000	39.000	39.000
Sample time (min.)	60	60	72
Static pressure (in.H2O)	-12.60	-12.60	-12.40
Nozzle dia. (in.)	0.235	0.235	0.235
Meter box cal.	1.0017	1.0017	1.0017
Dry gas meter DH@	2.1714	2.1714	2.1714
Cp of pitot tube	0.84	0.84	0.84
Traverse Points	12	12	12
Laboratory Report Data			
Lead, ug	15.900	9.600	5.300
Site Blank Lead, ug	<0.200	<0.200	<0.200
Total Lead, ug	15.90	9.60	5.30

	<u></u>	LWEC		Stack Conditi	ons	Meter Box ID		W.C.	26		· · · [	2 <u>2</u>		
				Assum		Meter Box 12		1.001			1	K Factor	1.6	1974 - Law -
ID		LWEC	% Moisture	15	-	Meter Box Del	н	2,1714		Leak Checl	(S	Initial	Mid-Poin	t Final
Source	D D	Gas	Impinger Vol (	ml)	125	Probe ID / Len	igth			Sample Train		,008	1004	.004
Loc. ID		STK	Silica gel (g)		8.8	Probe Material		(B	the second s	Leak Check (	2) (in Hg)	15	8	- 10
5.1D		1	CO2, % by Vc	and the second se	10.7	Pitot / Thermo		D-154	the second s	Pitot good	-	ves/no	ves / no	
ethod IE	)	M12 23SEP2015	O2, % by Vol Temperature	(°F) <u>9</u> 378	7.0	Pitot Coefficier Nozzle ID	nt			Orsat good Temp Cheo	lr.		yes / no est Set	Post-Test
/ Locatio	on	ESP Stack	Meter Temp (			Avg Nozzle Di	a (in)	. 22	Contraction of the Contraction of the	Meter Box Te		71		73
e Date		9/23/5	Static Press (i		-12.6	Area of Stack			39	Reference Te	emp	72.	6	73.4
Press (in	Hg)	24.58				Sample Time	. ,	60	)	Pass/Fail (+/-	2 [°] )		/ Fail	Pages / Fa
or		13	Ambient Tem	o (°F)		Total Traverse	e Pts			Temp Chang	e Response ′	Jes .	/ no	yes / no
ERSE	SAMPLE	CLOCK TIME	VELOCITY	ORIFICE	DRY GAS METER			DGM		FILTER	IMPINGER	SAMPLE		
INT	TIME (mu			PRESSURE	READING (ft [*] )	STACK	DGM INLET TEMP (°F)	OUTLET	PROBE TEMP (°F)	BOX TEMP	EXIT TEMP	TRAIN VAC		COMMENT
о.			P (in H2O)	Delta H (in H2O)	100 400	TEMP (°F)	(Control 17)	TEMP (°F)	nenne (14)	(F)	(°F)	(in Hg)		
	<u> </u>	1513	60		470.425	369		7.1	250	250	55	2.0		
			.69	1.10	473,6	376	MA	<u>74</u> 74	751	250	54	2.0		
2	10	1690	. 79	1.26	475.041	379		74	352	249	56	2.0		¥:
3	15	1528	. 34	וכיו	117.041	-217-	<u> </u>		014	247	_ حرر	6.0		<u></u>
	0	1530			479.041	And the second				Contraction of the Contraction o	And the second	Alexandra and a second s		
1	5		.62	.99	481.8	361		74	255	252	58	2.0	78-4	
2	10		. 55	138	484.1	360		74	250	249	50	1.0		
3	15		.66	1.06	486.965	377		73	7.19	249	55	2.0		
					-			· .				28 j.		
	_0	1549	The substant of		487.041	NOTICE STATES OF THE OWNER								1
	5		.96	1.55	490.3	364		73	258	253	58	2,0		
2	10 .		1.2	1.93	493.6	366		73	252	250	57	3.0		
3	15	1604	1.0	1.61	496.759	375		74	250	2.51	58	2.5		ý.
	<b></b>	10.00			166 780									
	0	1608	مینیند. در در منظر	1.35	496.759	063		-911	3.66	251	(-0	÷ 0		
<u> </u>	5		<u>,84</u> 1.0		500.2 503.2	367	<u>├</u>	74 75	259		60	2.0		
-4	10	1192	1.	1.61	506.409	369 375		75	253	250	56	7.0	<u> </u>	
<u> </u>	15	1623	1.0	1.61	500.707	1312	cilumation	1.5	ac	030	20	1.0		
			· · · · ·			<u> </u>								
	<u> </u>				1	<u> </u>		<b> </b>	<u> </u>			· · · .		
	1						[	<b></b>					·	
						1	1		1				1	
													1997 - 1997 1997 - 1997 1997 - 1997	Ма
				1	0		r		,				Jahr	
			Avg Sqrt Delta P .9/318	Ave Delta H	Total Volume V 35,90B	Avg Ts V 369.83	Avg	192V	Min/Max 2411 254	Min/Max	Max Temp	Max Vac	Max Temp	
LGJL			,91:318 V	Avg Sart Del H		264.23	15	.14	10711 459	1497252	60	3.0		

 $\nearrow$ 

	n Managara and a statistic former or an analysis	DATA SH			EPA M	etnoa						Page of	
ent	LWEC		Stack Conditi		Meter Box ID		W.C		•		K Factor	19	
O.#	LWEC	% Moisture	Assum	ned Actual	Meter Box Y Meter Box Del	ы	1.00		Leak Chec	ke	Initial	Mid-Point	````
ode/Source ID	Gas	Impinger Vol (	mĺ)	122	Probe ID / Len		PGG		Sample Train		,010	004	- 00 4
amp. Loc. ID	STK	Silica gel (g)		8.6	Probe Materia	•		BOD	Leak Check (	. ,	1010 24	12	12
un No.1D	2	CO2, % by Vo		11	Pitot / Thermo			Ĩ.	Pitot good	e ("''''9)	(yes) / no	ves / no	Ves / no
est Method ID	 M12	02, % by Vol		9.1	Pitot Coefficier	•		0.84	Orsat good		(ves) / no	Ges / no	Tes / no
ate ID	23SEP2015	Temperature (	(°F)		Nozzle ID		.23		Temp Cheo	:k		est Set	Post-Test Set
ource/Location	ESP Stack	Meter Temp ( ^c	°F)		Avg Nozzle Di	a (in)	.23		Meter Box Te		76	f	73
ample Date	9123(15	Static Press (i	n H ₂ O)	-12,6	Area of Stack	(ft ² )	3	10	Reference Te		2	5	Zú
aro. Press (in Hg)	79.58				Sample Time		60	>	Pass/Fail (+/-			/ Fail	(Pass / Fail
perator	78	Ambient Temp	o (°F)		Total Traverse	e Pts	12	¢	Temp Chang	e Response '	<del></del>	/ no	(yes) no
													~~~
TRAVERSE SAMPLE	CLOCK TIME	VELOCITY PRESSURE Dolta	ORIFICE	DRY GAS METER	STACK	DGM INLET	DGM OUTLET	PROBE	FILTER BOX TEMP	IMPING EXIT TEMP	SAMPLE TRAIN VAC		CONTRACTOR
POINT TIME (min NO.	(plant time)	PRESSURE Delta P (in H2O)	Delta H (in H2O)	READING (ft [*])	TEMP (°F)	TEMP (°F)	TEMP ('F	TEMP (°F)	EOX TEMP (F)	CF)	(in Ho)		COMMENTS
0	1657			506.765									
AI 5		1.0	1.9	509.9	364	NA	75	251	251	61	3.0	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	
2 10		1.7	2.29	513.4	372		75	254	252	58	3.5	·	
3 15	1712	1.1	2.09	517,030	378		75	252	250	52	3.0		. 9
	1.1.0	1 1 1 1					1		1			1	
0	1716			517.030	when an a state of the state of							-	
615	1110	.94	1.79	520.7	362		75	255	250	58	3.0	1	
2 10		. 85	1.62	524.1	373		75	252	250	53	3.0	1	
3 15	1731	- 97_	1.75	527,275	379		75	250	250	52	3.0	++	
	1/2/	+112	1.13	131,012			1-1-		000			<u> </u>	
0	1735			527.275								<u></u>	
C I S	1755	•71	1.35		361			257	250	55	25	1	
		,72	1.37	530.4			76	253	250	54	2.5	<u> </u>	
2 10	100			532.9	366	└── ┤ ───	76		······································	52			
3 15	1750	.75	1.43	535.751	377		76	250	251	12	2.5	╂┟	
	1.000			115 76								<u> </u>	<u></u>
0	1753			535.751	200			(7 c A	n e i	C C			
<u>D 1 5</u>		156		538,4	363		76	760	251	55	2.5	<u> </u>	
2 10		.53	1.0	541.5	368		76	254	250	55	2.0		
3 15	1808	;56	1.1	543.945	382	a frances and	76	251	250	55	2.0		
		· · · · · · · · · · · · · · · · · · ·								<u></u>	L	ļ	
	-l			L	·	e di Sile			ļ		ļ	<u> </u>	
							<u> </u>		<u> </u>	ļ	Ļ	· · · · ·	
						ļ			· .	L		L	
								<u></u>	ļ	~	L		
			•										
			<i></i>			~				i.			
		Avg Sqrt Delta P	Avg Delta H V	Total Volume	Avg Ts V 370.42	Av	g Tm	Min/Max	Min/Max	Max Temp	Max Vac 3.5	Max Temp	
		-89 806	1.0650		121072		7.7	250/261	255/252	1	1		ħ.
SCHUITONS		.82 2	Avg Sqrt Del H 1. 241 91	Comments:			,			EPA Metho	d 8 from 40CF	R Appendix A	
		· · ·	11 141/1	1									A A

Q1_LWEC001_Opactiy_003798

Sant -

	-		A SHEET	~		Method	Meth	vd 1	-6	ead	г		Page of	
nt).#	<u>L</u>	NEL		Stack Conditio	-··	Meter Box ID		402		· •		K Factor/	87	
ect ID		WEC	% Moisture	Assum		Meter Box Y Meter Box Del H		2.17		Leak Check	<u>ا</u>	Initial	Mid-Point	 Final
de/Source ID		645	Impinger Vol (Tester and the second	A CONTRACTOR OF	Probe ID / Lengt	h	P131		Sample Train	(ft ³)	.000		.004
np. Loc, ID		STIK	Silica gel (g)		A	Probe Material		4122		Leak Check @		15		6
No.ID		3	CO2, % by Vo	And an address of the second sec		Pitot / Thermoco	uple ID	2131	the state of the second se	Pitot good		Ges / no	yes / no	yes / no
t Method ID		MIZ	O2, % by Vol	$\frac{31}{200}$	9.1	Pitot Coefficient				Orsat good	NA	yes Ino	yes / no-	yes tho
e ID rce/Location	the second s	<u>(-24-15</u> (51 5190K	Temperature (Meter Temp (°F)	°F) <u>320</u>		Nozzle ID Avg Nozzle Dia	(in)	. 233		Temp Chec Meter Box Tem		60-0	est Set	Post-Test Se
ple Date		9-24-15	Static Press (in I			Area of Stack (ft		39		Reference Tem		20.4	7	69.1
b. Press (in Hg)	بر به	29.78				Sample Time		- Jon	•	Pass/Fail (+/- 2	°)	Contraction of the local data and the local data an	/ Fail	Pass / Fail
ator	the second s	sk	Ambient Temp	o (°F) <u>5</u>	3	Total Traverse	Pts		2	Temp Change f	Response ?	(jes	/ no	yes / no
AVERSE S	AMPLE .	CLOCK TIME	VELOCITY	ORIFICE	DRY GAS METER	STACK	DGM INLET	DGM	PROBIE	FILTER	IMPINGER	SAMPLE		
NONT TI	AE (min)	(plant time)	PRESSURE Delta	PRESSURE	READING (#*)	TEMP (°F)	TEMP ("F)	OUTLET TEMP ("F)	TEMP ("F)	BOX TEMP	EXIT TEMP (°F)	TRAIN VAC (in Ho)		COMMENTS
	0	928	P (in H2O)	Delta H (in H2O)	344,212			Letter (F)				dor (199		
FIR	3		V.D	1.97	546.1	366	NA	58	250	252	31	2.5		
17	6		1.1	2.04	564.0	367	,	58	250	244	50	3.0		
23	A		1.0	1.87	550.2	310		58	250	252	50	2.5		
27	12		1.1	204	352.4	369		59	252	251	51	30		
3	15		1.1	2004	354.2	373		59	251	253	51	3.0		
331	13	0846	1.1	2.04	566,543	370		60	252	251	53	3.6		
2	0	0846			556 543									
1B	3	?	,90	1.68	558,043	364		62	255	252	54	2.5		
140	6		<u>,92</u>	172	560 2	366	<u> </u>	63	256	2.5 (54	2.5		
r	9		,90	1.670	5625	364	[63	752	251	55	25		
62	12		: 86	1.6.1	564.0	372	ļ	63	253	252	56	25		
31	15	- 13 4L		1.927	545.6	370		64	251	251	56	3.0	<u> </u>	
<u>JB</u>	18	404	1.0	1.87	567.642	375		6.5	244	250	56	3.0	<u> </u>	
	<u>0</u> 3	904	.40	1.30	567.64	362	┝──┼───	67	255	251	57	2.5		
	0		,00		569.0	366	<u> </u>	100	255	252	57	26		
	9		182	1.53	570.0	369	<u>├</u>	68	251	250	57	2.5		
27	40		- 42	1.53	574,4	360		68	257	249	26	2,5		
3	15		6.20	i.ca	376.4	310		68	125	152	127	22	<u> </u> {	
3	18	922	0.02	1.89	578.5	210	1-1	89	231	150	3	53		
-2	10		-443	1457	211.5	-3-10	<u>├──</u>	-6/-		-620		- 43-	<u> </u>	
								†	<u>†</u>					
						<u> </u>		<u> </u>			<u> </u>			······································
							\ <u>/</u>		1		1			No.
		.n	Avg Sqrt Delta P	Avg Delta HV 1.63450	Total Volume	360 TS	SP LAVE	i Tm	Min/Max 249/255	Min/Max 241255	Max Temp	Max Vac	Max Temp	
DEN'			1.1	Avg Sqrt Del H		369 25		172	<u>e u se</u>		L	L	<u> </u>	
᠕ᡃ᠋ᡞᠯᢗ᠉	u vovu		, 8758V	11.274134	ſ	101	60	. / / -						/

La

Method 12 lead

LWEC K4-SR Client Operator BOILER RUN NO. Source Up Sample Loc. Date

K Factor

TRAVERSE POINT NO	SAMPLE TIME (min)	CLOCK TIME (plant time) 0922	VELOCITY PRESSURE Delta P (in H2O)	ORIFICE PRESSURE Delta H (in H2O)	DRY GAS METER READING (11°)	STACK TEMP ("F)	DGM INLET TEMP ("F)	DGM OUTLET TEMP (*F)	PROBE TEMP (*F)	FILTER BOX TEMP (F)	IMPING EAIT TEMP ('F)	SAMPLE TRAIN VAC (in Hg)		COMMENTS
1	9		070	$\frac{131}{121}$	582,1 583.4 585.1	370 365 365		12	255 251 251	254 250 250	57	215 215 215		
3 3 3	13	0946	0.78	1.21	586,9 588,46	268		12 17	152 252	250	59	2,5		· · · · · · · · · · · · · · · · · · ·
											· · · · · · · · · · · · · · · · · · ·	······································		
				· · · · · · · · · · · · · · · · · · ·										
		·					4							
							of the state for the state of t							
									······					
			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·								
	STOL		Avg,Sqrt Delta P	Avg Delta H H G SK Avg Sqrt Del H	Total Volume Comments:	Avg Ts	Avg	Im	Min/Max	Min/Max	Max Temp	Max Vac	Max Temp	

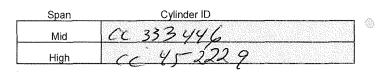
SAMPLE RECOVERY FIELD DATA

EPA Method 12 - Lead

Client		LWE	c	_	W.O. #					_
Location/Pla	ant	L'Anse	MI	Source	& Location		ESP	Stack		-
Run No.	_1				Sample Date	<u> </u>	15	Recove	ery Date	9/23/15
Sample I.D.	LWEC - Gas	<u>- STK - 1 - M12</u>	-	-	Analyst	<u> </u>	•	Filter N	lumber	NA
					Impinge	er				
	1	2	3	4	5	6	7	Imp.Total	8	Total
Contents	0.1HNO3	0.1HNO3	Empty						Silica Gel	
Final	180	140	5						<i>308.</i> 8	
Initial	100	100	٥						300	
Gain	80	40	5					125 /	8.81	
Impinger Cold	or	Cleir			Labeled?		\checkmark		-	_
Silica Gel Co		mostly	Blue		Sealed?					
Run No.	2				Sample Date	9/23/6		Recove	ery Date	9/23/15
Sample I.D.	LWEC - Gas ·	- STK - 2 - M12	•		Analyst 🔌	TIB		Filter N	lumber	NIA
		ayan aha aha aha aha ay firi shikana ta ya faranin kan			Impinge	er				
	1	2	3	4	5	6	7	Imp.Total	8	Total
Contents	0.1HNO3	0.1HNO3	Empty						Silica Gel	
Final	204	112	6						3086	
Initial	100	100	0						300	1
Gain	104	12	6					122 -	8.6	
Impinger Cold	or <u> </u>	-lear			Labeled?		~	and the second		_
Silica Gel Cor	ndition	nostli bi	le		Sealed?					-
Run No.	3	. *			Sample Date	9/24/15	9	Recove	ry Date	<u> ALY/IS</u>
Sample I.D.	IWEC - Gas	- STK - 3 - M12	-		Analyst	TB		Filter N	lumber	
e ampie ne :					Impinge					
	1	2	3	4	5	6	7	Imp.Total	8	Total
Contents	0.1HNO3	0.1HNO3	Empty						Silica Gel	
Final	206	123	6	ŕ					308.6	
Initial	100	100	2						300	
Gain	101	23	2					131	8.6	13E.C
Impinger Cold		lear			Labeled?		<u>,</u>	1		Z
Silica Gel Cor		Mostly 1	Blue		Sealed?		and the second se			-
Check COC for			Lo				T.	VV Th		

WIZSICAN

J.K


Source Gas Analy	vsis Data Sheet - Modified Method 3/3A
Client	Analyst j=2.5
Location/Plant [ANSCM	Date 7/23/15

	Source ESP Out	Analyzer Make & Model	Scronex	<u>4900</u>
W.O.	Number		/	

	Calibratio	on			
Analysis Number	Span	Calibration Gas Value O ₂ (%)	Calibration Gas Value CO ₂ (%)	Analyzer Response O ₂ (%)	Analyzer Response CO ₂ (%)
1	Zero	0	0	0.0	0.0
2	Mid	K.O	8.8	R1	8.6
3	High	21.6	16.6	21.C	14.6
	Averag	je	- /	,	

Run Number	Analysis Time	Analyzer Response O ₂ (%)	Analyzer Response CO ₂ (%)
1	1910	9.2	10.7
2	1915	.9.1	11.0
3			
	Average		

Run Number	Analysis Time	Analyzer Response O ₂ (%)	Analyzer Response CO ₂ (%)
1			
2			
3			
	Average		

WLESTON

٢

**Report all values to the nearest 0.1 percent

Number 1

2015	Project Number: Operator: FJS Date: 24 Sep 20		Calibration 1		Client: LWEC Location: L'Anse, MI Source: ESP Out
	-	CO₂ EPA 3A %	O₂ EPA 3A %	Method Conc. Units	
******):40	e: 08:28 to 0	Tim	
		i	Run Average	F	
		10.9	9.1		
		7:45	run Bias at (Pre-	
		0.0 8.6 8.8	0.0 12.1 12.0	Zero Bias Span Bias Span Gas	
		9:45	-run Bias at (Post	
		0.0 8.6 8.8	0.0 11.9 12.0	Zero Bias Span Bias Span Gas	
	nd post-run bias	e pre-run ar	average of th	es corrected for the a	Averages
		11.1	9.1 No Correction	*	
	nd post-run bias	10.9 7:45 0.0 8.6 8.8 9:45 0.0 8.6 8.8 e pre-run ar 11.1	Run Average 9.1 run Bias at 0 0.0 12.1 12.0 -run Bias at 0 0.0 11.9 12.0 average of th 9.1	F Pre- Zero Bias Span Bias Span Gas Zero Bias Span Bias Span Bias Span Gas	Averages

.

METHODS AND ANALYZERS

Client: LWEC Location: L'Anse, MI Source: ESP Out

Project Number: Operator: FJS Date: 24 Sep 2015

File: C:\DATA\LWEC\LWEC 092415.cem Program Version: 2.0, built 4 Dec 2014 File Version: 2.02 Computer: WSWCAIRSERVICES Trailer: 27 Analog Input Device: Keithley KUSB-3108

Channel 1

Analyte Method Analyzer Make, Model & Serial No. Full-Scale Output, mv Analyzer Range, % Span Concentration, %

Channel 2

Analyte	CO ₂
Method	EPA 3A, Usir
Analyzer Make, Model & Serial No.	Servomex
Full-Scale Output, mv	10000
Analyzer Range, %	20.0
Span Concentration, %	16.6

Channel 4

Analyte	NOx
Method	EPA 7E, Using Bi
Analyzer Make, Model & Serial No.	Thermo 42i
Full-Scale Output, mv	10000
Analyzer Range, ppm	500
Span Concentration, ppm	433

Channel 5

Analyte Method Analyzer Make, Model & Serial No. Full-Scale Output, mv Analyzer Range, ppm Span Concentration, ppm

Channel 6

Analyte Method Analyzer Make, Model & Serial No. Full-Scale Output, mv Analyzer Range, ppm Span Concentration, ppm

THC EPA 20, Using Bias JUM3-300A 10000 55.0 55.0

ng Bias 4900

02 EPA 3A, Using Bias

Servomex 4900

10000

25.0

21.6

lias

SO₂

EPA 6C, Using Bias

Ametek 9000

5000

500

451

CALIBRATION DATA

Number 1

Client: LWEC Location: L'Anse, MI Source: ESP Out Project Number: Operator: FJS Date: 24 Sep 2015

Start Time: 07:45

O Method: Calibration Type: Linea	EPA 3A	
Calibration	Standards	
%	Cylinder ID	
12.0	CC333446	
21.6	CC452229	
Calibratio	n Results	
Zero	18 mv	
Span, 21.6 %	8205 mv	
Curve Co	efficients	
Slope	Intercept	
378.2	18	

Co Method: Calibration Type: Line	EPA 3A	
Calibration	Standards	
%	Cylinder ID	
8.8	CC333446	
16.6	CC452229	
Calibratio	n Results	ann an Ann an a
Zero	24 mv	
Span, 16.6 %	8375 mv	
Curve Co	efficients	
Slope	Intercept	
502.2	24	

CALIBRATION DATA

Number 1

Client: LWEC Location: L'Anse, MI Source: ESP Out Project Number: Operator: FJS Date: 24 Sep 2015

Start Time: 07:45

NOx

Method: EPA 7E Calibration Type: Linear Zero and High Span

Calibration	Standards	
ppm	Cylinder ID	
253	CC352229	
433	CC137964	
Calibration	n Results	
Zero	27 mv	
Span, 433 ppm	8679 mv	
Curve Co	efficients	
Slope	Intercept	
20.00	27	

	S	O ₂	
	Method:	EPA 6C	
Calibration	Type: Line	ar Zero and High Span	
		······································	
	Calibration	Standards	
р	pm	Cylinder ID	
2	52	CC366152	
. 4	51	CC409079	
	Calibratio	n Results	
Z	ero	4 mv	
Span,	451 ppm	4526 mv	
	Curve Co	efficients	
SI	оре	Intercept	
).02	4	

~ ~

CALIBRATION DATA

Number 1

Client: LWEC Location: L'Anse, MI Source: ESP Out Project Number: Operator: FJS Date: 24 Sep 2015

Start Time: 07:45

THC

1110
Method: EPA 20
Calibration Type: Linear Zero and High Span

Calibra	ation Standards
ppm	Cylinder ID
15.3	CC308182
25.4	CC452183
45.2	XC03100B
Calib	oration Results
Zero	1 mv
Span, 45.2 pp	om 4516 mv
Curv	e Coefficients
Slope	Intercept
99.85	1

CALIBRATION ERROR DATA

Client: LWEC Location: L'Anse, MI Source: ESP Out		Calibration 1	F	Project Number: Operator: FJS Date: 24 Sep 2015
		Start Time: 07:45		
	Slope 37	O₂ Method: EPA 3A Span Conc. 21.6 % 8.2 Inte	ercept 18.0	
Standard % Zero 12.0 21.6	Result % 0.0 12.1 21.6	Difference % 0.0 0.1 0.0	Error % 0.0 0.5 0.0	Status Pass Pass Pass
	Slope 502	CO ₂ Method: EPA 3A Span Conc. 16.6 % 2.2 Inte	ercept 24.0	
Standard % Zero 8.8 16.6	Result % 0.0 8.6 16.6	Difference % 0.0 -0.2 0.0	Error % 0.0 -1.2 0.0	Status Pass Pass Pass
	s Slope 20.	NO x Method: EPA 7E Span Conc. 433 ppr .00 Int	n ercept 27	
Standard ppm Zero 253 433	Result ppm 0 254 433	Difference ppm 0 1 0	Error % 0.0 0.2 0.0	Status Pass Pass Pass

CALIBRATION ERROR DATA

Location:	LWEC L'Anse, MI ESP Out		Calibration 1		Project Number: Operator: Date:	FJS 24 Sep 2015
			Start Time: 07:45			
		Slope 10	SO ₂ Method: EPA 6C Span Conc. 451 pp 0.02 Ir	m I tercept 4		
	Standard	Result	Difference	Error		
	ppm	ppm	ppm	%	Status	
	Zero	0	0	0.0	Pass	
	252	252	0	0.0	Pass	
=	451	451	0	0.0	Pass	
		Slope 99	THC Method: EPA 20 Span Conc. 55.0 pp .85 Int	m ercept 1.0		
	Standard	Result	Difference	Error		
	ppm	ppm	ppm	%	Status	
	Zero	0.0	0.0	0.0	Pass	
	15.3	15.3	0.0	0.0	Pass	
	25.4	25.4	0.0	0.0	Pass	
	45.2	45.2	0.0	0.0	Pass	

BIAS

Number 1

.WEC .'Anse, MI SP Out		Calib	ration 1	Proj	Operator: FJS	ep 2015
		Start Ti	me: 07:45			
		Method				
Standard Gas Zero Span	Cal. % 0.0 12.1	Bias Bias % 0.0 12.1	Results Difference % 0.0 0.0	Error % 0.0 0.0	Status Pass Pass	=
		Method	d: ĒPA 3A			
Standard Gas Zero Span	Cal. % 0.0 8.6	Bias Bias % 0.0 8.6	Results Difference % 0.0 0.0	Error % 0.0 0.0	Status Pass Pass	-
		Method	I: EPA 7E			
Standard Gas Zero Span	Cal. ppm 0 254	Bias Bias ppm 0 253	Results Difference ppm 0 -1	Error % 0.0 -0.2	Status Pass Pass	
	Anse, Mi SP Out Standard Gas Zero Span Standard Gas Zero Span Standard Gas Zero Span	Anse, MI SP Out Standard Cal. Gas % Zero 0.0 Span 12.1 Standard Cal. Gas % Zero 0.0 Span 8.6 Standard Cal. Gas % Zero 0.0 Span 8.6	'Anse, Mi Calib SP Out Calib Start Ti Method Method Span Co Bias Bias Gas % Zero 0.0 Span 12.1 Method Span Co Bias % Zero 0.0 Standard Cal. Bias Method Span 12.1 Method Span Co Bias Span Co Standard Cal. Bias Standard Gas % Zero 0.0 Span 8.6 Standard Cal. Bias Bias Gas % Zero 0.0 Standard Cal. Bias Bias Gas ppm Quebas Quebas <td>ZAnse, MI SP OutCalibration 1Start Time: 07:45O2 Method: EPA 3A Span Conc. 21.6 %Bias ResultsStandard Gas % Zero 0.0CO2 Method: EPA 3A Span 12.1CO2 Method: EPA 3A Span Conc. 16.6 %Standard Cal. Bias Results Bias Difference Bias Conc. 16.6 %Standard Cal. Bias Results Bias Difference % % Zero 0.0NOx % % % Zero 0.0NOx % % % Zero 0.0NOx % % % % Zero 0.0NOx % % % % Zero %NOx % % % % Zero %Standard Bias Results Bias Results Bias Difference %Method: EPA 7E Span Conc.</td> <td>ZAnse, MI Calibration 1 Start Time: 07:45 O2 Method: EPA 3A Standard Gas % % % % % % Zero 0.0 0.0 0.0 Span 12.1 12.1 12.1 0.0 0.0 0.0 0.0 Standard Cal. Bias Difference Error 0.0 % % % % % % % % % % % % % % % % Zero 0.0 0.0 0.0 Standard Cal. Bias Results Error Span 8.6 8.6 0.0 0 0 NOx Method: EPA 7E Span Conc. 433 ppm Ppm</td> <td>Calibration 1 Operator: FJS Start Time: 07:45 O2 Method: EPA 3A Span Conc. 21.6 % Bias Results Standard Cal. Gas % % % Standard Cal. Bias Results Bias Results Zero 0.0 Standard Cal. Bias Results Pass Span 12.1 12.1 12.1 0.0 0.0 Method: EPA 3A Span 0.0 0.0 0.0 0.0 0.0 Standard Cal. Bias Results Error Gas % % % % % % % % % % % % % % % % % % % % % % % % %</td>	ZAnse, MI SP OutCalibration 1Start Time: 07:45O2 Method: EPA 3A Span Conc. 21.6 %Bias ResultsStandard Gas % Zero 0.0CO2 Method: EPA 3A Span 12.1CO2 Method: EPA 3A Span Conc. 16.6 %Standard Cal. Bias Results Bias Difference Bias Conc. 16.6 %Standard Cal. Bias Results Bias Difference % % Zero 0.0NOx % % % Zero 0.0NOx % % % Zero 0.0NOx % % % % Zero 0.0NOx % % % % Zero %NOx % % % % Zero %Standard Bias Results Bias Results Bias Difference %Method: EPA 7E Span Conc.	ZAnse, MI Calibration 1 Start Time: 07:45 O2 Method: EPA 3A Standard Gas % % % % % % Zero 0.0 0.0 0.0 Span 12.1 12.1 12.1 0.0 0.0 0.0 0.0 Standard Cal. Bias Difference Error 0.0 % % % % % % % % % % % % % % % % Zero 0.0 0.0 0.0 Standard Cal. Bias Results Error Span 8.6 8.6 0.0 0 0 NOx Method: EPA 7E Span Conc. 433 ppm Ppm	Calibration 1 Operator: FJS Start Time: 07:45 O2 Method: EPA 3A Span Conc. 21.6 % Bias Results Standard Cal. Gas % % % Standard Cal. Bias Results Bias Results Zero 0.0 Standard Cal. Bias Results Pass Span 12.1 12.1 12.1 0.0 0.0 Method: EPA 3A Span 0.0 0.0 0.0 0.0 0.0 Standard Cal. Bias Results Error Gas % % % % % % % % % % % % % % % % % % % % % % % % %

•

BIAS

Client: L Location: L Source: E	'Anse, MI		Calib	ration 1	Proj	ect Number: Operator: Date:	FJS 24 Sep 2015
			Start Ti	me: 07:45			
			Method	SO₂ J: EPA 6C nc. 451 ppm			
			Bias	Results			
	Standard Gas Zero	Cal. ppm 0	Bias ppm 0	Difference ppm 0	Error % 0.0	Status Pass	
	Span	252	245	-7	-1.6	Pass	
			Method	Г НС d: EPA 20 nc. 55.0 ppm			_
			Bias	Results			
	Standard	Cal.	Bias	Difference	Error	_	
	Gas	ppm	ppm	ppm	%	Status	
	Zero	0.0	0.4	0.4	0.7	Pass	
	Span	25.4	25.5	0.1	0.2	Pass	

Client: LWEC Location: L'Anse, MI Source: ESP Out			Calibra	ntion 1			t Number: Operator: Date:	FJS 24 Sep 2015
	Time	O 2 %	CO2 %	NO _x ppm	SO₂ ppm	THC ppm		
			Start Stra		na 1944 a 2014 a 20			
		R	esponse T		9C			
			Start Ru Strat F					
	08:29	9.2	10.8	104	136	4.2		
	08:30	9.1	10.0	104	123	1.2		
	08:31	9.3	10.7	104	130	1.1		
	08:32	9.2	10.8	104	128	1.3		
	08:33	9.3	10.7	103	133	1.0		
	08:34	9.3	10.7	105	126	1.1		-
	08:35	9.2	10.8	106	134	1.2		
	08:36	9.3	10.8	106	128	1.2		
	08:37	9.3	10.7	107	131	1.0		
			Poir					
	08:38	9.4	10.7	107	121	1.0		
	08:39	9.2	10.7	104	128	1.7		
	08:40	9.1	11.0	104	120	1.2		
	08:41	9.0	10.9	105	127	1.0		
	08:42	9.1	11.0	108	126	1.0		
	08:43	9.4	10.6 [°]	108	133	1.0		
	08:44	9.2	10.8	107	131	1.0		
	08:45	9.1	10.8	105	138	1.3		
	08:46	9.2	10.9	106	126	0.9		
			Poir	nt 3				
	08:47	9.1	10.9	105	131	1.4		
	08:48	9.0	11.2	104	126	0.9		
	08:49	9.2	10.7	105	132	0.9		
	08:50	9.0	11.0	104	128	0.8		A HERK
	08:51	9.4	10.6	104	135	1.2	V QTR	AT Church
	08:52	9.2	10.9	104	133	1.0	4 -	1 KW
	08:53	9.1	10.9	105	146	1.7	1A	AT CHECK
	08:54	9.2	10.8	104	141	1.2	(
	08:55	9.1	10.8	103	151	1.9		
	08:56	9.1	11.0	105	144	1.0		
	08:57	9.4	10.6	106	146	0.9		
	08:58	9.0	11.0	106	146	1.0		
	08:59	9.2	10.7	106	149	1.0		
	09:00	9.1	10.9	107	148	0.8		
	09:01	9.1	10.8	107	152	1.2		
	09:02	8.9	11.1	107	153	1.0		
	09:03	9.3	10.6	107	151	0.8		
Q1_LWEC001_O	09:04 pactiy_003812	9.1	10.9	106	158	^{0.8} ر	VIERI	

Client: LWEC Location: L'Anse, MI Source: ESP Out			Calibra	ition 1		Project N Op	umber: berator: FJS Date: 24 Sep 2015
	Time	O 2 %	CO₂ %	NO _x ppm	SO₂ ppm	THC ppm	
	09:05 09:06	9.0 9.4	10.8 10.5	109 108	168 168	0.7 0.9	
	09:07	9.3	10.6	109	171	1.1	
	09:08	9.0	11.0	109	179	0.8	
	09:09 09:10	9.1	10.8 11.0	109 108	173 178	0.8 0.7	
		9.0 9.2	10.6	108	165	1.2	
	09:11	9.2 9.0	11.0	107	174	0.9	
	09:12 09:13	9.0 9.2	10.7	100	164	0.9	
	09.13 09:14	9.2 9.1	10.7	107	177	0.8	
	09:14	9.1 9.1	10.8	107	163	0.8	
	09:16	8.9	11.1	105	172	0.9	
	09:10	9.2	10.7	103	151	0.9	
	09:18	9.0	11.0	105	164	1.2	
	09:10	9.1	10.8	105	152	1.3	
	09:20	9.0	11.0	104	167	1.5	
	09:20	9.1	10.8	105	155	0.6	
	09:22	8.9	11.1	107	171	0.8	
	09:23	9.2	10.8	109	151	0.6	
	09:24	8.7	11.3	108	172	3.2	
	09:25	9.0	11.0	108	146	0.6	
	09:26	8.9	11.2	107	158	0.7	
	09:27	9.1	10.9	107	135	1.3	
	09:28	8.8	11.2	104	147	2.1	
	09:29	8.8	11.2	105	137	1.4	
	09:30	8.9	11.1	106	150	1.6	
	09:31	9.2	10.7	107	132	0.6	
	09:32	9.0	11.1	105	147	1.3	
	09:33	9.2	10.9	105	127	0.6	
	09:34	8.8	11.2	103	142	2.0	
	09:35	9.0	11.1	104	126	1.1	
	09:36	8.8	11.3	103	135	1.9	
	09:37	8.9	11.2	100	118	2.3	
	09:38	8.8	11.2	100	128	1.3	
	09:39	8.9	11.2	102	118	0.9	
	09:40	8.9	11.1	101	131	1.1	
	Avgs	9.1	10.9	106	144	1.2	

RUN SUMMARY

Number 1

	LWEC L'Anse, MI ESP Out		Calibra	ation 1	Proje	ect Number: Operator: Date:	FJS 24 Sep 2015
****	Method Conc. Units	0 ₂ EPA 3A %	CO₂ EPA 3A %	NO x EPA 7E ppm	SO₂ EPA 6C ppm	THC EPA 20 ppm	
		*****	Time: 08:	28 to 09:40			
			Run Av	/erages			
		9.1	10.9	106	144	1.2	
			Pre-run Bi	as at 07:45			
	Zero Bias Span Bias Span Gas	0.0 12.1 12.0	0.0 8.6 8.8	0 253 253	0 245 252	0.4 25.5 25.4	
			Post-run B	ias at 09:45			
	Zero Bias Span Bias Span Gas	0.0 11.9 12.0	0.0 8.6 8.8	1 251 253	3 244 252	0.0 25.0 25.4	
	Averages	corrected f	or the averag	je of the pre-	run and post	-run bias	
		9.1	11.1 *No Co	106 prrection	148	1.0	

.

Location:	: LWEC : L'Anse, MI : ESP Out			oration 1 	Pro	ject Number: Operator: Date:	FJS 24 Sep 2015
			Metho	O₂ d: EPA 3A onc. 21.6 %			
			•				
	Standard Gas Zero Span	Cal. % 0.0 12.1	Bias Bias % 0.0 11.9	Results Difference % 0.0 -0.2	Error % 0.0 -0.9	Status Pass Pass	
			Calibra	ation Drift			
	Standard Gas Zero Span	InitiaI* % 0.0 12.1 *Bias No. 1	Final % 0.0 11.9	Difference % 0.0 -0.2	Drift % 0.0 -0.9	Status Pass Pass	
			Method	CO₂ d: EPA 3A onc. 16.6 %			
			Bias	Results			
	Standard Gas Zero Span	Cal. % 0.0 8.6	Bias % 0.0 8.6	Difference % 0.0 0.0	Error % 0.0 0.0	Status Pass Pass	
			Calibra	ation Drift			_
	Standard Gas Zero Span	Initial* % 0.0 8.6 *Bias No. 1	Final % 0.0 8.6	Difference % 0.0 0.0	Drift % 0.0 0.0	Status Pass Pass	

Client: LWEC Location: L'Anse Source: ESP Ou	-		Calib	ration 1	Pro	ject Number: Operator: Date:	FJS 24 Sep 201
			Start Ti	me: 09:45			
			Metho	NO_x J: EPA 7E nc. 433 ppm			
C Z	ndard Gas ero pan	Cal. ppm 0 254	Bias Bias ppm 1 251	Results Difference ppm 1 -3	Error % 0.2 -0.7	Status Pass Pass	
G	ndard Sas ero pan	Initial* ppm 0 253 *Bias No. 1	Calibra Final ppm 1 251	ation Drift Difference ppm 1 -2	Drift % 0.2 -0.5	Status Pass Pass	
			Method	5O₂ I: EPA 6C nc. 451 ppm			
· _				Results		*****	
G Ze	ndard as ero pan	Cal. ppm 0 252	Bias ppm 3 244	Difference ppm 3 -8	Error % 0.7 -1.8	Status Pass Pass	
04		I '4' - 1¥		tion Drift			_
G Ze	ndard as ero ban	Initial* ppm 0 245 *Bias No. 1	Final ppm 3 244	Difference ppm 3 -1	Drift % 0.7 -0.2	Status Pass Pass	

Client: L Location: L Source: E	'Anse, MI		Calib	pration 1	Proj	ect Number: Operator: Date:	FJS 24 Sep 2015
			Start Ti	me: 09:45			
			Method	ГНС d: EPA 20 nc. 55.0 ppm			
			Bias	Results			
	Standard Gas Zero Span	Cal. ppm 0.0 25.4	Bias ppm 0.0 25.0	Difference ppm 0.0 -0.4	Error % 0.0 -0.7	Status Pass Pass	
	<u>Willing of the second s</u>	**********	Calibra	ation Drift	*****	****	<u></u>
	Standard Gas Zero Span	Initial* ppm 0.0 25.4 *Cal No. 1	Final ppm 0.0 25.0	Difference ppm 0.0 -0.4	Drift % 0.0 -0.7	Status Pass Pass	

Client: LWEC Location: L'Anse, MI			Colibre	tion 1		Project N Op	perator:	
Source: ESP Out			Calibra	ation 1			Dale.	24 Sep 2015
	Time	O 2 %	CO 2 %	NO _x ppm	SO ₂ ppm	THC ppm		
		C	ems prob	e port c p	t2			
	11:36	8.9	11.2	108	117	1.1		
	11:37	9.0	11.1	107	121	0.4		
	11:38	8.9	11.0	106	114	1.2		
	11:39	8.8	11.3	105	125	0.5		
	11:40	9.0	11.1	106	117	0.5		
	1 1 :41	8.9	11.0	105	128	0.4		
	11:42	8.9	11.1	106	121	0.6		
	11:43	9.0	11.1	106	129	0.6		
	11:44	9.0	11.0	107	120	0.6		
	11:45	9.0	10.8	106	125	0.5		
	11:46	9.3	10.7	107	116	0.3		
	11:47	9.1	10.8	106	128	0.4		
	11:48	9.3	10.6	105	117	0.3		
	11:49	9.0	10.9	105	126	0.3		
	11:50	9.0	10.9	106	118	0.5		
	11:51	8.8	11.1	103	129	0.5		
	11:52	8.9	11.0	102	119	0.4		
	11:53	9.0	10.8	104	130	0.4		
	11:54	9.2	10.6	107	126	0.4		
	11:55	9.1	10.8	107	139	0.3		
	11:56	9.1	10.8	107	129	0.3		
	11:57	9.1	10.8	106	139	0.3		
	11:58	9.1	10.7	108	129	0.4		
	11:59	9.0	10.9	108	142	0.3		
	12:00	9.0	10.9	108	129	0.6		
	12:01	9.0	10.8	107	136	0.7		
	12:02	9.0	10.9	108	130	1.0		
	12:03	9.1	10.7	108	135	1.1		
	12:04	9.0	10.8	108	127	1.3		
	12:05	9.1	10.9	107	131	1.5		
	12:06	9.2	10.7	105	124	1.5		
	12:07	9.1	10.8	105	137	1.6		
	12:08	9.2	10.7	106	131	1.6		
	12:00	9.1	10.7	100	142	1.6		
	12:00	9.2	10.7	107	131	1.7		
	12:10	9.0	10.7	107	136	1.7		
	12:12	9.0 9.0	11.0	107	127	1.6		
	12:12	9.1	10.8	100	136	1.0		
	12:13	9.0	10.9	107	132	1.6		
	12:14	9.0 11.3	8.9	107	110	1.8		
	12.10	11.5	0.3	100	110	1.0		

Client: LWEC Location: L'Anse, MI Source: ESP Out			Calibra	ition 1		Project Number Operator Date	
	Time	O 2 %	CO ₂ %	NO _x	SO ₂ ppm	THC ppm	
		,,,		PP	PP	P	
			cems at		400		
	12:16	9.8	10.1	81	128	1.7	
	12:17	9.4	10.5	99	137	1.5	
	12:18	9.1	10.7	103	139	1.4	
	12:19	9.3	10.5	103	140	1.4	
	12:20	9.2	10.7	102	134	1.4	
	12:21	9.2	10.7	102	132	1.3	
	12:22	9.0	10.9	103	132	1.8	
	12:23	9.2	10.7	103	129	1.6	
	12:24	9.1	10.7	104	129	1.6	
	12:25	9.3	10.5	105	127	1.4	
	12:26	9.2	10.7	105	130	2.2	
	12:27	9.1	10.7	105	131	2.0	
	12:28	9.3	10.6	104	132	1.5	
	12:29	9.2	10.6	105	132	1.4	
	12:30	9.1	10.8	106	133	1.4	
	12:31	9.3	10.6	108	126	1.5	
	12:32	9.2	10.7	107	127	1.3	
	12:33	9.3	10.5	108	128	1.2	
	12:34	9.2	10.6	109	138	1.6	
	12:35	9.2	10.7	109	142	1.3	
	12:36	9.2	10.6	110	148	1.1	
	12:37	9.3	10.5	110	142	1.2	
	12:38	9.3	10.6	109	149	1.3	
	12:39	9.1	10.6	108	141	1.3	
	12:40	9.1	10.8	107	146	1.3	
	12:41	9.2	10.7	106	133	1.3	
	12:42	9.3	10.6	106	137	1.3	
	12:43	9.4	10.5	108	126	1.4	
	12:44	9.1	10.8	108	135	1.2	
	12:45	9.2	10.7	110	132	1.2	
	12:46	9.1	10.6	111	146	1.1	
	12:47	9.2	10.6	112	151	1.1	
	12:48	9.4	10.3	111	165	1.0	
	12:49	9.3	10.3	111	159	1.0	
	12:50	9.1	10.6	111	172	1.1	
	12:51	9.0	10.7	110	161	1.2	
	12:52	9.1	10.7	109	163	1.1	
	12:53	9.2	10.5	110	145	1.1	
	12:54	9.1	10.7	110	153	1.1	
	12:55	9.3	10.5	111	137	1.2	
	12:56	9.0	10.8	110	147	17	
Q1_LWEC001_O		0.0	10.0	110	1-77	VVIEST	TORN

Client: LWEC Location: L'Anse, MI Source: ESP Out			Calibra	tion 1		Project N Or	lumber: perator: FJS Date: 24 Sep 2015
	Time	O2 %	CO₂ %	NO _x ppm	SO ₂ ppm	THC ppm	
	Time 12:57 12:58 12:59 13:00 13:01 13:02 13:03 13:04 13:05 13:06 13:07 13:08 13:07 13:08 13:07 13:08 13:07 13:10 13:11 13:12 13:13 13:14 13:15 13:16 13:17 13:18 13:17 13:18 13:19 13:20 13:21 13:22 13:23 13:24 13:25 13:26 13:27 13:28						
	13:29 13:30 Avgs	9.2 9.2 9.2	10.6 10.5 10.7	112 111 108	145 152 138	1.2 1.2 1.2	

RUN SUMMARY

Client: LWEC Location: L'Anse, MI Source: ESP Out		Calibra	ation 1	Proj	ect Number: Operator: Date:	FJS 24 Sep 2015
Method Conc. Units	O 2 EPA 3A %	CO ₂ EPA 3A %	NO x EPA 7E ppm	SO ₂ EPA 6C ppm	THC EPA 20 ppm	
		Time: 11:	35 to 13:30			
		Run Av	/erages			
	9.2	10.7	108	138	1.2	
		Pre-run Bi	as at 09:45			
Zero Bias Span Bias Span Gas	0.0 11.9 12.0	0.0 8.6 8.8	1 251 253	3 244 252	0.0 25.0 25.4	
		Post-run B	ias at 13:48			
Zero Bias Span Bias Span Gas	0.0 11.9 12.0	0.0 8.7 8.8	0 248 253	3 249 252	-0.1 25.2 25.4	
Averages	s corrected f	or the averaç	je of the pre-	run and post	-run bias	
	9.2	10.8 *No Co	109 prrection	140	1.3	

Number 3

Location:	LWEC L'Anse, MI ESP Out		Calib	pration 1	Pro	ject Number: Operator: Date:	FJS 24 Sep 2015
			Start Ti	me: 13:48			
				O₂ d: EPA 3A onc. 21.6 %			
			Bias	Results			
	Standard Gas Zero Span	Cal. % 0.0 12.1	Bias % 0.0 11.9	Difference % 0.0 -0.2	Error % 0.0 -0.9	Status Pass Pass	
			Calibra	ation Drift		<u></u>	
	Standard Gas	Initial* %	Final %	Difference %	Drift %	Status	
	Zero Span	0.0 11.9 *Bias No. 2	0.0 11.9	0.0 0.0	0.0 0.0	Pass Pass	
			Method	CO₂ d: EPA 3A onc. 16.6 %			
			<u></u>			*****	
	Standard	Cal.	Bias Bias	Results Difference	Error		
	Gas Zero Span	% 0.0 8.6	% 0.0 8.7	% 0.0 0.1	% 0.0 0.6	Status Pass Pass	
		1991 kirk - Antonio State (1997 kirk) (Calibr	ation Drift		**************************************	
	Standard Gas Zero	Initial* % 0.0	Final % 0.0	Difference % 0.0	Drift % 0.0	Status Pass	
	Span	8.6 *Bias No. 2	8.7	0.1	0.6	Pass	

,

Client: LWEC Location: L'Anse, MI Source: ESP Out			ration 1	Pro	ject Number: Operator: Date:	FJS 24 Sep 2015
		Start Ti	me: 13:48			
		Method	NO_x J: EPA 7E nc. 433 ppm			
Standard Gas Zero Span	Cal. ppm 0 254	Bias Bias ppm 0 248	Results Difference ppm 0 -6	Error % 0.0 -1.4	Status Pass Pass	-
Standard	Initial*	Calibra Final	ation Drift Difference	Drift		-
Gas Zero Span	ppm 1 251 *Bias No. 2	ppm 0 248	ppm -1 -3	% -0.2 -0.7	Status Pass Pass	
		Method	SO₂ d: EPA 6C nc. 451 ppm			
			Results	-		-
Standard Gas Zero Span	Cal . ppm 0 252	Bias ppm 3 249	Difference ppm 3 -3	Error % 0.7 -0.7	Status Pass Pass	
Standard	Initial*	Calibra Final	ation Drift Difference	Drift		-
Gas Zero Span	ppm 3 244 *Bias No. 2	ppm 3 249	ppm 0 5	% 0.0 1.1	Status Pass Pass	

Number 3

Client: LWEC Location: L'Anse, I Source: ESP Out	L'Anse, MI					ect Number: Operator: Date:	FJS 24 Sep 2015	
			Start Tir	ne: 13:48				
		THC Method: EPA 20 Span Conc. 55.0 ppm						
	Bias Results							
Stand	dard	Cal.	Bias	Difference	Error			
Ga	S	ppm	ppm	ppm	%	Status		
Zei	ro	0.0	-0.1	-0.1	-0.2	Pass		
Spa	an	25.4	25.2	-0.2	-0.4	Pass		
	<u></u>		Calibra	tion Drift				
Stand	lard	Initial*	Final	Difference	Drift			
Ga	S	ppm	ppm	ppm	%	Status		
Zei	o	0.0	-0.1	-0.1	-0.2	Pass		
Spa	an	25.4	25.2	-0.2	-0.4	Pass		
	*(Cal No. 1						

Client: LWEC Location: L'Anse, MI			Calibra	tion 4		Project N Op	erator:	FJS
Source: ESP Out						·····		24 Sep 2015
	Time	O 2 %	CO₂ %	NO _x ppm	SO₂ ppm	THC ppm		
	Start Run 2 PM/HCI/ PM10							
	15:14	9.4	10.4	100	160	0.3		
	15:15	9.3	10.5	101	157	0.3		
	15:16	9.4	10.4	101	155	1.1		
	15:17	9.4	10.2	99	161	0.5		
	15:18	9.4	10.4	99	160	0.3		
	15:19	9.6	10.1	100	160	0.3		
	15:20	9.4	10.4	98	170	0.3		
	15:21	9.9	9.8	100	167	0.3		
	15:22	9.6	10.2	99	178	0.4		
	15:23	9.6	10.1	100	183	0.3		
	15:24	9.5	10.1	102	194	0.2		
	15:25	9.6	9.8	104	198	0.3		
	15:26	9.7	10.0	104	205	0.3		
	15:27	9.5	10.1	105	199	0.3		
	15:28	9.7	9.9	106	203	0.2		
	15:29	9.6	10.1	105	191	0.6		
	15:30	9.3	10.5	103	199	0.4		
	15:31	9.5	10.2	104	181	0.3		
	15:32	9.1	10.7	103	188	0.5		
	15:33	9.3	10.5	103	176	0.9		
	15:34	9.2	10.6	101	178	0.5		
	15:35	9.5	10.2	105	162	0.4		
	15:36	9.3	10.6	105	175	1.3		
	15:37	9.3	10.5	108	168	0.4		
	15:38	9.2	10.6	109	176	0.3		
	15:39	9.2	10.3	111	166	0.6		
	15:40	9.1	10.7	111	168	0.3		
	15:41	9.0	10.8	114	154	0.4		
	15:42	9.0	10.8	113	161	1.0		
	15:43	9.2	10.5	114	148	0.4		
	15:44	9.0	10.8	114	155	0.5		
	15:45	9.0 9.1	10.6	115	142	0.6		
	15:46	8.8	11.0	112	154	2.0		
	15:40	9.2	10.5	112	140	0.4		
	15:47	9.2 9.1	10.3	116	140	0.4		
	15:40	9.1 9.1	10.7	120	141	0.3		
	15:49	9.1 8.9	10.7	120	141	0.5		
	15:51	9.0	10.8	121	142	0.4		
	15:52	9.1	10.7	119	149	0.4		
	15:53	9.1	10.7	119	134	0.4		
Q1_LWEC001_O	15:54 pactiy_003825	8.9	11.0	120	143	0.4		

Client: LWEC Location: L'Anse, MI			Calibra	tion 1		Project N Oj	perator:	
Source: ESP Out			Calibra					24 Sep 2015
	Time	O₂ %	CO₂ %	NO _x ppm	SO₂ ppm	THC ppm		
	15:55	8.9	10.8	120	133	0.3		
	15:56	8.8	11.0	118	141	1.1		
	15:57	9.3	10.6	116	126	0.3		
	15:58	9.0	10.7	116	137	1.7		
	15:59	9.2	10.7	114	127	0.6		
	16:00	9.2	10.6	114	134	0.4		
	16:01	9.0	10.7	114	130	0.3		
	16:02	9.1	10.7	112	135	0.5		
	16:03	8.9	10.9	115	130	0.4		
	16:04	9.1	10.6	116	134	0.3		
	16:05	9.0	10.8	117	129	1.0	-	
	16:06	8.8	11.0	117	136	1.6		
	16:07	8.8	11.1	118	128	1.4		
	16:08	9.0	10.8	119	132	0.9		
	16:09	8.7	11.1	120	129	0.7		
	16:10	8.8	11.0	117	133	0.6		
	10.11	0.0	Port C		100	05		
	16:11	8.8	11.1	120	130	0.5		
	16:14 16:15	9.4	10.6	43	120 123	0.6		
	16:15 16:16	8.8 8.8	11.1 11.2	118	123	0.3 0.7		
	16:16 16:17	8.7	11.2	120 118	130	1.0		
	16:17	9.0	10.9	119	130	0.3		
	16:18	8.9	11.0	119	138	0.3		
	16:20	8.9	11.0	118	148	0.3		
	16:20	8.9	11.0	118	140	0.2		
	16:22	9.1	10.8	119	145	0.2		
	16:23	8.8	11.2	120	143	0.3		
	16:24	9.0	11.0	122	147	0.2		
	16:25	8.8	11.3	122	142	0.4		
	16:26	8.8	11.2	122	144	0.5		
	16:27	8.6	11.4	121	142	0.2		
	16:28	9.0	10.9	123	147	0.8		
	16:29	8.9	11.1	122	145	0.2		
	16:30	8.9	10.8	123	152	0.3		
	16:31	8.8	11.2	123	149	0.4		
	16:32	8.8	11.1	123	157	0.4		
	16:33	8.7	11.2	123	155	0.2		
	16:34	8.9	11.1	124	153	0.3		
	16:35	8.9	11.1	123	148	0.2		
	16:36	9.0	10.9	122	145	0.4		
Q1_LWEC001_O	16:37	8.8	11.3	120	146	^{0.3} \V.V		

Client: LWEC Location: L'Anse, MI Source: ESP Out			Calibra	Project Number: Operator: FJS Date: 24 Sep 2015		
	Time	O 2 %	CO₂ %	NO _x ppm	SO ₂ ppm	THC ppm
	16:38	8.8	11.1	120	139	0.2
	16:39	8.8	11.3	118	144	0.2
	16:40	9.0	11.0	118	137	0.4
	16:41	8.9	11.2	115	141	0.2
	16:42	9.0	10.8	116	137	0.4
	16:43	8.8	11.3	116	144	0.2
	16:44	8.9	11.0	117	138	0.6
	16:45	8.7	11.2	117	147	0.5
	16:46	8.7	11.2	118	140	0.3
	16:47	8.9	11.1	119	145	0.2
	16:48	9.1	10.8	120	137	0.8
	16:49	8.6	11.5	121	157	0.5
	16:50	8.8	11.1	122	145	0.4
	16:51	9.0	10.9	122	155	0.4
	16:52	9.1	10.8	120	145	0.4
	16:53	8.8	11.2	119	164	0.7
	16:54	8.8	11.1	121	151	0.4
	16:55	8.9	11.0	122	166	0.5
	16:56	9.1	10.7	121	146	0.2
	16:57	8.9	11.1	120	161	0.3
	Avgs	9.1	10.8	114	152	0.5

RUN SUMMARY

	LWEC L'Anse, MI ESP Out		Calibra	Proje	ect Number: Operator: Date:				
	Method Conc. Units	0 ₂ EPA 3A %	CO ₂ EPA 3A %	NO _x EPA 7E ppm	SO ₂ EPA 6C ppm	THC EPA 20 ppm			
Time: 15:13 to 16:57									
Run Averages									
		9.1	10.8	114	152	0.5			
			Pre-run Bi	as at 13:48					
	Zero Bias Span Bias Span Gas	0.0 11.9 12.0	0.0 8.7 8.8	0 248 253	3 249 252	-0.1 25.2 25.4			
			Post-run B	ias at 17:02					
	Zero Bias Span Bias Span Gas	0.0 11.9 12.0	0.1 8.7 8.8	0 249 253	3 246 252	0.1 24.9 25.4			
	Averages	corrected f	or the averag	e of the pre-	run and post	-run bias			
		9.1	10.9 *No Co	116 rrection	153	0.5			

Location	:: LWEC :: L'Anse, MI :: ESP Out		Calib	ration 1	Proj	Project Number: Operator: FJS Date: 24 Sep 20 1			
			Start Ti	me: 17:02					
				O₂ d: EPA 3A onc. 21.6 %					
				Results					
	Standard Gas Zero Span	Cal. % 0.0 12.1	Bias % 0.0 11.9	Difference % 0.0 -0.2	Error % 0.0 -0.9	Status Pass Pass			
			Calibra	ation Drift			 -		
	Standard Gas Zero Span	Initial* % 0.0 11.9 *Bias No. 3	Final % 0.0 11.9	Difference % 0.0 0.0	Drift % 0.0 0.0	Status Pass Pass			
=				CO₂ d: EPA 3A onc. 16.6 %					
			Bias	Results	****				
	Standard Gas Zero	Cal. % 0.0	Bias % 0.1	Difference % 0.1	Error % 0.6	Status Pass			
	Span	8.6	8.7	0.1	0.6	Pass			
	Standard	Initial*	Calibra Final	ation Drift Difference	Drift				
	Gas Zero Span	% 0.0 8.7	% 0.1 8.7	% 0.1 0.0	% 0.6 0.0	Status Pass Pass			
		*Bias No. 3							

	Calib	ration 1	Pro	Operator:	FJS 24 Sep 201
	Start Ti	me: 17:02			
	opun oo				
<u>.</u>	F				
				Status	
0	0	0	0.0	Pass	
254	249	-5	-1.2	Pass	
	Calibr	******			
Initial*	Final	Difference	Drift		
ppm	ppm	ppm	%	Status	
0	0	0			
248 *Bias No. 3	249	1	0.2	Pass	
		SO ₂	τη τη μαρική το παρική το πολογοριατική το πορογοριατική το πορογοριατική το πορογοριατική το πορογοριατική το Η παρική το παρική το πορογοριατική το πορογοριατική το πορογοριατική το πορογοριατική το πορογοριατική το πορογ		
	Method	I: EPA 6C			
	Bias	Results			
Cal.	Bias	Difference	Error		
•	· •				
252	246	-6	-1.3	Pass	
	Calibra	ation Drift			*****
Initial*	Final	Difference	Drift		
ppm	ppm	ppm	%	Status	
3	3	0	0.0	Pass	
249 *Bias No. 3	246	-3	-0.7	Pass	
	ppm 0 254 Initial* ppm 0 248 *Bias No. 3 Cal. ppm 0 252 Initial* ppm 3 249	Start Ti Method Span Co Bias Cal. Bias ppm ppm 0 0 0 254 249 Calibra Final ppm 0 0 248 249 *Bias No. 3 *Bias No. 3 Calibra Final ppm 0 0 248 249 *Bias No. 3 Bias Span Co Span Co Sp	$\begin{array}{c ccccc} ppm & ppm & ppm \\ 0 & 0 & 0 \\ 254 & 249 & -5 \\ \hline \\ \ & \ & \ & \ & \ & \ & \ $	Calibration 1Start Time: 17:02NOx Method: EPA 7E Span Conc. 433 ppmBias Results Bias DifferenceError Ppm ppm OOO0000.0254249-5-1.2Initial* ppm 0Calibration Drift FinalDrift Ppm ppm Drift $\%$ 0.00000.025424910.225424910.2Ppm 0 0 00.024824910.2SO2 Method: EPA 6C Span Conc. 451 ppmBias No. 3SO2 Method: EPA 6C Span Conc. 451 ppmCal. ppm 0Bias Ppm Ppm Ppm 0Error % 00330.7252246-6-1.3Initial* Ppm Ppm 3Calibration Drift FinalDifference Drift Ppm Ppm % 0.03300.0249246-3-0.7	Start Time: 17:02 NOx Method: EPA 7E Span Conc. 433 ppm Bias Results Cal. Bias Results Cal. Bias Results 0 0 0 0.0 Pass 254 249 -5 -1.2 Pass Calibration Drift ppm ppm ppm % Status 0 0 0 0.0 Pass 248 249 1 0.2 Pass *Bias No. 3 SO2 Method: EPA 6C Span Conc. 451 ppm *Bias Results Calibration Drift ppm ppm pm % Status 0 3 3 0.7 Pass 252 246 -6 -1.3 Pass Calibration Drift ppm ppm % Status 0 3 3 0.0 Pass <t< td=""></t<>

Number 4

Client: L Location: L Source: E	.'Anse, MI		Calib	ration 1	Proj	ect Number: Operator: Date:	FJS 24 Sep 2015		
			Start Ti	me: 17:02					
		THC Method: EPA 20 Span Conc. 55.0 ppm							
	Standard Gas Zero Span	Cal. ppm 0.0 25.4	Bias Bias ppm 0.1 24.9	Results Difference ppm 0.1 -0.5	Error % 0.2 -0.9	Status Pass Pass			
			Calibra	ation Drift					
	Standard Gas Zero Span	Initial* ppm 0.0 25.4 *Cal No. 1	Final ppm 0.1 24.9	Difference ppm 0.1 -0.5	Drift % 0.2 -0.9	Status Pass Pass			

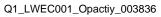
Number 1

Client: LWEC Location: L'Anse, MI				Project Number: Operator: FJS
Source: ESP Out	Ca	alibration	1	Date: 24 Sep 2015
	Time	O 2 %	CO2 %	
	11:27	8.6	11.5	
	11:28	8.8	11.2	
<u>.</u>	Cems p	orobe po		
	11:29	8.9	11.1	
	11:30	9.0	10.8	
	11:31	8.8	11.2	
	11:32	9.0	11.0	
	11:33	8.8	11.3	
	11:34	8.9	11.1	
	11:35	8.7	11.3	
	11:36	8.9	11.2	
	11:37	9.0	11.1	
	11:38	8.9	11.0	
	11:39	8.8	11.3	
	11:40	9.0	11.1	
	11:41	8.9	11.0	
	11:42	8.9	11.1	
	11:43	9.0	11.1	
	11:44	9.0	11.0	
	11:45	9.0	10.8	
	11:46	9.3	10.7	
	11:47	9.1	10.8	
	11:48	9.3	10.6	
	11:49	9.0	10.9	
	11:50	9.0	10.9	
	11:51	8.8	11.1	
	11:52	8.9	11.0	
	11:53	9.0	10.8	
	11:54	9.2	10.6	
	11:55	9.1	10.8	
	11:56	9.1	10.8	
	11:57	9.1	10.8	
	11:58	9.1	10.7	
	11:59	9.0	10.9	
	12:00	9.0	10.9	
	12:00	9.0	10.8	
	12:01	9.0 9.0	10.9	
	12:02	9.0 9.1	10.9	
	12:03	9.1 9.0	10.7	
	12:04	9.0 9.1	10.8	
	12:05	9.1 9.2	10.9	
	12:07	9.1	10.8	

MESICEN SOLUTIONS.

Client: LWEC Location: L'Anse, MI Source: ESP Out	Ca	alibration	1	Project Number: Date: 24 Sep 2015			
	Time	O 2 %	CO2 %				
	12:08	9.2	10.7				
	12:09	9.1	10.7				
	12:10	9.2	10.7				
	12:11	9.0	10.9				
	12:12	9.0	11.0				
	12:13	9.1	10.8				
	12:14	9.0	10.9				
	12:15	11.3	8.9				
	cem	s at poin [.]	t A 2				
	12:16	9.8	10.1				
	12:17	9.4	10.5				
	12:18	9.1	10.7				
	12:19	9.3	10.5				
	12:20	9.2	10.7				
	12:21	9.2	10.7				
	12:22	9.0	10.9				
	12:23	9.2	10.7				
	12:24	9.1	10.7				
	12:25	9.3	10.5				
	12:26	9.2	10.7				
	12:27	9.1	10.7				
	12:28	9.3	10.6				
	12:29	9.2	10.6				
	12:30	9.1	10.8				
	12:31	9.3	10.6				
	12:32	9.2	10.7				
	12:33	9.3	10.5				
	12:34	9.2	10.6				
	12:35	9.2	10.7				
	12:36	9.2	10.6				
	12:37	9.3	10.5				
	12:38	9.3	10.6				
	12:39	9.1	10.6				
	12:40	9.1	10.8				
	12:41	9.2	10.7				
	12:42	9.3	10.6 10.5				
	12:43 12:44	9.4 9.1	10.5 10.8				
	12:44	9.1 9.2	10.8				
	12:46	9.1	10.6 10.6				
	12:47	9.2	10.6 10.3				
Q1_LWEC001_Opactiy_003833	12:48	9.4	10.3	WESTON			

Client: LWEC Location: L'Anse, MI Source: ESP Out	Calibration 1			Project Number: Operator: FJS Date: 24 Sep 2015
	Time	O 2 %	CO2 %	
	12:49	9.3	10.3	
	12:50	9.1	10.6	
	12:51	9.0	10.7	
	12:52	9.1	10.7	
	12:53	9.2	10.5	
	12:54	9.1	10.7	
	12:55	9.3	10.5	
	12:56	9.0	10.8	
	12:57	9.1	10.7	
	12:58	9.2	10.5	
	12:59	9.3	10.4	
	13:00	9.1	10.7	
	13:01	9.3	10.4	
	13:02	9.2	10.6	
	13:03	9.2	10.5	
	13:04	9.1	10.6	
	13:05	9.2	10.6	
	13:06	9.2	10.6	
	13:07	9.2	10.5	
	Avgs	9.1	10.7	



RUN SUMMARY

Client: LWEC Location: L'Anse, MI Source: ESP Out	Calibration 1		Project Number: Operator: FJS Date: 24 Sep 2015						
 Method Conc. Units	O₂ EPA 3A %	CO ₂ EPA 3A %							
Time: 11:26 to 13:07									
	Run Average	5							
	9.1	10.7							
Pre	-run Bias at 0	9:45							
Zero Bias Span Bias Span Gas	0.0 11.9 12.0	0.0 8.6 8.8							
Pos	Post-run Bias at 13:48								
Zero Bias Span Bias Span Gas	0.0 11.9 12.0	0.0 8.7 8.8							
Averages corrected for the	average of th	e pre-run an	d post-run bias						
	9.2 *No Correction	10.9 ח							

Client: LWEC Location: L'Anse, MI Source: ESP Out	Calibration 1			Project Number: Operator: FJS Date: 24 Sep 2015
	Time	O 2 %	CO2 %	
	14:49	n 2 PM/H 9.4	CI/ PM10 10.5	
	14:49		10.5	
	14:50	9.5	10.4	
		9.5		
	14:52	9.7	10.1	
	14:53	9.6	10.2	
	14:54	9.6	10.3	
	14:55	9.5	10.2	
	14:56	9.4	10.3	
	14:57	9.4	10.4	
	14:58	9.5	10.3	
	14:59	9.6	10.3	
	15:00	9.5	10.4	
	15:01	9.4	10.3	
	15:02	9.3	10.5	
	15:03	9.5	10.2	
	15:04	9.4	10.4	
	15:05	9.7	10.1	
	15:06	9.3	10.5	
	15:07	9.4	10.3	
	15:08	9.3	10.5	
	15:09	9.4	10.3	
	15:10	9.4	10.3	
	15:11	9.5	10.1	
	15:12	9.4	10.2	
	15:13	9.7	10.1	
	15:14	9.4	10.4	
	15:15	9.3	10.5	
	15:16	9.4	10.4	
	15:17	9.4	10.2	
	15:18	9.4	10.2	
	15:19	9.6	10.1	
	15:20	9.4	10.4	
	15:20	9.9	9.8	
	15:22	9.6	10.2	
	15:22	9.6 9.6	10.2	
	15:24	9.5	10.1	
	15:25	9.6	9.8	
	15:26	9.7	10.0	
	15:27	9.5	10.1	
	15:28	9.7	9.9	
Q1_LWEC001_Opactiy_003836	15:29	9.6	10.1	WIESTON SOLUTIONE

Client: LWEC Location: L'Anse, MI Source: ESP Out	Calibration 1			Project Number: Operator: FJS Date: 24 Sep 2015
	Time	O 2 %	CO₂ %	
	15:30	9.3	10.5	
	15:31	9.5	10.2	
	15:32	9.1	10.7	
	15:33	9.3	10.5	
	15:34	9.2	10.6	
	15:35	9.5	10.2	
	15:36	9.3	10.6	
	15:37	9.3	10.5	
	15:38	9.2	10.6	
	15:39	9.2	10.3	
	15:40	9.1	10.7	
	15:41	9.0	10.8	
	15:42	9.0	10.8	
	15:43	9.2	10.5	
	15:44	9.0	10.8	
	15:45	9.1	10.6	
	15:46	8.8	11.0	
	15:47	9.2	10.5	
	15:48	9.1	10.7	
	15:49	9.1	10.7	
	15:50	8.9	10.9	
	15:51	9.0	10.8	
	15:52	9.1	10.7	
	15:53	9.1	10.7	
	15:54	8.9	11.0	
	15:55	8.9	10.8	
	15:56	8.8	11.0	
	15:57	9.3	10.6	
	15:58 15:50	9.0	10.7	
	15:59 16:00	9.2 9.2	10.7 10.6	
	16:01 16:02	9.0 9.1	10.7 10.7	
	16:02	9.1 8.9	10.7	
	16:04		10.5	
	16:04	9.1 9.0	10.8	
	16:05	9.0 8.8	10.8	
	16:07	0.0 8.8	11.1	
	16:07	9.0	10.8	
	16:08	9.0 8.7	10.8	
		o. <i>1</i> ort Change		
		9.3	10.5	
Q1_LWEC001_Opactiy_003837	Avgs	J.J	10.5	WIESTON.

RUN SUMMARY

Client: LWEC Location: L'Anse, MI Source: ESP Out	Calibration 1	Project Number: Operator: FJS Date: 24 Sep 2015	
Method Conc. Units	O 2 EPA 3A %	CO ₂ EPA 3A %	
Tim	ie: 14:48 to 1	6:09	
	Run Average	6	
	9.3	10.5	
Pre	-run Bias at 1	3:48	
Zero Bias Span Bias Span Gas	0.0 11.9 12.0	0.0 8.7 8.8	
Post	-run Bias at 1	17:02	
Zero Bias Span Bias Span Gas	0.0 11.9 12.0	0.1 8.7 8.8	
Averages corrected for the	average of th	e pre-run an	d post-run bias
,	9.3 No Correctior	10.6 N	
			, ,

Client: LWEC Location: L'Anse, MI Source: ESP Out	Calibration 1			Project Number: Operator: FJS Date: 24 Sep 2015
	Time	O2 %	CO2 %	
	17:53	8.6	11.4	
	17:54	8.7	11.4	
	17:55	8.6	11.5	
	17:56	8.7	11.2	
	17:57	8.2	11.9	
	17:58	8.3	11.7	
	17:59	8.4	11.7	
	18:00 ⁻	8.8	11.2	
	18:01	9.0	11.0	
	18:02	8.8	11.2	
	18:03	8.6	11.5	
	18:04	8.7	11.3	
	18:05	8.3	11.7	
	18:06	8.5	11.5	
	18:07	8.4	11.6	
	18:08	8.5	11.5	
	18:09	8.6	11.4	
	18:10 18:11	8.6 8.6	11.5 11.4	
	18:12	8.6	11.4	
	18:12	8.0 8.7	11.4	
	18:14	8.6	11.4	
	18:15	8.8	11.2	
	18:16	9.0	10.9	
	18:17	8.9	11.0	
	18:18	9.2	10.7	
	18:19	9.0	11.0	
	18:20	9.1	10.8	
	18:21	8.7	11.3	
	18:22	8.8	11.1	
	18:23	8.6	11.3	
	18:24	8.8	11.1	
	18:25	8.5	11.5	
	18:26	8.7	11.3	
	18:27	8.5	11.5	
	18:28	8.6	11.5	
	18:29	8.6	11.4	
	18:30	8.6	11.4	
	18:31	8.5	11.5	
	18:32	8.9	11.0	
	18:33	8.6	11.4	
Q1_LWEC001_Opactiy_003839	18:34	8.6	11.4	WESTON

Client: LWEC Location: L'Anse, MI Source: ESP Out	C	alibration	1	Project Number: Operator: FJS Date: 24 Sep 2015
	Time	O2 %	CO2 %	
	40.05			
	18:35	8.5	11.5	
	18:38	ort Chang		
	18:39	8.4	11.5 11.6	
	18:40	8.4 8.6	11.5	
	18:40	8.6	11.3	
	18:42	8.6	11.4	
	18:42	8.6	11.4	
	18:44	8.0 8.7	11.4	
	18:44	8.4	11.4	
	18:45	8.7	11.4	
	18:40	8.7 8.7	11.4	
	18:48	8.7	11.3	
	18:49	8.7	11.3	
	18:50	8.6	11.4	
	18:51	8.5	11.3	
	18:52	8.5	11.6	
	18:53	8.6	11.5	
	18:54	8.5	11.5	
	18:55	8.4	11.6	
	18:56	8.6	11.3	
	18:57	8.8	11.2	
	18:58		11.2	
	18:59	8.8	11.3	
		8.6 8.6	11.5	
	19:00 19:01			
	19:01	8.6	11.4 11.5	
	19:02	8.6 8.7	11.3	
	19:03	8.6	11.6	
	19:04	8.5	11.5	
	19:05		11.6	
	19:00	8.5	11.0	
	19:07	8.6 8.8		
			11.1	
	19:09 19:10	8.9 8 8	11.1 11.2	
	19:10 19:11	8.8 8 9	11.2	
		8.8 8.8	11.2	
	19:12 19:13			
		8.7	11.3	
	19:14 10:15	8.7	11.4	
	19:15 19:16	8.9 8.7	11.0 11.3	
	19:17	8.8	11.2	

Client: LWEC Location: L'Anse, MI Source: ESP Out	Ca	alibration	1	Project Number: Operator: FJS Date: 24 Sep 2015
	Time	O 2 %	CO2 %	
	19:18 19:19 19:20 19:21 19:22 19:23 19:24 19:25 19:26 19:27 19:28 19:29 19:30 19:31 19:32	8.9 8.8 8.7 8.9 8.6 8.5 8.3 8.6 8.7 8.6 8.7 8.9 8.9 8.9 8.9 8.5	11.1 11.1 11.4 11.4 11.5 11.8 11.4 11.3 11.4 11.3 11.1 11.1 11.1 11.5	
	19:33 Avgs	8.8 8.7	11.1 11.3	

RUN SUMMARY Number 3

Client: LWEC Location: L'Anse, MI Source: ESP Out	Calibration 1		Project Number: Operator: FJS Date: 24 Sep 2015
Method Conc. Units	0₂ EPA 3A %	CO₂ EPA 3A %	
Time	e: 17:52 to 1	9:33	
F	Run Average	S	
·	8.7	11.3	
Pre-	run Bias at 1	7:02	
Zero Bias Span Bias Span Gas	0.0 11.9 12.0	0.1 8.7 8.8	
Post-	run Bias at [.]	19:36	
Zero Bias Span Bias Span Gas	0.0 11.9 12.0	0.0 8.7 8.8	
Averages corrected for the a	average of th	e pre-run an	d post-run bias
*	8.7 No Correctior	11.5 ו	

BIAS AND CALIBRATION DRIFT

Client: L Location: L Source: E	.'Anse, MI		Project Number: Operator: Calibration 1 Date: 						
				O₂ d: EPA 3A onc. 21.6 %					
	Standard Gas Zero Span	Cal. % 0.0 12.1	Bias Bias % 0.0 11.9	Results Difference % 0.0 -0.2	Error % 0.0 -0.9	Status Pass Pass			
	Standard Gas Zero Span	Initial* % 0.0 11.9 *Bias No. 4	Calibra Final % 0.0 11.9	ation Drift Difference % 0.0 .0.0	Drift % 0.0 0.0	Status Pass Pass			
			Method	CO₂ d: EPA 3A onc. 16.6 %	<u></u>				
	Standard Gas Zero Span	Cal. % 0.0 8.6	Bias Bias % 0.0 8.7	Results Difference % 0.0 0.1	Error % 0.0 0.6	Status Pass Pass			
	Standard Gas Zero Span	Initial* % 0.1 8.7 *Bias No. 4	Calibra Final % 0.0 8.7	ation Drift Difference % -0.1 0.0	Drift % -0.6 0.0	Status Pass Pass	_		

NOVEMBER TEST PROGRAM

IASDATALWEGIAA14.009.3651/6091222844EPORT-LW

L'Anse Warden Electric Company Particulate and Hydrogen Chloride Test Data Inputs Condition 1

Test Data			
Run number	C1-1	C1-2	C1-3
Location		Boiler No. 1	
Date	11/3/2015	11/3/2015	11/4/2015
Time period	1502-1614	1650-1756	0912-1020
Operator	JM	JM	JM
Inputs For Calcs.			
Sq. rt. delta P	0.89937	0.90819	0.90801
Delta H	1.4542	1.3967	1.3742
Stack temp. (deg.F)	410.9	412.4	397.8
Meter temp. (deg.F)	79.8	72.3	66.0
Sample volume (act.)	37.932	36.476	36.618
Barometric press. (in.Hg)	29.51	29.51	29.44
Volume H2O imp. (ml)	148.0	134.0	140.0
Weight change sil. gel (g)	9.6	8.7	8.5
% CO2	8.9	8.9	9.3
% O2	11.4	11.6	11.1
% N	79.7	79.5	79.6
Area of stack (sq.ft.)	39.000	39.000	39.000
Sample time (min.)	60	60	60
Static pressure (in.H2O)	-12.50	-12.50	-12.80
Nozzle dia. (in.)	0.235	0.235	0.235
Meter box cal.	0.9912	0.9912	0.9912
Cp of pitot tube	0.84	0.84	0.84
Traverse Points	12	12	12
HCl Laboratory Report Data			
HCl, mg	4.70	5.00	3.90
Total HCl, mg	4.70	5.00	3.90

		, Jan				
ISOKINETIC FIELD DAT	FA SHEET	/ Method _	M26A -		Page 1 of	-
Client W.O.#	Stack Condit Assun % Moisture 77%5		U/C 3 D.99 2.032	12	K Factor / 79 Initial Mid-Point	Final
Mode/Source ID Samp. Loc. ID	Impinger Vol (ml) Silica gel (g)	Probe ID / Length	7.	Sample Train (ft ³) C Leak Check @ (in Hg)	2.002	0.002
Test Method ID <u>M264</u> Date ID D	CO2, % by Vol 12 O2, % by Vol 29 Temperature (°F) 75(Pitot Coefficient	0.84	Pitot good Orsat good Temp Check		yes / no yes / no Post-Test Set
Source/Location Sample Date Baro. Press (in Hg)	Meter Temp (°F) Static Press (in H ₂ O)	Avg Nozzle Dia (i		Meter Box Temp Reference Temp Pass/Fail (+/- 2 ⁰)	64 (2) (Page / Fail	63 62 Pass / Fail
Operator Mills	Ambient Temp (°F)	Total Traverse		Temp Change Response ?	(yes)/no	(yes) no
TRAVERSE SAMPLE CLOCK TIME POINT TIME (min) (plant time) NO.	VELOCITY ORIFICE PRESSURE Delta PRESSURE P (in H2O) Delta H (in H2O)	READING (#*) STACK	DGM INLET DGM TEMP (°F) TEMP (°F)	PROBE FILTER IMPINGER BOX TEMP EXIT TEMP (F) (F) (°F)	SAMPLE TRAIN VAC (in Hg)	COMMENTS
H 15 1502 Z 10	0.92 1.65	726.5 410 736.0 409		253 261 56 256 261 (1)62-5	4 4 4	
3,5,1517	0.94 1.68	733.346 398	29	256 261 52	4	
13 151522 13 151522	0.82 W+48 0.84 1.50	739.346		255 262 57 254 262 56	4	
3,5 1537	0.88 1.57	743,114 401	80	253 261 56	4	
C $1 \leq 1540$ Z = 10	0.84 1.50	7463 416		254 260 57 256 261 57	4	
315 1555	0.80 /.43 0.77 /.38	752.616 411		262 260 57	4	
$\begin{array}{c c} 0 \\ 1 \\ 1 \\ 7 \\ 10 \end{array}$	0.70 11.25	752,616 - 755.6 415 16 788.3 417			4	
3 15 1614	0,63 10-87, 0,62 1.11	16 758.3 417 760,915 410		256 261 62 254 260 60	3.5	
	Avg Sqrt Delta V 0.89937 Avg Delta V i, 4541 Avg Sqrt Del H	Total Volume Avg Ts 37.432 4/0.92		Min/Max Min/Mex Max Temp 253 No 51 No 62	Max Vac Max Temp	
	5 0,8125 1.203/	Contineents.	I ~ 103.3 M-169	76010 26.396		1
Q1_LWEC001_Opactiy_0038	·	• • •	malber	afe. 390		

1.1.1

·												C)	
ISOKINE	FIC FIEL	.D DATA SH	EET		EPA M	lethod 2	6A - H	Cl & C	12		Page of			
Client	LWEC		Stack Condit	ions	Meter Box ID		W.L	31					7165	
W.O.#	14464		Assum	ned Actual	Meter Box Y		. 991	1.	-		K Factor	17T	10	
Project ID	LWEC	% Moisture	16.5	1 Ann	Meter Box De	H	2.032		- Leak Checl	ks	Initial	Mid-Point	Final	
Mode/Source ID	C1	Impinger Vol	IN MARK DESCRIPTION OF THE ADDRESS O		Probe ID / Ler	ngth	71	1. Sec. 1. Sec. 1.	Sample Trair	(ft ³)	0002		DNZ	
Samp. Loc. ID	······	Silica gel (g)		219H	Probe Materia	al	B	loro	Leak Check (un -		- Care	
Run No.ID	2	CO2, % by V	ol 7	69100	Pitot / Thermo	couple ID	PSZY	Ī	Pitot good	0 (*** 0)	yes) no	ves / no	les / no	
Test Method ID	M26A	02, % by Vol	11.5	11.6	Pitot Coefficie		and the second se	0.84	Orsat good		yes / no	yes / no	yes / nu	
Date ID	3NOV20	15 Temperature		111	Nozzle ID				Temp Cheo	:k	Pre-Te	est Set	Post-Test Set	
Source/Location	LWEC S	tack Meter Temp	(°F) 73		Avg Nozzie D	ia (in)	. 2	35	Meter Box Te	emp	59		59	
Sample Date	11/3/15	Static Press	(in H ₂ O)	561-	Area of Stack	(ft ²)	39,00		Reference Te	emp	58		3	
Baro. Press (in Hg)	24.51			100	Sample Time		Ge	>	Pass/Fail (+/-	· 2 ⁰)	1 Aline	/ Fail	Pass / Fail	
Operator	Mills	Ambient Terr	ւթ (°F)		Total Travers	e Pts	iz		Temp Chang	e Response '	Fres	/ по	res / no	
				1	1			1			\sim			
TRAVERSE SA	MPLE CLOCK	TIME VELOCITY	ORIFICE	DRY GAS METER	STACK	DGM INLET	DGM	PROBE	PILTER	IMPING	SAMPLE			
	E (min) (plant t			READING (It')	TEMP (*P)	TEMP ("F)	OUTLET	TEMP (F)	BOXTEMP	EXIT TEMP	TRAIN VAC		COMMENTS	
NO,	- 100	P (in H2O)	Delta H (in H2O)				TEMP (F)	105.000	(F)	(°F)	(in Hg)			
	0 1650			761.010	110	<u> </u>	5//	1000						
	5	8.98	1.75	764,3	410	NA	75	255	260	59	4.5			
2 1	0	e lila	1197	767.7	4/12		76	256	261	53	5			
3 1	5 170	2 1.0	1.65	771,185	406		75	259	260	53	4.5			
		7			1									
	110)		27/185						Nonconstanting of the local division of the				
Bis		091/	1,57	774.4	414	1	74	257	259	53	4.5			
		0,95	1.57	777.8	417	<u> </u>		231	261	52	4.5			
	- 18		1,44	780,865		┨───┨───	73	257	260	52	4,0			
3	5-11-16	0.81	1.77	180,065	701		-12	-651	ue	22	<i>4,C</i>			
	<u>_</u>			000512		·								
				780.865					1-77					
615		0,76	1.25	783.8	417	ļļ	72	253	261	53	40			
Z 10		0,78	1.28	786.7	416		72	256	260	53	4.0			
3 15	5 13	0.73	1.20	789460	412		71	260	261	52	35			
					/					h				
0	161	Management of Constant		- 789.460		<u>↓</u>			ļ/					
DIS		0.66	1.09	7923	414		70	257	260	KBS	335			
2 10		0.61	1.00	194.9	412	1	69	256	260	53	3.0			
3 1		0 0,60	1 4 -		410	+-+			260	53	}			
2 1		A 0,00	0.99	797.481	\$ 71U	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	69	203	100	- 57	30			
		<u>v</u>	+- <u>-</u>		+	+	<u> </u>		<u> </u>					
			+		+	<u> </u>	<u> </u>		·}	<u> </u>		ļ		
							<u> </u>		ļ					
-WISSIC	N					<u> </u>			L	L				
GOILER	EEEE							dis.						
				1	X	1		X						
						1			1]			
······································		Avg Delta	Avg Delta H	Total Volume,	Avg Ts	Avg	j Tm	Min/Max	Min/Max,	Max Temp	Max Vae	Max Temp		
		Avg Delta Av の、そうよう	1,39467	36,176	412-12	1 77	, 77	Min/Max 253/63	25/261	59	5			
		Avg Sqrt Delta P	Avg Sqrt Del H	Comments:		4	-1			EPA 26A fro	m 40CFR Parl	60 App A	1.	
		090818	Avg Sqrt Dei H			150	43	ME	607				VA	
					4	1-90,		M=i rol	1,10	-			m	
Q1	_LWEC001_Opa	actiy_003847				R5 I	77406	rol	- 35.4	7				
						G / -	-	, -	- 1				1	

Client		LWEC		Stack Condit	ions	EPA Method 26A - HCl & Cl2 Meter Box ID						Page of			
N.O.#		14464		Assun		Meter Box Y 0, 9912						K Factor	1.65	-	
Project ID		LWEC	% Moisture	15		Meter Box Del	н			Leak Checl	(s	Initial Mid-Point Fin			
Mode/Source II	D	C1	Impinger Vol (the second s	140	Probe ID / Length			Sample Train (ft ³)			O.OUZ		1.002	
Samp. Loc. ID			Silica gel (g)		8.3	Probe Materia	I	- Bo	oro	Leak Check (@ (in Hg)	15		7	
Run No.ID		3	CO2, % by Vo	1		Pitot / Thermo		1524		Pitot good		Jes D no	yes / no	Jeg / no	
Test Method ID		M26A	O2, % by Vol	4.5		Pitot Coefficie	nt	<u>/ ´0</u> .	.84	Orsat good	NA	-yes-/-no	yes /-no	yes / no-	
Date ID		3NOV2015	Temperature (And the second sec		Nozzie ID				Temp Chec	ж″́		est Set	Post-Test Set	
Source/Location	ו 🔜	LWEC Stack	Meter Temp (the second s	10 -	Avg Nozzle Di		0.2	-22	Meter Box Te Reference Te	mp	60		65	
Sample Date	⊔a\	29:44	5Static Press (i	n H ₂ O) -/2.5	-12.8	Area of Stack	(ft²)	<u>57</u> .0 /50		Pass/Fail (+/-	•		/ Fail	Paşs / Fail	
Baro. Press (in Operator	Hg)	19:97	Ambient Temp	o (°F) 65		Sample Time Total Traverse	Dte	12	The second s	Temp Chang		(ves	Contract of the local data and t	TYES / no	
		<u>4112</u>			1			6			e i lesponse		7 110		
TRAVERSE	SAMPLE	CLOCK TIME	VELOCITY	ORIFICE	DRY GAS METER			DGM		FILTER	IMPINGER	SAMPLE			
POINT	TIME (min)	and the second	PRESSURE Delta	PRESSURE	READING (IL)	STACK	DGM INLET	OUTLET	PROBE	BOX TEMP	EXIT TEMP	TRAIN VAC		COMMENTS	
NO.		1	P (in H20)	Delta H (in H2O)		TEMP (°F)	TEMP (°F)	TEMP (°F)	TEMP ("F)	(F)	(°F)	(in Hg)			
		8912			797.623			-	310		1175				
AI	5		1.05	1.73	801.2	393	NA-	58	257	260	57	4			
2	10		1.05	1.73	804,5	294		59	258	262	41	4			
3	15	0927	1,00	1.65	\$07.863	383	<u> </u>	60	164	260	48	4			
,			,	,											
	()	0930			807.863										
BI	5	10170	0.95	1.57	81.1	400		63	261	262	53	4		I	
2	10_		0.95	1.57	814.3	404		65	259	261	52	4			
3	15	0945	1.83	1.37	817,307	402		1.56	265	261	53	4			
/	-1	101.02			10	///				T		·····			
	$\overline{()}$				817.307										
CI	5	094/8	0.80	1.32	820.2	401		67	259	261	56	3.5		1	
<u> </u>			0.78	1.19	823.2	403		68	260	259	53	3.5		· · · · · · · · · · · · · · · · · · ·	
3	-19/	10.7	0.75	1,24	826.145	387	<u> </u>	69	258	262	53	3.5			
	-17	1003	0.13	1101	0000112	- 707		61	230						
		1-7-			826.195					· · · · · · · · · · · · · · · · · · ·					
511	<u> </u>	11005	0.64	1.06	828.9	403		-1	257	260	56	3.0		[
1/	-70.	10	0.60	0.99	831.4	404	<u> </u>	7/ 73		260	56	30		í	
	-1-1		0.59	0.97	834,241	399	<u> </u>	73	261	260	50	30		1	
	خ	1020-	0.21	0:7/	077,671	271	<u> </u>				50	-20-			
		1,000			+				<u> </u>						
			<u> </u>				<u> </u>							<u> </u>	
						 	/	<u> </u>	 	<u> </u>				ļ	
WVICE	<u>ви—</u>	-				_	/				L				
WIST						ļ,	V		<u> </u>						
			ļ,	ļ	/				ļ		ļ				
						$\downarrow V/$	<u> </u>	$ \downarrow \checkmark $			L				
	2'		Avg Delta N 0.8345	Avg Delta H	Total Volume	Avg Ts /		Tm	Min/Max/ 251/264	Min/Max 259 /162	Max Temp 57	Max Vac	Max Temp	1	
A	3			1.3/9//		1 371.13	1 (P	6.00	1/201	100 100	1				
AC)		Avg Sqrt Delta P	Avg Sort Del H	Comments:				/	/	EPA 26A fro	m 40CFR Par	t 60 App A	In	
C)		0.908011	1,1000V	<u></u>					1				hm	
				2										/ ·	

.

SAMPLE RECOVERY FIELD DATA

EPA Method 26A - HCl & Cl2

	Client Location/Pla	ant	LWE L'Anse		Source	W.O. # e & Location		14 LWEC	-		
	Run No. Sample I.D.	 LWEC - C1 -	- 1 - M26A -			Sample Date Analyst	r1/3/15			ery Date Jumber	11/3/15
	•					Impinge	T				
	Contents	1 H2SO4	2 H2SO4	3 H2SO4	4 · NaOH	5 r NaOH	6	7	Imp.Total	8 Silica Gel	Total
	Final	150	130	118		1				309,10	
(3)	Initial	50	100	100	100	100				300	
yp0	Gain	160	30	18					148	9,6	
10	Impinger Cold	or	Con			Labeled?	\checkmark	/			
	Silica Gel Cor	ndition	3/4-3	he		Sealed?					-
	Run No.	_2			9 <u>777777</u>	Sample Date	13/15		Recove	ry Date	11/3/ ja
	Sample I.D.	LWEC - C1 -	- 2 - M26A -		• //	Analyst	M		Filter N	lumber	NA
		.1	2	3	4	Impinge	er 6	7	Imp.Total	8	Total
SV,	Contents	H2SO4	H2SO4	H2SO4	NaOH	NaOH				Silica Gel	10101
181	Final	154	134	96						308,7	
101	Initial	50	100	100	100	100				300	
	Gain	104	34	- 4					134	8,7	
	Impinger Colo	or <u>(</u>	6Ar			Labeled?	\sim		·		-
	Silica Gel Cor	ndition	5/4 3h	<u>n</u> l		Sealed?	V				-
	Run No.	3				Sample Date	14/11	15	Recove	ry Date	11/4/15
	Sample I.D.	LWEC - C1 -	- 3 - M26A -			Analyst	<u>h</u>		Filter N	umber	M
		1	2	3	<u>\</u> 4	Impinge	er 6	7	Imp.Total	8	Total
	Contents	H2SO4	H2SO4	H2SO4	NOH	NaOH		1	imp.rotai	o Silica Gel	TUtai
	Final	170	134	86						368.5	
90	Initial	50	100	100	100	100				300	
70	Gain	120	34	-14		$\nabla \nabla$		<u> </u>	140	85	
	Impinger Colo	r	(GAr			Labeled?	<u> </u>	\square			
	Silica Gel Con	dition	3/4 'Bh	rf.		Sealed?	٦				

Check COC for Sample IDs of Media Blanks

BI

15V 490

L'Anse Warden Electric Company Particulate and Hydrogen Chloride Test Data Inputs Condition 2

Test Data			•
Run number	C2-1	C2-2	C2-3
Location		Boiler No. 1	
Date	11/5/2015	11/5/2015	11/5/2015
Time period	1057-1204	1225-1333	1400-1515
Operator	JM	JM	JM
Inputs For Calcs.			
Sq. rt. delta P	0.90816	0.90576	0.90158
Delta H	1.3758	1.3683	1.3600
Stack temp. (deg.F)	398.2	400.3	407.0
Meter temp. (deg.F)	69.6	73.9	75.2
Sample volume (act.)	36.923	36.872	36.988
Barometric press. (in.Hg)	29.26	29.18	29.09
Volume H2O imp. (ml)	138.0	120.0	128.0
Weight change sil. gel (g)	14.0	11.9	10.4
% CO2	11.3	11.2	11.2
% O2	8.9	9.0	9.1
% N	79.8	79.8	79.7
Area of stack (sq.ft.)	39.000	39.000	39.000
Sample time (min.)	60	60	60
Static pressure (in.H2O)	-12.70	-12.60	-12.50
Nozzle dia. (in.)	0.235	0.235	0.235
Meter box cal.	0.9912	0.9912	0.9912
Cp of pitot tube	0.84	0.84	0.84
Traverse Points	12	12	12
HCl Laboratory Report Data			
HCl, mg	5.10	5.60	6.00
Total HCl, mg	5.10	5.60	6.00

11/19/2015 10:12 AM

ISOKIN	ETIC	FIELD	DATA SH	EET		EPA M	lethod 2			12			Page of	<u>I</u>
Client		LWEC		Stack Condit		Meter Box ID		W.C.		_	ſ	K Factor		7
W.O.#		14464		Assun		Meter Box Y		. 99	12_	-		IN I ACIOI		
Project ID		LWEC	% Moisture		5	Meter Box De	H	2.0	323	Leak Chec		Initial	Mid-Point	Final
Mode/Source I	D	C2	Impinger Vol (ml)	120	Probe ID / Ler	ngth		2-	Sample Trair	(ft^3)	004		6.002
Samp. Loc. ID		STK	Silica gel (g)		14	Probe Materia	al	and the second se	ioro	Leak Check	@ (in Hg)	18		8
Run No.ID		11	CO2, % by Vo	AT A THE OWNER AND A REAL PROPERTY OF	<u>```</u>	_Pitot / Thermo	couple ID	1524		Pitot good		yes no	yes / no	ves/ no
Test Method ID		M26A	02, % by Vol	9		Pitot Coefficie	ent	0	.84	Orsat good	NA	yesno_	yes / no	yes / no
Date ID		3NOV2015	Temperature (Nozzle ID				Temp Cheo		Pre-Te	est Set	Post-Test Set
Source/Locatio		ESP Stack	Meter Temp (^c			Avg Nozzie D		.23		_Meter Box Te		66	2	68
Sample Date		15/15	Static Press (i	n H ₂ O)	5 -12 7	_Area of Stack	(ft ²)	39.		Reference To			6	67
Baro. Press (in	Hg)	29.26		• incentitionees	••••••••••••••••••••••••••••••••••••••	Sample Time		60		Pass/Fail (+/-		Pass	/ Fail	Pase / Fail
Operator	<u></u>	Mills	Ambient Temp	o (°F)		Total Travers	e Pts	12) 	_Temp Chang	e Response '	Ves)/ no	yeg / no
		1								1		~~~~~		
TRAVERSE	SAMPLE		VELOCITY	ORIFICE	DRY GAS METER	STACK.	DGM INLET	DGM	PROBE	FILTER	MPINGER	SAMPLE	Contraction of the	
POINT	TIME (min) (plant time)	PRESSURE Delta	PRESSURE	READING (ft ²)	TEMP ("F)	TEMP ('F)	OUTLET	TEMP (F)	BOX TEMP	EXIT TEMP	TRAIN VAC		COMMENTS
NQ.	~ ~	10/7	P (in H2O)	Delta H (in H2O)	834,535			TEMP (`F)		(F)	(°F)	(in Hg)		
<u> </u>	<u> </u>	-1057-	100	1.73		400	1 A.A	68	260	268	66	5		
AI			1.05		838.0		NA					5	<u> </u>	
2	10		1.10	1.81	01101	401	<i> </i>	69	262	264	60		<u> </u>	
3	15	1/12	1.05	1.73	845,144	396		69	264	265	58	5	<u> </u>	
			· ·		e									
	0		*	and the second	815,144									
Bi	5	1110	0,95	1,57	848,4	402	NIA	69	262	267	62	45		
2	10		0,94	1.55	851.7	405	1 1	70	260	268	60	4.5		
2	15	1130	0.80	1,32	854.672			70	263	262	61	4.0	•	
·		++++	0,00	1176	100 4001-		1		<u> </u>					
	0	1122			854.672			A DESCRIPTION OF THE OWNER OWNER OF THE OWNER		<u></u>			<u>}</u>	
		11120	6.2	100		401	100		1200	266	63	4.0	┠┣	
GI	_5		0.83	1:37	857.8		NA	70	259				<u> </u>	
2	10			1.30	\$60,8	404	↓	70	263	269	63	4.0		
3	15	1147	0.76	1.25	863,742	396		20	262	266	64	4.0		
												d'e		
	0	1,49		and the same	863,742						Character Street Concernance of Street			<i>'</i>
D_{i}	5		0:65	1.07	766,5	395	Nr	70	258	267	64	3.5		
2	10	1 ,	0.56	0.92	869.0	393		70	256	265	64	3.0	11	
2	15	1204	0.54	0.89	871.478	391	11	20	260	261	66	3.0		
	-0	++++++	- <u>c</u> , <u>r</u>		04,110		1	-10-			- G263	-7.0		
			1						+	+			<u> </u>	
							+ + + + -							
			+				<u>↓¥</u>						<u> </u>	
							<u> </u>				l		<u> </u>	
							1/							
					/	X/	X							
]	1	1	A/									
			Avg Delta PV 0.83500	Avg Delta H	Total Volume	Avg Ts 398,16	Avg	9,50	Min/Max	Min/Max	Max Temp	Max Vac	Max Temp	
W.V.	SUC	N		113750	126,927	398.16	6	4.50	270/267	261 269	1 16	5		
			Avg Sqrt Delta P	Avg Sqrt Del H	Comments:				1	V	EPA 26A fro	m 40CFR Par	t 60 App A	1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~		0.90815	1.165/						1 1				1.
	~			L	ن ـــ			K	VOJ N	1=10.6	~ 1		.a ⁻ 7	VAn
Ag	Q1_LWE	C001_Opactiy_	_003851					-	FION N	~	2014	3517	117	(V T
Dà	~											/		1

ISOKINE	TIC FII	ELD I	DATA SH			EPA M	Iethod 2	26A - H		12			Pageof	<u>].</u>
Client W.O.# Project ID Mode/Source ID Samp. Loc. ID Run No.ID Test Method ID Date ID Source/Location Sample Date Baro. Press (in Hg) Operator	LW 14 LW (C S S M: 3NO ESP	/EC 464 /EC 22 TK 2 26A /2015 Stack	% Moisture Impinger Vol (Silica gel (g) CO2, % by Vol O2, % by Vol Temperature Meter Temp (Static Press (i Ambient Tem)	Stack Condit Assum (ml) (°F) %F) 700 (°F) 700 (°T)	Assumed Actual $1/2^{\circ}$ 1/1.9 700 70 -12,7 -12,6		Meter Box ID Meter Box Y Meter Box Del H Probe ID / Length Probe Material Pitot / Thermocouple ID Pitot Coefficient Nozzle ID Avg Nozzle Dia (in) Area of Stack (ft ²) Sample Time Total Traverse Pts		31 12 323 7 70 84	Leak Checks Sample Train (ft ³) Leak Check @ (in Hg) Pitot good Orsat good V/A Temp Check Meter Box Temp Reference Temp Pass/Fail (+/- 2 ^o) Temp Change Response		K Factor Initial 0.002 /3 (reg) no yes/no Pre-Te 69 68	//65 Mid-Poin yes / no yes / no est Set	
POINT TIM NO.	Selection of the second second		VELOCITY PRESSURE Delta P (in H2O)	ORIFICE PRESSURE Delta H (in H2O)	DRY GAS METER READING (11 ¹)	STACK TEMP ("F)	DGM INLET TEMP ("F)	DGM OUTLET TEMP ('F)	PROBE TEMP (°F) 2 56	FILTER BOX TEMP (F) 262	IMPING EXIT TEMP (°F)	SAMPLE TRAIN VAC (in Hg)		COMMENTS
B I S	0 12	40 13	1.15 1.05 0.95	1,89 1.73 1.57	8706 882,041 882,041 885,4	398 394 		71	261 261 264	266 262 263	58 57 65	5.0		
3	0 5 17	58 >	0,793 0,78 0,79	1.53 1.29 1:30	888, 7 891, 660 891, 660 894, E	402	NA NA	74 74 74	259 262 258	267 260 258	60 60	45		
3 (D i	2 5 13	16	0,76 0,73	1,25 1,20 1.04	897,6 900.588 900.588 900.588 903.3	400 396 401	NA NA	76 76 76	260 261 257	266 262 268	64 63 61	4		
3 /		33	0.59	0.97 0.92	905,9 908,460	904 904		76	260 262	263	64 63	3.5		
			Avg Delta P 0.83067	Avg Delta H	Tojal Volume 736,872	Avg Ts 40U VS	Avg	Tm	Min/Max	Min/Max	Max Temp	Max Vac	Max Temp	
A 200 01	LWEC001_C		Avg Sqrt Delta	176035 Avg Sqrt Del HV 1.16238	/ /0, °C / <u>L</u> Comments:	<u>1 400, 27</u>		=97.94 m	- 14-9	1 1791	EPA 26A fro	m 40CFR Part 357	60 App A	m

int		LWEC		Stack Conditi	ons	Meter Box ID		W.C.	37		and the second sec	K Fester	11-	4
).#		14464		Assum	ed Actual	Meter Box Y		. 99	12			K Factor	1.65	
ect ID		LWEC	% Moisture	16		Meter Box De		2.03		Leak Chec		Initial	Mid-Point	
de/Source ID		C2	Impinger Vol (r	ni)	128,	Probe ID / Ler	-		Contraction of the second s	Sample Train		0002		0.002
np. Loc. ID		STK	Silica gel (g)		20,4	Probe Materia		and the second se		Leak Check (16	<u>-</u>	9
i No.ID t Method ID		3 M26A	CO2, % by Vol O2, % by Vol			Pitot / Thermo Pitot Coefficie		<u>P524</u>	.84	Pitot good	100	1 no	yes / no	
e ID		3NOV2015	Temperature (°F) 400		Nozzle ID	91 IL	0		Orsat good Temp Cheo	NA .	- yes / no - Pro-T	l ves / no est Set	Post-Test S
rce/Location		ESP Stack	Meter Temp (°			Avg Nozzle D	ia (in)	0.23		Meter Box Te	-	7 8		70
nple Date	1	11515	Static Press (ir		7 -125	Area of Stack		39		Reference Te		2	and a second	69
o. Press (in Hg))	29.09			100	Sample Time		60		Pass/Fail (+/-	· 2 [°])	Pass	/ Fail	Pass / Fail
erator		115/ Being	Ambient Temp	• (°F)		Total Travers	e Pts			Temp Chang	e Response '	yes)/ no	Ves / no
			1											
	AMPLE AE (min)	CLOCK TIME (plant time)	VELOCITY PRESSURE Delta	ORIFICE	DRY GAS METER READING (II')	STACK	DGM INLET	DGM OUTLET	PROBE	FILTER BOX TEMP	IMPINGER EXIT TEMP	SAMPLE TRAIN VAC		COMMENTS
NO.	ne (mm)	(plant time)		Delta H (in H2O)	ACRONATION (TEMP ('F)	TEMP (°F)	TEMP (T)	TEMP (°F)	EUA IERRE (F)	(°F)	(in Hg)		Contraction of the
	0	1400			908.585									
AI	5	160	1.05	173	912.0	402	NA	77	157	262	68	5.0		
2	10		1.15	1189	915.7	402		77	259	266	59	50		
3	15	1415	1.05	1,73	919.214	395		77	261	263	54	5.0		
			1	,										
	0	1418			919,214			and the second						
BI.	5		0.95	1,57	922.5	405	NA	76	263	270	64 0	74.5		
ス	10		0.97.	1,60	926.1	409		76	262	271	562	250	-4.5	
	15	1433	0,86	1.42	928,924	407	\prod_{i}	76	263	266	54	4.5		
	0	1440			928.924	ener Cartanener and Cartanener	V	a California and a subscription of the subscri	Contraction of the local division of the loc				•	
CI.	5	TFIO	0,76	1,25	9321	411	NA	75	256	264	65	4.0		
2 1	i0		0.74	1.22	935.1	412	1	74	259	264	58	4.0		
3 4	5	1455	0,74	122	937.957	406		74	259	270	58	4.0		
			, , ,					/	/ /			,		
	0	1500			937.957						and the second		+	
Dis	5	1.00	0,53	0.87	940.4	411.	NA	73	257	265	64	35		
2 /	i0		0.56	0.92	943.0	414		74	259	261	61	3.5		
3 1	ى	1515	0.55	0.91	945.573	410		73	260	268	62	3.5		
VIALIEN	<u>м</u>													
<u>ASIO</u>					/									
				,/	[<u>/</u>								
				'			\checkmark	Ľ						
	_		Avg Delta PV 0,187583 Avg Sqrt Delta V 0,90157	Avg Delta H 13 609 Avg Sgrt Del H 1.15700	Total Volume	407.0	AVC 75	Tm	Min/Max	Min/Max 261/271	Max Temp	Max Vac	Max Temp	,
*[0,8000	117600	190,100	1 701.0	1 75		100/267	1261/211				
123			AVg Sqrt Delta V		Comments:				/	/	EPA 26A fro	m 40CFR Par	t 60 App A	VAAA
AO			0,7017/	1.12100					1	1				/ //

SAMPLE RECOVERY FIELD DATA

EPA Method 26A - HCl & Cl2

Client		LWE			W.O. #		14464			
Location/Pla	ant	L'Anse,	MI	Source	& Location		ESP Stack			
Run No.					Sample Date	11/5	[20]	5		
Sample I.D.	LWEC - C2 - 3	STK - 1 - M26A			Analyst	KM	•	Filter Number		
					Impinge	er	<u> </u>			
	1	2	3	4	5	6	7	Imp.Total 8 Total		
Contents	H2SO4	H2SO4	H2SO4	NaOH	NaOH			Silica Gel		
Final	180	90	118					328 314,0		
Initial	50	100	100	100	100			250 300		
Gain	130	-10	18					138 14,0		
Impinger Cold	or	Clee	'n		Labeled?	•••••••••••••••••	/	TSV = 488		
Silica Gel Cor	ndition	34	<u>blie</u>		Sealed?			,		
						. 1 1	· · · · ·			
Run No.	2			:	Sample Date	1151	15 .	Recovery Date		
Sample I.D.	LWEC - C2 - 3	STK - 2 - M26A	-		Analyst	_ Kil		Filter Number		
					Impinge		T	-		
Contents	1 H2SO4	2 H2SO4	3 H2SO4	4 NaOH	5 NaOH	6	7	Imp.Total 8 Total Silica Gel		
Final	150	170	100	Huerr				370 311,8		
Initial	50	100	100	100	100			250 300		
Gain	100	20	Ø	100	100			120 149		
Impinger Cold					Labeled?		///	150 = 470		
	6		an					1002470		
Silica Gel Cor		<u>461</u>	<u>ve</u>		Sealed?	·				
Run No.	3		1. 1. 1. 19 No.		Sample Date	11/5	hs.	Recovery Date /		
Sample I.D.	LWEC - C2 - S	STK - 3 - M26A	-		Analyst	in		Filter Number		
					Impinge	er	-	······································		
	1	2	3	4	5	6	7	Imp.Total 8 Total		
Contents	H2SO4	H2SO4	H2SO4	NaOH	NaOH			Silica Gel		
Final	154	120	104					378 310,4		
Initial	50	100	100	100	100			250 300		
Gain	104	20	4			s.		128 10,4		
Impinger Colo	r	clee	R		Labeled?		V_{j}	Jepi/2TSV =		
Silica Gel Cor	dition	34	blue		Sealed?			Bup 3 JS U =		

Check COC for Sample IDs of Media Blanks

,

METHODS AND ANALYZERS

Client: LWEC Location: Boiler No. 1 Source: ESP Outlet

Analyzer Range, %

Span Concentration, %

Project Number: Operator: **TB** Date: **3 Nov 2015**

File: C:\DATA\LWEC\3 November 2015.cem Program Version: 2.0, built 7 Sep 2011 File Version: 2.02 Computer: WSWCHILLFIELD Trailer: 28 Analog Input Device: Keithley KUSB-3108

20.0

16.5

Channel 1

Analyte	O ₂
Method	EPA 3A, Using Bias
Analyzer Make, Model & Serial No.	Servomex 4900
Full-Scale Output, mv	10000
Analyzer Range, %	25.0
Span Concentration, %	21.3
Channel 2	
Analyte	CO ₂
Method	EPA 3A, Using Bias
Analyzer Make, Model & Serial No.	Servomex 4900
Full-Scale Output, mv	10000

CALIBRATION DATA

Number 1

Client: LWEC Location: Boiler No. 1 Source: ESP Outlet Project Number: Operator: **TB** Date: **3 Nov 2015**

Start Time: 13:21

\mathbf{U}_2

Method: EPA 3A Calibration Type: Linear Zero and High Span

Calibration	Standards	
%	Cylinder ID	
11.8	CC158735	
21.3	CC287635	
 Calibratio	n Results	
Zero	3 mv	
Span, 21.3 %	8557 mv	
 Curve Co	efficients	
Slope	Intercept	
401.8	3	

CC) ₂	
Method:	EPA 3A	
Calibration Type: Linea	ar Zero and High Span	
Calibration	Standards	
%	Cylinder ID	
8.7	CC158735	
16.5	CC287635	
Calibration	n Results	ананан калан к
Zero	4 mv	
Span, 16.5 %	6626 mv	
Curve Co	efficients	un transformation de la constante de la constan
Slope	Intercept	
401.3	4	

CALIBRATION ERROR DATA

Location:	ent: LWEC on: Boiler No. 1 ce: ESP Outlet Calibration 1					ject Number: Operator: TB Date: 3 Nov 201
			Start T	ïme: 13:21	99999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997	
		Slop		O₂ d: EPA 3A onc. 21.3 % Interce	ot 3.0	
- -	Standard	Response	Result	Difference	Error	
	_%	mv	%	%	%	Status
Zero		3	0.0	0.0	0.0	Pass
	11.8	4813	12.0	0.2	0.9	Pass
=	21.3	8557	21.3	0.0	0.0	Pass
_		Slope	CO₂ d: EPA 3A onc. 16.5 % Intercer	ot 4.0		
	Standard	Response	Result	Difference	Error	
	%	mv	%	%	%	Status
			0.0	0.0	0.0	Pass
	Zero	4	0.0	0.0	0.0	1 433
	Zero 8.7	4 3483	0.0 8.7	0.0	0.0	Pass

BIAS

Number 1

Location:	ent: LWEC on: Boiler No. 1 ce: ESP Outlet Calibration 1					Proje	TB 3 Nov 2015	
			Star	t Time:	14:52			
				O₂ hod: EP i Conc. 2				
	<u></u>		Bi	as Resu	lts			•
	Standard	Cal.	Response	Bias	Difference	Error		
	Gas	%	mv	%	%	%	Status	
	Zero	0.0	75	0.2	0.2	0.9	Pass	
	Span	12.0	4843	12.0	0.0	0.0	Pass	an a
				CO₂ hod: EP Conc. 1				
			Bi	as Resu	lts			
	Standard	Cal.	Response	Bias	Difference	Error		
	Gas	%	mv	%	%	%	Status	
	Zero	0.0	19	0.0	0.0	0.0	Pass	
	Span	8.7	3319	8.3	-0.4	-2.4	Pass	

.

Client: LWEC Location: Boiler No. 1 Source: ESP Outlet	С	alibration	1	Operator:	Conditon1 Run-1 TB 3 Nov 2015
	Time	O 2 %	CO2 %		
891094mmtariareanananananananananananananananananana	1510-1522 -	Servome	x locked	up	*******
	15:23	11.4	8.8		
	15:24	11.4	8.8		
	15:25	11.7	8.8		
	15:26	11.9	8.6		
	15:27	11.9	8.3		
	15:28	11.7	8.4		
	15:29	11.5	8.6		
	15:30	11.4	8.7		
	15:31	11.3	8.8		
	15:32	11.4	8.9		
	15:33	11.6	8.8		
	15:34	11.7	8.6		
	15:35	11.6	8.5		
	15:36	11.5	8.6		
	15:37	11.4	8.7		
	15:38	11.4	8.8		
	15:39	11.6	8.8		
	15:40	11.7	8.6		
	15:41	11.5	8.5		
	15:42	11.4	8.6		
	15:43	11.3	8.8		
	15:44	11.4	8.9		
	15:45	11.5	8.9		
	15:46	11.4	8.7		
	15:47	11.5	8.7		
	15:48 15:49	11.5 11.6	8.7 8.6		
	15:49	11.6	8.5		
	15:50	11.7	8.5		
	15:52	11.9	8.3		
	15:53	11.7	8.5 8.5		
	15:54	11.3	8.6		
	15:55	11.6	8.8		
	15:56	11.6	8.6		
	15:57	11.8	8.5		
	15:58	11.4	8.5		
	15:59	11.4	8.8		
	16:00	11.1	8.9		
	16:01	11.5	9.0		
	16:02	11.7	9.0 8.6		
	16:02	11.7	8.5		A
Q1_LWEC001_Opactiy_003859		• • • • •			STON

Client: LWEC Location: Boiler No. 1 Source: ESP Outlet	C	alibration	1	Project Number: Conditon1 Run-1 Operator: TB Date: 3 Nov 2015
	Time	O2 %	CO2 %	
	16:04	11.4	8.6	
	16:05	11.3	8.8	
	16:06	11.2	8.9	
	16:07	11.3	9.0	
	16:08	11.4	9.0	
	16:09	11.4	8.9	
	16:10	11.3	8.9	
	16:11	11.4	8.9	
	16:12	11.5	8.8	
	16:13	11.6	8.7	
	16:14	11.3	8.7	
	Avgs	11.5	8.7	

RUN SUMMARY

Client: LWEC Location: Boiler No. 1 Source: ESP Outlet	Calibration 1		Operator:	Conditon1 Run-1 TB 3 Nov 2015						
Method Conc. Units	O ₂ EPA 3A %	CO ₂ EPA 3A %								
Tir	ne: 15:22 to 1	6:14								
	Run Averages	5								
	11.5	8.7								
Pre-run Bias at 14:52										
Zero Bias Span Bias Span Gas	0.2 12.0 11.8	0.0 8.3 8.7								
Pos	st-run Bias at 1	18:36								
Zero Bias Span Bias Span Gas	0.2 11.8 11.8	0.3 8.5 8.7								
Averages corrected for the	Averages corrected for the average of the pre-run and post-run bias									
	11.4	9.0								

Number 1

Client: LWEC Location: Boiler No. 1 Source: ESP Outlet	с	alibration	1	Project Number: Condition1 Run-2 Operator: TB Date: 3 Nov 2015
	Time	O 2 %	CO₂ %	
	16:51	11.3	8.9	
	16:52	11.4	8.8	
	16:53	11.6	8.8	
	16:54	11.6	8.6	
	16:55	11.6	8.5	
	16:56	11.6	8.5	
	16:57	11.5	8.6	
	16:58	11.4	8.7	
	16:59	11.5	8.8	
	17:00	11.6	8.8	
	17:01	11.7	8.6	
	17:02	11.6	8.5	
	17:03	11.5	8.6	
	17:04	11.7	8.7	
	17:05	11.8	8.5	
	17:06	11.8	8.4	
	17:07	11.9	8.4	
	17:08	11.8	8.2	
	17:09	11.8	8.5	
	17:10	11.8	8.5	
	17:11	11.8	8.4	
	17:12	11.7	8.4	
	17:13	11.7	8.5	
	17:14	11.6	8.5	
	17:15	11.6	8.6	
	17:16	11.5	8.6	
	17:17	11.7	8.7	
	17:18	11.7	8.6	
	17:19	11.7	8.6	
	17:20	11.5	8.6	
	17:21	11.6	8.7	
	17:22	11.8	8.7	
	17:23	11.9	8.4	
	17:24	11.7	8.4	
	17:25	11.5	8.6	
	17:26	11.6	8.7	
	17:27	11.7	8.7	
	17:28	12.0	8.6	
	17:29	11.7	8.3 8.5	
	17:30	11.7	8.5 8.5	
	17:31	11.7	8.5 8.5	
Q1_LWEC001_Opactiy_003862	17:32	11.9	8.5	

Client: LWEC Location: Boiler No. 1 Source: ESP Outlet	C	alibration	1	Project Number: Condition1 Run-2 Operator: TB Date: 3 Nov 2015
	Time	O2 %	CO2 %	
	17:33	11.9	8.3	
	17:34	11.8	8.2	
	17:35	11.6	8.3	
	17:36	11.5	8.5	
	17:37	11.6	8.7	
	17:38	11.7	8.6	
	17:39	11.6	8.5	
	17:40	11.5	8.5	
	17:41	11.5	8.6	
	17:42	11.4	8.6	
	17:43	11.7	8.7	
	17:44	11.8	8.5	
	17:45	11.9	8.3	
	17:46	11.8	8.2	
	17:47	11.6	8.3	
	17:48	11.7	8.5	
	17:49	11.8	8.4	
	17:50	11.8	8.4	
	17:51	11.7	8.4	
	17:52	11.7	8.5	
	17:53	11.5	8.5	
	17:54	11.6	8.6	
	17:55	11.7	8.5	
	17:56	11.8	8.4	
	Avgs	11.7	8.5	

RUN SUMMARY

Client: LWEC Location: Boiler No. 1 Source: ESP Outlet	Calibration 1		Operator:	Condition1 Run-2 TB 3 Nov 2015
Method Conc. Units	O 2 EPA 3A %	CO 2 EPA 3A %		
Ti	me: 16:50 to 1	7:56		
	Run Average	S		
	11.7	8.5		
Pr	e-run Bias at 1	4:52		
Zero Bias Span Bias Span Gas	0.2 12.0 11.8	0.0 8.3 8.7		
Pos	st-run Bias at	18:36		
Zero Bias Span Bias Span Gas	0.2 11.8 11.8	0.3 8.5 8.7		
Averages corrected for the	e average of th	ne pre-run an	d post-run bia	as
	11.6	8.9		

BIAS AND CALIBRATION DRIFT

Client: I	LWEC Boiler No. 1					Proj	ect Number: Operator:	тв
	ESP Outlet		Ca	alibratior	1			3 Nov 20
				(T	10.00			
			Star	t Time: 1	18:36			
				O 2				
				hod: EP				
			Span	Conc. 2	1.3 %			-
			Bi	ias Resu	llts			
	Standard	Cal.	Response	Bias	Difference	Error	Chatwa	
	Gas Zero	% 0.0	mv 103	% 0.2	% 0.2	% 0.9	Status Pass	
	Span	12.0	4738	11 <i>.</i> 8	-0.2	-0.9	Pass	
								•
				ibration				
	Standard	Initial*	Fina		Difference	Drift	0 ()	
	Gas	% 0.2	mv 103	% 0.2	% 0.0	% 0.0	Status Pass	
	Zero Span	0.2 12.0	4738	0.2 11.8	-0.2	-0.9	Pass	
		*Bias No.		11.0	0.2	010	1 400	
			Mot	CO₂ hod: EP	A 3A			
				Conc. 1				
			Bi	as Resu	lts			
	Standard	Cal.	Response	Bias	Difference	Error		
	Gas	%	mv	%	%	%	Status	
	Zero	0.0	116	0.3	0.3	1.8	Pass	
	Span	8.7	3404	8.5	-0.2	-1.2	Pass	
	_			bration				
	Standard	Initial*	Fina		Difference	Drift	04-1	
	Gas	%	mv	%	%	%	Status	
	Zero	0.0	116 3404	0.3 8 5	0.3	1.8 1.2	Pass	
	Span	8.3 *Bias No. *	3404 1	8.5	0.2	1.2	Pass	
		DIAS INU.	I					

METHODS AND ANALYZERS

Client: LWEC Location: Boiler No. 1 Source: ESP Outlet

Project Number: Condition1 Run-3 Operator: TB Date: 4 Nov 2015

File: C:\DATA\LWEC\4 November 2015.cem Program Version: 2.0, built 7 Sep 2011 File Version: 2.02 Computer: WSWCHILLFIELD Trailer: 28 Analog Input Device: Keithley KUSB-3108

Channel 1

Analyte	O ₂
Method	EPA 3A, Using Bias
Analyzer Make, Model & Serial No.	Servomex 4900
Full-Scale Output, mv	10000
Analyzer Range, %	25.0
Span Concentration, %	21.3
Channel 2	
Analyte	<u> </u>

Analyte
Method
Analyzer Make, Model & Serial No.
Full-Scale Output, mv
Analyzer Range, %
Span Concentration, %

CO₂ EPA 3A, Using Bias Servomex 4900 10000 20.0 16.5

CALIBRATION DATA

Number 1

Client: LWEC Location: Boiler No. 1 Source: ESP Outlet Project Number: Condition1 Run-3 Operator: TB Date: 4 Nov 2015

Start Time: 08:41

O₂

Method: EPA 3A Calibration Type: Linear Zero and High Span

Calibratior	Standards	
%	Cylinder ID	
11.8	CC158735	
21.3	CC287635	
Calibratio	on Results	
Zero	-1 mv	
Span, 21.3 %	8449 mv	
Curve Co	oefficients	
Slope	Intercept	
396.9	-1	

CC Method:		
 Calibration Type: Linea	ar Zero and High Span	
Calibration	Standards	
%	Cylinder ID	
8.7	CC158735	
16.5	CC287635	
 Calibration	n Results	
Zero	14 mv	
Span, 16 <i>.</i> 5 %	6579 mv	
Curve Co	efficients	
Slope	Intercept	
397.9	14	

CALIBRATION ERROR DATA

Client: LWEC Location: Boiler No. 1 Source: ESP Outlet		Calibration 1	-	Number: Condition1 Run Operator: TB Date: 4 Nov 2015
		Start Time: 08:41		
	Slope 39	O₂ Method: EPA 3A Span Conc. 21.3 % 96.9 Int	6 ercept -1.0	
Standard	Result	Difference	Error	· · · · · · · · · · · · · · · · · · ·
%	%	%	%	Status
Zero	0.0	0.0	0.0	Pass
11.8	12.1	0.3	1.4	Pass
21.3	21.3	0.0	0.0	Pass
	Slope 39	CO₂ Method: EPA 3A Span Conc. 16.5 % 97.9 Int e	。 ercept 14.0	
Standard	Result	Difference	Error	
%	%	%	%	Status
Zero	0.0	0.0	0.0	Pass
8.7	8.7	0.0	0.0	Pass
16.5	16.5	0.0	0.0	Pass

BIAS

LWEC Boiler No. 1 ESP Outlet		Calibration 1			umber: Condition1 Ru erator: TB Date: 4 Nov 2015
 		Start Ti	me: 09:03		
			O₂ J: EPA 3A onc. 21.3 %		
		Bias	Results		
Standard	Cal.	Bias	Difference	Error	
Gas	%	%	%	%	Status
Zero	0.0	0.1	0.1	0.5	Pass
 Span	12.1	11.9	-0.2	-0.9	Pass
		Method	CO₂ 1: EPA 3A onc. 16.5 %		
		Bias	Results		
Standard	Cal.	Bias	Difference	Error	
Gas	%	%	%	%	Status
Zero	0.0	0.1	0.1	0.6	Pass
Span	8.7	8.5	-0.2	-1.2	Pass

Number 3

Client: LWEC Location: Boiler No. 1 Source: ESP Outlet	Calibration 1			Project Number: Condition1 Run-3 Operator: TB Date: 4 Nov 2015
	Time	O2 %	CO2 %	
	09:13	9.8	10.5	
	09:14	9.7	10.2	
	09:15	9.5	10.5	
	09:16	9.2	10.6	
	09:17	9.3	10.9	
	09:18	9.5	10.7	
	09:19	9.8	10.5	
	09:20	9.9	10.3	
	09:21	10.0	10.2	
	09:22	9.7	10.2	
	09:23	9.4	10.7	
	09:24	9.2	10.8	
	09:25	9.1	11.0	
	09:26	9.2	11.0	
	09:27	9.6	10.7	
	09:28	9.8	10.5	
	09:29	9.8	10.4	
	09:30	9.3	10.7	
	09:31	9.1	11.1	
	09:32	9.2	11.1	
	09:33	9.6	10.7	
	09:34	9.8	10.5	
	09:35	9.5	10.5	
	09:36	9.3	10.7	
	09:37	9.2	10.9	
	09:38	8.9	11.1	
	09:39	9.0	11.2	
	09:40	9.3	11.2	
	09:41 09:42	9.8 10.0	10.6 10.4	
	09:42 09:43	10.0 9.5	10.4	
	09:43 09:44	9.5 9.2	10.5	
	09:44 09:45	9.2 9.2	11.1	
	09:45 09:46	9.2 9.5	10.9	
	09:48 09:47	9.5 9.6	10.9	
	09.47	9.0 9.3	10.8	
	09.48	9.3 8.7	11.3	
	09:49	8.8	11.6	
	09:50	9.3	11.2	
	09:52	10.1	10.5	
	09:53	10.0	9.9	
	09:54	9.5	10.8	
Q1_LWEC001_Opactiy_003870	VV.UT	0.0	.0.0	
				SOLUTIONS

Number 3

Client: LWEC Location: Boiler No. 1				Project Number: Condition1 Run-3 Operator: TB		
Source: ESP Outlet	Ca	alibration	1	Date: 4 Nov 2015		
	Time	O 2 %	CO2 %			
	09:55	9.3	10.6			
	09:56	9.2	11.0			
	09:57	9.1	10.9			
	09:58	9.3	11.1			
	09:59	9.3	10.8			
	10:00	9.6	10.8			
	10:01	9.4	10.5			
	10:02	9.2	10.9			
	10:03	9.0	11.0			
	10:04	9.2	11.1			
	10:05	9.2	11.0			
	10:06	9.4	10.9			
	10:07	9.3	10.8			
	10:08	9.3	10.9			
	10:09	9.1	10.9			
	10:10	9.2	11.1			
	10:11	9.0	11.1			
	10:12	9.0	11.2			
	10:13	9.0	11.3			
	10:14	9.3	11.1			
	10:15	9.4	10.9			
	10:16	9.4	10.9			
	10:17	9.1	11.0			
	10:18	8.9	11.2			
	10:19	9.1	11.3			
	10:20	9.7	10.6			
	Avgs	9.4	10.8			

•

RUN SUMMARY

Client: LWEC Location: Boiler No. 1 Source: ESP Outlet	Calibration		Project Number: Condition1 Run-3 Operator: TB Date: 4 Nov 2015
Method Conc. Uni	0₂ EPA 3A ts %	CO₂ EPA 3A %	
	Time: 09:12 to 7	10:20	
	Run Average	es	
	9.4	10.8	
Ŧ	Pre-run Bias at	09:03	
Zero Bias Span Bias Span Gas	11.9	0.1 8.5 8.7	
P	ost-run Bias at	17:01	
Zero Bias Span Bias Span Gas		0.1 8.6 8.7	
Averages corrected for t	the average of t	he pre-run	and post-run bias
	9.3	11.1	

METHODS AND ANALYZERS

Client: LWEC Location: Boiler No. 1 Source: ESP Outlet

Full-Scale Output, mv

Span Concentration, %

Analyzer Range, %

Project Number: Condition-2 Operator: TB Date: 5 Nov 2015

File: C:\DATA\LWEC\5 November 2015.cem Program Version: 2.0, built 7 Sep 2011 File Version: 2.02 Computer: WSWCHILLFIELD Trailer: 28 Analog Input Device: Keithley KUSB-3108

10000

20.0

16.5

Channel 1

Analyte	O 2
Method	EPA 3A, Using Bias
Analyzer Make, Model & Serial No.	Servomex 4900
Full-Scale Output, mv	10000
Analyzer Range, %	25.0
Span Concentration, %	21.3
Channel 2	
Analyte	CO ₂
Method	EPA 3A, Using Bias
Analyzer Make, Model & Serial No.	Servomex 4900

WESTON ----

CALIBRATION DATA

Number 1

Client: LWEC Location: Boiler No. 1 Source: ESP Outlet Project Number: Condition-2 Operator: TB Date: 5 Nov 2015

Start Time: 07:57

Method: EPA 3A Calibration Type: Linear Zero and High Span

Calibrat	ion Standards	
%	Cylinder ID	
11.8	CC158735	
21.3	CC287635	
Calibra	ition Results	
Zero	2 mv	
Span, 21.3 %	8541 mv	
Curve	Coefficients	
Slope	Intercept	
401.1	2	

C	D_2	
Method:	EPA 3A	
Calibration Type: Linea	ar Zero and High Span	
Calibration	Standards	
%	Cylinder ID	
8.7	CC158735	
16.5	CC287635	
Calibratio	n Results	
Zero	2 mv	
Span, 16.5 %	6627 mv	
Curve Co	efficients	
Slope	Intercept	
401.5	2	

CALIBRATION ERROR DATA

Locatior	t: LWEC n: Boiler No. 1 e: ESP Outlet		Calibration 1		Project Number: Operator: Date:	
			Start Time: 07:5	7		
		Slope 4	O₂ Method: EPA 3A Span Conc. 21.3 01.1 Ir			
	Standard	Result	Difference	Error		
	_%	%	%	%	Status	
	Zero	0.0	0.0	0.0	Pass	
	11.8	11.9	0.1	0.5	Pass	
	21.3	21.3	0.0	0.0	Pass	
		Slope 40	CO₂ Method: EPA 3A Span Conc. 16.5 °)1.5 In			
	Standard	Result	Difference	Error		
	%	%	%	%	Status	
	Zero	0.0	0.0	0.0	Pass	
	8.7 16 F	8.7	0.0	0.0	Pass	
	16.5	16.5	0.0	0.0	Pass	

BIAS Number 1

Location:	LWEC Boiler No. 1 ESP Outlet		Calib	ration 1	Pr	oject Number: Operator: Date:	
			Start Ti	me: 08:14			
				O₂ d: EPA 3A onc. 21.3 %			
	Standard Gas Zero Span	Cal. % 0.0 11.9	Bias Bias % 0.0 11.9	Results Difference % 0.0 0.0	Error % 0.0 0.0	Status Pass Pass	
			Method	CO₂ d: EPA 3A onc. 16.5 %			
				Results			-
	Standard Gas Zero Span	Cal. % 0.0 8.7	Bias % 0.0 8.5	Difference % 0.0 -0.2	Error % 0.0 -1.2	Status Pass Pass	

ł

RUN DATA

Client: LWEC Location: Boiler No. 1 Source: ESP Outlet	С	alibration	1	Operator:	Condition-2 Run-1 TB 5 Nov 2015
	Time	O 2 %	CO 2 %		
	07 invalid da	ata due to	signal c	able failure	*****
	11:08	8.9	11.1		
	11:09	8.7	11.1		
	11:10	7.9	11.8		
	11:11	8.0	12.0		
	11:12	8.0	12.0		
	11:13	9.1	11.2		
	11:14	9.0	10.7		
	11:15	9.2	10.9		
	11:16	8.8	10.8		
	11:17	8.8	11.2		
	11:18	8.3	11.5		
	11:19	9.0	11.2		
	11:20	9.5	10.7		
	11:21	9.5	10.4		
	11:22	8.3	11.4		
	11:23	8.4	11.8		
	11:24	9.0	11.3		
	11:25 11:26	9.2	10.8		
	11:27	8.9 9.0	11.3 11.0		
	11:27	9.0 8.7			
	11:28	8.9	11.1 11.0		
	11:30	8.8	11.0		
	11:30	9.0	11.0		
	11:32	9.0	10.9		
	11:32	9.2 9.2	10.9		
	11:34	8.8	11.1		
	11:35	8.9	11.1		
	11:36	9.4	10.8		
	11:37	9.4 9.5	10.8		
	11:38	9.8	10.3		
	11:39	9.2	10.4		
	11:40	8.5	11.4		
	11:41	7.8	11.9		
	11:42	8.4	12.0		
	11:43	9.7	10.6		
	11:44	10.4	9.6		
	11:45	9.7	10.0		
	11:46	8.9	10.9		
	11:47	8.6	11.3		
	11:48	8.9	11.2		
Q1_LWEC001_Opactiy_003877					

RUN DATA

Client: LWEC Location: Boiler No. 1				Project Number: Condition-2 Run-1 Operator: TB
Source: ESP Outlet	Ca	alibration	1	Date: 5 Nov 2015
	Time	O 2 %	CO 2 %	
	11:49	8.8	11.0	
	11:50	8.8	11.1	
	11:51	8.6	11.3	
	11:52	9.1	11.2	
	11:53	9.3	10.5	
	11:54	9.1	10.7	
	11:55	8.8	10.9	
	11:56	8.9	11.1	
	11:57	9.5	10.8	
	11:58	9.9	10.0	
	11:59	9.1	10.6	
	12:00	9.3	10.9	
	12:01	9.3	10.3	
	12:02	8.7	11.1	
	12:03	8.6	11.2	
	12:04	9.0	11.2	
	Avgs	9.0	11.0	

RUN SUMMARY

Number 1

Client: LWEC Location: Boiler No. 1 Source: ESP Outlet	Calibration		Operator:	Condition-2 Run-1 TB 5 Nov 2015
Method Conc. Units	0 ₂ EPA 3A %	CO₂ EPA 3A %		
Tir	me: 11:07 to 1	2:04		
	Run Average	s		
	9.0	11.0		
Pre	e-run Bias at (08:14		
Zero Bias Span Bias Span Gas	0.0 11.9 11.8	0.0 8.5 8.7		
Pos	st-run Bias at	12:12		
Zero Bias Span Bias Span Gas	0.0 11.9 11.8	0.0 8.5 8.7		
Averages corrected for the	average of t	ne pre-run ar	nd post-run b	ias
	8.9	11.3		

,

BIAS AND CALIBRATION DRIFT

Client: LWEC Location: Boiler No. 1 Source: ESP Outlet			ration 1		mber: Condition- erator: TB Date: 5 Nov 2015	
		Start II	me: 12:12			
			O₂ d: EPA 3A onc. 21.3 %			
		Bias	Results			
Standard Gas Zero Span	Cal. % 0.0 11.9	Bias % 0.0 11.9	Difference % 0.0 0.0	Error % 0.0 0.0	Status Pass Pass	
		Calibra	ation Drift	*****		
Standard Gas	Initial* %	Final %	Difference %	Drift %	Statús	
Zero	76 0.0	/ 0 0.0	0.0	7 6 0.0	Pass	
Span	11.9 *Bias No. 1	11.9	0.0	0.0	Pass	:
		Method	CO₂ I: EPA 3A onc. 16.5 %			
		Bias	Results			
Standard Gas	Cal. %	Bias %	Difference %	Error %	Status	
Zero Span	0.0 8.7	0.0 8.5	0.0 -0.2	0.0 -1.2	Pass Pass	
	*****		ation Drift			
Standard	Initial*	Final	Difference	Drift		
Gas Zero	% 0.0	% 0.0	% 0.0	% 0.0	Status	
Zero Span	8.5 *Bias No. 1	0.0 8 <i>.</i> 5	0.0	0.0	Pass Pass	

RUN DATA

Client: LWEC Location: Boiler No. 1 Source: ESP Outlet	C	alibration	1	Operator:	Condition-2 Run-2 TB 5 Nov 2015
	Time	O2 %	CO ₂ %		
	12:26	8.7	11.1		
	12:27	8.9	11.2		
	12:28	9.0	11.1		
	12:29	9.0	10.9		
	12:30	8.9	11.0		
	12:31	9.1	11.0		
	12:32	9.1	10.8		
	12:33	9.1	10.9		
	12:34	8.7	11.4		
	12:35 12:36	8.7 8.4	11.3 11.6		
	12:30	9.0	11.2		
	12:38	9.4	10.8		
	12:39	9.8	10.3		
	12:40	9.6	10.3		
	12:41	9.0	10.6		
	12:42	8.6	11.5		
	12:43	9.1	10.9		
	12:44	9.4	10.8		
	12:45	9.7	10.2		
	12:46	9.2	10.5		
	12:47	8.7	11.0		
	12:48	8.8	11.6		
	12:49	9.5	10.4		
	12:50	9.6	10.3		
	12:51 12:52	9.3 9.0	10.4 10.8		
	12:52	9.0 8.6	10.8		
	12:53	9.1	11.1		
	12:55	9.3	10.6		
	12:56	9.4	10.5		
	12:57	8.9	10.8		
	12:58	8.7	11.2		
	12:59	8.9	11.1		
	13:00	9.1	11.0		
	13:01	9.3	10.5		
	13:02	9.2	10.7		
	13:03	9.3	10.5		
	13:04	9.4	10.5		
	13:05	8.8	10.8		
	13:06	8.7	11.2		
Q1_LWEC001_Opactiy_003881	13:07	9.2	11.1		ESTON
					SOLUTIONS

Client: LWEC Location: Boiler No. 1 Source: ESP Outlet	C	alibration	1	Operator:	Condition-2 Run-2 TB 5 Nov 2015
	Time	O 2 %	CO2 %		
	13:08	9.9	10.3		
	13:09	9.4	10.2		
	13:10	8.7	11.1		
	13:11	8.5	11.4		
	13:12	9.1	11.0		
	13:12	9.5	10.5		
	13:14	9.8	10.3		
	13:15	9.2	10.3		
	13:16	8.9	11.2		
	13:17	9.2	10.8		
	13:18	9.1	10.7		
	13:19	9.1	10.7		
	13:20	8.8	10.7		
	13:21	8.4	11.4		
	13:22	8.9	11.2		
	13:23	9.5	10.7		
	13:24	9.7	10.1		
	13:25	9.0	10.1		
	13:26	9.0 8.7	11.0		
	13:27	8.8	11.2		
	13:28	9.4	10.8		
	13:29	9.4 9.4	10.8		
	13:30	9.4 9.1	10.4		
	13:30	9.1 8.6	10.3 11.4		
	13:31	8.0 8.9	11.4		
	13:32	8.9 9.2	10.9		
	Avgs	9.2 9.1	10.9 10.8		
	Avys	J. I	10.0		

RUN SUMMARY

Client: LWEC Location: Boiler No. 1 Source: ESP Outlet	Calibration	(Operator:	Condition-2 Run-2 TB 5 Nov 2015
Metho Conc.		CO₂ EPA 3A %		
	Time: 12:25 to 1	3:33		
	Run Average	S		
	9.1	10.8		
	Pre-run Bias at [,]	12:12		
Zero E Span I Span (Bias 11.9	0.0 8.5 8.7		
	Post-run Bias at	13:38		
Zero E Span I Span (Bias 11.8	0.2 8.5 8.7		
Averages corrected	for the average of t	ne pre-run and p	ost-run b	ias
	9.0	11.2		

BIAS AND CALIBRATION DRIFT

WEC Boiler No. 1 ESP Outlet		Calib	ration 1		mber: Conditi e erator: TB Date: 5 Nov 2	
 		Start Ti	me: 13:38		a a	
			O₂ d: EPA 3A onc. 21.3 %			
Standard	Cal.	Bias Bias	Results Difference	Error		
Gas	%	%	%	%	Status	
Zero	0.0	0.2	0.2	0.9	Pass	
Span	11.9	11.8	-0.1	-0.5	Pass	
		Calibra	ation Drift			
Standard	Initial*	Final	Difference	Drift		
Gas	%	%	%	%	Status	
Zero	0.0	0.2	0.2	0.9	Pass	
 Span	11.9 *Bias No. 2	11.8	-0.1	-0.5	Pass	
		Method	CO₂ 1: EPA 3A onc. 16.5 %			
		Bias	Results			
Standard	Cal.	Bias	Difference	Error		
Gas	%	%	%	%	Status	
Zero	0.0	0.2	0.2	1.2	Pass	
Span	8.7	8.5	-0.2	-1.2	Pass	
			ation Drift			
Standard	Initial*	Final	Difference	Drift		
Gas	%	%	%	%	Status	
Zero	0.0	0.2	0.2	1.2	Pass	
Span	8.5 *Bias No. 2	8.5	0.0	0.0	Pass	

Number 3

Client: LWEC Location: Boiler No. 1 Source: ESP Outlet	C	alibration	1	Operator:	Condition-2 Run-3 TB 5 Nov 2015
·	Time	O 2 %	CO2 %		
	14:01	9.2	10.9		
	14:02	9.1	10.8		
	14:03	9.3	10.9		
	14:04	9.5	10.4		
	14:05	9.5	10.7		
	14:06	8.9	10.8		
	14:07	8.8	11.5		
	14:08	9.5	10.3		
	14:09 14:10	9.6	10.3		
	14:10 14:11	9.3	10.3		
	14:11 14:12	9.2 9.0	10.7 10.8		
	14:12	9.0 9.3	10.8		
	14:13	9.3 9.2	10.8		
	14:14	9.2 8.7	10.8		
	14:15	8.6	11.1		
	14:17	9.3	11.2		
	14:18	9.7	10.1		
	14:19	9.3	10.5		
	14:20	8.6	11.2		
	14:21	8.5	11.6		
	14:22	8.9	11.3		
	14:23	9.7	10.6		
	14:24	10.0	9.8		
	14:25	9.8	9.9		
	14:26	8.9	10.7		
	14:27	9.3	10.9		
	14:28	9.6	10.1		
	14:29	9.8	10.1		
	14:30	9.2	10.4		
	14:31	9.2	10.6		
	14:32	8.8	10.8		
	14:33	9.2	10.9		
	14:34	9.6	10.2		
	14:35	9.3	10.3		
	14:36	9.0	10.8		
	14:37	9.0	10.8		
	14:38	8.8	10.8		
	14:39	9.0	11.1		
	14:40	9.0	10.9		
	14:41	9.3	10.9		
Q1_LWEC001_Opactiy_003885	14:42	8.7	11.1	<u> </u>	STON

Client: LV Location: Be Source: ES	oiler No. 1	Ca	alibration	1	Operator:	Condition-2 Run-3 TB 5 Nov 2015
		Time	O2	CO2		
		TITIC	%	%		
		14:43	8.8	11.2		
		14:44	8.8	11.2		
	-	14:45	9.2	11.2		
		14:46	9.2 9.1	10.7		
		14:47	9.5	10.7		
		14:48	9.0 9.1	10.7		
		14:49	8.5	11.0		
		14:50	8.0	12.0		
		14:50	8.4	12.0		
		14:52	8.8	11.4		
		14:52	9.3	10.8		
		14:54	9.5 8.9	10.8		
		14:55	8.9 8.7	11.1		
		14:56	8.4	11.6		
		14:57	8.8	11.4		
		14:57	8.8 9.1	11.4		
			9.1 9.5	10.7		
		14:59 15:00		10.7		
		15:00	9.4	10.5		
		15:01	9.0	10.7		
		15:02	8.7	11.4		
		15:03	8.7			
		15:04	9.0	11.1		
		15:05	9.4	10.7		
		15:06	9.5	10.5		
		15:07	9.3	10.5		
		15:08	9.0	11.0		
		15:09	8.9	10.9		
		15:10	8.9	11.1		
		15:11	9.4	10.7	,	
		15:12	9.8	10.4		
		15:13	9.4	10.5		
	•	15:14	8.9	11.0		
		15:15	8.9	10.9		
		Avgs	9.1	10.8		

RUN SUMMARY

Client: LWEC Location: Boiler No. 1 Source: ESP Outlet	Calibration 1		Operator:	Condition-2 Run-3 TB 5 Nov 2015
Method Conc. Units	0 ₂ EPA 3A %	CO ₂ EPA 3A %		
Tir	ne: 14:00 to 1	5:15	ana an ann an Anna ann an Anna	******
	Run Averages	5		
	9.1	10.8		
Pre	-run Bias at 1	3:38		
Zero Bias Span Bias Span Gas	0.2 11.8 11.8	0.2 8.5 8.7		
Pos	t-run Bias at 1	5:20		
Zero Bias Span Bias Span Gas	0.1 11.8 11.8	0.1 8.5 8.7		
Averages corrected for the	average of th	e pre-run ai	nd post-run b	ias
	9.1	11.2		

BIAS AND CALIBRATION DRIFT

Number 4

Client: LWEC Location: Boiler No. 1					mber: Conditio	
Source: ESP Outlet		Calib	pration 1		Date: 5 Nov 20	015
	an a consul 4000 a cana a co n 11 000 a mar a 1 000 a mar a	Start Ti	me: 15:20			
			O₂ d: EPA 3A onc. 21.3 %			
Standard	Cal.	Bias Bias	Results Difference	Error		
Gas	%	%	%	%	Status	
Zero	0.0	0.1	0.1	0.5	Pass	
Span	11.9	11.8	-0.1	-0.5	Pass	
		Calibra	ation Drift			
Standard	Initial*	Final	Difference	Drift		
Gas	%	%	%	%	Status	
Zero	0.2	0.1	-0.1	-0.5	Pass	
Span	11.8	11.8	0.0	0.0	Pass	
	*Bias No. 3					
		Method	CO₂ ∄: EPA 3A onc. 16.5 %			

Standard Cal Pizz Difference Error											
Standard	Cal.	Bias	Difference	Error							
Gas	%	%	%	%	Status						
Zero	0.0	0.1	0.1	0.6	Pass						
Span	8.7	8.5	-0.2	-1.2	Pass						
		Calibra	ation Drift								
Standard	Initial*	Final	Difference	Drift							
Gas	%	%	%	%	Status						
Zero	0.2	0.1	-0.1	-0.6	Pass						
Span	8.5	8.5	0.0	0.0	Pass						
	*Bias No. 3										

SOLUTIONS

APPENDIX C OPERATING DATA

SEPTEMBER TEST PROGRAM

LWEC Compliance Testing Fuel Usage Summary Page

Test Date	Time	Wood TPH	Kailroad Lie TPH	Fuel TPH	Penta TPH
<u>9/23/2015 - Lea</u>	a <u>d</u>				
Test #1	15:13 - 16:23	7.28	14.57	1.65	0.24
Test #2	16:57 - 18:08	7.39	14.78	1.65	0.24
<u>9/24/2015 - Lea</u>	ad	- 00			

	Test #3	08:28 - 09:40	7.89	15.78	1.84	0.24
--	---------	---------------	------	-------	------	------

9/24/2015 - Particulate, PM10, Hcl, SO2, Nox

Test #1	11:26 - 13:30	7.55	15.1	1.83	0.24
Test #2	14:48 - 16:57	7.22	14.43	1.84	0.24
Test #3	17:52 - 19:35	7.82	15.64	1.83	0.24

Test Sta	art Time	1513	Test End Time	1623								
Test De	scription	LEAD	TESTING =	H [
Fuel i	n Bins >>	P/	W00D	R/R TIES	Tires	MAIN						
Date: 9	-23-15	R/R TIES/ PENTA	CHIPS	//		FUEL BELT SCALE	Bin 2	Bin 3				
Run No	Time	Reclaimers Rake speed Bin # 1	Rake speed Bin # 2	Rake speed Bin # 3	TDF Screw Speed	J ohn Visual	John Visual	John Visual	Stm Flow	02	lb/mmbtu CO	Opacity
1	1513	8	11	8	18	337.00			193 кррн	7.2	.148	1.6
2	1530	B	10	e	18	342,36			193	7,0	./40	1.8
3	1545	B	9	12	18	347.89			193	7.3	, 118	1.6
4	1600	13	/3	9	18	351,10			194	7.0	.190	1.5
5	1615	9	9	B	18	359.00			195	7.1	.217	1.7
6	1630	C	8	B	18	364.80			193	7,5	,087	1.6
7	1645	8	12	. 8	18	370.44		1 1 1 1	193	7.5	,094	2.0
8	1700	8	1(8	18	376.70		7 5 7 7 7	194	7.3	.178	1.7
9	1 1 1 1 1	1 1 1 1	5 5 1 -	1 5 5		1 7 7		1 1 1 1	1 6 6 8	1	1 1 1	1 1 1 2
10	* * * *	a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T T T T T T T T T T T T T T T T T T T		1	1 1 1 1 1 1			* * *	*	1	, ,
11	1 1 1	1 1 1 1		т U L		1 1 1 America (1990)		; ; ;		4 8 8		
12	* * *			E E E E E E E	5 6 7	1 5 5 	1 7 7) ; ; ;	r 5 1 1			4 1 4 1
13	4 \$ \$ \$; ; ;			, , ,				1
14	1 1 2 		T T T T	1 4 4 • •	F 5 8				: : :	1		
15	• • •		u 5 5 6 7	2 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6 8 8 8			1 1 1 1				
16	- 4 3 8 4	k t t t	- 1 1 1 1		* 8 2							,

Comments:

05/06/10

~

SEPT 23, 2015 L'Anse Warden Electric Co. Compliance Testing - Week of June 22, 2015 Must be completed within 36 hours of start time.

TEST START @ 1513 TEST Finish @ 1808

Hour	ESP	Primary	Primary	Precipitator	Precipitator	Spark
	Data	Current	Voltage	Kilovolts	Milliamps	Rate
<i>15/3</i> ':00 a.m.	#1	262		36	650	3
3 :00 a.m.	#2	238		32	648	3
):00 a.m.	#3	264	84	29	414	3
<i>1600</i> ≈0:00 a. m.	#1	216	,	32	300	11
. 1:00 a.m .	#2	258		34	650	5
. 2:00 p.m .	# 3	218	101	30	466	8
.:00 p.m.	# 1	260		35	644	8
∺00 p.m .	#2	218		29	640	ス
<i>,513</i> - ↓:00 p. m.	#3	216	104	30	528	2
<u>1806</u> 4:00 р.т .	廿 (244		33	640	18
∺00 p.m .	#2	204		28	346	26
i:00 p.m.	#3	208	102	29	526	12
/900 / :00- p.m.	# l	254		35	616	9
-1:00 p. m.	<u>#</u> 2	218		29	644	4
4 00 p.m .	#3	218	100	30	514	
<u>0:00 p.</u> m.						
.1:00 pl m.						

argets - See attached

			ردر	بب ۱۰ سرب ۱				
						SEPT 23	3,2015	
		L		ectric Co. Complia			#1 Test	START @ 1513 TEST FINISH@ 1623 # 2 TEST START 1657 TEST FINISH 1808
Hour	Wood	Ties	Penta Ties	Tires	Opacity	со	Excess O ₂	TEST FINISHE CO
	Ton/Hr	Ton/Hr	Ton/Hr	Ton/Hr	%	#/MMBtu		#2 TEST START 1657
<u>':00 a.m.</u>								TEST FINISH 1808
1:00 a.m.								7
):00 a.m.								
.0:00 a.m.								
.1:00 a.m.						1		-
2:00 p.m.								
.:00 p.m.								
.:00 p.m.								
.:00 p.m.								
.:00 p.m.	6.69	13,39	024	cit + + 1.76	1.7	.155	7.0	
:00 p.m.	7.87	15.74	0.24	1.74	1.6	. 151	7.2	
<i>)800</i> :00 p.m.	6.90	13,81	0 24	1.74	1.7	. 118	7.2	
:00 p.m.	7.55	15.10	0.24	1.72	1.7	. 103	7.6	
<u>-:00 p.m.</u>								
:00 p.m.								
<u>0:00 p.m.</u>								
1:00 p.m.								

argets - See attached

Compliance Test: 3 two-hour runs

Ine pound sample of each fuel every two hours during test (once per run)

LEAD TESTING

SEPT 23, 2015

1 TEST START @ 1513 TEST FINISH @ 1623 #2 TEST START @ 1657 TEST FINISH @ 1808

L'Anse Warden Electric Co. Compliance Testing - Week of June 22, 2015 Sampling for O₂, CO₂, PM, SO₂, NOx, Pb, VOC, Hcl, PM10

Hour	MCF Usage/hr	Steam Load #/hr	MW/Hr	% Boiler Load	ID Fan Load	Air Flow	Flue Gas Temp	Weston Testing Yes or No
7:00 a.m.							PRECIP GAS OUT.	
3:00 a.m.								
):00 a.m.								
l0:00 a.m.								
l1:00 a.m.								
l 2:00 p.m.								
L:00 p.m.								
2:00 p.m.								
<i>1513</i> 3:00 p.m.		193 KAPH	18,3		82.4%	65,7%	372°	YES
1600 1:00 p.m.		193	18,3		80,3%	60.2%	371°	YES
;:00 p.m.	· ·	193	18,3		79.3%	64.4%	374°	YES
3:00 p.m.		193	17,7		80.7%	63,690	374°	YES
':00 p.m.		191	17.2		81.2%	64.1%	373°	NO
3:00 p.m.								
):00 p.m.								
.0:00 p <i>.</i> m.								
.1:00 p.m.								1

 'argets

 IOx numbers:
 below .190#s/MMBTU

 IO2:
 .01#s/MMBTU

 IM:
 .010#s/MMBTU

Test Sta	art Time	1657	Test End Time	1808								
Test De	scription	LEAO 7	TESTING #	±2								
Fuel in Date: 9	n Bins >> -23-15	R/R TIES	6000 CHIPS	P/R TIES	Tires	MAIN Fuel Belt Scale Bint	Di- 0					
Run No	Time	Reclaimers Rake speed Bin # 1	Rake speed Bin # 2	Rake speed Bin # 3	J TDF Screw Speed	John Visual	Bin 2 John Visual	Bin 3 John Visual	Stm Flow	02	lb/mmbtu CO	Opacity
1	1657	8	11	B	18	376.70			194	7,3	,178	1.7
2	1715	8	8	8	18	382,98			193	7.2	,095	1,9
3	1730	8	B	9	18	387.20			193	7,0	,075	1.6
4	1745	8	8	9	18	392.60			195	6.9	,/33	1.7
5	1800	10	٩	٩	18	399,36			193	7.2	- 118	1.7
6	1815	io	٩	9	18	405.41			192	7.0	.124	1.8
7	1830	12	10	10	18	411.28			191	7.3	.098	1.6
8	1845	8	10	12	18	416.91			192	7.2	.079	1,5
9	1900	8	10	1)	18	423.96			191	7.6	.103	1.7
10							-		8 8 8	1 1 1		
11		1 1 1 1 1		·	1 1 1					,	1 1 1	
12					8 F E	• • •			8 1 8	e 1 1 1	1 4 4	
13					i i i	• • • • • • • • • • • • • • • • • • •				r 1 1		
14	-	······				; ; ; ;					5 7 8 8	
15	-			 - 	1 1 1 1					1 1 1 1	 	
16	-))) M. (2000) 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 200								k k		

Comments:

05/06/10

Stor - 23.2015

L'Anse Warden Electric Co. Compliance Testing - Week of June 22, 2015

Hour	MCF Usage/hr	Steam Load #/hr	MW/Hr	% Boiler Load	ID Fan Load	Air Flow	Flue Gas Temp	Weston Testing Yes or No
:00 a.m.		196	16.7		100	66.2	373	NO
:00 a.m.		197	16.7		97.2	64.5	368	~ ~ ~
:00 a.m.	-	195	16.6		83,5	65.6	37/	YES
0:00 a.m.		194	16.6		<i>99.</i> 4	66.7	374	NO
1:00 a.m.		194	16.6		99.8	66.2	376	NO
2:00 p.m.		193	14.7		95,0	66.3	374	YES
:00 p.m.		193	16.7		83.3	64.7	375	YES
:00 p.m.		191	16.7		84.1	66.4	377	NO
:00 p.m.	•	192	16.7		90.7	66.8	377	YES
:00 p.m.	and the second sec	193	16.7		48.7	64.9	377	YES
:00 p.m.		193	14.7		83,0	66.4	380	YES
:00 p.m.		193	16.7		96.9	65.6	380	Ves
:00 p.m.		192	16.7		99.8	64,3	382	Yes
:00 p.m.					5			
:00 p.m.			·					
0:00 p.m.								
1:00 p.m.				TARTE OB287				

Non for a DN CO NOV DE VOC Hel DM10 <u>~</u>_

.1:00 p.m.		1					
	# 1	TES	ST STAA T FINISI	258 08287 18 0940 5	EAO TEST	and a subject of the	
argets	# 2	TEST	FINISH 6	2 11267 PA	LTICULATE/ pm 10	/co/0000	502
+Ox numbers: below .190#s/MMBTU +O2: .01#s/MMBTU	#3	TEST 7EST	START @ FINISH @	14487 Help 1657 5 Help	pm/pARTICULAT	=/co/so ₂ /Nor	
'М: .010#s/MMBTU	#4 1	test Tot	START @ FINISH @	1752 , 1935			

1----

KIC F	KUCESS OF	PERATING DA	TA LOG SHE	ET FOR EMISS	SIONS TESTI	NG			- <u> </u>			<u> </u>							
			1					ļ				+						:i	
			VERY 15 MIN	UTES; START	15 MIN B4 T	·		MIN AFTER TES	ST				ļ,						
11	Start Time	Stop Time			<u></u>	FUEL ST	ORAGE BUI	LDING					TDF BIN		Oxygen	Levels	Product	on Rates	Main Belt
	0828		Bin #1 Fuel in place	Rake Speed	ТРН	Bin #2 Fuel In place	Rake Speed	TPH	Bin #3 Fuel in place	Rake Speed	ТРН	Screw Speed	Totalizer	TPH Rate (if TDF)	BOILER O2	STACK O2, if known from CEM	STEAMING RATE	MW (specify gross or net)	Main Fuel belt
		TIME (use military time)	Type of Fuel	SPECIFY UNITS	1 1 1 1 1 1	Type of Fuel	SPECIFY UNITS		Type of Fuel	SPECIFY UNITS		SPECIFY UNITS			% (specify wet or dry)	% (specify wet or dry)	КРРН	1	Totalizer
	9/24/2015	800	R/R TIES	13	6.69	WOOD CHIPS	16	6.69	AR TIES	13	6.49	18	12.68 -	1,78	7.3		196	16.7	163.40
	9/24/2015	815 830		<u></u>			16	+				10	17.60		18		1011	- 17:7	
-	9/24/2015	845			<u>.</u>		16			12		18	13.58		6.8		194 194	16.6	177,30 184.05
	9/24/2015	900		8	7.89		1	7.8		8	7,89	18		1.84	7,2		195	16.6	188.91 -
	9/24/2015	915 3 h		9			12			- Ă		18	14.98		7.3		195	16.7	193.66
	9/24/2015	930 5 1		11		1	13	1		11		18	15.46		7.4		195	16.7	200.58
	9/24/2015	945		10			8	1		12		18	15.90		7.6		194	16.6	206.40
_	9/24/2015	1000		12	6.90	_	14	6.90		16	6,90	18	16.34 -	1.82	7.5		194	16.6	211.45 -
	9/24/2015 9/24/2015	1015 1030		12			13			15		18	16.84	·	7.2		194	16,6	217.41
	9/24/2015	1030		12			16	+		17		18	17,32		7.5		194	16.6	224.47
	9/24/2015	1100		12	7.60	1	12	7.60		16	7.60	18		1.84	7.4		194	16.6	236.10
	9/24/2015	1115 1		12			16	1		21		18	18.66		7.3		194	16.6	242.62
	9/24/2015	1130		12			16			21			19,10		7:4		195	16.6	249.55
_	9/24/2015	1145 5		12			14			21		18	19.56		7.3		195	14.6	255.31
	9/24/2015	1200		12	7.86		13 12	7.86		21	7.86	/8		1.84	7.8		194	16.7	261.54 -
	9/24/2015	1215		/2						12		18	20,48		7.9		/93	16.7	268,10
	9/24/2015 9/24/2015	1230 2		- 11			12	+		10		18	20.94		7.6		193	16.7	275.10
	9/24/2015	1300 (T			7.24		12	7.24	+	15	7,24	18	21.40	1,82	7.6		193 193	16.7	280,54
	9/24/2015	1315		8	1.21		14	1.44		15	1.21	18	22.34	1102	7.6		192	16.7	290.73
	9/24/2015	1330		P			15			15		18	22.76		7.6		191	16.7	296.17
	9/24/2015	1345		<u>8</u>			15	1	1	15		18	23.22		7.6		192	16.7	303.10
	9/24/2015	1400		8	7.46		13	7.46	1	12	7.46	18		1.82	7.7		191	16.7	309.30
	9/24/2015	1415		<u></u>			13	1	1	12		18	24,14		7.8		192	.16.7	315.16
	9/24/2015	1430		12			13			8		18	24.60		7.6		193	16.7	320.64
	9/24/2015	1445			7.0/		13	7.26		8		18	25,06		7.9	·	191	16-7	326.12 -
	9/24/2015 9/24/2015	1515		10	7,26		14 13	1.24		8	7.26	18	25,50 -	1.84	7.9		192	16.7	332.93
	9/24/2015	1530		8			15	+	+	8		18	25.98 26.44		7.6		193	16.7	337.37
	9/24/2015	1545		9		1 1	16	1	+	9		/8	26.90		7.2		192	16.7	342,39 348,68 -
	9/24/2015	1600		4	6.95		13	6.95	1	9	6.95	18		1.82	7.3	·····	192	16-7 16.7	355.40
	9/24/2015	1615 V		8			12		1	8		18	27.80		7.2		192	16.1	362.65
_	9/24/2015	1630 8 1645		8			11	1	1	8		18	28.26		7.5		193	16.7	348.38
]	9/24/2015			8	- 14		<u> </u>	1		8		18	28,70		7.5		193	16.7	373.70 -
	9/24/2015	1700		8	7.44			7.44		12	7.44	18	29.18 -	1.86	7.6		192	16.7	379.80 -
	9/24/2015	1715	CHIPS	<u> </u>		-	9	÷	14/	12		18	9.66		7,5		192	16.7	385,96
	9/24/2015	1745		12		CHIPS	10		WE/TIES	12		18	30.08		7,5		193	16.7	390,71
-	9/24/2015	1800		10	8.28			8,28	÷	10	8,28	10	3052	1.977	7,6		194	16.7	399.39
	9/24/2015	1815			<u>v. 67 e</u>		- 7	1 0100	1	10	0100	1.3	21.02	1.04	7.3	······	192	16.7	406,48-
	9/24/2015	1830		- 8			. 9		1	10		18	31.46	······	7.6		11d	16.7	411.61
	9/24/2015	1845		5			8	1	1	12		18	32.36		11	·····	194	16,7 16,7 16,7 16,7	423.70
	9/24/2015	1900		6	9.36		8	7.36	1	12	7.36	18	32.84 -	1.82			192	12.5	423.10 520.38 +
	9/24/2015	1915	!	8 1		1	8		1	10	pro	18	33.28		7.2		193	16.7	437.50
	9/24/2015	1930		8			4			9		18	33.78		7.2		192	16.7	443.80
	9/24/2015	1945 2000							<u> </u>	L									17.20
	9/24/2015	2000		;		·			:	: i		1							

0/24/2015

Convert Bourse Dallan Conserving Law David For Tanis/41 (000) 00 00 45

	FROCESSO	PERATING DA				i		÷								<u> </u>
					·	······										<u> </u>
OWER E	OILERS-RE		r		<u>.</u>				1							<u> </u>
								i				1				
06/20/11	Start Time	Stop Time	Stack	Monitors	ESP POWER	DATA (IF AVAIL	ABLE)	ESP PO	WER DATA (IF	AVAILABLE)	ESP P	OWER DAT	A (IF AVAILABL	E)		
	0828		OPACITY	co	ESP Field 1 (inlet)	ESP Field 1 (inlet)	Spark Rate	Primary	ESP Field 2 (Center)	ESP Field 2 (Center)	Spark Rate	Primary	ESP Field 3 (Outlet)	ESP Field 3 (Outlet)	Spark Rate	Primar
Plant	DATE	TIME (use military time)	%	ib/mmbtu	Secondary mA	Secondary kV	SPM	Voltage	Secondary mA	Secondary kV	SPM	Voitage	Secondary mA	Secondary kV	SPM	Voltage
WEC	9/24/2015	800	1.8	.142	476	32	13	232	556	32	20	248	418	29	12	204
WEC	9/24/2015	815 830	1.5	,137	1			<u>i</u>		h		·				
WEC	9/24/2015	845	1.7	216	370	1							·			
WEC	9/24/2015	900	1.9	,117	3/0	31	2	216	646	34	0	252	536	30	1	214
WEC	9/24/2015	915	1.5	.122	644	35	5	258				1				
WEC	9/24/2015	930	1.6	,129												
WEC	9/24/2015	945	1.7	156			<i>r</i>	258			2/	224	620		÷	-
WEC	9/24/2015	1000	1.8	.125	644	35	5	~>8	488	30	24		528	30	7	210
WEC	9/24/2015	1030	2.0	.116	1			<u>+</u>			,					+
WEC	9/24/2015	1045	2,2	.103	1							:				· · · · · · · · · · · · · · · · · · ·
WEC	9/24/2015	1100	1.7	.132	584	36	0	262	630	30	Ø	228	526	29	6	216
WEC	9/24/2015	<u>1115</u> 1130	1.7	. 160		:										- <u> </u>
WEC	9/24/2015	1145	1.6	·305 · 137				÷								
WEC	9/24/2015	1200	1.7	,102	434	37	4	272	644	32	2	238	522	29	4	2/2
WEC	9/24/2015	1215	1.7	,110				1								1
WEC	9/24/2015	1230	2.5	.136		· · · · · · · · · · · · · · · · · · ·		1								
WEC	9/24/2015	1245	1.7	,088				<u> </u>								
WEC	9/24/2015	1300 1315	1.5 1.8	1076 -	640	34	4	248	648	36	15	224	454	29	5	208
WEC	9/24/2015	1330	1,9	1082	<u> </u>			÷		i		<u> </u>				+
WEC	9/24/2015	1345	1.7	,152		}						†				+
WEC	9/24/2015	1400	1.6	,101	650	35	7	260	644	33	0	248	434	29	3	202
WEC	9/24/2015	1415	1.6	.133				1								ļ
WEC WEC	9/24/2015	1430 1445	1.6	,107	<u> </u>			÷								
WEC	9/24/2015	1445	1.7	, 126	644	36	3	272	650	33	6	246	532	36	4	218
WEC	9/24/2015	1515	1.3	1094 .	- 491	- 26		AIL	0,00		L	ATG	552			1/0
WEC	9/24/2015	1530	1.7	.081	1			1				· · · · · · · · · · · · · · · · · · ·	· ·			1
WEC	9/24/2015	1545	1.6	.092				[1				
WEC	9/24/2015	1600	2.5	1/35	- 440	31	22	234	622	32	54	240	524	3/	0	220
WEC	9/24/2015 9/24/2015	1615 1630	1,6	, 119	<u> </u>	,			L							<u>.</u>
WEC	9/24/2015	1630	1.6	, 086 , 155		·····			·							
WEC	9/24/2015	1700	2.2	,070	- 540	36	8	258	644		6	252	532	30	2	220
WEC	9/24/2015	1715	1,6	.067	1		<u> </u>				×					1
WEC	9/24/2015	1730	1.6	1072				1				1				1
WEC	9/24/2015	1745	1.9	. 115	1.00		- <i>r</i>	<u></u>	4.64	20	A.:	A.L.I	R A/	- 2 .		+ ~ -
WEC	9/24/2015	1800 1815	1.8	1,140	620	37	5	274	650	32	24	244	526	32	0	224
WEC	9/24/2015	1830	1.6	145								·;		·		}
WEC	9/24/2015	1845	1.7	,169											for hel chills also page subject	ade-assessations over the
WÉC	9/24/2015	1900	1.8	.227 .	648	36	3	272	626	31	0	234	542	31	0	1224
WEC	9/24/2015	1915	1.6	.133	L							!				1
WEC	9/24/2015	1930	17	161	l			į				1				
WEC	9/24/2015 9/24/2015	1945 2000			l											<u> </u>
	012-112010	2000		+	Ļ	ļ		+	L		<u> </u>	- <u></u>	ļ			

0/04/0045

Ogenerationen Della Outerenet et De la Prist, 1743 (000) 00 00 AP

Q1_LWEC001_Opactiy_003899

.

			Daily Emission For 9/23/2			
¢*	PROCESS	STEAM FLOW KLB/HR	CO PPM	02 %	Fd Factor SCF/mmbtu	CO LB/mmBTU
Hour.	1-Hr Avg Stat	1-Hr Avg Stat	_1-Hr Avg Stat	1-Hr Avg Stat	1-Hr_Avg_Stat	- 1-Hr_Avg Stat
0	1.00 SVC	288.0 SVC	83.8 SVC	9.9 SVC	9561.0 SVC	0.111 SVC
1	1.00 SVC	289.3 SVC	82.3 SVC		9561.0 SVC	
2	1.00 SVC	287.3 SVC	106.2 SVC	9.6 SVC	9561.0 SVC	
3	1.00 SVC	288.9 SVC	116.1 SVC	9.6 SVC	9561.0 SVC	
4	1.00 SVC	287.9 SVC	130.8 SVC	9.9 SVC	9561.0 SVC	0.173 SVC
5	1.00 SVC	289.6 SVC	99.3 SVC	9.5 SVC	9561.0 SVC	0.126 SVC
6	1.00 SVC	294.6 SVC	103.3 SVC	9.5 SVC	9561.0 SVC	0.132 SVC
7	1.00 SVC	293.9 SVC	120.9 SVC		9561.0 SVC	0.153 SVC
8	1.00 SVC	290.5 SVC	157.9 SVC	9.8 SVC	9561.0 SVC	0.207 SVC
9	1.00 SVC	294.3 SVC	127.9 SVC		9561.0 SVC	0.163 SVC
10	1.00 SVC	293.7 SVC	154.2 SVC		9561.0 SVC	0.193 SVC
11	1.00 SVC	294.1 SVC	135.5 SVC		9561.0 SVC	0.167 SVC
12	1.00 SVC	294.1 SVC	125.1 SVC		9561.0 SVC	0.157 SVC
13	1.00 SVC	293.6 SVC	144.9 SVC		9561.0 SVC	0.180 SVC
14	1.00 SVC	294.2 SVC	124.6 SVC		9561.0 SVC	0.155 SVC
15	1.00 SVC	293.8 SVC	127.1 SVC		9561.0 SVC	0.156 SVC
16	1.00 SVC	294.0 SVC	119.3 SVC		9561.0 SVC	0.151 SVC
17	1.00 SVC	294.8 SVC	114.4 SVC		9561.0 SVC	0.138 SVC
18	1.00 SVC	293.4 SVC	100.1 SVC		9561.0 SVC	0.122 SVC
19	1.00 SVC	292.1 SVC	131.4 SVC	9.5 SVC	9561.0 SVC	0.167 SVC
20	1.00 SVC	292.8 SVC	104.2 SVC	9.5 SVC	9561.0 SVC	0.133 SVC
20	1.00 SVC	291.9 SVC	99.9 SVC		9561.0 SVC	0.124 SVC
22	1.00 SVC	293,5 SVC	93.7 SVC		9561.0 SVC	0.115 SVC
22	1.00 SVC	301.3 SVC	137.3 SVC	8.8 SVC	9561.0 SVC	0.165 SVC
∠3	1.00 300	JOT . J 30C	13113 300	0.0 500	JULT 0 340	0,200 0,00

* CEM DAS reported steam rate not verified for accuracy or used by control room operators in running the boiler

SVC = MONITOR IN SERVICE

CEMDAS(TM) Data Acquisition System

•

.

_	PROCESS	STEAM FLOW KLB/HR	CO PPM	02 %	Fd FACTOR SCF/mmBTU	CO LB/mmBTU L-Hr Avg Stat
Hour	1-Hr Avg Stat	1-Hr Avg Stat	I-HI AVY SLAL	ITAL AVY SCAL	.I-nt Avy Stat	
0	1.00 SVC	300.9 SVC	122.5 SVC	9.4 SVC	9561.0 SVC	0.155 SVC
1	1.00 SVC	298.6 SVC	125.2 SVC	9.2 SVC	9561.0 SVC	0.155 SVC
2	1.00 SVC	299.1 SVC	116.0 SVC	9.2 SVC	9561.0 SVC	0.144 SVC
3	1.00 SVC	299.8 SVC	111.9 SVC	9.1 SVC	9561.0 SVC	0.138 SVC
4	1.00 SVC	299.4 SVC	96.7 SVC	9.4 SVC	9561.0 SVC	0,122 SVC
5	1.00 SVC	299.1 SVC	84.3 SVC	9.1 SVC	9561.0 SVC	0.104 SVC
6	1.00 SVC	297.8 SVC	103.9 SVC	9.2 SVC	9561.0 SVC	0.129 SVC
ž	1.00 SVC	292.9 SVC	124,2 SVC	9.3 SVC	9561.0 SVC	0.155 SVC
8	1.00 SVC	297.4 SVC	114.9 SVC	9.9 SVC	9561.0 SVC	0.152 SVC
9	1.00 SVC	297.1 SVC	117.7 SVC	9.2 SVC	9561.0 SVC	0.146 SVC
10	1.00 SVC	296.2 SVC	110.1 SVC	9.2 SVC	9561.0 SVC	0.137 SVC
11	1.00 SVC	295.8 SVC	105.3 SVC	9.2 SVC	9561.0 SVC	0.131 SVC
12	1.00 SVC	293.7 SVC	71.8 SVC	9.4 SVC	9561.0 SVC	0.091 SVC
13	1.00 SVC	293.0 SVC	83.1 SVC	9.2 SVC	9561.0 SVC	0.103 SVC
14	1.00 SVC	293,3 SVC	83.5 SVC	9.4 SVC	9561.0 SVC	0.105 SVC
15	1.00 SVC	293.8 SVC	88.7 SVC	9.2 SVC	9561.0 SVC	0.110 SVC
16	1.00 SVC	294.0 SVC	86.3 SVC	9.1 SVC	9561.0 SVC	0.106 SVC
17	1.00 SVC	294.3 SVC	96.6 SVC	8.8 SVC	9561.0 SVC	0.116 SVC
18	1.00 SVC	294.2 SVC	124.4 SVC	8.7 SVC	9561.0 SVC	0,148 SVC
19	1.00 SVC	294.4 SVC	116.5 SVC	8.8 SVC	9561.0 SVC	0.140 SVC
20	1.00 SVC	294.4 SVC	108.1 SVC	9.0 SVC	9561.0 SVC	0.132 SVC
21	1.00 SVC	294.5 SVC	120.9 SVC	8.7 SVC	9561.0 SVC	0.144 SVC
22	1.00 SVC	294.7 SVC	105.5 SVC	8.7 SVC	9561.0 SVC	0.126 SVC
23	1.00 SVC	293.1 SVC	106.4 SVC	8.8 SVC	9561.0 SVC	0.128 SVC

* CEM DAS reported steam rate not verified for accuracy or used by control room operators in running the boiler

------Explanation for Status Code------SVC = MONITOR IN SERVICE , _____

> د بید ا جندر د

CEMDAS(TM) Data Acquisition System

-

Steam & Controls L'Anse Warden

.

Created: 11/18/15 15:16 EU BOILER # 1

Daily Opacity Report For 9/23/2015

ومرجع بدبارة بربيبة الأحادي للأخلية بحالي المالي المالية المالية المالية المالية المالية المالية المالية المالية

Hour	Opac. % Minutes	Opac. % Minutes 6 - 11	Opac. % Minutes	Opac. % Minutes	Opac. % Minutes	Opac. % Minutes 30 35	Opac. % Minutes	Opac. % Minutes	Opac. % Minutes 48 53	Opac. % <u>Minutes</u> 54 - 59 -	· •···································
0	1.5 SVC	1.8 SVC	1.7 SVC	1.5 SVC	1.6 SVC	1.5 SVC	1.9 SVC	1.7 SVC	1.6 SVC	1.6 SVC	
0	1.9 SVC	1.7 SVC	1.7 SVC	1.5 SVC	1.6 SVC	1.9 SVC	1.6 SVC	1.6 SVC	1.7 SVC	1.8 SVC	
2	1.7 SVC	1.7 SVC	1.6 SVC	1.6 SVC	1.9 SVC	1.6 SVC	1.6 SVC	1.8 SVC	1.9 SVC	1.7 SVC	
2	1.6 SVC	1.6 SVC	1.7 SVC	2.0 SVC	1.7 SVC	1.7 SVC	2.0 SVC	2.1 SVC	1.8 SVC	1.7 SVC	
3	1.7 SVC	1.8 SVC	1.8 SVC	1.6 SVC	1.6 SVC	2.1 SVC	1.7 SVC	1.8 SVC	1.6 SVC	1.6 SVC	
* 5	1.9 SVC	1.8 SVC	1.6 SVC	1.7 SVC	1.9 SVC	1.8 SVC	1.6 SVC	1.5 SVC	1.5 SVC	1.9 SVC	
6	1.7 SVC	1.6 SVC	1.8 SVC	2.3 SVC	2.0 SVC	1.8 SVC	1.7 SVC	1.6 SVC	2.0 SVC	1.8 SVC	
7	1.7 SVC	1.9 SVC	2.1 SVC	1.8 SVC	1.7 SVC	1.6 SVC	1.7 SVC	2.0 SVC	1.8 SVC	1.8 SVC	
, 8	1.9 SVC	2.1 SVC	1.8 SVC	1.7 SVC	1.8 SVC	1.9 SVC	2.2 SVC	1.7 SVC	1.7 SVC	2.1 SVC	
9	2.1 SVC	1.8 SVC	1.7 SVC	1.7. SVC	1.8 SVC	2.0 SVC	1.8 SVC	1.7 SVC	2.0 SVC	1.9 SVC	
10	1.8 SVC	1.8 SVC	1.7 SVC	2.0 SVC	1.9 SVC	1.7 SVC	1.7 SVC	2.1 SVC	1.9 SVC	1.7 SVC	
11	1.7 SVC	1.7 SVC	2.1 SVC	1.8 SVC	1.7 SVC	1.8 SVC	2.0 SVC	1.8 SVC	1.7 SVC	1.7 SVC	
12	1.6 SVC	1.9 SVC	1.6 SVC	1.6 SVC	1.7 SVC	1.9 SVC	1.7 SVC	1.7 SVC	1.7 SVC	1.7 SVC	
13	2.1 SVC	14.2 NSA	1.8 SVC	2.3 SVC	2.3 SVC	2.0 SVC	1.9 SVC	1.7 SVC	1.8 SVC	2.1 SVC	
14 ·	1.7 SVC	1.7 SVC	2.5 SVC	2.7 SVC	2.2 SVC	1.9 SVC	1.7 SVC	1.9 SVC	2.1 SVC	1.7 SVC	
15	1.6 SVC	2.6 SVC	1.9 SVC	1.7 SVC	1.7 \$VC	1.6 SVC	1.9 SVC	1.9 SVC	1.7 SVC	1.9 SVC	
16	2.3 SVC	1.9 SVC	1.7 SVC	1.8 SVC	1.8 SVC	2.2 SVC	1.9 SVC	1.6 SVC	1.8 SVC	2.2 SVC	
17	1.6 SVC	1.6 SVC	1.6 SVC	1.6 SVC	2.4 SVC	1.7 SVC	1,7 SVC	1.8 SVC	2.0 SVC	1.8 SVC	
18	1.7 SVC	1.6 SVC	1.6 SVC	2.1 SVC	1.6 SVC	1.6 SVC	1.8 SVC	2.0 SVC	1.8 SVC	1.7 SVC	
19	1.8 SVC	1.9 SVC	2.1 SVC	1.7 SVC	1.8 SVC	2.1 SVC	2.0 SVC	1.9 SVC	1.8 SVC	1.7 SVC	
20	1.9 SVC	2.1 SVC	1.8 SVC	1.7 SVC	2.1 SVC	2.0 SVC	1.8 SVC	1.7 SVC	1.6 SVC	1.9 SVC	
21	1.9 SVC	1.6 SVC	1.6 SVC	1.9 SVC	1.8 SVC	1.6 SVC	1.6 SVC	1.6 SVC	1.9 SVC	1.9 SVC	
22	1.6 SVC	1.7 SVC	1.9 SVC	1.8 SVC	1.6 SVC	1.6 SVC	1.6 SVC	2.2 SVC	1.7 SVC	2.0 SVC	
23	2.2 SVC	2.2 SVC	1.9 SVC	1.8 SVC	1.6 SVC	1.7 SVC	2.1 SVC	1.7 SVC	1.7 SVC	2.0 SVC	

The average opacity period average for the day was 1.8% for 239 periods of valid data.

The Fan was in operation for 240 periods.

The maximum opacity period average for the day was 2.7%.

There was 1 period of invalid data.

Status Code Definitions

NSA = NO SAMPLE AVAILABLE

SVC = MONITOR IN SERVICE

CEMDAS(TM) Data Acquisition System

Steam & Controls L'Anse Warden _____

•

					For 9/24/						
	Opac. % Minutes	•									
Hour	0 - 5	6.= 11	12 - 17	18 - 23	. 24 - 29		36 - 41	42 - 47	48 - 53	54 - 59	
	2.1 SVC	1.9 SVC	1.7 SVC	1.7 SVC	1.7 SVC	2.1 SVC	1.7 SVC	1.7 SVC	2.2 SVC	2.3 SVC	
1	1.9 SVC	1.8 SVC	1.7 SVC	2.0 SVC	2.0 SVC	1.7 SVC	1.8 SVC	2.6 SVC	2.2 SVC	1.9 SVC	
2	1.8 SVC	1.7 SVC	1.9 SVC	2.0 SVC	1.7 SVC	1.7 SVC	2.6 SVC	1.9 SVC	1.9 SVC	1.7 SVC	
3	1.7 SVC	2.2 SVC	2.0 SVC	1.8 SVC	1.9 SVC	2.7 SVC	2.1 SVC	1.9 SVC	1.7 SVC	1.7 SVC	
4	2.2 SVC	1.7 SVC	1.7 SVC	1.9 SVC	2.3 SVC	1.7 SVC	1.8 SVC	1.7 SVC	1.8 SVC	2.2 SVC	
5	1.7 SVC	1.8 SVC	2.0 SVC	2.0 SVC	1.9 SVC	1.9 SVC	1.7 SVC	1.8 SVC	2.2 SVC	1.7 SVC	
6	1.6 SVC	1.9 SVC	2.2 SVC	1.8 SVC	1.7 SVC	1.7 SVC	1.9 SVC	2.1 SVC	1.6 SVC	1.7 SVC	
7	2.3 SVC	2.1 SVC	1.9 SVC	· 1.9 SVC	2.0 SVC	2.2 SVC	2.0 SVC	1.7 SVC	1.8 SVC	2.5 SVC	
8	1.9 SVC	1.8 SVC	1.6 \$VC	1.6 SVC	1.9 SVC	1.6 SVC	1.6 SVC	1.7 SVC	1.9 SVC	1.9 SVC	
9	1.9 SVC	1.8 SVC	1.8 SVC	2.1 SVC	1.8 SVC	1.6 SVC	1.8 SVC	2.0 SVC	1.9 SVC	1.9 SVC	
10	. 1.7 SVC	1.8 SVC	2.2 SVC	1.7 SVC	1.6 SVC	1.8 SVC	1.8 SVC	1.7 SVC	1.8 SVC	1.7 SVC	
11	1.8 SVC	2.1 SVC	1.7 SVC	1.7 SVC	1.9 SVC	1.9 SVC	1.8 SVC	1.8 SVC	1.7 SVC	1.8 SVC	
12	2.1 SVC	1.7 SVC	1.7 SVC	1.8 SVC	1.8 SVC	1.7 SVC	1.6 SVC	1.7 SVC	1.9 SVC	1.8 SVC	
13	1.8 SVC	14.5 NSA	2.3 SVC	1.9 SVC	1.8 SVC	1.7 SVC	1.7 SVC	2.0 SVC	1.8 SVC	1.7 SVC	
14	1.9 SVC	2.0 SVC	1.9 SVC	1.8 SVC	1.8 SVC	1.8 SVC	2.2 SVC	1.8 SVC	1.6 SVC	1.9 SVC	
15	2.2 SVC	2.0 SVC	1.9 svć	2.0 SVC	1.8 SVC	2.2 SVC	1.7 SVC	1.7 SVC	1.9 SVC	1.9 SVC	
16	1.9 SVC	1.7 SVC	1.7 SVC	1.8 SVC	2.1 SVC	1.8 SVC	1.7 SVC	2.4 SVC	2.2 SVC	1.9 SVC	
17	1.8 SVC	1.8 SVC	1.9 SVC	2.1 SVC	1.7 SVC	1.7 SVC	1.9 SVC	1.9 SVC	1.6 SVC	1.6 SVC	
·18	1.6 SVC	2.0 SVC	2.2 SVC	1.8 SVC	1.8 SVC	2.1 SVC	1.9 SVC	1.9 SVC	1.9 SVC	1.8 SVC	
19	2.2 SVC	1.8 SVC	1.8 SVC	1.7 SVC	1.9 SVC	1.8 SVC	1.9 SVC	1.8 SVC	1.9 SVC	2.2 SVC	
20	1.9 SVC	1.9 SVC	2.1 SVC	2.1 SVC	2.0 SVC	1.9 SVC	1.9 SVC	1.9 SVC	2.2 SVC	1.8 SVC	
21	1.9 SVC	2.0 SVC	2.0 SVC	1.9 SVC	1.9 SVC	1.8 SVC	1.8 SVC	2.1 SVC	1.7 SVC	1.7 SVC	
22	2.0 SVC	1.9 SVC	1.9 SVC	1.7 SVC	1.7 SVC	1.9 SVC	2.0 SVC	1.8 SVC	1.8 SVC	2.3 SVC	
23	2.2 SVC	1.9 SVC	1.8 SVC	1.7 SVC	2.0 SVC	1.9 SVC	1.7 SVC	2.0 SVC	2.1 SVC	1.9 SVC	

:

.

Daily Opacity Report

The average opacity period average for the day was 1.9% for 239 periods of valid data.

The Fan was in operation for 240 periods.

The maximum opacity period average for the day was 2.7%.

There was 1 period of invalid data.

.

Status Code Definitions

NSA = NO SAMPLE AVAILABLE

SVC = MONITOR IN SERVICE

CEMDAS(TM) Data Acquisition System

Page 1 of 1

NOVEMBER TEST PROGRAM

LWEC Compliance Testing Fuel Usage Summary Page

			Railroad Lie	lire-Derived	
Test Date	Time	Wood TPH	TPH	Fuel TPH	Penta TPH

<u> 11/3/2015 - Hcl</u>

Test #1	18:02 - 16:14	15.88	7.94	1.76	0
Test #2	16:50 - 17:56	17.56	8.78	1.82	0

<u>11/4/2015 - Hcl</u>

	Test #3	09:12 - 10:20	16.45	8.23	1.83	0
--	---------	---------------	-------	------	------	---

<u> 11/5/2015 - Hcl</u>

Test #1	10:05 - 12:04	12.62	12.47	1.76	0.24
Test #2	12:25 - 13:33	12.58	12.59	1.94	0.24
Test #3	14:03 - 15:15	12.72	12.72	1.83	0.24

	FROCESS U	PERATING DA			i		<u> </u>													<u> </u>
	1					· · · · ·	<u> </u>		<u>+</u>	<u>.</u>				ŀ						<u>i</u>
		i							÷	<u></u>				<u>├</u>						İ
VER E	OILERS-REC	COMENDED E			i		<u>.</u>		÷	<u></u>									· · · ·	
		1					<u>.</u>		÷					, 				· · · · · · · · · · · · · · · · · · ·		··
1/03/15	Start Time	Stop Time	5	Stack Monito	ors	ESP POWER	DATA (IF AVAIL	ABLE)	ESP P	OWER DA	TA (IF AVAILA	BLE) ESP	POWER DA	TA (IF AV	AILABLE)		·······		
			OPACITY	со	Flue Gas Temp	ESP Field 1 (inlet)	ESP Field 1 (Inlet)	Spark Rate	Primary			ESP Field 2 (Center)	Spark Rate	Primary	Primary	ESP Field 3 (Outlet)	ESP Field 3 (Outlet)	Spark Rate	Primary	 Prim
nt	DATE	TIME (use military time)	%	ib/mmbtu	(Precip Gas Out)	Secondary mA	Secondary kV	SPM	Current	Voltage	Secondary mA	Secondary kV	SPM	Current	Voltage	Secondary mA	Secondary kV	SPM	Current	Volt
EC	11/3/2015	800					1		÷••••••					1						
EC	11/3/2015	815					1					·				122		· · · · · · · · · · · · · · · · · · ·		!
EC	11/3/2015	830							÷											
EC	11/3/2015	845							÷			· · · · · · · · · · · · · · · · · · ·		1	;;					
С	11/3/2015	900	(······			·		÷	;							· · · · · · · · · · · · · · · · · · ·		4	1
EC	11/3/2015	915	1				<u>.</u>				······	<u></u>		+	1		L			T
C	11/3/2015	930					<u>i</u>								·					
C	11/3/2015	945							<u>}</u>	·										
C	11/3/2015	1000					<u> </u>	- <u>_</u>	+				<u> </u>	<u>↓</u>	ļ					ļ
C	11/3/2015	1015					<u> </u>		}	<u> </u>				+						
c	11/3/2015	1030					<u> </u>		;	Į				+						t
c	11/3/2015	1030					<u> </u>		;	ļ		ļ		<u> </u>			<u>├</u>			i
č	11/3/2015	1100					<u> </u>		+	Ļ		<u> </u>		<u> </u>						1
č	11/3/2015	1115				······				<u>+</u>		(<u> </u>			l				ļ
c	11/3/2015	1130	l							J		(<u> </u>
c c	11/3/2015	1130					}		<u> </u>	ļ			ļ	<u> </u>	h	L				
	11/3/2015	1145								l		· · · · · · · · · · · · · · · · · · ·				L	{	······································		į
C	11/3/2015						·		÷				l	<u> </u>						
C		1215					 		<u> </u>	i		ţ			ļ					ļ
C	11/3/2015	1230							·				<u> </u>	ļ	<u> </u>	L				1
C	11/3/2015	1245							ļ			·	L	L		I				ļ
C	11/3/2015	1300										J	L	<u> </u>						L
С	11/3/2015	1315										l		L						i
С	11/3/2015	1330		-																
С	11/3/2015	1345							i					<u> </u>						
C	11/3/2015	1400								[
С	11/3/2015	1415								1										
C	11/3/2015	1430								(
C	11/3/2015	1445	i						1					1 /						I
С	11/3/2015	1500	2.9	(3)	405	35	2501	268	6/	23.414	24434	2644	2441	V	20.7Ku	26	144	13	156	3
С	11/3/2015	1515	2.1	199	405	35 32	2504	252	6	22.1		640		32	20.7Ka 150	26	151	17	140	1 2
С	11/3/2015	1530	1.7 1	199	402	33	526	.5	260	∂∂.1	33	640	\$	244	0	26	166	14	170	3/ 21 71
C	11/3/2015	1545	R.I I	222	406	36	1.2.1	14	21-8	6	22	644	K .	avit	D	26			148	12
C	11/3/2015	1600	1.4	123	406	37	524	-17-	aic	0	33	460	5	256	0	36	181	13	15:0	3
C	11/3/2015	1615	1.9	228	404	25	658	5	234	6	22	569	11	254	O	51	202	12	136	3
0	11/3/2015	1630		175	407	36	(50	17	200	0	22	646		210	0	26	216	13	170	4.
2	11/3/2015	1645	1.5	187	407 408	21	651	-+	272	6	37 37	CVY	\$	318	0	- 5 t	144	-19-	160	13
5	11/3/2015	1700	1.6	233	406		671		315	D	32	622	22	244	0	t	178	13	160	4
	11/3/2015	1715	2.0			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	614	131	260	0	32	644	10		0	24 24 25 37 26			100	1-4
<u>,</u>	11/3/2015	1730		143	406		1.46		01-			Lirk	2	258		1 <u>St</u>	150 151	-12	150	
Ś	11/3/2015	1745	-1.9	165	404	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	619-1	15	262	6	37 33	648	4	Rin	U	<u></u>	1	-14-	124	40
5	11/3/2015	1800	47	270			649 394 394		274	8	20	40	1	2117	0		164	_{3	162	3'
5	11/3/2015	1815	1.6	151	405	34	944	_11	254		33 32	568	3	200	3	46	80	11	140	2
, ; ;			<u> パフ</u>	167	405		644	/0	200	0	202	268	Γ	234	- e	26	116	13	146	2.
	11/3/2015	1830										<u> </u>	L	1	ļ	ļ				ļ
	11/3/2015	1845							[·		ļ		1	ļ					
C	11/3/2015	1900																		
C	11/3/2015	1915																		1
2	11/3/2015	1930					1							1	Γ					1
C	11/3/2015	1945	1											1			1			1
2	11/3/2015	2000					1		- i.					1		1				1

11/3/2015

*

Copy of Power Boiler--Operating Log--Rev 5 For Tests(1) (002) 11-03-15

Dowor Boilor (DD)

												t.										
GENERIC	PROCESS O	PERATING DA	TA LOG SHE	ET FOR E	MISSION	S TESTING	<u> </u>			1												
-	+			-	<u> </u>		1	ļ		1		·										
	1				1	· · · · · · · · · · · · · · · · · · ·			l	i												
POWER B	OILERSRE	COMENDED E	VERY 15 MI	NUTES; ST	ART 15 M	IN B4 TEST	AND CON	TINUE 15	MIN AFTER	TEST												
11/03/15	Start Time	Stop Time		1		FUEL STOR	AGE BUILT	NG		<u>.</u>		il	TDF BIN	L	Main Belt	Owner	1 Levels	Producti	n Rates	Fan	Air	
2=		1756		1	1			1	Bin #3	1	1		I DF DIN	TPH	man ben	- Oxygei	STACK 02, if					
1-	1502	1614	Bin #1 Fuel in place	Rake Speed	трн	Bin #2 Fuel in place	Rake Speed	трн	Fuel in place	Rake Speed	ТРН	Screw Speed	Totalizer		Main Fuel beit	BOILER O2	known from CEM	STEAMING RATE	MW (specify	ID Fan Load	Air Flow	
Plant	DATE	TIME (use military time)	Type of Fuel	SPECIFY		Type of Fuel	SPECIFY	-	Type of Fuel	SPECIFY UNITS		SPECIFY		1.	Totalizer	% (specify wet or dry)	% (specify wet or dry)	КРРН	gross or net)	%	%	
WEC	11/3/2015	800				1 doi			. dei													
WEC	11/3/2015	815						;									1					
WEC	11/3/2015	830			ļ					ļ												·
WEC	11/3/2015	845 900				<u> </u>	<u> </u>	[<u> </u>							1	}				
WEC	11/3/2015	915		<u>.</u>			<u></u>		L	;				·			·					
WEC	11/3/2015	930																				
WEC	11/3/2015	945 1000										ļ						<u> </u>				
WEC	11/3/2015	1015				1	1					L										
LWEC	11/3/2015 11/3/2015	1030										ļ									ļ	
LWEC	11/3/2015	1045 1100												·								
WEC	11/3/2015	1115			1				L													
WEC	11/3/2015	1130								· · · · ·		I			l			<u> </u>				
WEC	11/3/2015	1145								1				*	<u> </u>		+		- 9 ₀₁			
WEC	11/3/2015	1215]	j			<u>.</u>														
WEC	11/3/2015	1230								<u> </u>	ļ	Ļ			 			<u> </u>			<u> </u>	
WEC	11/3/2015 11/3/2015	1245 1300	·····					: !				 .					1				······································	
WEC	11/3/2015	1315			1										•							
WEC	11/3/2015	1330	·····							ļ		<u> </u>			 						<u> </u>	
WEC	11/3/2015 11/3/2015	1345 1400			·		÷	<u> </u>									+				<u> </u>	
WEC	11/3/2015	1415								1												
WEC	11/3/2015	1430			A					<u> </u>					<u> </u>	L	· · · · · · · · · · · · · · · · · · ·	<u> </u>				
WEC	11/3/2015 11/3/2015	1445 HUI 1500	Claure		381.70		10		ft-Ties	15		18	27.38		38215	6.5		183	16.5	100	68.7	l
WEC	11/3/2015	1515 / 5	Ch.ps	12		chips	8		(1-2	15	}	18	27.80		384.85	6.3		187	16.5	100	(7,2	
WEC	11/3/2015 11/3/2015	1530			-	{	8			Lis		18	28,24		325.17 400,70	6.0	+	190	16.5	100	68.0	
WEC	11/3/2015	1545 \		8	7.94		12	7,94	L		7.94	18	28.72	1.76	405,99	61		191	16,5	100	66.3	h
WEC	11/3/2015	101 16150		8			12			16		R	30,08		413,24	6.1		153	16.5	100	66.9	
WEC	11/3/2015	1630		10			10			20			30,57	[419.20	5,8		193	16.5	/00	67.2	
WEC	11/3/2015 11/3/2015	1700		10	8.55	; ;	10	4.55		18	8.55			1.84	431.55	5.8	1	192	16.5	100	72.0	l
WEC	11/3/2015	1715 7	st							112		. 14	31.42		438.4	6.1		190	162	100	63.8	
WEC WEC	11/3/2015	1730		10		1	10			<u>iz</u>		18	31-88		445.29	616		191	162	100	64.5	<u> </u>
WEC	11/3/2015 11/3/2015	1745		10	9.01		10	9.61		13	7.01	18	32,34 32,78	1.80	451.66	5.9	+	190	16.2	100	66.2	
WEC	11/3/2015 11/3/2015			10	401		12			13		18	33,26		463.79	5.8		191	16.2	100	68.2	
WEC	11/3/2015	1830												ļ	ļ	l		<u> </u>	·	 		
WEC WEC	11/3/2015 11/3/2015	1845				l 		: 							<u> </u>						<u> </u>	
WEC	11/3/2015	1915					· · · · · · · · · · · · · · · · · · ·	·		1	· · · · · · · · · · · · · · · · · · ·											
WEC	11/3/2015	1930										L							ļ	ļ		Į
WEC WEC	11/3/2015 11/3/2015	1945 2000								1		<u> </u>			· · · · ·	· · ·	+	+		 	<u> </u>	<u> </u> -
							1	1		<u>†</u>		+			1			1	Ì			

11/3/2015

Copy of Power Boiler-Operating Log-Rev 5 For Tests(1) (002) 11-03-15

Power Boiler (PB)

a construction of provide states and an end of the second

SENERIC F		لىمانىڭ مىلىك ئىلىكى راغلىمى بىرىرىمىنى بولىمىڭ قىرىرىمى قارىرى	[]	19 Salar - Constant - Stranger	· · · · · · · · · · · · · · · · · · ·		[A PROPERTY OF A	1			Madel (Produce commercial	1					1	
														1			•	() and the second s	1	
OWER BO	DILERSREC	COMENDED E	• 		[1													
11/03/15	Start Time	Stop Time	\$	Stack Monito	ors	ESP POWER	DATA (IF AVAIL	ABLE)	ESP P	OWER D	ATA (IF AVAILA	BLE) ESP I	POWER D	ATA (IF AV	AILABLE)				
			OPACITY	со	Flue Gas Temp	ESP Field 1 (inlet)	ESP Field 1 (Inlet)	Spark Rate	Primary	Primary	ESP Field 2 (Center)	ESP Field 2 (Center)	Spark Rate	Primary	Primary	ESP Field 3 (Outlet)	ESP Field 3 (Outlet)	Spark Rate	Primary	Prima
lant	DATE	TIME (use military time)	%	lb/mmbtu	(Precip Gas Out)	Secondary mA	Secondary kV	SPM	Current	Voltage	Secondary mA	Secondary kV	SPM	Current	Voltage	Secondary mA	Secondary kV	SPM	Current	Volta
WEC	11/4/2015	800							i					1				1	1	i
WEC	11/4/2015	815	1.7	/37	385	36	6-10	24	200	۵	3/32	594	45	1224	0	25	12 -	12	152	
WEC	11/4/2015	830	1.8	100	388	36	444	14	246	۵	32	640	27	1244	0	24	170	12 13	154	146
WEC	11/4/2015	845	-1:3-	105	388	33	548 654	13	268	P	36	630	10	244	0	25	168	13_	154	41
WEC WEC	11/4/2015	900 915	-1:	52	389 390	33	654	20	248	0	32		10	232	0	-32	202	14/2	142	27 40
WEC	11/4/2015	930		103	370	34	68	-14-	272	0	32	616	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	244	2	74	200	13	762	142
WEC	11/4/2015	930	2.0	120 158	342- 343	32	584	30	246	6	32	646	5 13	240	0	22	174	-79-	164	47
WEC	11/4/2015	1000	2.0	161	394	37	452	16	212	0	33	450	15	240	5	50			165	
WEC	11/4/2015	1015	2.3	154	746	32 37 37	535	9	218	6	22	644	0	248	õ	200	248	13	166	48
WEC	11/4/2015	1030	1.9	123	347 348	37	23/8	28	274	10	33	648	3	258	0	26	254	12	144	44
WEC	11/4/2015	1045	1.7	161	348	34	648	8	252	10	33	644	terre and the second	124C	0	26	220	11	168	45
WEC	11/4/2015	1100	1.6	170	399	34	470	17	208	6	1 2 3	634	13	240	0	27.	178	14	160	44
WEC	11/4/2015	1115	2.3	170	401	34	648	16	268	0	31	514	26	238	0	2Ē	19 6	13	148	1,70
WEC	11/4/2015	1130	2:39	168	40/	30	512	27	1248	0	1.32			1240	0	26	154	13	154	37
WEC	11/4/2015	1145	1.9	110	315	34	248	15	258	0	3/	640	28	220	0	25	150	13	15r 152	39
WEC	11/4/2015	1200	2.0	104	354 395 348	32	630	7	168	6	-33	640	Į	1246	6	-36	178 150	1 12	132	29
WEC	11/4/2015	1215 1230	110	94 87	-327-	36	644	17	276	ő		602	34	234	0			13_	152	32
WEC	11/4/2015	1230	3.3	32	347	23	650	20	234	0	30	1342	7	234	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	23	140	12	144	32
WEC	11/4/2015	1300	2.6	\$3	395	36	206	26	170	6	31	250	38	1220	6	25	130	19	TATC	32
WEC	11/4/2015	1315	2.2	67	395	-36	634	28	272	0	32	GY	14-	330	0	26	nc-	14-	152	34
WEC	11/4/2015	1330	1.8	128	396	37	644	21	272	6	32	1648	19	238	0	25	Doy-	13	148	137
WEC	11/4/2015	1345	2.2	105	396	37	150	31	276	0	32	6308	11	238	P	20	178	13	1156	37
WEC	11/4/2015	1400	12.1	89	397	3) 34 34 34	458	25	1214	10	32	C48	12	73.8	0	25	150	12	1151	36
WEC	11/4/2015	1415	117	54	397	34	4/18	21	216	Þ	22	544	14	all	0	26	156	1.14	1154	130
WEC	11/4/2015	1430	2.1	5 Y	397_	38	650	25	258	1 8	-33	58-1	5	21L 2VI 232	0	24	168 157	13_	152	30
WEC	11/4/2015	1445		12.2	547	36	650		258	1 5			12				152	H	150	39
WEC	11/4/2015	1500	W.S	155	397 347 347 395	34	240	19	044	1	31	1. 232	4	244	C) D	26	10.5	14	148	36
WEC	11/4/2015	1515			395	35	1.14	<u>9</u> Å	1212	D	32	6511	<u></u>	1246	6		150	13	148	21
WEC	11/4/2015	1545	3.2	144	398	1 21-	500	.29	-342	8	22	630	-2	254	6	27	130	3	102	31
WEC	11/4/2015	1600	1.8	222	399	31	650	12	370	1 5	33	690	6	1232	D	27	150 154 176 188	13	176	in
WEC	11/4/2015	1615	1.6	212	1901	36	640	10	a44	6	33		2	250	0		้เส้า	- PU	170	1738 38
WEC	11/4/2015	1630	2,5	155	401		310	13	272	6	33	640	9		0	27	192	-11-	165	1
WEC	11/4/2015	1645	[[13]]		402	78	222	9	246	6	321	650. 498	1	355	6	20	155	11	156	21
WEC	11/4/2015	1700	19	239	403	27	170	25	246	6	35	64.8	\Box	220	6	27	19 K 168 N8	13	162	43
WEC	11/4/2015	1715		256	403	1 36	546	25	210	0	31		14		U	25	81	M	136	136
WEC	11/4/2015	1730	2.7	256	40)		6-10	53	20%	1 0	332	1594	20	QY.	1		168 170	14	1142	35
WEC	11/4/2015	1745	1.7	294_	404	33	474	32	278	0	30	648	10	24%	0	-32	170	13-	16.2	35
WEC	11/4/2015	1800	<u> </u>		· · · · · · · · · · · · · · · · · · ·		<u>}</u>	} 	-				ļ				<u></u>			1
WEC	11/4/2015	1815) 								1			1	······		1		
WEC	11/4/2015	1830 1845			1	-	ļ) 	-		<u> </u>		<u></u>	l		1	<u> </u>	
WEC	11/4/2015	1845				-			+	1	· · · · · · · · · · · · · · · · · · ·							1	1	
WEC	11/4/2015				1	-				÷			l 1 march 2 march 2 march 2) 	1		
WEC	11/4/2015					1		<u> </u>	+		•	1	: 	1				<u></u>	1	
LWEC	11/4/2015		1		1		<u>† </u>				1			+	+	h	I		1	-
LWEC	11/4/2015		······································			·				1	-		for second secon		1.		1	1		
						2		,											1	

11/4/2015

Barrer Ballar (BD)

~

2000 2010 2010 2010 2010 2010 2010 2010	LERSREC itart Time DATE	ERATING DA OMENDED EV Stop Time TIME (use military time)			ART 15 N				MIN AFTER	TEST												
11/03/15 SI ant VEC 1 VEC 1	DATE 11/4/2015 11/4/2015	Stop Time	Bin #1 Fuel	Rake	! !				MIN AFTER	TEST					······································	•						· · · · · · · · · · · · · · · · · · ·
11/03/15 SI ant VEC 1 VEC 1	DATE 11/4/2015 11/4/2015	Stop Time	Bin #1 Fuel	Rake	! !				MIN AFTER	TEST			: kaanaanaa ayo ta ta ta ta ta ta			1				100 mm		
ant VEC 1 VEC 1	DATE 11/4/2015 11/4/2015	TIME (use				FUEL STOR	AGE BUILD	ING		4		Contraction and a state of the state of the										
VEC 1 VEC 1	11/4/2015 11/4/2015	TIME (use											TDF BIN		Main Belt	Oxvaer	ı Levels	Productio	n Rates	Fan	Air	
VEC 1 VEC 1	11/4/2015 11/4/2015		in place		IPH	Bin #2 Fuel	Rake Speed	TPH	Bin #3 Fuel in	Rake Speed	трн	Screw Speed	Totalizer		Main Fuel belt		STACK O2, if known from	STEAMING RATE	MW	ID Fan Load	Air Flow	
VEC 1 VEC 1	11/4/2015 11/4/2015		Type of			in place	SPECIFY		place Type of	SPECIFY		SPECIFY	****	TDF}	Totalizer	% (specify	CEM % (specify		(specify gross or net)	20au %	%	
VEC 1	11/4/2015	-	Fuel	UNITS	:	Fuel	UNITS		Fuel	UNITS		UNITS	1		TOGANZEI	wet or dry)	wet or dry)	КРРН		70	76	
		800 815	Ch. 95	13-	÷	chies	13		RRTIES	15		18	15.06		2152	7.7		5 mm 2		6//		
VEC 1	1 11714010	830	- Part (No. 1999) (1997) (1997)	13	1000 1000 1000 1000		13			19		18	15.50		215.20	6.1		180	17.1	99.9 100	68.4	
VEC 1	11/4/2015	845		13			5			-14		18	15.56		22742	6.8		181	17.1	100	67.2	
	11/4/2015 11/4/2015	-10 900	14 mar 14 per temperature (* 1071) * (* 1070)	<u> </u>		998	Ļ <u>ķ</u>			10	5	18	16.42	160	233.12	6.7		181	17.1	100	67.5	
	11/4/2015			ালু ক্রি	7.9		and a star star star star	٦.٩		10	1.5			1.82	239.16	5.5		181	17.1	100	67.7	
VEC 1	11/4/2015	10, 945	1000.000 CONTRACTOR OF CONT	19	<u>.</u>	1	ß			10			17.80		251.94	3.9		182	17.1	100	66.7	
VEC 1	11/4/2015	N'1000 >		14	\$ 8.55	1		£.55			\$.55		18.26	1.84	284.07	6.5	<u>.</u>	184	ni	100	67.2	ameros (1.464 (1.
VEC	11/4/2015	1015		12		4	14			<u> </u>		18	18,72	1745-1-1-1-1010-104-17/0-	266.87	6.5		182	17.1	100	45,0	
	11/4/2015	1030 J 1045	Katies	12			17		MARCHART CONTRACTOR	ļ. ļļ	jo	18	19.60	n versoneringen eine	273.31	3.1	i I	181	17.1	100	61.0	
	11/4/2015	1100		11	8,59	1	10	8.59	•	- G - 16	8.59	18	20.06	1.8	2.84.84	6.9 7.3		182	17.1	100	68.3	
VEC	11/4/2015	1115		15		1	: 11			11		18	DU.SC		291,46	7.1		180	17.1	100	67.0	energenergenergenergenergenergenergener
	11/4/2015	1130 1145			••••••••••••••••••••••••••••••••••••••		10			μ			20.48		247,40	7.5		181	17.1	100	68.6	
	11/4/2015	1145		19	8.42	+	5179	8.42		12	8.47	18	21.94	1.88	304.12	7.1		180	121	100	649	,
	11/4/2015	1215		11+4	1		9			jα			2250	<u></u>	3/5:30	7.0		182	17.1	100	67.3	
	11/4/2015	1230		1.1			9		1997 - C.	$\lfloor L L \rfloor$		22	23.06		321.51	7.0		181	$\dot{\Omega}$	100	4.5	
	11/4/2015	1245 1300			- 22			300				0.0	0100	0.00			ļ			11 Martin 1 21-100		
	11/4/2015	1315		12	7.32		174	7.32		12	232	1	24.22	228	332.08	7.0		182	17.1	100	18.6	Martin Company
	11/4/2015	1330		10	i .	1	12-			10		31	25.38		344.51	6.1		181	17.4	100	69.6	
	11/4/2015	1345	19.000 - 10.000 - 10.000 - 10.000	<u> </u>			i u			4		RY.	24.02		350.30	7.2		1 130	1/1	100	668	
	11/4/2015	1400 1415	enter la companya de	10	7.41	÷	\$	7.47		<u>i ii - ii - i</u>	7,47	7 2 4	24.56	234	354.51	3.5		161	17.1	100	65.4	
	11/4/2015	1430	age: 00.55712444444.04462522393930	12	<u> </u>		*			14		24	21.16		365.74	6.9		181	17.1	99.8 /00	66.5	
VEC	11/4/2015	1445		18		1	18		· · · · · · · · · · · · · · · · · · ·	: 12		24	3.8.40		372.02	6.5		180	17.1	160	680	
	11/4/2015	1500		B	\$12	÷	11_	8.2	· · · · · · · · · · · · · · · · · · ·	0	8.2	24	25.52	2.36	37943	5.5		180	12.1	100	67.1	
	11/4/2015	1515 1530	Chips	,Å			14			12		271	30.14		384.71	6.9	1	181	17.1 A.K.	106	68.9	
	11/4/2015	1545	CALK?	10			10					18	1 30.60		398.41	6.5		192	₽1.16 L	100	66.4	675.05406-55
VEC	11/4/2015	1600		16	\$38		10	8.38		12	8.38	18	31 AA	2,08	204.21	\$ 2	ĺ	182	14.6	100	4.7	•~~~~
	11/4/2015	1615		8 Pa			6			13		18	1 31.48	and a state state of the state	411.85	मत्		192	16.2	106	67.4	
	11/4/2015	1630 1645		1,-		<u>.</u>	- G 12		100 maalaa ahaa ahaa ahaa ahaa ahaa ahaa ah	14		1 12	31.90		415.21 421.57	5.9	<u> </u>		142	100	684	
	11/4/2015	1700		10	9,16	<u>+</u>	12	\$.Ke		10	8.16	118	32.80	18	42.8.76	6.2		147		106	684	
	11/4/2015	1715		12)		<u></u> 0			12		1X	3332	er akan saya car	49,6,41	57		1851	16.5	100	67/3	-01/0
	11/4/2015	1730		12	ļ		10			12		-13	33.72		49061			ाल	16.7	102		
	11/4/2015	1745 1800		12			12			12		18	3416	1	447,97	517	<u> </u>	185	16.2	100	67.8	
	11/4/2015	1815		;		;	1	3		i				an a			[• · · · · · · · · · · · · · · · · · · ·			╉┈┈╌┥	
VEC	11/4/2015	1830			-					1				2			[***********
	11/4/2015	1845			į.	-							Concernance and the									
	11/4/2015	1900 1915	and an a second se	<u>.</u>			+	ļ					<u>.</u>									
	11/4/2015	1915		1	1	÷				:								 	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		++	
VEC	11/4/2015	1945		1		-	:						*								tt	
NEC	11/4/2015	2000						1						1								

11/4/2015

Power Boiler (PB)

NERIC	PROCESS O	PERATING DA	TA LOG SHE	ET FOR E	MISSION	S TESTING					1	1			I	Γ	Γ	1	[1	1	l
																				· · · ·	+	,,
								Ĺ			al.o	1										
					1	<u>i</u>															1	
WER B	DILERSREC	COMENDED E	VERY 15 MIN	UTES; ST	ART 15 N	NIN B4 TEST,	AND CON	TINUE 15	5 MIN AFTER	TEST	6	5										
				<u> </u>	<u> </u>															······		
1/03/15	Start Time	Stop Time	L			FUEL STOR/	AGE BUILD	DING					TDF BIN		Main Belt	Oxyger	n Levels	Producti	on Rates	Fan	Air	
				Data					Bin #3					TPH			STACK 02, if				1	
			Bin #1 Fuel	Rake Speed	TPH	Bin #2 Fuel	Rake	TPH	Fuel in	Rake	TPH	Screw	Totalizer	Rate (if	Main Fuel	BOILER O2	known from	STEAMING	MW	ID Fan	Air Flow]
			in place	Sheen	1	in place	Speed		place	Speed		Speed		TDF)	belt		CEM	RATE	(specify	Load		1
					1														gross or			<u> </u>
int	DATE	TIME (use	Type of	SPECIFY		Type of	SPECIFY		Type of	SPECIFY		SPECIFY			Totalizer	% (specify	% (specify		net)	1		1
		military time)		UNITS		Fuel	UNITS		Fuel	UNITS		UNITS			rotanzer	wet or dry)	wet or dry)	КРРН		%	%	
/EC	11/5/2015	800	Chips			Chips			RRTIES		<u> </u>					werdruty	wetoraly	КРРН		l	ļ	L
/EC	11/5/2015	815	Chips	· · · · · · · · · · · · · · · · · · ·	<u>.</u>	Chips			000-11=)							<u> </u>						
/EC	11/5/2015	830		¦		<u> </u>						·····							{	L		ļ
/EC	11/5/2015	845			<u> </u>	;			<u>}</u>							·		[[
/EC	11/5/2015	900				<u> </u>		}										<u> </u>			<u> </u>	
/EC	11/5/2015	915			<u> </u>														· · · · · · · · · · · · · · · · · · · ·	l		
/EC	11/5/2015	930		15		1	14		;	12		18	17.36		24291	6.0		186		160	70.4	
/EC	11/5/2015	/ 945		12	<u>.</u>		10			16			17.86		249.41	7.6		184			4.8	
/EC	11/5/2015	1000	Y	11	:	1	9		:	16			18.30		253,01	7.1		186		100	67.9	
/EC	11/5/2015	1015 /	X	13			11		1	14		15	18.74		266.41	6.5		184			69.5	
/EC	11/5/2015	1030		14			10		:	12		18	19.22		217.69	5.4		187		100	69.2	l
/EC	11/5/2015	1045 3		15	1		12			.15		18	19.68		272.64	5.2		186		160	65.9	
/EC	11/5/2015			12	5.91			6.94	1	17	11,93	18	20.12	182	228.90	5.9		187		100	1.6.5	
/EC	11/5/2015	1115		12			12			13		18	26.77		288.84	5.9		185		1.0	64.0	
/EC	11/5/2015	1130		13	<u> </u>		13			B			21.04		293.50	5.2		185		100	67.2	
/EC	11/5/2015	1145		14			1	+-10		12		18	21.60		362.07	5.9		188		160	6514	
/EC /EC	11/5/2015 11/5/2015	1215		_15	6.66			Cic		13	13	18	21.92	1.7	305.56	4.2	ļ	187		100	70.0	
/EC	11/5/2015	1210	6			ii	<u> </u>	<u> </u>		44		18	22.42		312.80	6.7		186		100	67.2	
EC	11/5/2015	1245	5 +2	10			16					18	22.86	↓	318.79	6.5	<u> </u>	184		100	66.0	L
/EC	11/5/2015	1300	ash	16 10	6.29			6.24		14	12.54	18	23,32	194	330.74	6.7		181		100	69.9	
EC .	11/5/2015	1315	¢.	1)	91001		12	6101		14	14.34	18	24.24	611	336.64	6.4		185		100	68.7	
EC	11/5/2015			10			ìo			14			24.76		344.04	6.7	<u> </u>	1,80	<u> </u>		C1,8	
EC	11/5/2015	1332 1330		11		ii	16			15			25,14		349,05			18	£	100	715	
EC	11/5/2015		Λ.	11	6.47		10	6.47		is	12.94	18	25.62	186	356.62	6.3		18	Ĺ	100	626	
'EC	11/5/2015	1415	10 12	D,		11	'G	V.		12	-184 <u>1</u> (18	24.10	The A	363.57	6.2		180	L	100	66.8	
EC	11/5/2015	1430	r , '	13			11			IN IN		18	24,42		369.64	6.3		18	7	79.L	673	
'EC	11/5/2015	1445 /	QUI :	0	_		11					18	27.04	1	376.25			18		100	72.3	
EC	11/5/2015	1500	V [*]		6.25		Π	6.25		14	D.4	18	27.42	1.8	381.60	6.6				100	72.3	
EC	11/5/2015	15 9515					<u> </u>			15		18	27.90		388.75	6.1		18	7	100	64.5	
EC	11/5/2015	1530																				
EC	11/5/2015	1545												i		L						
EC	11/5/2015	1600																L		<u> </u>		
EC EC	11/5/2015 11/5/2015	1615 1630													L		Į			ļ		ļ
EC	11/5/2015	1645																	L		ļ	
EC	11/5/2015	1700																		<u> </u>		
EC	11/5/2015	1715																l				
EC	11/5/2015	1730				<u> </u>								<u> </u>		l	 				· · · · · · · · · · · · · · · · · · ·	L
EC	11/5/2015	1745				;i						<u> </u>		·			l					
EC	11/5/2015	1800														[{					
EC	11/5/2015	1815																		<u> </u>	1	
EC	11/5/2015	1830	I	1		i i										İ						
EC	11/5/2015	1845	İ	;									;			[İ	1	
C C	11/5/2015	1900									i					F	ļ					
EC	11/5/2015	1915		1				1														
EC	11/5/2015	1930			1		1						1									
EC)	11/5/2015	1945	1				}	1		1							1				1	
C	11/5/2015	2000																		l	1	
																				1	1	

1/4/2015

Copy of Power Boiler--Operating Log--Rev 5 For Tests(1) (002) 11-03-15

Power Boiler (PB)

JENERIC F	ROCESS O	PERATING DA	·	1															1	1
			ļ	ļ		ļ			L	-									<u> </u>	1
				ļ		+														1-
OWER BC	ILEPS DEC	COMENDED E		 		ļ														1
OWER BU	ILENS-REC		·			ļ			ļ	<u> </u>									1	
11/03/15	Start Time	Stop Time		Stack Monito	[TEAD DOWER			1			<u>i</u>								
11100/10	Start Thire	Stop Time	<u> </u>	SLACK MOTHEC	brs	ESP POWER	DATA (IF AVAIL	ABLE)	ESP P	OWER DA	TA (IF AVAILA	BLE) ESP F	POWER DA	ATA (IF AV	AILABLE)		÷		
			OPACITY	со	Flue Gas Temp	ESP Field 1 (Inlet)	ESP Field 1 (Inlet)	Spark Rate	Primary	Primary	ESP Field 2 (Center)	ESP Field 2 (Center)	Spark Rate	Primary	Primary	ESP Field 3 (Outlet)	ESP Field 3 (Outlet)	Spark Rate	Primary	Prir
lant	DATE	TIME (use military time)	%	lb/mmbtu	(Precip Gas Out)	Secondary mA	Secondary kV	SPM	Current	Voltage	Secondary mA	Secondary kV	SPM	Current	Voitage	Secondary mA	Secondary kV	SPM	Current	Vo
WEC	11/5/2015	800		· · ·		<u> </u>			 					+						
WEC	11/5/2015	815				f			<u>+</u>	1		†		+					+	
WEC	11/5/2015	830							1					+		·····				+
WEC	11/5/2015	845							<u>† </u>	t		1		+						1-
WEC	11/5/2015	900							1	1				1					† – –	+
WEC	11/5/2015	915										1		1		······			1	1-
WEC	11/5/2015	930	1.8	-65	353 395	3-1	254	16	252	۵	33	648	8	246	D	26	202	14	168	40
	11/5/2015	945	2.3	128		34	450	11	262	6	マネ	(30	11	238	ø	24	222	15	162	50
	11/5/2015	1000	1.9	223	396	36	648	21	286	6	33	634	10	248	6		202	13	166	152
WEC	11/5/2015	1015	1.8	169	397	34	644	26	274	D	372	640	15	240	0	25	206	14	162	14:
	11/5/2015 11/5/2015	1030 1045	1.9	269	398	63	618		244	0	32	640	<u></u>	274	8	24	212	14	174	5
	11/5/2015	11045	2.17	200	397 397	35	644	4	260	6	31	648			0	26	248	13	11/1	30
	11/5/2015	1115	1.9	280	395	35	636	4	244	0	33	LAL		258			192			44
WEC	11/5/2015	1130	1.6	212	397	33	644	14	248	6	33	640	5	240	0	26	204 195 150	13	145	4
	11/5/2015	1145	21	142	395	- 3 द्वेश 	640	-17-	268	0	う/ 32 32	642	-1-5	238	0	24	150	13	142	4
	11/5/2015	1200	1.9	96	291)	36	248	-3-	256	6	33	640	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	238	6	25	184	19	152	3
	11/5/2015	1215	2.2	162	391 391 240 343 343 343	35	654	-11-	240	0	31	648	12	230	0	25		13	152	3
WEC	11/5/2015	1230	1.9	146	342	36	L58	4		6	22	644	1	240	e	24	198 254	13	100	24
WEC	11/5/2015	1245	2.4	146	393	35	648	-7	257 260	0	37	644	7	234	0	77.	196	15	152	3
WEC	11/5/2015	1300	1.8	67	394	35	640	9	290	0	32	550	7	252	0	26	196	13	162	2
	11/5/2015	1315	2.0	149	-244 356	31 35	470	10	248	6	31	648	30	234	0	26	196	+11	160	19
	11/5/2015	1330	2.2-	71	356	35	(20	94	260 260	0	30 30 30 30 30 30 30 30 30 30 30 30 30 3	648	5	240	0	26	230	13	102	Y
	11/5/2015	1345	1,7	117	315	35 37	648	6	260	0	31	644	8	234	0	25	820	14	162	4
	11/5/2015 11/5/2015	1400	1.7	18-1	346	<u></u>	640	10	244	6	_ 52_	644	17	240	D	27 26 26	220	13	160	5
	11/5/2015	1415	1.9		350	33	648		248	0	31	27	18	240	0	27	42L	13	167	5
	11/5/2015	1430	3.1	96	2000		636	12	282	6	2	560	31	240	0	26	168	14	156	3
	11/5/2015	1500	1.8 L8	145	3590 461	36	040	<u> </u>	252	8	32	248	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	240	õ	25	216	13	174	13
	11/5/2015	1515	2.1	- fci	401	3-(650	- <u>í</u> -	262	5	32	650	<u>.</u>	aru	0	28	226	12	132	5
	11/5/2015	1530	- 01			20	00	£	ALL		24	630	0.	10.0	- <i>v</i>	~ l	000	14	112	1
VEC	11/5/2015	1545							<u>├</u> ────					†					<u> </u>	
VEC	11/5/2015	1600							<u> </u>	i [<u>├</u> ────┤		1		· _ · · · · · · · · · · · · · · · · · ·			t	1.
	11/5/2015	1615								ļ		t 1		1					1	1-
	11/5/2015	1630							[1		······			<u>†</u>	1
	11/5/2015	1645																		1
	11/5/2015	1700																		
	11/5/2015	1715																		
	11/5/2015	1730										ļ		1					1	
	11/5/2015	1745										ļ							h	L
	11/5/2015	1800 1815												<u></u>					ļ	Ļ
	11/5/2015	1830																ļ	ļ	L-
	11/5/2015	1845																	<u> </u>	
	11/5/2015	1900										}								<u> </u>
	11/5/2015	1915				·						├							<u> </u>	
	11/5/2015	1930										├							}	
	11/5/2015	1945										<u>├</u>		+					}	
	11/5/2015	2000										i		1					1	1

1/4/2015

Copy of Power Boiler--Operating Log--Rev 5 For Tests(1)-(002) 11-03-15

Power Boiler (PB)

Created: 11/04/15 00:05 EU BOILER # 1

	PROCESS	STEAM FLOW KLB/HR	CO PPM		02 %		Fd FACTOR SCF/mmBTU		CO LB/mmBTU		
Hour	1-Hr Avg Stat	1-Hr Avg Sta	t 1-Hr Avg	Stat	1-Hr Avg	Stat.	1-Hr Avg	Stat	_ 1-Hr Avg	Stat.	
0	1.00 SVC	281.4 SV	112.7	SVC	9.9	SVC	9561.0	SVC	0.149	SVC	•
1	1.00 SVC	283.1 SVG	115.3	SVC	9.4	SVC	9561.0	SVC	0.146	SVC	
2	1.00 SVC	286.9 SV	129,9	SVC	9.2	SVC	9561.0	SVC	0.161	SVC	
3	1.00 SVC	288.9 SV	139.6	SVC	9.1	SVC	9561.0	SVC			
4	1.00 SVC	289.6 SV(144.8	SVC	9.6	SVC	9561.0	SVC			
5	1.00 SVC	290.1 SV(134.6	SVC	9.2	SVC	9561.0				
6	1.00 SVC	289.4 SV	135.2	SVC		SVC	9561.0				
7	1.00 SVC	284.3 SV				SVC	9561.0				
8	1.00 SVC	285.7 SVG			13.3		9561.0				
9	1.00 SVC	287.1 SV				SVC	9561.0				
10	1.00 SVC	287.2 SV				SVC	9561.0				
11	1.00 SVC	286.7 SV(SVC	9561.0				
12	1.00 SVC	285.3 SV				SVC	9561.0		0.394		
13	1.00 SVC	283.6 SV				SVC	9561.0				
14	1.00 SVC	281.3 SV(SVC	9561.0				
15	1.00 SVC	289.2 SV				SVC	9561.0				
16	1.00 SVC	293.9 SV(SVC	9561.0				
17	1.00 SVC	289.7 SVG				SVC	9561.0		0.205		
18	1.00 SVC	289.2 SV(SVC	9561.0		0.213		
19	1.00 SVC	288.4 SV				SVC	9561.0		0.395		
20	1.00 SVC	285.5 SVG				SVC	9561.0		0.148		
21	1.00 SVC	285,9 SVC				SVC	9561.0		0.144		
22	1.00 SVC	282.2 SV				SVC	9561.0		0.171		
23	1.00 SVC	264.9 SVG	79.1	SVC	9.8	SVC	9561.0	SVC	0.103	SVC	

Daily Emission Report

· · · · · · · · · · · · ·

· · · · · · · · · · · · ·

* CEM DAS reported steam rate not verified for accuracy or used by control room operators in running the boiler

-----Explanation for Status Code------

SVC = MONITOR IN SERVICE

CEMDAS(TM) Data Acquisition System

Page 1 of 1 •

Steam & Controls L'Anse Warden

..... Created: 11/05/15 00:05 EU BOILER # 1

.

D Huge wardow	
≈≠₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	
Daily Emission Report	
For 11/4/2015	

Hour.	PROCESS	Stat	STEAM FLOW KLB/HR 		CO PPM 1-Hr Avg	Stat	02 %	.Stat.	Fd FACTOR SCF/mmBTU		CO LB/mmBTU 1-Hr. Avg.	Stat.	
 nour.					·					·			
0	1.00	SVC	275,7	SVC	122.0	SVC	9.7	SVC	9561.0	SVC	0.158	SVC	
ĩ	1.00		278.1		158.1		9.3	SVC	9561.0	SVC	0.198	SVC	
2	1.00		276.0	SVC	137.6	SVC	9.3	SVC	9561.0	SVC	0.172	SVC	
3	1.00		276.1		132.0	SVC	9.4	SVC	9561.0	SVC	0.167	SVC	
4	1.00		276.3		106.3	SVC	9.6	SVC	9561.0	SVC	0.137	SVC	
5	1.00		276.6	SVC	109.0	SVC	9.4	SVC	9561.0	SVC	0.138	SVC	
6	1.00		276.7	SVC	111.6	SVC	9.4	SVC	9561.0	SVC	0.141	SVC	
Ť	1.00		272.4	SVC	105.2	SVC	9.4	SVC	9561.0	SVC	0.133	SVC	
8	1.00		275.2	SVC	76.3	SVC	9.9	SVC	9561.0	SVC	0.101	SVC	
9	1.00	SVC	276.3	SVC	126.7	SVC	9.2	SVC	9561.0		0.157		
10	1.00	SVÇ	276.3	SVC	177.7	SVC	9.0	\$VC	9561.0		0.217		
11	1.00	SVC	276.7	SVC	123.2	SVC	9.4	SVC	9561.0	SVC	0.156	SVC	
12	1.00	SVC	276.5	SVC	77.0	SVC	9.8	SVC	9561.0	SVC	0.101		
13	1.00	SVC	276.1	SVC	85.0	SVC	9.5	SVC	9561.0	SVC	0.108		
14	1.00	SVC	276.3	SVC	91.8	SVC	9.4	SVC	9561.0		0,116		
15	1.00	SVC	277.1	SVC	143.9	SVC	9.1	SVC	9561.0		0.177		
16	· 1.00	SVC	284.7	SVC	388.5	SVC	9.0	SVC	9561.0		0.474		
17	1.00	SVC	281.7	SVC	402.0	SVC	8.8	SVC	9561.0		0.482		
18	1.00	SVC	276.3	SVC	342.9	SVC		SVC	9561.0	-	0.418		
19	1.00	SVC	273.7	SVC	142.4	SVC	9.3	SVC	9561.0		0.178		
20	1.00	SVC	277.8	SVC	168.9	SVC	9.2	SVC	9561.0	SVC	0.210		
21	1.00	SVC	277.2	SVC	363.8	SVC	8.8	SVC	9561.0		0.437		
22	1.00	SVC	272.6	SVC	327.4	SVC	9.1	SVC	9561.0	SVC	0.403	SVC	
23	1.00	SVC	272.6	SVC	139.6	SVC	9.4	SVC	9561.0	SVC	0.176	SVC	

* CEM DAS reported steam rate not verified for accuracy or used by control room operators in running the boiler

.

-----Explanation for Status Code-----SVC = MONITOR IN SERVICE

4

_____ CEMDAS(TM) Data Acquisition System

• •

•		
Steam & Controls L'Anse Warden	Created:	11/06/15 00:05 EU BOILER # 1
		۵ ور و شمر هم در در و و و و و

. ...

•

. . . .

			Daily Emission For 11/5/20			
	PROCESS	STEAM FLOW KLB/HR	CO PPM	02 %	Fd FACTOR SCF/mmBTU	CO LB/mmBTU 1-Hr Avg Stat
Hour	1-Hr Avg Stat	1-Hr Avg Stat	I-nt AVG Stat	I-HI AVY SLAC	Titt MAG Drar	
0	1.00 SVC	279.3 SVC	134.0 SVC	9.4 SVC	9561.0 SVC	0.169 SVC
1	1.00 SVC	280.6 SVC	178.7 SVC	9.0 SVC	9561.0 SVC	0.218 SVC
2	1.00 SVC	280.2 SVC	162.8 SVC	9.1 SVC	9561.0 SVC	0.200 SVC
3	1.00 SVC	280.7 SVC	158.2 SVC	9.1 SVC	9561.0 SVC	0.195 SVC
4	1.00 SVC	281.6 SVC	307.1 SVC	9.5 SVC	9561.0 SVC	0.391 SVC
5	1.00 SVC	278.7 SVC	136.6 SVC	9.2 SVC	9561.0 SVC	0.170 SVC
6	1.00 SVC	285.6 SVC	123.5 SVC	8.9 SVC	9561.0 SVC	0.149 SVC
7	1.00 SVC	282.3 SVC	119.5 SVC	9.0 SVC	9561.0 SVC	0.146 SVC
8	1.00 SVC	279.8 SVC	102.8 SVC	11.0 SVC	9561.0 SVC	0.151 SVC
9	1.00 SVC	284.2 SVC	129.0 SVC	9.0 SVC	9561.0 SVC	0.157 SVC
10	1.00 SVC	284.6 SVC	171.5 SVC	8.7 SVC	9561.0 SVC	0,204 SVC
11	1.00 SVC	283.8 SVC	140.0 SVC	8.8 SVC	9561.0 SVC	0.168 SVC
12	1.00 SVC	283.5 SVC	104.9 SVC	9.4 SVC	9561.0 SVC	0.132 SVC
13	1.00 SVC	283.4 SVC	116.5 SVC	8.9 SVC	9561.0 SVC	0.141 SVC
14	1.00 SVC	283.3 SVC	129.1 SVC	8.8 SVC	9561.0 SVC	0.155 SVC
15	1.00 SVC	276.8 SVC	157.7 SVC	8.8 SVC	9561.0 SVC	0.189 SVC
16	1.00 SVC	282.0 SVC	165.7 SVC	9.2 SVC	9561.0 SVC	0.206 SVC
17	1.00 SVC	281,8 SVC	172.2 SVC	8.8 SVC	9561.0 SVC	0.207 SVC
18	1.00 SVC	282.3 SVC	171.0 SVC	8.8 SVC	9561.0 SVC	0.205 SVC
19	1.00 SVC	283.2 SVC	307.1 SVC	8.7 SVC	9561.0 SVC	0.366 SVC
20	1.00 SVC	283.5 SVC	138.5 SVC	9.2 SVC	9561.0 SVC	0.172 SVC
21	1.00 SVC	281.0 SVC	139.9 SVC	8.8 SVC	9561.0 SVC	0.168 SVC
22	1.00 SVC	278.0 SVC	177.1 SVC	8.7 SVC	9561.0 SVC	0.211 SVC
23	1.00 SVC	275.4 SVC	162.9 SVC	8.9 SVC	9561.0 SVC	0.197 SVC

میں استعماد میں استعماد کی معام ہوا ہے۔ یہ معام کے اور کی دیار کی دیار کی معام ہے کے اور اور کی سیکھی اور ایک

* CEM DAS reported steam rate not verified for accuracy or used by control room operators in running the boiler

SVC = MONITOR IN SERVICE

CEMDAS(TM) Data Acquisition System

_____ Page 1 of 1

Steam & Controls
L'Anse Warden

Created: 11/04/15 00:05 EU BOILER # 1

•	Daily Opacity Report For 11/3/2015											
		Opac. % Minutes	Opac. % Minutes	Opac. % Minutes	Opac. % Minutes	Opac. % Minutes	Opac. % Minutes	Opac. % Minutes	Opac. % Minutes	Opac. % Minutes	Opac. % Minutes	. •
	Hour	0 - 5	6 - 11	12 - 17	18 - 23	24 - 29	30 - 35	36 - 41	42 - 47	48 - 53	54 - 59	
	0	2.3 SVC	2.3 SVC 2.2 SVC	2.5 SVC 2.4 SVC	2.4 SVC 2.2 SVC	2.5 SVC 2.9 SVC	2.9 SVC 2.7 SVC	2.4 SVC 2.5 SVC	2.1 SVC 2.4 SVC	2.5 SVC 2.6 SVC	3.2 SVC 2.2 SVC	
	1 2	2.4 SVC 2.2 SVC	2.2 SVC 2.3 SVC	2.4 SVC 2.4 SVC	2.8 SVC	2.1 SVC	2.1 SVC	2.2 SVC	2.3 SVC	2.1 SVC	2.3 SVC	
	3	1.9 SVC	1.8 SVC	3.6 SVC	1.9 SVC	2.1 SVC	2.1 SVC	2.4 SVC	1.9 SVC	1.9 SVC	1.9 SVC	
	4	2.2 SVC	2.9 SVC	3.7 SVC	2.0 SVC	2.7 SVC	2.1 SVC 2.3 SVC	2.6 SVC 2.3 SVC	2.0 SVC 2.3 SVC	-2.2 SVC 2.6 SVC	2.5 SVC 3.1 SVC	
	5	2.7 SVC 2.5 SVC	2.1 SVC 2.2 SVC	2.3 SVC 2.7 SVC	2.7 SVC 2.4 SVC	2.5 SVC 2.3 SVC	2.3 SVC 2.3 SVC	2.2 SVC	2.3 SVC 2.7 SVC	2.0 SVC 2.1 SVC	2.1 SVC	
	7	2.2 SVC	2.7 SVC	2.5 SVC	2,4 SVC	2.2 SVC	2.2 SVC	2.9 SVC	2,2 SVC	2.1 SVC	2.2 SVC	
	8	2.2 SVC	2.4 SVC	2.4 SVC	2.3 SVC	2,2 SVC	3.5 SVC	1.9 SVC	2.1 SVC	2.3 SVC	2.5 SVC	
	9	2.3 SVC	2.3 SVC	2.3 SVC 2.6 SVC	2.7 SVC 2.4 SVC	3.1 SVC 2.0 SVC	2.5 SVC 2.4 SVC	2.3 SVC 3.1 SVC	2.4 SVC 2.4 SVC	2.2 SVC 2.0 SVC	2.1 SVC 1.9 SVC	
	10 11	2.1 SVC 1.9 SVC	2.0 SVC 2.3 SVC	2.6 SVC 2.5 SVC	2.5 SVC	2.0 SVC	2.3 SVC	2.2 SVC	2.6 SVC	1.9 SVC	1.8 SVC	
	12	2.3 SVC	9.4 NSA	2.0 SVC	2.2 SVC	2.3 SVC	1.9 SVC	1.8 SVC	1.7 SVC	1.8 SVC	2.5 SVC	
	13	1.9 SVC	1.7 SVC	2.1 SVC	2.2 SVC	1.8 SVC	1.8 SVC	1.8 SVC	2.0 SVC	2.4 SVC	1.9 SVC	
	14	2.0 SVC 1.9 SVC	2.1 SVC 2.2 SVC	2.4 SVC 1.7 SVC	2.6 SVC 2.0 SVC	2.0 SVC 1.8 SVC	1.9 SVC 2.1 SVC	1.9 SVC 2.2 SVC	2.4 SVC 2.0 SVC	1.8 SVC 2.2 SVC	2.1 SVC 2.7 SVC	
	15 16	2.1 SVC	1.9 SVC	2.1 SVC	2.3 SVC	2.1 SVC	2.1 SVC	2.0 SVC	2.2 SVC	2.6 SVC	2.1 SVC	
	17	1.9 SVC	1.8 SVC	1.7 SVC	2.7 SVC	2.1 SVC	2.1 SVC	2.0 SVC	2.4 SVC	1.9 SVC	2.0 SVC	
	18	1.9 \$VC	1.8 SVC	2.7 SVC	2.4 SVC	1.8 SVC	2.2 SVC	2.3 SVC	2.4 SVC 2.2 SVC	2.0 SVC 2.3 SVC	2.1 SVC 2.0 SVC	
	19 20	1.9 SVC 2.4 SVC	2.9 SVC 1.7 SVC	2.0 SVC 1.8 SVC	2.1 SVC 2.5 SVC	2.3 SVC 2.2 SVC	2.1 SVC 1.9 SVC	2.2 SVC 1.9 SVC	1.8 SVC	2.5 SVC 2.6 SVC	2.8 SVC	
	20	2.0 SVC	2.2 SVC	2.4 SVC	2.9 SVC	1.9 SVC	1.9 SVC	1.9 SVC	2.3 SVC	2.2 SVC	1.9 SVC	
	22 23	1.9 SVC 1.9 SVC	2.0 SVC 1.6 SVC	2.1 SVC 1.8 SVC	2.1 SVC 2.1 SVC	1.8 SVC 1.6 SVC	1.8 SVC 2.6 SVC	2.5 SVC 1.9 SVC	1.9 SVC 2.0 SVC	2.0 SVC 1.9 SVC	2.1 SVC 1.9 SVC	

The average opacity period average for the day was 2.2% for 239 periods of valid data.

The Fan was in operation for 240 periods.

The maximum opacity period average for the day was 3.7%.

There was 1 period of invalid data.

Status Code Definitions

NSA = NO SAMPLE AVAILABLE

SVC = MONITOR IN SERVICE

CEMDAS(TM) Data Acquisition System

Page 1 of 1

Steam & Controls L'Anse Warden

Created: 11/05/15 00:05

EU BOILER # 1

Daily	Opacity	Report
FO	r 11/4/2	2015

Hour	Opac. % Minutes 05	Opac. % Minutes 6 - 11	Opac. % Minutes 12 - 17	Opac. % Minutes 18 - 23	Opac. % Minutes 2429	Opac. % Minutes 30 - 35	Opac. % Minutes -36 - 41	Opac. % Minutes 42 - 47	Opac. % Minutes 48 53	Opac. % Minutes 54 - 59	• • • • • • • • • • •
						1 0 81/2	1.8 SVC	2.2 SVC	2.0 SVC	1.8 SVC	
0	1.7 SVC	1.7 SVC	1.8 SVC	2.5 SVC	2.5 SVC	1.9 SVC	2.7 SVC	2.1 SVC	1.8 SVC	1.8 SVC	
1	2.2 SVC	1.9 SVC	2.0 SVC	2.9 SVC	1.9 SVC	2.1 SVC	1.8 SVC	1.7 SVC	1.8 SVC	1.9 SVC	
2	1.7 SVC	1.9 SVC	2.1 SVC	2.3 SVC	1.8 SVC	2.0 SVC		1.8 SVC	1.8 SVC	2.3 SVC	
3	2.0 SVC	2.1 SVC	1.7 SVC	2.4 SVC	2.0 SVC	2.2 SVC	1.8 SVC				
4	2.1 SVC	1.8 SVC	1.8 SVC	2.2 SVC	2.0 SVC	2.0 SVC	2.0 SVC	1.8 SVC	2.7 SVC	2.1 SVC	
5	2.1 SVC	2.4 SVC	2.4 SVC	3.6 SVC	2.6 SVC	2.0 SVC	2.1 SVC	2.7 SVC	2.1 SVC	2.0 SVC	
б	2.5 SVC	2.2 SVC	2.2 SVC	2.2 SVC	1.8 SVC	2.1 SVC	2.5 SVC	1.9 SVC	2.0 SVC	2.0 SVC	
7	2.2 SVC	2.1 SVC	2.1 SVC	2.4 SVC	2.8 SVC	2.5 SVC	2.1 SVC	2.2 SVC	2.1 SVC	2.0 SVC	
8	1.9 SVC	2.1 SVC	2.1 SVC	2.2 SVC	2.7 SVC	2.3 SVC	2.5 SVC	2.3 SVC	2.1 SVC	2.1 SVC	
9	2.0 SVC	2.1 SVC	2.9 SVC	2.7 SVC	2.2 SVC	2.2 SVC	2.4 SVC	2.4 SVC	2.8 SVC	2.4 SVC	
10	2.1 SVC	2.5 SVC	2.0 SVC	2.0 SVC	2.4 SVC	2.3 SVC	1.9 SVC	2.0 SVC	2.2 SVC	2.5 SVC	
11	3.8 SVC	3.2 SVC	2.4 SVC	2.3 SVC	2.5 SVC	2.3 SVC	2.1 SVC	2.4 SVC	2.2 SVC	3.0 SVC	
12	2.4 SVC	SPN	3.7 SVC	3.4 SVC	3.7 SVC	2.3 SVC	2.1 SVC	2.6 SVC	2.5 SVC	2.8 SVC	
13	3.3 SVC	3.9 SVC	2.9 SVC	2.1 SVC	2.5 SVC	2.7 SVC	3.7 SVC	2.9 SVC	2.5 SVC	2.3 SVC	
14	3.1 SVC	2.7 SVC	2.9 SVC	2.4 SVC	5.1 SVC	3.1 SVC	3.0 SVC	2.5 SVC	3.1 SVC	2.4 SVC	
15	2.2 SVC	2.0 SVC	2.3 SVC	2.4 SVC	4.1 SVC	2.4 SVC	2.1 SVC	1.8 SVC	2.2 SVC	2.0 SVC	
16	2.0 SVC	2.1 SVC	2.3 SVC	3.1 SVC	2.4 SVC	2.1 SVC	2.3 SVC	2.6 SVC	1.9 SVC	2.0 SVC	
17	1.8 SVC	1.8 SVC	2.3 SVC	2.0 SVC	3.5 SVC	2.7 SVC	2.2 SVC	2.0 SVC	1.0 SVC	1.8 SVC	
18	1.9 SVC	2.1 SVC	1.9 SVC	2.1 SVC	2.7 SVC	2.4 SVC	1.9 SVC	1.8 SVC	1.8 SVC	2.1 SVC	
19	2.0 SVC	2.3 SVC	1.8 SVC	1.8 SVC	2.5 SVC	2.2 SVC	2.2 SVC	.2,3 SVC	2.3 SVC	2.0 SVC	
20	1.7 SVC	1.8 SVC	2.2 SVC	2.2 SVC	2.4 SVC	2.0 SVC	2.0 SVC	2.4 SVC	2.0 SVC	1.8 SVC	
20	1.9 SVC	2.2 SVC	1.8 SVC	1.8 SVC	1.8 SVC	1.7 SVC	2.3 SVC	1.7 SVC	2.0 SVC	2.0 SVC	
21	2.2 SVC	2.1 SVC	2.0 SVC	1.9 SVC	2.9 SVC	3.3 SVC	2.1 SVC	2.2 SVC	2.5 SVC	2.3 SVC	
22	1.8 SVC	1.8 SVC	1.8 SVC	2,3 SVC	2.2 SVC	1.9 SVC	2.2 SVC	2.1 SVC	2.0 SVC	2.0 SVC	

The average opacity period average for the day was 2.3% for 239 periods of valid data.

The Fan was in operation for 240 periods.

The maximum opacity period average for the day was 5.1%.

There was 1 period of invalid data.

Status Code Definitions SPN = SPAN CALIBRATION

SVC = MONITOR IN SERVICE

٠

CEMDAS(TM) Data Acquisition System

Steam & Controls " L'Ànse Warden

.

. .

hatach	

	Daily Opacity Report
	For 11/5/2015

	Opac. % Minutes	Opac. % Minutes	Opac. % Minutes	Opac. % Minutes	Opac. % Minutes	Opac. % Minutes	Opac. % Minutes	Opac. % Minutes	Opac. % Mínutes	Opac. % Minutes
Hour	0 - 5		12 - 17	18 - 23	24 = 29	30 - 35	36 - 41	42 - 47		54 - 59
HOUL										
0	2.1 SVC	1.9 SVC	2.6 SVC	2.0 SVC	2.3 SVC	2.1 SVC	2.0 SVC	1.8 SVC	2.0 SVC	1.8 SVC
1	1.9 SVC	2.2 SVC	2.0 SVC	1.8 SVC	2,3 SVC	2.0 SVC	2.0 SVC	1.8 SVC	1.8 SVC	1.9 SVC
2	2.5 SVC	1.9 SVC	2.0 SVC	2.0 SVC	2.6 SVC	2.1 SVC	1.9 SVC	1.9 SVC	2.1 SVC	2.4 SVC
3	2.1 SVC	-2.0 SVC	2.2 SVC	2.0 SVC	2.1 SVC	2,1 SVC	1.9 SVC	2.2 \$VC	2.1 SVC	2.0 SVC
4	2.1 SVC	2.3 SVC	1.9 SVC	2.0 SVC	2.0 SVC	1.8 SVC	2.3 SVC	2.0 SVC	1.8 SVC	2.0 SVC
5	2.3 SVC	2.0 SVC	2.0 SVC	1.9 SVC	1.9 SVC	2.8 SVC	1.8 SVC	1.9 SVC	1.9 SVC	1.9 SVC
6	1.9 SVC	2.0 SVC	2.0 SVC	2.0 SVC	2.4 SVC	1.8 SVC	1.9 SVC	1.9 SVC	2.0 SVC	1.8 SVC
7	1.7 SVC	1.7 SVC	1.8 SVC	2.1 SVC	1.7 SVC	1.9 SVC	2.1 SVC	1.8 SVC	1.8 SVC	1.9 SVC
8	1.8 SVC	1.9 SVC	2.3 SVC	2.0 SVC	1.9 SVC	2.1 SVC	1.9 SVC	1.8 SVC	1.8 SVC	1.7 SVC
9	2.3 SVC	1.9 SVC	1.9 SVC	2.0 SVC	2.4 SVC	2.1 SVC	1.9 SVC	1.8 SVC	2.1 SVC	2.4 SVC
10	2.0 SVC	2.1 SVC	2.3 SVC	2.4 SVC	2.2 SVC	2.1 SVC	1.9 SVC	2.1 SVC	2.8 SVC	2.0 SVC
11	2.0 SVC	2.0 SVC	2,1 SVC	2.0 SVC	1.9 SVC	2.1 SVC	1.8 SVC	2.7 SVC	1.9 SVC	2.1 SVC
12	2.3 SVC	22.0 NSA	2.0 SVC	1.9 SVC	1.8 SVC	2.3 SVC	2.5 SVC	2.0 SVC	2.1 SVC	2.3 SVC
13	2.2 SVC	2.1 SVC	2.1 SVC	2.1 SVC	2.4 SVC	2.5 SVC	2.1 SVC	2.1 SVC	2.0 SVC	1.9 SVC
14	1.8 SVC	2.0 SVC	1.8 SVC	2.3 SVC	2.2 SVC	2.4 SVC	2.0 SVC	2.0 SVC	1.9 SVC	1.7 SVC
15	1.9 SVC	2.0 SVC	2.3 SVC	1.9 SVC	1.9 SVC	2.1 SVC	2.1 SVC	2.2 SVC	3.1 SVC	2.6 SVC
16	2.0 SVC	2.6 SVC	2.1 SVC	2.0 SVC	2.0 SVC	2.1 SVC	1.9 SVC	1.9 SVC	1.9 SVC	1.9 SVC
17	2.4 SVC	1.9 SVC	2.0 SVC	2.2 SVC	2.5 SVC	1.9 SVC	1.9 SVC	1.8 SVC	1.8 SVC	2.2 SVC
18	2.0 SVC	1.9 SVC	2.0 SVC	1.9 SVC	1.9 SVC	1.8 SVC	1.8 SVC	2.4 SVC	2.8 SVC	1.9 SVC
19	1.8 \$VC	2.0 SVC	2.0 SVC	1.9 SVC	1.9 SVC	2.0 SVC	2.2 SVC	2.0 SVC	1.9 SVC	2.0 SVC 2.1 SVC
20	2.4 SVC	1.9 SVC	2.0 SVC	1.8 SVC	1.9 SVC	2.5 SVC	2.0 SVC	1.9 SVC	1.9 SVC	1.9 SVC
21	2.1 SVC	1.9 SVC	1.8 SVC	1.8 SVC	2.3 SVC	2.0 SVC	2.0 SVC	2.1 SVC	2.3 \$VC	
22	1.9 SVC	2.1 SVC	2.1 SVC	2.7 SVC	2.0 SVC	2.0 SVC	2.3 SVC	2.3 SVC	2.0 SVC	2.1 SVC
23	1.7 SVC	1.8 SVC	2.3 SVC	2.2 SVC	2.0 SVC	2.2 SVC	2.1 SVC	1.9 SVC	1.8 SVC	1.8 SVC

The average opacity period average for the day was 2.0% for 239 periods of valid data.

The Fan was in operation for 240 periods.

The maximum opacity period average for the day was 3.1%.

There was 1 period of invalid data.

.

Status Code Definitions

NSA = NO SAMPLE AVAILABLE

SVC = MONITOR IN SERVICE

.

APPENDIX D LABORATORY RESULTS

SEPTEMBER TEST PROGRAM

f

Your Project #: LWEC, L'ANSE, MI

Attention:Ken Hill

Weston Solutions Inc 1400 Weston Way West Chester, PA USA 19380

> Report Date: 2015/10/19 Report #: R3725827 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B5K2062

Received: 2015/10/02, 23:55

Sample Matrix: Stack Sampling Train # Samples Received: 29

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Anions in Water by Ion Chromatography (1)	1	N/A	2015/10/08	BRL SOP-00105	EPA 300.0 m
Extractable Condensables (M202)	7	2015/10/09	2015/10/16	BRL SOP-00118	EPA 202 m
Non Extractable Condensibles (M202)	6	2015/10/14	2015/10/19	BRL SOP-00118 / BRL SOP 00109	- EPA 202 m
Hydrogen Halides in H2SO4 Imp.	5	2015/10/08	2015/10/08	BRL SOP-00108	EPA 26A m
>10um Particulates in Rinse	3	2015/10/08	2015/10/15	BRL SOP-00109	EPA M201A/OTM-027 m
2.5-10um Particulates in Rinse	3	2015/10/08	2015/10/15	BRL SOP-00109	EPA M201A/OTM-027 m
2.5 um Particulates on Filter	4	N/A	2015/10/09	BRL SOP-00109	EPA M201A/OTM-027 m
Particulates/Acetone Rinse (M5/315/M201)	5	2015/10/08	2015/10/15	BRL SOP-00109	EPA 5/315 m
Particulates/Filter (M5/315/NJATM1/M201)	4	N/A	2015/10/08	BRL SOP-00109	EPA 5/315/NJATM1 m
Lead in Filter by ICPMS (M12mod) (2)	7	2015/10/13	2015/10/14	BRL SOP-00103	EPA 12 m
Final Volume of Acetone Probe Rinse	8	N/A	2015/10/14	BRL SOP-00109	
Volume of Sulfuric Acid Impinger	5	N/A	2015/10/08		
Weight of Solvent from Impingers	6	N/A	2015/10/16		
Weight of Water from Impingers	5	N/A	2015/10/16		

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance. (1) SCC/CAEAL

(2) EPA Method 12 Modification - The analysis for the lead was completed using ICPMS instead of flame AA.

Encryption Key

Clayton Johnson 19 Oct 2015 17:44:01 -04:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Clayton Johnson, Project Manager - Air Toxics, Source Evaluation Email: Clohnson@maxxam.ca Phone# (905)817-5769

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 1 Page 1 of 18

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2LB Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Weston Solutions Inc Client Project #: LWEC, L'ANSE, MI

EPA M12 - LEAD DETERMINATION BY ICPMS (STACK SAMPLING TRAIN)

Maxxam ID		BCJ099	BCJ1	L06		BCJ10)7	BCJ107	BCJ108			
Sampling Date		2015/09/23	2015/0	09/23		2015/09)/23	2015/09/23	2015/09/24	1		
	UNITS	M12-BLANK-FILTER	M12-BLAN	NK-HNC	03 RDL	M12-F	₹1	M12-R1 Lab-Dup	M12-R2	RDL	MDL	QC Batch
Inorganic Lead (Pb)	ug	<0.2	<0.	.2	0.2	15.9		15.6	9.6	0.5	N/A	4227244
RDL = Reportable Detection L	imit											
QC Batch = Quality Control B	atch											
Lab-Dup = Laboratory Initiate	ed Duplic	ate										
N/A = Not Applicable												
		Maxxam ID			BCJ109			T1				
		Sampling Date		20	015/09/2	24						
			U	NITS	M12-R3	RDL	MDL	QC Batch				
		Inorganic Lead (Pb)	i	ug	5.3	0.5	N/A	4227244				
		RDL = Reportable Det	ection Limit	t								
		QC Batch = Quality Co	ontrol Batch	ı								
								1				

N/A = Not Applicable

Weston Solutions Inc Client Project #: LWEC, L'ANSE, MI

EPA M201A - PARTICULATES (STACK SAMPLING TRAIN)

Maxxam ID		BCM093	BCM158	BCM159	BCM160			
Sampling Date		2015/09/24	2015/09/24	2015/09/24	2015/09/24			
	UNITS	M201A-SB-FILTER	M201A-R1	M201A-R2	M201A-R3	RDL	MDL	QC Batch
> 10 Particulate Weight in Acetone Rinse	mg	N/A	5.3	5.0	6.6	0.5	0.1	4222791
2.5 - 10 Particulate Weight in Acetone Rinse	mg	N/A	2.3	1.5	1.9	0.5	0.5	4222788
< 2.5 Particulate Weight on Filter	mg	0.60	5.50	4.50	5.00	0.30	0.30	4222784
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								
N/A = Not Applicable								

Weston Solutions Inc Client Project #: LWEC, L'ANSE, MI

EPA M202 CONDENSIBLE PM (STACK SAMPLING TRAIN)

	BCM170	BCM209	BCM217	BCM218	BCM221	BCM222			
	2015/09/24	2015/09/24	2015/09/24	2015/09/24	2015/09/24	2015/09/24			
UNITS	M202-BT	M202-SB-DI	M202/201A-SB-ACE	M202-SB-HEX	M202-R1	M202-R2	RDL	MDL	QC Batch
g	220	380	N/A	N/A	190	180	0.1	0.1	4226558
g	160	N/A	150	250	130	110	0.1	N/A	4226551
mg	1.1	<0.5	N/A	N/A	6.1	5.2	0.5	0.1	4228971
mg	<1.0	N/A	<1.0	<1.0	<1.0	<1.0	1.0	0.20	4226510
	g g mg	2015/09/24 UNITS M202-BT g 220 g 160 mg 1.1	2015/09/24 2015/09/24 UNITS M202-BT M202-SB-DI g 220 380 g 160 N/A mg 1.1 <0.5	2015/09/24 2015/09/24 2015/09/24 UNITS M202-BT M202-SB-DI M202/201A-SB-ACE g 220 380 N/A g 160 N/A 150 mg 1.1 <0.5	2015/09/24 2015/09/24 2015/09/24 2015/09/24 UNITS M202-BT M202-SB-DI M202/201A-SB-ACE M202-SB-HEX g 220 380 N/A N/A g 160 N/A 150 250 mg 1.1 <0.5	2015/09/24 2015/09/24 2015/09/24 2015/09/24 2015/09/24 UNITS M202-BT M202-SB-DI M202/201A-SB-ACE M202-SB-HEX M202-R1 g 220 380 N/A N/A 190 g 160 N/A 150 250 130 mg 1.1 <0.5	2015/09/24 2015/09/24 2015/09/24 2015/09/24 2015/09/24 2015/09/24 UNITS M202-BT M202-SB-DI M202/201A-SB-ACE M202-SB-HEX M202-R1 M202-R2 g 220 380 N/A N/A 190 180 g 160 N/A 150 250 130 110 mg 1.1 <0.5 N/A N/A N/A 6.1 5.2	2015/09/24 2015/09	2015/09/24 2015/09

QC Batch = Quality Control Batch

N/A = Not Applicable

Maxxam ID		BCM223			
Sampling Date		2015/09/24			
	UNITS	M202-R3	RDL	MDL	QC Batch
Weight	g	180	0.1	0.1	4226558
Weight of Solvent	g	140	0.1	N/A	4226551
Inorganic Condensibles	mg	8.2	0.5	0.1	4228971
Organic Condensibles	mg	<1.0	1.0	0.20	4226510
RDL = Reportable Detection I	Limit				
QC Batch = Quality Control B	atch				
N/A = Not Applicable					

Weston Solutions Inc Client Project #: LWEC, L'ANSE, MI

EPA M26A HYDROGEN HALIDES AND HALOGENS (STACK SAMPLING TRAIN)

Maxxam ID		BC1790	BCI791	BC1794	BC1794	Ι		
Sampling Date		2015/09/24	2015/09/24	2015/09/24	2015/09/24			
	UNITS	M26A-H2SO4-BLANK	M26A-DI H2O -BLANK	M26A-H2SO4-R1	M26A-H2SO4-R1 Lab-Dup	RDL	MDL	QC Batch
Sulfuric Acid Volume	ml	431	395	489	N/A	1	1	4223418
Hydrochloric Acid	ug	<250	<250	17000	17000	250	75	4223423
RDL = Reportable Detecti QC Batch = Quality Contr					*			

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Maxxam ID		BC1795	BC1796			
Sampling Date		2015/09/24	2015/09/24			
	UNITS	M26A-H2SO4-R2	M26A-H2SO4-R3	RDL	MDL	QC Batch
Sulfuric Acid Volume	ml	482	564	1	1	4223418
Hydrochloric Acid	ug	28000	20000	250	75	4223423
RDL = Reportable Detection	Limit					
QC Batch = Quality Control B	atch					

- Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Weston Solutions Inc Client Project #: LWEC, L'ANSE, MI

EPA M5 PARTICULATE MATTER (PM)

Maxxam ID		BC1786	BC1787	BC1788	BC1789	[
Sampling Date		2015/09/24	2015/09/24	2015/09/24	2015/09/24			
	UNITS	M5-SB	M5-R1	M5-R2	M5-R3	RDL	MDL	QC Batch
Acetone Rinse Particulate Weight in Acetone Rinse	mg	<0.5	2.9	1.2	5.6	0.5	0.1	4222712
Front Half Particulate Weight on Filter	mg	0.30	3.50	4.70	6.20	0.30	0.060	4222711
Acetone Rinse Volume	ml	250	300	300	320	1	1	4222716
RDL = Reportable Detection Limit QC Batch = Quality Control Batch					a de la deservación de la deservación de la deservación de la deservación de la deservación de la deservación d	******	******	

Weston Solutions Inc Client Project #: LWEC, L'ANSE, MI

RESULTS OF ANALYSES OF STACK SAMPLING TRAIN

Maxxam ID		BCI8	29	BCM158	BCM159	BCM:	160			
Sampling Date				2015/09/24	2015/09/24	2015/0	9/24			
	UNITS	AUDIT-P	EA1941	M201A-R1	M201A-R2	M201/	4-R3	RDL	MDL	QC Batch
Acetone Rinse Volume (10)	ml	N//	4	85	67	82		1	N/A	4226736
Acetone Rinse Volume (2.5 - 10)	ml	N//	4	330	350	320	5	1	N/A	4226736
Chloride (Cl)	mg/L	24		N/A	N/A	N//	4	0.3	0.06	4224757
RDL = Reportable Detection Limit										
QC Batch = Quality Control Batch										
N/A = Not Applicable										
Maxxam ID				Ch 424 7			r	1		1
				3CM217	BCM219		ļ	_		
Sampling Date				15/09/24	2015/09/2	4	ļ	ļ		
		UNITS	M202/	201A-SB-ACE	M202-SB-FI	LTRDL	MDL	QCE	Batch	
Acetone Rinse Particulate Weight in Aceton	ne Rinse	mg	<0.5		N/A	0.5	0.1	423	1099]
Acetone Rinse Volume		ml		100	N/A 1		1	422	6736	
Inorganic Condensibles		mg		N/A	<0.5	0.5	0.1	422	8971	
Organic Condensibles		mg		N/A	<1.0	1.0	0.20	422	6510	
RDL = Reportable Detection Limit					************************		*********			
QC Batch = Quality Control Batch										
N/A = Not Applicable										1

Weston Solutions Inc Client Project #: LWEC, L'ANSE, MI

ELEMENTS BY ICP/MS (STACK SAMPLING TRAIN)

Maxxam ID		BCL977		BCL981			
Sampling Date							
-	UNITS	AUDIT-PEA1945	RDL	AUDIT-PEA1948	RDL	MDL	QC Batch
Inorganic Lead (Pb)	ug	21.2	0.5	0.209	0.005	N/A	4227244
RDL = Reportable Detection L	imit						
QC Batch = Quality Control Ba	itch						
N/A = Not Applicable		~					

Page 8 of 18 Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontarjo, LSN 2LB Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Weston Solutions Inc Client Project #: LWEC, L'ANSE, MI

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:		ı				Collected: Shipped: Received:	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Particulates/Acetone Rir	nse (M5/315/M201)	BAL	4222712	2015/10/08	2015/10/15	Mohamma	ad Tariq
Particulates/Filter (M5/3	15/NJATM1/M201)	BAL	4222711	N/A	2015/10/08	Brenda M	oore
Final Volume of Acetone	Probe Rinse		4222716	N/A	2015/10/14	Mohamma	ad Tariq
Maxxam ID: Sample ID: Matrix:		1				Collected: Shipped: Received:	2015/09/24 2015/10/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Particulates/Acetone Rin	se (M5/315/M201)	BAL	4222712	2015/10/08	2015/10/15	Mohamma	ıd Tariq
Particulates/Filter (M5/3	15/NJATM1/M201)	BAL	4222711	N/A	2015/10/08	Brenda Mo	oore
Final Volume of Acetone	Probe Rinse		4222716	N/A	2015/10/14	Mohamma	ad Tariq
Maxxam ID: Sample ID: Matrix:	BCI788 M5-R2 Stack Sampling Train	1				Collected: Shipped: Received:	2015/09/24 2015/10/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Particulates/Acetone Rin	se (M5/315/M201)	BAL	4222712	2015/10/08	2015/10/15	Mohamma	d Tariq
Particulates/Filter (M5/3	15/NJATM1/M201)	BAL	4222711	N/A	2015/10/08	Brenda Mo	oore
Final Volume of Acetone	Probe Rinse		4222716	N/A	2015/10/14	Mohamma	d Tariq
Maxxam ID: Sample ID: Matrix:						Collected: Shipped: Received:	2015/09/24 2015/10/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Particulates/Acetone Rin	se (M5/315/M201)	BAI.	4222712	2015/10/08	2015/10/15	Mohamma	d Tariq
Particulates/Filter (M5/3:	15/NJATM1/M201)	BAL	4222711	N/A	2015/10/08	Brenda Mo	ore
Final Volume of Acetone	Probe Rinse		4222716	N/A	2015/10/14	Mohamma	d Tariq
Maxxam ID: Sample ID: Matrix:	BC1790 M26A-H2SO4-BLANK Stack Sampling Train					Collected: Shipped: Received:	2015/09/24 2015/10/02
Sample ID: Matrix:	M26A-H2SO4-BLANK		Batch	Extracted	Date Analyzed	Shipped: Received:	
Sample ID:	M26A-H2SO4-BLANK Stack Sampling Train		Batch 4223423	Extracted 2015/10/08	Date Analyzed 2015/10/08	Shipped:	2015/10/02
Sample ID: Matrix: Test Description	M26A-H2SO4-BLANK Stack Sampling Train 04 Imp.	Instrumentation				Shipped: Received: Analyst	2015/10/02
Sample ID: Matrix: Test Description Hydrogen Halides in H2SC	M26A-H2SO4-BLANK Stack Sampling Train 04 Imp.	Instrumentation IC/SPEC	4223423	2015/10/08	2015/10/08	Shipped: Received: Analyst Ann-Marie	2015/10/02
Sample ID: Matrix: Test Description Hydrogen Halides in H2SC Volume of Sulfuric Acid In Maxxam ID: Sample ID: Matrix:	M26A-H2SO4-BLANK Stack Sampling Train Maint Maint M26A-DI H2O -BLAN	Instrumentation IC/SPEC	4223423 4223418	2015/10/08 N/A	2015/10/08 2015/10/08	Shipped: Received: Analyst Ann-Marie Frank Mo Collected: Shipped: Received:	2015/10/02 Stern 2015/09/24
Sample ID: Matrix: Test Description Hydrogen Halides in H2SC Volume of Sulfuric Acid Ir Maxxam ID: Sample ID:	M26A-H2SO4-BLANK Stack Sampling Train 04 Imp. npinger BCI791 M26A-DI H2O -BLAN Stack Sampling Train	Instrumentation IC/SPEC K	4223423	2015/10/08	2015/10/08	Shipped: Received: Analyst Ann-Marie Frank Mo Collected: Shipped:	2015/10/02 Stern 2015/09/24 2015/10/02

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Weston Solutions Inc Client Project #: LWEC, L'ANSE, MI

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	BCI794 M26A-H2SO4-R1 Stack Sampling Train	I				Collected: Shipped: Received:	2015/09/24 2015/10/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hydrogen Halides in H2S0	04 Imp.	IC/SPEC	4223423	2015/10/08	2015/10/08	Ann-Marie	Stern
Volume of Sulfuric Acid Ir	npinger		4223418	N/A	2015/10/08	Frank Mo	
Maxxam ID: Sample ID: Matrix:	BCI794 Dup M26A-H2SO4-R1 Stack Sampling Train					Collected: Shipped: Received:	2015/09/24 2015/10/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hydrogen Halides in H2SC	D4 Imp.	IC/SPEC	4223423	2015/10/08	2015/10/08	Ann-Marie	Stern
Maxxam ID: Sample ID: Matrix:	BC1795 M26A-H2SO4-R2 Stack Sampling Train					Collected: Shipped: Received:	2015/09/24 2015/10/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hydrogen Halides in H2SC	04 Imp.	IC/SPEC	4223423	2015/10/08	2015/10/08	Ann-Marie	Stern
Volume of Sulfuric Acid In	npinger		4223418	N/A	2015/10/08	Frank Mo	·····
Maxxam ID: Sample ID: Matrix:	BCI796 M26A-H2SO4-R3 Stack Sampling Train					Collected: Shipped: Received:	2015/09/24 2015/10/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hydrogen Halides in H2SC	94 Imp.	IC/SPEC	4223423	2015/10/08	2015/10/08	Ann-Marie	Stern
Volume of Sulfuric Acid In	npinger		4223418	N/A	2015/10/08	Frank Mo	
•	BCI829 AUDIT-PEA1941 Stack Sampling Train					Collected: Shipped: Received:	2015/10/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Anions in Water by Ion Ch	romatography	IC/EC	4224757				
			4224757	N/A	2015/10/08	Ann-Marie	Stern
	BCJ099 M12-BLANK-FILTER Stack Sampling Train		4224757	N/A	2015/10/08	Collected: Shipped:	2015/09/23 2015/10/02
Sample ID: Matrix:	BCJ099 M12-BLANK-FILTER	Instrumentation	Batch	N/A	2015/10/08 Date Analyzed	Collected: Shipped: Received:	2015/09/23
Sample ID: Matrix: Test Description	BCJ099 M12-BLANK-FILTER Stack Sampling Train					Collected: Shipped:	2015/09/23 2015/10/02
Sample ID: Matrix: Test Description Lead in Filter by ICPMS (M Maxxam ID: Sample ID:	BCJ099 M12-BLANK-FILTER Stack Sampling Train	Instrumentation	Batch	Extracted	Date Analyzed	Collected: Shipped: Received: Analyst	2015/09/23 2015/10/02
Sample ID: Matrix: Test Description Lead in Filter by ICPMS (M Maxxam ID: Sample ID:	BCJ099 M12-BLANK-FILTER Stack Sampling Train 12mod) BCJ106 M12-BLANK-HNO3	Instrumentation	Batch	Extracted	Date Analyzed	Collected: Shipped: Received: Analyst Nan Raykha Collected: Shipped:	2015/09/23 2015/10/02 2015/09/23

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Weston Solutions Inc Client Project #: LWEC, L'ANSE, MI

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	BCJ107 M12-R1 Stack Sampling Trair	ı				Collected: 2015/ Shipped: Received: 2015/	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Lead in Filter by ICPMS (N	/12mod)	ICP1	4227244	2015/10/13	2015/10/14	Nan Raykha	
Maxxam ID: Sample ID: Matrix:	BCJ107 Dup M12-R1 Stack Sampling Train					Collected: 2015/0 Shipped: Received: 2015/2	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Lead in Filter by ICPMS (N	/12mod)	ICP1	4227244	2015/10/13	2015/10/14	Nan Raykha	
Maxxam ID: Sample ID: Matrix:	BCJ108 M12-R2 Stack Sampling Train					Collected: 2015/(Shipped: Received: 2015/:	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Lead in Filter by ICPMS (N	112mod)	ICP1	4227244	2015/10/13	2015/10/14	Nan Raykha	
Maxxam ID: Sample ID: Matrix:	BCJ109 M12-R3 Stack Sampling Train					Collected: 2015/0 Shipped: Received: 2015/1	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Lead in Filter by ICPMS (M	112mod)	ICP1	4227244	2015/10/13	2015/10/14	Nan Raykha	
Maxxam ID: Sample ID: Matrix:	BCL977 AUDIT-PEA1945 Stack Sampling Train					Collected: Shipped: Received: 2015/1	0/02
Sample ID:	AUDIT-PEA1945	Instrumentation	Batch	Extracted	Date Analyzed	Shipped:	0/02
Sample ID: Matrix:	AUDIT-PEA1945 Stack Sampling Train	Instrumentation ICP1	Batch 4227244	Extracted 2015/10/13	Date Analyzed 2015/10/14	Shipped: Received: 2015/1	0/02
Sample ID: Matrix: Test Description Lead in Filter by ICPMS (M	AUDIT-PEA1945 Stack Sampling Train					Shipped: Received: 2015/1 Analyst	
Sample ID: Matrix: Test Description Lead in Filter by ICPMS (M Maxxam ID: Sample ID:	AUDIT-PEA1945 Stack Sampling Train (12mod) BCL981 AUDIT-PEA1948					Shipped: Received: 2015/1 Analyst Nan Raykha Collected: Shipped:	
Sample ID: Matrix: Test Description Lead in Filter by ICPMS (M Maxxam ID: Sample ID: Matrix:	AUDIT-PEA1945 Stack Sampling Train (12mod) BCL981 AUDIT-PEA1948 Stack Sampling Train	ICP1	4227244	2015/10/13	2015/10/14	Shipped: Received: 2015/1 Analyst Nan Raykha Collected: Shipped: Received: 2015/1	
Sample ID: Matrix: Test Description Lead in Filter by ICPMS (M Maxxam ID: Sample ID: Matrix: Test Description Lead in Filter by ICPMS (M Maxxam ID: Sample ID:	AUDIT-PEA1945 Stack Sampling Train (12mod) BCL981 AUDIT-PEA1948 Stack Sampling Train	ICP1	4227244 Batch	2015/10/13 Extracted	2015/10/14 Date Analyzed	Shipped: Received: 2015/1 Analyst Nan Raykha Collected: Shipped: Received: 2015/1 Analyst	9/24
Sample ID: Matrix: Test Description Lead in Filter by ICPMS (M Maxxam ID: Sample ID: Matrix: Test Description Lead in Filter by ICPMS (M Maxxam ID: Sample ID:	AUDIT-PEA1945 Stack Sampling Train (12mod) BCL981 AUDIT-PEA1948 Stack Sampling Train (12mod) BCM093 M201A-SB-FILTER	ICP1	4227244 Batch	2015/10/13 Extracted	2015/10/14 Date Analyzed	Shipped: Received: 2015/1 Analyst Nan Raykha Collected: Shipped: Received: 2015/1 Analyst Nan Raykha Collected: 2015/0 Shipped:	9/24

Weston Solutions Inc Client Project #: LWEC, L'ANSE, MI

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:						Collected: Shipped: Received:	2015/09/24 2015/10/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
>10um Particulates in Rir	ise	BAL	4222791	2015/10/08	2015/10/15	Mohamma	d Tariq
2.5-10um Particulates in	Rinse	BAL	4222788	2015/10/08	2015/10/15	Mohamma	d Tariq
2.5 um Particulates on Fil	lter	BAL	4222784	N/A	2015/10/09	Brenda Mo	ore
Final Volume of Acetone	Probe Rinse		4226736	N/A	2015/10/14	Mohamma	d Tariq
Maxxam ID: Sample ID: Matrix:						Collected: Shipped: Received:	2015/09/24 2015/10/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
>10um Particulates in Rin	se	BAL	4222791	2015/10/08	2015/10/15	Mohamma	d Tariq
2.5-10um Particulates in I	Rinse	BAL	4222788	2015/10/08	2015/10/15	Mohamma	
2.5 um Particulates on Fil	ter	BAL	4222784	N/A	2015/10/09	Brenda Mo	ore
Final Volume of Acetone	Probe Rinse	······································	4226736	N/A	2015/10/14	Mohamma	d Tariq
Maxxam ID: Sample ID: Matrix:	M201A-R3					Collected: Shipped:	2015/09/24
	Stack Sampling Train						2015/10/02
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	· ·
Test Description >10um Particulates in Rin	se	BAL	4222791	2015/10/08	2015/10/15	Analyst Mohamma	d Tariq
Test Description >10um Particulates in Rin 2.5-10um Particulates in F	se	BAL BAL	4222791 4222788	2015/10/08 2015/10/08	2015/10/15 2015/10/15	Analyst Mohamma Mohamma	d Tariq d Tariq
Test Description >10um Particulates in Rin 2.5-10um Particulates in F 2.5 um Particulates on Filt	se Rinse ter	BAL	4222791	2015/10/08	2015/10/15	Analyst Mohamma	d Tariq d Tariq ore
Test Description >10um Particulates in Rin 2.5-10um Particulates in F 2.5 um Particulates on Fill Final Volume of Acetone F Maxxam ID: Sample ID:	se Rinse ter Probe Rinse BCM170	BAL BAL	4222791 4222788 4222784	2015/10/08 2015/10/08 N/A	2015/10/15 2015/10/15 2015/10/09	Analyst Mohamma Mohamma Brenda Mo Mohamma Collected: Shipped:	d Tariq d Tariq ore
Test Description >10um Particulates in Rin 2.5-10um Particulates in F 2.5 um Particulates on Fill Final Volume of Acetone F Maxxam ID: Sample ID: Matrix:	se Rinse ter Probe Rinse BCM170 M202-BT Stack Sampling Train	BAL BAL	4222791 4222788 4222784	2015/10/08 2015/10/08 N/A	2015/10/15 2015/10/15 2015/10/09	Analyst Mohamma Mohamma Brenda Mo Mohamma Collected: Shipped:	d Tariq d Tariq ore d Tariq 2015/09/24
Test Description >10um Particulates in Rin 2.5-10um Particulates in Fill 2.5 um Particulates on Fill Final Volume of Acetone f Maxxam ID: Sample ID: Matrix: Test Description	se Rinse ter Probe Rinse BCM170 M202-BT Stack Sampling Train	BAL BAL BAL	4222791 4222788 4222784 4226736	2015/10/08 2015/10/08 N/A N/A	2015/10/15 2015/10/15 2015/10/09 2015/10/14	Analyst Mohamma Brenda Mo Mohamma Collected: Shipped: Received: Analyst	d Tariq d Tariq ore d Tariq 2015/09/24
Test Description >10um Particulates in Rin 2.5-10um Particulates in F 2.5 um Particulates on Fill Final Volume of Acetone F Maxxam ID: Sample ID:	se Rinse ter Probe Rinse BCM170 M202-BT Stack Sampling Train (M202)	BAL BAL BAL Instrumentation	4222791 4222788 4222784 4226736 Batch	2015/10/08 2015/10/08 N/A N/A Extracted	2015/10/15 2015/10/15 2015/10/09 2015/10/14 Date Analyzed	Analyst Mohamma Brenda Mo Mohamma Collected: Shipped: Received: Analyst Muhamma	d Tariq d Tariq ore d Tariq 2015/09/24 2015/10/02
Test Description >10um Particulates in Rin 2.5-10um Particulates in F 2.5 um Particulates on Filt Final Volume of Acetone F Maxxam ID: Sample ID: Matrix: Fest Description Extractable Condensables	se Rinse Probe Rinse BCM170 M202-BT Stack Sampling Train (M202) bles (M202)	BAL BAL BAL Instrumentation BAL	4222791 4222788 4222784 4226736 Batch 4226510	2015/10/08 2015/10/08 N/A N/A Extracted 2015/10/09	2015/10/15 2015/10/15 2015/10/09 2015/10/14 Date Analyzed 2015/10/16	Analyst Mohamma Brenda Mo Mohamma Collected: Shipped: Received: Analyst Muhamma Muhamma	d Tariq d Tariq ore d Tariq 2015/09/24 2015/10/02 d M Rahman
Test Description >10um Particulates in Rin 2.5-10um Particulates in F 2.5 um Particulates on Filt Final Volume of Acetone F Maxxam ID: Sample ID: Matrix: Fest Description Extractable Condensables Non Extractable Condensi	se Rinse Probe Rinse BCM170 M202-BT Stack Sampling Train (M202) bles (M202) npingers	BAL BAL BAL Instrumentation BAL	4222791 4222788 4222784 4226736 Batch 4226510 4228971	2015/10/08 2015/10/08 N/A N/A Extracted 2015/10/09 2015/10/14	2015/10/15 2015/10/15 2015/10/09 2015/10/14 Date Analyzed 2015/10/16 2015/10/19	Analyst Mohamma Brenda Mo Mohamma Collected: Shipped: Received: Analyst Muhamma Muhamma	d Tariq d Tariq ore d Tariq 2015/09/24 2015/10/02 d M Rahman d M Rahman
Test Description >10um Particulates in Rin 2.5-10um Particulates in Fi 2.5 um Particulates on Filt Final Volume of Acetone f Maxxam ID: Sample ID: Matrix: Test Description Extractable Condensables Non Extractable Condensables Weight of Solvent from Im Weight of Water from Im Maxxam ID: Sample ID: Sample ID:	se Rinse Probe Rinse BCM170 M202-BT Stack Sampling Train (M202) bles (M202) npingers	BAL BAL BAL Instrumentation BAL	4222791 4222788 4222784 4226736 Batch 4226510 4228971 4226551	2015/10/08 2015/10/08 N/A N/A Extracted 2015/10/09 2015/10/14 N/A	2015/10/15 2015/10/09 2015/10/09 2015/10/14 Date Analyzed 2015/10/16 2015/10/19 2015/10/16	Analyst Mohamma Brenda Mo Mohamma Collected: Shipped: Received: Analyst Muhamma Muhamma Muhamma	d Tariq d Tariq ore d Tariq 2015/09/24 2015/10/02 d M Rahman d M Rahman
Test Description >10um Particulates in Rin 2.5-10um Particulates in Fi 2.5 um Particulates on Filt Final Volume of Acetone f Maxxam ID: Sample ID: Matrix: Test Description Extractable Condensables Non Extractable Condensables Weight of Solvent from Im Weight of Water from Im Maxxam ID: Sample ID: Sample ID:	se Rinse ter Probe Rinse BCM170 M202-BT Stack Sampling Train (M202) bles (M202) bles (M202) pingers bingers BCM209 M202-SB-DI Stack Sampling Train	BAL BAL BAL Instrumentation BAL	4222791 4222788 4222784 4226736 Batch 4226510 4228971 4226551	2015/10/08 2015/10/08 N/A N/A Extracted 2015/10/09 2015/10/14 N/A N/A	2015/10/15 2015/10/15 2015/10/09 2015/10/14 Date Analyzed 2015/10/16 2015/10/16 2015/10/16 2015/10/16	Analyst Mohamma Brenda Mo Mohamma Collected: Shipped: Received: Analyst Muhamma Muhamma Muhamma Collected: Shipped: Received:	d Tariq d Tariq ore d Tariq 2015/09/24 2015/10/02 d M Rahman d M Rahman d M Rahman d M Rahman d M Rahman
Test Description >10um Particulates in Rin 2.5-10um Particulates in Fi 2.5 um Particulates on Filt Final Volume of Acetone f Maxxam ID: Sample ID: Matrix: Test Description Extractable Condensables Non Extractable Condensables Weight of Solvent from Im Weight of Water from Im Maxxam ID: Sample ID: Matrix:	se Rinse ter Probe Rinse BCM170 M202-BT Stack Sampling Train (M202) bles (M202) bles (M202) pingers bingers BCM209 M202-SB-DI Stack Sampling Train	BAL BAL BAL BAL BAL BAL	4222791 4222788 4222784 4226736 Batch 4226510 4228971 4226551 4226558	2015/10/08 2015/10/08 N/A N/A Extracted 2015/10/09 2015/10/14 N/A	2015/10/15 2015/10/09 2015/10/09 2015/10/14 Date Analyzed 2015/10/16 2015/10/19 2015/10/16	Analyst Mohamma Brenda Mo Mohamma Collected: Shipped: Received: Analyst Muhamma Muhamma Muhamma Collected: Shipped: Received: Analyst	d Tariq d Tariq ore d Tariq 2015/09/24 2015/10/02 d M Rahman d M Rahman d M Rahman d M Rahman d M Rahman

Weston Solutions Inc Client Project #: LWEC, L'ANSE, MI

TEST SUMMARY

Maxxam ID: BCM217 Sample ID: M202/201 Matrix: Stack Sam					Collected: 2015/09/24 Shipped: Received: 2015/10/02
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Extractable Condensables (M202)	BAL	4226510	2015/10/09	2015/10/16	Muhammad M Rahman
Particulates/Acetone Rinse (M5/315/N	//201) BAL	4231099	2015/10/08	2015/10/15	Mohammad Tarig
Final Volume of Acetone Probe Rinse		4226736	N/A	2015/10/14	Mohammad Tarig
Weight of Solvent from Impingers		4226551	N/A	2015/10/16	Muhammad M Rahman
Maxxam ID: BCM218 Sample ID: M202-SB-I Matrix: Stack Sam					Collected: 2015/09/24 Shipped: Received: 2015/10/02
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Extractable Condensables (M202)	BAL	4226510	2015/10/09	2015/10/16	Muhammad M Rahman
Weight of Solvent from Impingers		4226551	N/A	2015/10/16	Muhammad M Rahman
Maxxam ID: BCM219 Sample ID: M202-SB-F Matrix: Stack Samp	oling Train				Collected: 2015/09/24 Shipped: Received: 2015/10/02
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Extractable Condensables (M202)	BAL	4226510	2015/10/09	2015/10/16	Muhammad M Rahman
Non Extractable Condensibles (M202)	BAL	4228971	2015/10/14	2015/10/19	Muhammad M Rahman
Maxxam ID: BCM221 Sample ID: M202-R1 Matrix: Stack Samp	oling Train				Collected: 2015/09/24 Shipped: Received: 2015/10/02
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Extractable Condensables (M202)	BAL	4226510	2015/10/09	2015/10/16	Muhammad M Rahman
Non Extractable Condensibles (M202)	BAL	4228971	2015/10/14	2015/10/19	Muhammad M Rahman
Weight of Solvent from Impingers		4226551	N/A	2015/10/16	Muhammad M Rahman
Weight of Water from Impingers		4226558	N/A	2015/10/16	Muhammad M Rahman
				2010/10/10	
Maxxam ID: BCM222 Sample ID: M202-R2 Matrix: Stack Samp	oling Train			2010/10/10	Collected: 2015/09/24 Shipped: Received: 2015/10/02
Sample ID: M202-R2 Matrix: Stack Samp	ling Train Instrumentation	Batch	Extracted	Date Analyzed	Collected: 2015/09/24 Shipped:
Sample ID: M202-R2 Matrix: Stack Samp Test Description	2	Batch 4226510	Extracted 2015/10/09		Collected: 2015/09/24 Shipped: Received: 2015/10/02
Sample ID: M202-R2 Matrix: Stack Samp Test Description Extractable Condensables (M202)	Instrumentation			Date Analyzed	Collected: 2015/09/24 Shipped: Received: 2015/10/02 Analyst
Sample ID: M202-R2 Matrix: Stack Samp Test Description Extractable Condensables (M202) Non Extractable Condensibles (M202)	Instrumentation BAL	4226510	2015/10/09	Date Analyzed 2015/10/16	Collected: 2015/09/24 Shipped: Received: 2015/10/02 Analyst Muhammad M Rahman
Sample ID: M202-R2 Matrix: Stack Samp Fest Description Extractable Condensables (M202) Non Extractable Condensibles (M202) Weight of Solvent from Impingers	Instrumentation BAL	4226510 4228971	2015/10/09 2015/10/14	Date Analyzed 2015/10/16 2015/10/19	Collected: 2015/09/24 Shipped: Received: 2015/10/02 Analyst Muhammad M Rahman Muhammad M Rahman
Sample ID: M202-R2 Matrix: Stack Samp Test Description Extractable Condensables (M202) Non Extractable Condensibles (M202) Weight of Solvent from Impingers	Instrumentation BAL BAL	4226510 4228971 4226551	2015/10/09 2015/10/14 N/A	Date Analyzed 2015/10/16 2015/10/19 2015/10/16	Collected: 2015/09/24 Shipped: Received: 2015/10/02 Analyst Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman
Sample ID: M202-R2 Matrix: Stack Samp Test Description Extractable Condensables (M202) Non Extractable Condensibles (M202) Weight of Solvent from Impingers Weight of Water from Impingers Maxxam ID: BCM223 Sample ID: M202-R3	Instrumentation BAL BAL	4226510 4228971 4226551	2015/10/09 2015/10/14 N/A	Date Analyzed 2015/10/16 2015/10/19 2015/10/16	Collected: 2015/09/24 Shipped: Received: 2015/10/02 Analyst Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Muhammad M Rahman Collected: 2015/09/24 Shipped:

Page 13 of 18

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Weight of Water from Impingers

Weston Solutions Inc Client Project #: LWEC, L'ANSE, MI

2015/10/16

Muhammad M Rahman

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	BCM223 M202-R3 Stack Sampling	Train				Shipped:	2015/09/24 2015/10/02	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst		
Non Extractable Condens	ibles (M202)	BAL	4228971	2015/10/14	2015/10/19	Muhamma	ad M Rahman	
Weight of Solvent from Ir	npingers		4226551	N/A	2015/10/16	Muhamma	ad M Rahman	

N/A

.

4226558

Page 14 of 18 Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, 15N 218 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Weston Solutions Inc Client Project #: LWEC, L'ANSE, MI

GENERAL COMMENTS

FILTERS : Untared filters were received.		
Sample BCI787-01 : LFT Loose filter material in t	the petri dish	
Sample BCI788-01 : LFT Loose filter material in t	the natri dich	
Sample BCI789-01 : LFT Loose filter material in t	the petri dish	
Sample BCL981-01 : Data for this sample is report	ted in mg/l	
Sample BCM170-01 : Organic Extraction : No resid		
ORGANIC EXTRACTION : Whitish residue found in v	vial.	
Sample BCM209-01 : ORGANIC EXTRACTION : Whi	hitish residue found in vial.	
Sample BCM217-01 : Organic Extraction : No resid	due noted in vial.	
Sample BCM218-01 : Organic Extraction : No resid	due noted in vial.	
Sample BCM219-01 : Organic Extraction : No resid	due noted in vial.	
ORGANIC EXTRACTION : Whitish residue found in v		
Seconda DOM221 01 CODCANIC EXTRACTION CON		
Sample BCM221-01 : ORGANIC EXTRACTION : Oily ORGANIC EXTRACTION : Yellowish residue found in		
Sample BCM222-01 : ORGANIC EXTRACTION : Whi		
ORGANIC EXTRACTION : Yellowish residue found in	n viai.	
Sample BCM223-01 : ORGANIC EXTRACTION : Oily		
ORGANIC EXTRACTION : Brownish residue found in		
EPA M12 -	LEAD DETERMINATION BY ICPMS (STACK SAMPLING TRAIN)	
Lead in Filter by ICPMS (M12mod): Post digestion of		
2.5 um Particulates on Filter: Maxxam #	A M201A - PARTICULATES (STACK SAMPLING TRAIN) Filter Condition	
	Filter Condition	
BCM093-01R	NORMAL	
BCM158-01R	*DE**LFT*	
BCM159-01R	LPC	
BCM160-01R	*DE**LFT*	
Normal Filters received in normal condition		
LPC Loose particulate material in the petri dish		
LFT Loose filter material in the petri dish		
DE Edges of the filter are frayed		

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 218 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Weston Solutions Inc Client Project #: LWEC, L'ANSE, MI

EPA M5 PARTICULATE MATTER (PM) Particulates/Filter (M5/315/NJATM1/M201): Maxxam # Filter Condition BCI786-01R NORMAL BCI787-01R LFT BCI788-01R LFT BCI789-01R LFT Normal Filters received in normal condition Loose filter material in the petri dish LFT ELEMENTS BY ICP/MS (STACK SAMPLING TRAIN) Lead in Filter by ICPMS (M12mod): Post digestion duplicate and spike were done on sample BCJ107. Results relate only to the items tested.

GENERAL COMMENTS

Page 16 of 18 Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Weston Solutions Inc Client Project #: LWEC, L'ANSE, MI

QUALITY ASSURANCE REPORT

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4222712	MT2	Method Blank	Acetone Rinse Particulate Weight in Acetone	2015/10/15	<0.5		mg	********
4222788	MT2	Method Blank	2.5 - 10 Particulate Weight in Acetone Rinse	2015/10/15	<0.5		mg	
4222791	MT2	Method Blank	> 10 Particulate Weight in Acetone Rinse	2015/10/15	<0.5		mg	
4223423	A_S	Matrix Spike(BCI794)	Hydrochloric Acid	2015/10/08		88	%	80 - 120
4223423	A_S	Spiked Blank	Hydrochloric Acid	2015/10/08		101	%	90 - 110
4223423	A_S	Method Blank	Hydrochloric Acid	2015/10/08	<200		ug	
4223423	A_S	RPD - Sample/Sample Dup	Hydrochloric Acid	2015/10/08	0.51		%	20
4226510	MOR	Spiked Blank	Organic Condensibles	2015/10/16		95	%	70 - 130
4226510	MOR	Spiked Blank DUP	Organic Condensibles	2015/10/16		96	%	70 - 130
4226510	MOR	RPD	Organic Condensibles	2015/10/16	0.52		%	20
4226510	MOR	Method Blank	Organic Condensibles	2015/10/16	<1.0		mg	
4227244	N_R	Matrix Spike(BCJ107)	Inorganic Lead (Pb)	2015/10/14		96	%	70 - 130
4227244	N_R	Matrix Spike DUP(BCJ107)	Inorganic Lead (Pb)	2015/10/14		97	%	70 - 130
4227244	N_R	MS/MSD RPD	Inorganic Lead (Pb)	2015/10/14	1.0		%	20
4227244	N_R	Spiked Blank	Inorganic Lead (Pb)	2015/10/14		102	%	85 - 115
4227244	N_R	Spiked Blank DUP	Inorganic Lead (Pb)	2015/10/14		102	%	85 - 115
4227244	N_R	RPD	Inorganic Lead (Pb)	2015/10/14	0.52		%	20
4227244	N_R	Method Blank	Inorganic Lead (Pb)	2015/10/14	<0.5		ug	
4227244	N_R	RPD - Sample/Sample Dup	Inorganic Lead (Pb)	2015/10/14	1.6		%	20
4228971	MOR	Method Blank	Inorganic Condensibles	2015/10/19	<0.5		mg	
4231099	MT2	Method Blank	Acetone Rinse Particulate Weight in Acetone	2015/10/15	<0.5		mg	

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Weston Solutions Inc Client Project #: LWEC, L'ANSE, MI

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Bunda Moore

Brenda Moore, Team Lead

Frank Mo, B.Sc., Inorganic Lab. Manager

Ralph Siebert, Operations Manager - Inorganic Analyses

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

NOVEMBER TEST PROGRAM

IASBATALWEC19414.007.36518091978EPORT-LW

L

Your Project #: 14464 Site Location: LWEC, L'ANSE, MI

Attention:Ken Hill

Weston Solutions Inc 1400 Weston Way West Chester, PA USA 19380

> Report Date: 2015/11/18 Report #: R3773862 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B5M6029

Received: 2015/11/04, 14:42

Sample Matrix: Stack Sampling Train # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Hydrogen Halides in H2SO4 Imp.	2	2015/11/18	2015/11/18	BRL SOP-00108	EPA 26A m
Volume of Sulfuric Acid Impinger	2	N/A	2015/11/04		

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Encryption Key

Clayton Johnson 18 Nov 2015 18:43:29 -05:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Clayton Johnson, Project Manager - Air Toxics, Source Evaluation Email: Clohnson@maxxam.ca Phone# (905)817-5769

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 1 Page 1 of 6

Weston Solutions Inc Client Project #: 14464 Site Location: LWEC, L'ANSE, MI

EPA M26A HYDROGEN HALIDES AND HALOGENS (STACK SAMPLING TRAIN)

Maxxam ID		BHD014	BHD015	BHD015			
Sampling Date							
	UNITS	M26A-SB-DIH2O	M26A-STK-1	M26A-STK-1 Lab-Dup	RDL	MDL	QC Batch
Sulfuric Acid Volume	ml	230	460	N/A	1	1	4258763
Hydrochloric Acid	ug	<250	4700	4700	250	75	4276832
RDL = Reportable Detection L	imit						
QC Batch = Quality Control Ba	itch						
Lab-Dup = Laboratory Initiate	d Duplic	ate					
N/A = Not Applicable							

Maxxan A Bureau Veritas Group Comp am

Weston Solutions Inc Client Project #: 14464 Site Location: LWEC, L'ANSE, MI

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	BHD014 M26A-SB-DIH2O Stack Sampling Train	I				Collected: Shipped: Received:	2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hydrogen Halides in H2SC	94 Imp.	IC/SPEC	4276832	2015/11/18	2015/11/18	Ann-Marie	Stern
Volume of Sulfuric Acid In	npinger	· · · · · · · · · · · · · · · · · · ·	4258763	N/A	2015/11/04	Frank Mo	
Maxxam ID: Sample ID: Matrix:	BHD015 M26A-STK-1 Stack Sampling Train					Collected: Shipped: Received:	2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hydrogen Halides in H2SO	4 lmp.	IC/SPEC	4276832	2015/11/18	2015/11/18	Ann-Marie	Stern
Volume of Sulfuric Acid Im	pinger		4258763	N/A	2015/11/04	Frank Mo	
Maxxam ID: Sample ID: Matrix:	BHD015 Dup M26A-STK-1 Stack Sampling Train					Collected: Shipped: Received:	2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hydrogen Halides in H2SO	4 Imp.	IC/SPEC	4276832	2015/11/18	2015/11/18	Ann-Marie	Stern

Weston Solutions Inc Client Project #: 14464 Site Location: LWEC, L'ANSE, MI

GENERAL COMMENTS

Results relate only to the items tested.

Page 4 of 6 Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Weston Solutions Inc Client Project #: 14464 Site Location: LWEC, L'ANSE, MI

QUALITY ASSURANCE REPORT

QA/QC			,	Date		%				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits		
4276832	A_S	Matrix Spike(BHD015)	Hydrochloric Acid	2015/11/18		96	%	80 - 120		
4276832	A_S	Spiked Blank	Hydrochloric Acid	2015/11/18		101	%	90 - 110		
4276832	A_S	Method Blank	Hydrochloric Acid	2015/11/18	<250		ug			
4276832	A_S	RPD - Sample/Sample Dup	Hydrochloric Acid	2015/11/18	0.54		%	20		
Matrix Sp	Atrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.									

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Weston Solutions Inc Client Project #: 14464 Site Location: LWEC, L'ANSE, MI

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

and

Frank Mo, B.Sc., Inorganic Lab. Manager

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 14464 Site Location: LWEC, L'ANSE, MI

Attention:Ken Hill

Weston Solutions Inc 1400 Weston Way West Chester, PA USA 19380

> Report Date: 2015/11/18 Report #: R3773883 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B5N0555

Received: 2015/11/10, 15:19

Sample Matrix: Stack Sampling Train # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Anions in Water by Ion Chromatography (1)	1	N/A	2015/11/18	BRL SOP-00105	EPA 300.0 m
Hydrogen Halides in H2SO4 Imp.	2	2015/11/18	3 2015/11/18	BRL SOP-00108	EPA 26A m
Volume of Sulfuric Acid Impinger	2	N/A	2015/11/18		

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance. (1) SCC/CAEAL

Encryption Key

Clayton Johnson 18 Nov 2015 18:42:54 -05:00

霰

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Clayton Johnson, Project Manager - Air Toxics, Source Evaluation Email: Clohnson@maxxam.ca Phone# (905)817-5769

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Weston Solutions Inc Client Project #: 14464 Site Location: LWEC, L'ANSE, MI

EPA M26A HYDROGEN HALIDES AND HALOGENS (STACK SAMPLING TRAIN)

Maxxam ID		BIB025	BIB026						
Sampling Date		2015/11/03	2015/11/04						
	UNITS	M26A-C1-STK-R2	M26A-C1-STK-R3	RDL	MDL	QC Batch			
Sulfuric Acid Volume	ml	484	490	1	1	4276829			
Hydrochloric Acid	ug	5000	3900	250	75	4276832			
RDL = Reportable Detection	on Limit								
QC Batch = Quality Control Batch									

Page 2 of 7 Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Weston Solutions Inc Client Project #: 14464 Site Location: LWEC, L'ANSE, MI

RESULTS OF ANALYSES OF STACK SAMPLING TRAIN

Maxxam ID		BJJ470			
Sampling Date					
	UNITS	AUDIT-111615F-1440	RDL	MDL	QC Batch
Chloride (Cl)	mg/L	11	0.1	0.02	4277309
RDL = Reportable Detec	tion Limit				
QC Batch = Quality Con	trol Batch				

¢

Weston Solutions Inc Client Project #: 14464 Site Location: LWEC, L'ANSE, MI

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	BIB025 M26A-C1-STK-R2 Stack Sampling Trair	ì				Collected: Shipped: Received:	2015/11/03 2015/11/10
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hydrogen Halides in H2SC	04 Imp.	IC/SPEC	4276832	2015/11/18	2015/11/18	Ann-Marie	Stern
Volume of Sulfuric Acid In	npinger		4276829	N/A	2015/11/18	Brenda Mo	oore
Maxxam ID: Sample ID: Matrix:	BIB026 M26A-C1-STK-R3 Stack Sampling Train	1				Collected: Shipped: Received:	2015/11/04 2015/11/10
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hydrogen Halides in H2SC	04 lmp.	IC/SPEC	4276832	2015/11/18	2015/11/18	Ann-Marie	Stern
Volume of Sulfuric Acid In	npinger		4276829	N/A	2015/11/18	Brenda Mo	ore
Maxxam ID: Sample ID:	BJJ470 AUDIT-111615F-144	-				Collected: Shipped: Received:	2015/11/10
Matrix:	Stack Sampling Train	1				necciveu.	2013/11/10
Matrix: Test Description	Stack Sampling Train	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	2013/11/10

Weston Solutions Inc Client Project #: 14464 Site Location: LWEC, L'ANSE, MI

GENERAL COMMENTS

Results relate only to the items tested.

Page 5 of 7 Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Weston Solutions Inc Client Project #: 14464 Site Location: LWEC, L'ANSE, MI

QUALITY ASSURANCE REPORT

			Date		%		
Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
A_S	Matrix Spike	Hydrochloric Acid	2015/11/18		96	%	80 - 120
A_S	Spiked Blank	Hydrochloric Acid	2015/11/18		101	%	90 - 110
A_S	Method Blank	Hydrochloric Acid	2015/11/18	<250		ug	
A_S	RPD - Sample/Sample Dup	Hydrochloric Acid	2015/11/18	0.54		%	20
	A_S A_S A_S	A_S Matrix Spike A_S Spiked Blank A_S Method Blank	A_SMatrix SpikeHydrochloric AcidA_SSpiked BlankHydrochloric AcidA_SMethod BlankHydrochloric Acid	InitQC TypeParameterAnalyzedA_SMatrix SpikeHydrochloric Acid2015/11/18A_SSpiked BlankHydrochloric Acid2015/11/18A_SMethod BlankHydrochloric Acid2015/11/18	InitQC TypeParameterAnalyzedValueA_SMatrix SpikeHydrochloric Acid2015/11/18A_SSpiked BlankHydrochloric Acid2015/11/18A_SMethod BlankHydrochloric Acid2015/11/18	InitQC TypeParameterAnalyzedValueRecoveryA_SMatrix SpikeHydrochloric Acid2015/11/1896A_SSpiked BlankHydrochloric Acid2015/11/18101A_SMethod BlankHydrochloric Acid2015/11/18<250	InitQC TypeParameterAnalyzedValueRecoveryUNITSA_SMatrix SpikeHydrochloric Acid2015/11/1896%A_SSpiked BlankHydrochloric Acid2015/11/18101%A_SMethod BlankHydrochloric Acid2015/11/18<250

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Weston Solutions Inc Client Project #: 14464 Site Location: LWEC, L'ANSE, MI

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Bunde Moore

Brenda Moore, Team Lead

Tanlel

Frank Mo, B.Sc., Inorganic Lab. Manager

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 14464 Site Location: LWEC, L'ANSE, MI

Attention:Ken Hill

Weston Solutions Inc 1400 Weston Way West Chester, PA USA 19380

> Report Date: 2015/11/06 Report #: R3753380 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B5M8302 Received: 2015/11/06, 14:50

Sample Matrix: Stack Sampling Train # Samples Received: 6

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Hydrogen Halides in H2SO4 Imp.	6	2015/11/06	2015/11/06	BRL SOP-00108	EPA 26A m
Volume of Sulfuric Acid Impinger	6	N/A	2015/11/06		

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Encryption Key

Clayton Johnson. 06 Nov 2015 18:14:15 -05:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Clayton Johnson, Project Manager - Air Toxics, Source Evaluation Email: CJohnson@maxxam.ca Phone# (905)817-5769

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Weston Solutions Inc Client Project #: 14464 Site Location: LWEC, L'ANSE, MI

EPA M26A HYDROGEN HALIDES AND HALOGENS (STACK SAMPLING TRAIN)

Maxxam ID		BHP176	BHP177	BHP181	BHP182			
Sampling Date		2015/11/03	2015/11/05	2015/11/05	2015/11/05			
	UNITS	M26A-SB-DIH2O	M26A-SB-H2SO4	M26A-C2-R1	M26A-C2-R2	RDL	MDL	QC Batch
Sulfuric Acid Volume	ml	150	75	488	470	1	1	4262489
Hydrochloric Acid	ug	<250	<250	5100	5600	250	75	4262488
PDI - Penertable Detecti	on Limit							

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

	2015/11/05			2015/11/05			
				2013/11/03			
uis	M26A-C2-R3-IMP1/2	RDL	MDL	M26A-C2-R3-IMP3	RDL	MDL	QC Batch
nl	369	1	1	144	1	1	4262489
Ig	6000	150	45	<100	100	30	4262488
	nl Ig	nl 369 Jg 6000	nl 369 1 Jg 6000 150	nl 369 1 1 Jg 6000 150 45	nl 369 1 1 1 144 Jg 6000 150 45 <100	ml 369 1 1 1 144 1 ug 6000 150 45 <100 100	nl 369 1 1 144 1 1 ug 6000 150 45 <100

A Bureau Veritas Group Company

Weston Solutions Inc Client Project #: 14464 Site Location: LWEC, L'ANSE, MI

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	BHP176 M26A-SB-DIH2O Stack Sampling Train					Collected: Shipped: Received:	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hydrogen Halides in H2S(D4 Imp.	IC/SPEC	4262488	2015/11/06	2015/11/06	Lang Le	
Volume of Sulfuric Acid Ir	npinger		4262489	N/A	2015/11/06	Frank Mo	****
Maxxam ID: Sample ID: Matrix:						Collected: Shipped: Received:	2015/11/05 2015/11/06
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hydrogen Halides in H2SC		IC/SPEC	4262488	2015/11/06	2015/11/06	Lang Le	
Volume of Sulfuric Acid In	npinger		4262489	N/A	2015/11/06	Frank Mo	
Maxxam ID: Sample ID: Matrix:	BHP181 M26A-C2-R1 Stack Sampling Train					Collected: Shipped: Received:	2015/11/05 2015/11/06
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hydrogen Halides in H2SC)4 Imp.	IC/SPEC	4262488	2015/11/06	2015/11/06	Lang Le	*****
Volume of Sulfuric Acid Im	npinger		4262489	N/A	2015/11/06	Frank Mo	
Maxxam ID: Sample ID: Matrix:	BHP182 M26A-C2-R2 Stack Sampling Train					Collected: Shipped: Received:	2015/11/05 2015/11/06
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hydrogen Halides in H2SO	4 lmp.	IC/SPEC	4262488	2015/11/06	2015/11/06	Lang Le	
Volume of Sulfuric Acid Im	pinger		4262489	N/A	2015/11/06	Frank Mo	
Sample ID:	BHP183 M26A-C2-R3-IMP1/2 Stack Sampling Train					Collected: Shipped: Received:	2015/11/05 2015/11/06
lest Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hydrogen Halides in H2SO	4 Imp.	IC/SPEC	4262488	2015/11/06	2015/11/06	Lang Le	
Volume of Sulfuric Acid Im	pinger		4262489	N/A	2015/11/06	Frank Mo	
Sample ID:	BHP184 M26A-C2-R3-IMP3 Stack Sampling Train					Collected: Shipped: Received:	2015/11/05 2015/11/06
fest Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
lydrogen Halides in H2SO4	4 Imp.	IC/SPEC	4262488	2015/11/06	2015/11/06	Lang Le	

Weston Solutions Inc Client Project #: 14464 Site Location: LWEC, L'ANSE, MI

GENERAL COMMENTS

Results relate only to the items tested.

Weston Solutions Inc Client Project #: 14464 Site Location: LWEC, L'ANSE, MI

QUALITY ASSURANCE REPORT

QA/QC				Date		%		
Batch	Init	QC Туре	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4262488	LLE	Spiked Blank	Hydrochloric Acid	2015/11/06		100	%	90 - 110
4262488	LLE	Method Blank	Hydrochloric Acid	2015/11/06	<250		ug	

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Page 5 of 6 Maxxam Analytics International Corporation Of Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Ma A Bureau Veritas Group Co

Weston Solutions Inc Client Project #: 14464 Site Location: LWEC, L'ANSE, MI

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Janle \langle

Frank Mo, B.Sc., Inorganic Lab. Manager

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

	Client Work Order Number Contact Person		14	LWEC, L'Ans 1464 n Hill	e, Mi Phone Numbe Turn Around T			701-3043 IUSH]
Lab ID		Field Sample ID		Sample Collection Date	1	es Reques HOLI]	info	Sample
	LWEC - C2 - STK - 1 -	in the			M26A				
	LWEC - C2 STK - 2 - LWEC - C2 STK - 2 -	M26A - NAOH			M26A M26A	X			_
	LWEC - C2 - STK - 3 -		<u>mp 1/2</u>	interior.	M26A				-
	LWEC C2 STK - SB -			11/3/18	M26A MC01 M26A				
	LWEC-02-51K-50		nic MARS	into for	M26A				-
	ENOC += -	10-2-612	<u> </u>	195/15	- 11301				
					ļ		-		
								<u> </u>	<u> </u>
					-				
								-	
					4			<u> </u>	
								<u> </u>	
	Ē	2 Dup 11 Dup 33	2 = 150 M = 100 m1					<u> </u>	
	=							<u> </u>	
otes:	M26A - Chiloddes by IC M2SO4 25 Omin N	per Method 9057 A	inalyze samples in d	uplicate as pe	Nethod Starin JESTON R	g Impinger	volumes, D Ra	INTA	f.
1	Full Oala package requi	red		Ų	2504 51	+mple	5.73	V: RI:	- 488
	ished By	Received By	Date	(U Time	$\bar{r} = 420 \text{ m}$	u, K. Labi) = 3 Jse Only	1(m)(: 100	τρ[].
ue	Mark	Shel	11/5/18	Althi Cashainin	Shipper Opened By		Air Bill # Date/Time	149m	Семр
		MIMA CHAHI	0 2015/11/06	19:50	Temp *C 19•6	19-8/19-5	Condition		
boratory Co	xnments:				Custody Seeis	Yes No	None .	<u>N'A</u>	
Clayton	6-Nov-15 14:50 Johnson				Copyright Roy I	- Meston I	no isa 10	20.000.00.4	
					Copjing a Rolf.	1102/011		NULLENDA V	
B5M8	\$302								
-									

SSAS

PERFORMANCE EVALUATION

Scheduled Study SSAS107 29-Jun-2015 Through 22-Oct-2015

RT84384 RTC Labcode

EPA Labcode

Participating Laboratory:

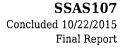
Maxxam Analytics, Inc. Clayton Johnson 6740 Campobello Rd Mississauga ON L5N 2L8 CA

Thank you for participating in study SSAS107. Additional information about this study may be found online at www.sigmaaldrich.com/pt.

Sigma-Aldrich RTC Inc. 2931 Soldier Springs Road Laramie, WY 82070 USA 1-307-742-5452 www.sigmaaldrich.com

This report shall not be reproduced except in full, without written approval of the laboratory. The data and results reported in this document are the property of the participating laboratory and are confidential. If you wish to appeal an evaluation listed in this report, please call our QA Supervisor at (307) 742-5452 or email RTCreports@sial.com

Sincerely,


Jennifer Duhon Proficiency Testing Supervisor

Accreditors

Evaluations of this dataset will be sent to the accreditor(s) listed below using your laboratory's labcode listed above each accrediting agency. If any of the information listed below is incorrect, please contact RTC immediately.

RTC is accrediated to perform PT programs for the scope of accredation to ISO/IEC 17043 under ACLASS certificate AP-1469 $\,$

.

Miscellaneous Analytes

Method:EPA Method 12 [10402161]

Analyte	Result Units	Accept. Window	Z	Evaluation		
Lead, Pb ^{1.2}	21.2 ug/filter	21	16.8 to 25.2	0.1	Acceptable	
1075 / PEA1945-1EA - Lot SSAS107 /Analyst:/ Analysis Date: 2015-10-14	Evaluation Criteria - 8 Uvluntary			Evaluation Parameter - a:1, b:0, c:0.10, d:0		
Lead, Pb ^{1.2}	0.209 ug/ml	0.2	0.15 to 0.25	0.28	Acceptable	
1075 / PEA1948-1EA - Lot SSAS107 /Analyst:/ Analysis Date: 2015-10-14				Parameter - a:1, b:0, c:0.125, d:0		

Method:EPA Method 26A (2000) [10403200]

Analyte	Result Units	Assigned Value	Accept. Window	Z	Evaluation	
Hydrogen chloride ^{1,2}	24.2 mg/L	25	22.5 to 27.5	-0.64	Acceptable	
1770 / PEA1941-20ML - Lot SSAS107 /Analyst:/ Analysis Date: 2015-10-08				Evaluation Parameter - a:1, b:0, c:0.0		

Group Analysis Summary Acceptable : 3 / 3 Score : 100% - (Acceptable)

Sample Information

HYDROGEN HALIDES/HALOGENS IN IMPINGER SOLUTION

PEA1941-20ML / Lot SSAS107

Analytes	Units	Gravimetric Value	Study Mean	Study Std. Dev.
Hydrogen chloride ^{1,2} 1770	mg/L	25.0±0.128	0	0
Hydrogen fluoride ^{1,2} 1775	mg/L	25.0±0.128	0	0

METALS ON FILTER PAPER

PEA1945-1EA / Lot SSAS107

Analytes	Units	Gravimetric Value	Study Mean	Study Std. Dev.
Antimony, Sb ^{1.2} 1005	ug/filter	26.1±0.133	0	0
Arsenic, As ^{1,2} 1010	ug/filter	21.0±0.107	0	0
Barium, Ba ^{1.2} 1015	ug/filter	21.1±0.108	0	0
Beryllium, Be ^{1,2} 1020	ug/filter	11.3±0.0578	0	0
Cadmium, Cd ^{1,2} 1030	ug/filter	11.2±0.0572	0	0
Chromium, Cr (total) ^{1.2} 1040	ug/filter	16.1±0.082	0	0
Cobalt, Co ^{1,2} 1050	ug/filter	11.1±0.0568	0	0
Copper, Cu ^{1,2} 1055	ug/filter	11.2±0.0572	0	0
Lead, Pb ^{1.2} 1075	ug/filter	21.0±0.107	0	0
Manganese, Mn ^{1,2} 1090	ug/filter	11.2±0.0572	0	0
Nickel, Ni ^{1,2} 1105	ug/filter	21.2±0.108	0	0
Selenium, Se ^{1,2} 1140	ug/filter	21.0±0.107	0	0
Silver, Ag ^{1.2} 1150	ug/filter	31.1±0.159	0	0
Thallium, Tl ^{1,2} 1165	ug/filter	31.1±0.159	0	0
Zinc, Zn ^{1,2} 1190	ug/filter	21.0±0.107	0	0

METALS IN IMPINGER SOLUTION

PEA1948-1EA / Lot SSAS107

Analytes	Units	Gravimetríc Value	Study Mean	Study Std. Dev.
Antimony, Sb ^{1,2} 1005	ug/ml		0	0
Arsenic, As ^{1,2} 1010	• ug/ml		0	0
Barium, Ba ^{1,2} 1015	ug/ml		0	0
Beryllium, Be ¹² 1020	ug/ml		0	0
Cadmium, Cd ^{1,2} 1030	ug/ml		0	0
Chromium, Cr (total) ^{1,2} 1040	ug/ml		0	0
Cobalt, Co ^{1,2} 1050	ug/ml		0	0
Copper, Cu ^{1,2} 1055	ug/ml		0	0
Lead, Pb ^{1.2} 1075	ug/ml	0.202±0.00103	0	0
Manganese, Mn ^{1.2} 1090	ug/ml		0	0
Nickel, Ni ^{1,2} 1105	ug/ml		0	0
Selenium, Se ^{1,2} 1140	ug/ml		0	0
Silver, Ag ^{1,2} 1150	ug/ml		0	0
Thallium, Tl ^{1,2} 1165	ug/ml		0	0
Zinc, Zn ^{1,2} 1190	ug/ml		0	0

SSAS107 Concluded 10/22/2015 Final Report

SSAS107 Concluded 10/22/2015 Final Report

Definitions and Interpretation of Statistical Analysis:

Assigned Value: Value attributed to a particular quantity and accepted, sometimes by convention, as having an uncertainty appropriate for a given purpose. See ISO/IEC 17043 for additional information. In general the assigned value is the value used to assess proficiency and may or may not be the made to value (gravimetric value).

Accept. Window: The range of values that constitute acceptable performance for a laboratory participating in this PT study.

Z: A Z-Score tells how a single data point compares to normal data. A Z-Score says not only whether a point was above or below average, but how unusual the measurement is. Generally, a method result with a Z-Score less than |2| is considered to be in control, a Z-Score between |2| and |3| is considered 'Questionable', but still within control and a Z greater than |3| is considered not acceptable and the method is out of control. For WS studies, a z-score greater than |2| is unacceptable. Calculated as Z = (Reported Value - Assigned Value) / Proficiency Std. Dev.

Proficiency Std. Dev.: Standard deviation calculated based on Evaluation Criteria.

Study Mean: Statistical study mean calculated using a robust statisitical model (RTC employs the 'Biweight Program'). Robust statistical techniques to minimize the influence that extreme results can have on estimates of the mean and standard deviation. NOTE - These techniques assign less weight to extreme results, rather than eliminate them from a data set.

Study Std. Dev.: Standard deviation calculated from study data using robust statisicals (Biweight).

Gravimetric Value: The 'prepared to' value, determined by gravimetric means. The uncertainty associated to this value is standard uncertainty and based on RTC's gravimetric tolerances.

Evaluation Criteria:

1 - **Regression Equation** - Acceptance windows based on TNI adopted equation of proficiency value +/- 3 proficiency standard deviations and check limits of proficiency value +/- 2 proficiency standard deviations. Proficiency value and proficiency standard deviation are calculated from gravimetric variables a, b, c, & d as proficiency value = a * gravimetric + b and proficiency standard deviation = c * gravimetric + d.

2 - Study Robust Mean and c,d regression - Acceptance windows based on TNI adopted equation of proficiency value +/- 3 proficiency standard deviations and check limits of proficiency value +/- 2 proficiency standard deviations. Proficiency value and proficiency standard deviation calculated from robust study mean and variables c & d as proficiency value = robust mean and proficiency standard deviation = c * proficiency value + d.

3 - Fixed Limits - Acceptance windows based on span of gravimetric percentage from gravimetric as gravimetric +/- gravimetric * percentage.

4 - Adjustable Fixed Limits - Acceptance windows base on a span of gravimetric percentage from gravimetric as gravimetric +/- gravimetric * lowPercentage where gravimetric < break and gravimetric +/-

gravimetric * highPercentage where gravimetric >= break.

5 - Study Statistics - Acceptance windows based on a number of standard deviations span from the study mean as study mean +/- (deviations * standard deviation).

6 - Log Transform Statistics - Acceptance windows based on lognormal distributed data. Acceptance windows = mean(lognormal) +/- span * standard deviation(lognormal).

7 - Reserved

8 - Regression Equation 2SD - Acceptance windows based on EPA equation of proficiency value +/-2 proficiency standard deviations. Proficiency value and proficiency standard deviation are calculated from gravimetric variables a, b, c, & d as proficiency value = a * gravimetric + b and proficiency standard deviation = c * gravimetric + d. Generally reserved for drinking water studies.

Proficiency Test Item Preparation, Homogeneity and Stability Assessment - RTC uses proprietary and published methods for the manufacture, homogeneity and stability testing of proficiency test items. RTC's proficiency test materials meet requirements of ISO Guide 34. For more information contact RTC. Additionally RTC complies with TNI Volume 3 'General Requirements for Environmental Proficiency Test Providers', EL-V3-2009, 2009 for all TNI Fields of Proficiency Testing analytes.

Metrological Traceability - All preparations are made using balances calibrated annually traceable to NIST standards. Where appropriate analytical measurements are traceable through an unbroken chain to NIST standards, or a Certified Reference Material manufactured under ISO Guide 34 in conjunction with ISO/IEC 17025.

Statistical Analysis - RTC uses robust statistics to calculate study means and standard deviations - Reference - Kafadar, K, A Biweight Approach to the One-Sample Problem, Journal of the American Statistical Association, Vol. 77, No. 378, June, 1982, pp. 416-424.

Additional Information - Go to www.rt-corp.com/reporting for additional information on summary statistics for specific methods, advice on the interpretation of the statistical analysis, and additional comments/recommendations. If you failed an analyte it may be required to perform a corrective action and/or retest. RTC recommends that you contact your accreditation body for specific instruction.

Program analyte accrediting footnotes

¹ NELAC Compliant, covered by RTC's ACLASS Proficiency Testing Provider accreditation, Cert. AP-1469
 ² ISO 17043 Accredited, covered by RTC's ACLASS Proficiency Testing Provider accreditation, Cert AP-1469

Path BRI

Date: 10/24/2015

Authorizing Officer:

Patrick Brumfield, ASQ CQA

QA Manager

This section of the report is for informational purposes only. If you are unsure about specific accreditation requirements, please contact your state coordinator.

UNACCEPTABLE ANALYTES

SSAS107 Concluded 10/22/2015 Final Report

PASS RATE

Number of Reported Results: 3

Number of Passing Results:

Pass Rate: 100%

3

November 18, 2015

Karen Kajiya-Mills MI-DEQ-Air Quality Division (SSAS) 525 West Allegan St 3rd Floor Constitution Hall PO Box 30437 Lansing, MI 48933

Enclosed is your final report for ERA's Stationary Source Audit Sample (SSAS) Program. Your final report includes an evaluation of all results submitted by the laboratory to ERA. Included for your convenience is a table of contact information for all parties involved in this sampling event.

Data Evaluation Protocols: All analytes in ERA's SSAS Program have been evaluated comparing the reported result to the acceptance limits generated using the criteria contained in the TNI SSAS Table.

If you have any questions, please contact our Proficiency Testing Department at 1-800-372-0122.

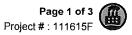
Sincerely,

1.Ok

David Kilhefner Quality Officer

cc: Project File Number 111615F

Recipient Type	Report Recipient	Contact	Project ID
Agency	MI-DEQ-Air Quality Division (SSAS) 525 West Allegan St 3rd Floor Constitution Hall PO Box 30437 Lansing, MI 48933 USA	Karen Kajiya-Mills kajiya-millsk@michigan.gov Phone: 517-335-4874	
Facility	L'Anse Warden Electric Company 157 South Main St L'Anse, MI 49946 USA	JR Richardson jr.richardson@pmpowergroup.com Phone: 907-885-7187	
Lab	Maxxam Analytics Inc 6740 Campobello Rd Mississauga, ON L5N 2L8 Canada	Clayton Johnson Sr. Project Manager cjohnson@maxxam.ca Phone: (905) 817-5769	
Tester	Weston Solutions 1400 Weston Way West Chester, PA 19341 USA	Ken Hill k.hill@westonsolutions.com Phone: 610-721-6521	LWEC HCI


Q1_LWEC001_Opactiy_003972

Final Report Results For Laboratory Maxxam Analytics Inc

16341 Table Mountain Pkwy • Golden, CO 80403 • 800.372.0122 • 303.431.8454 • fax 303.421.0159 • www.eraqc.com Q1_LWEC001_Opactiy_003973

SSAP Evaluation Report Project Number: 111615F ERA Customer Number: M748564 Laboratory Name: Maxxam Analytics Inc

Inorganic Results

16341 Table Mountain Pkwy • Golden, CO 80403 • 800.372.0122 • 303.431.8454 • fax 303.421.0159 • www.eraqc.com Q1_LWEC001_Opactiy_003974

Hydrogen Fluoride

1775

111615F Evaluation Final Complete Report

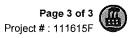
A Waters Company

Clayton Johnson Sr. Project Manager Maxxam Analytics Inc 6740 Campobello Rd Mississauga, ON L5N 2L8 (905) 817-5769

mg/L

EPA ID: ERA Customer Number: Agency ID:

Not Reported M748564 R0033


TNI Analyte Code	Analyte	Units	Reported Value	Assigned Value	Acceptance Limits	Performance Evaluation	Method Description	Analysis Date	Analyst Name
SSAP Hydrogen Halides in Impinger Solution (cat# 1440, lot# 111615F) Study Dates: 11/16/15 - 11/18/15									
1770	Hydrogen Chloride	mg/L	11.2	11.2	10.1 - 12.3	Acceptable	EPA 26A 2000	11/18/2015	

16.7

15.0 - 18.4

Not Reported

111615F Laboratory Exception Report

A Waters Company

Clayton Johnson Sr. Project Manager Maxxam Analytics Inc 6740 Campobello Rd Mississauga, ON L5N 2L8 (905) 817-5769 EPA ID: ERA Customer Number: Agency ID:

Not Reported M748564

Evaluation Checks

There are no values reported with < where the assigned value was greater than 0.

Not Acceptable Evaluations

There were no Not Acceptable evaluations for this study.

APPENDIX E EXAMPLE CALCULATIONS

,

EXAMPLE CALCULATIONS FOR VELOCITY, MOISTURE, AND ISOKINETICS

delta H

13.6

1. Volume of dry gas sampled at standard conditions (68 deg F, 29.92 in. Hg), dscf.

17.64 x Y x Vm x (Pb + -----)

Vm(std) =

(Tm + 460)

Where:

Vm(std) =	Volume of gas sample measured by the dry gas meter,
	corrected to standard conditions, dscf.
Vm =	Volume of gas sample measured by the dry gas meter
	at meter conditions, dcf.
Pb =	Barometric Pressure, in Hg.
delt H =	Average pressure drop across the orifice meter, in H_2O
Tm =	Average dry gas meter temperature, deg F.
Y =	Dry gas meter calibration factor.
17.64 =	Factor that includes ratio of standard temperature (528 deg R)
	to standard pressure (29.92 in. Hg), deg R/in. Hg.
13.6 =	Specific gravity of mercury.

2. Volume of water vapor in the gas sample corrected to standard conditions, scf.

Vw(std) =	(0.04707 x Vwc) + (0.04715 x Wwsg)
Where:	
Vw(std) =	Volume of water vapor in the gas sample corrected to standard conditions, sef.
Vwc =	Volume of liquid condensed in impingers, ml.
Wwsg =	Weight of water vapor collected in silica gel, g.
0.04707 =	Factor which includes the density of water
	(0.002201 lb/ml), the molecular weight of water
	(18.0 lb/lb-mole), the ideal gas constant
	21.85 (in. Hg) (ft ³)/lb-mole)(deg R); absolute
	temperature at standard conditions (528 deg R), absolute
	pressure at standard conditions (29.92 in. Hg), ft ³ /ml.
0.04715 =	Factor which includes the molecular weight of water
	(18.0 lb/lb-mole), the ideal gas constant
	21.85 (in. Hg) (ft ³)/lb-mole)(deg R); absolute
	temperature at standard conditions (528 deg R), absolute
	pressure at standard conditions (29.92 in. Hg), and
	453.6 g/lb, ft ³ /g.

3. Moisture content

	Vw(std)
bws =	
	Vw(std) + Vm(std)
Where:	

bws =

Proportion of water vapor, by volume, in the gas stream, dimensionless.

4. Mole fraction of dry gas.

Md = 1 - bws

Where:

Md = Mole fraction of dry gas, dimensionless.

5. Dry molecular weight of gas stream, lb/lb-mole.

$(0.440 \times 70 CO_2) + (0.520 \times 70 O_2) + (0.280 \times (70 N_2))$	MWd =	$(0.440 \times \% CO_2) + (0.320 \times \% O_2) + (0.280 \times (\% N_2))$
--	-------	--

Where:

MWd =	Dry molecular weight, lb/lb-mole.
% CO ₂ =	Percent carbon dioxide by volume, dry basis.
% O ₂ =	Percent oxygen by volume, dry basis.
% N ₂ =	Percent nitrogen by volume, dry basis.
0.440 =	Molecular weight of carbon dioxide, divided by 100.
0.320 =	Molecular weight of oxygen, divided by 100.
0.280 =	Molecular weight of nitrogen or carbon monoxide,
	divided by 100.

6. Actual molecular weight of gas stream (wet basis), lb/lb-mole.

Md))

Where:

MWs =	Molecular weight of wet gas, lb/lb-mole.
18 =	Molecular weight of water, lb/lb-mole.

7. Average velocity of gas stream at actual conditions, ft/sec.

$$V_{S} = 85.49 \text{ x Cp x ((delt p)^{1/2})avg x (-------)^{1/2}}$$

$$P_{S x MWs}$$

Where:

Vs =	Average gas stream velocity, ft/sec.
	(lb/lb-mole)(in. Hg) ^{1/2}
85.49 =	Pitot tube constant, ft/sec x
	(deg R)(in H ₂ O)
Cp =	Pitot tube coefficient, dimensionless.
Ts =	Absolute gas stream temperature, deg $R = Ts$, deg $F + 460$.
	P(static)
Ps =	Absolute gas stack pressure, in. Hg. = Pb +
	13.6
delt p =	Velocity head of stack, in. H ₂ O

8. Average gas stream volumetric flowrate at actual conditions, wacf/min.

Qs(act) =	60 x Vs x As
Where:	
Qs(act) =	Volumetric flowrate of wet stack gas at actual conditions, wacf/min.
As =	Cross-sectional area of stack, ft ² .
60 =	Conversion factor from seconds to minutes.

9. Average gas stream dry volumetric flowrate at standard conditions, dscf/min.

	Ps
Qs(std) =	17.64 x Md x x Qs(act)
	Ts

Where:

Qs(std) =	Volumetric flowrate of dry stack gas at standard
	conditions, dscf/min.

10. Isokinetic variation calculated from intermediate values, percent.

	17.327 x Ts x Vm(std)
I =	
	$Vs x O x Ps x Md x (Dn)^2$

Where:

I =	Percent of isokinetic sampling.
0 =	Total sampling time, minutes.
Dn =	Diameter of nozzle, inches.
17.327 =	Factor which includes standard temperature (528 deg R),
	standard pressure (29.92 in. Hg), the formula for
	calculating area of circle $D^{2/4}$, conversion of square
	feet to square inches (144), conversion of seconds
	to minutes (60), and conversion to percent (100),
	$(in. Hg)(in^2)(min)$

(deg R)(ft²)(sec)

EXAMPLE CALCULATIONS FOR HYDROCHLORIC ACID

1. Hydrochloric Acid concentration, lb/dscf.

C1(HCl)		W(HCl) x 2.2046 x 10 ⁻⁶
Where:		
W(HCl) C1(HCl) Vdm(std)	H H H	Weight of hydrochloric acid collected in sample, mg. Hydrochloric acid concentration, lb/dscf. Volume of gas sample measured by the dry gas meter,

corrected to standard conditions, dscf. 2.2046×10^{-6} = Conversion factor from mg to lbs.

2. Hydrochloric acid concentration, ppmv.

		385.35 x 10 ⁶
C2(HCl)		x C1(HCl)
		MW
Where:		
C2(HCI)	=	Concentration of hydrochloric acid in stack gas, parts per million by volume (dry basis).
385.35 x 10 ⁶	=	Conversion factor from lbs/ppm.
MW	=	Molecular weight of hydrochloric acid (36.46).
Hydrochloric acid mass emission rate, lb/hr.		

3.

 $MR1(HC1) = C1(HC1) \times Qs(std) \times 60$

Where:

MR1(HCl)	-	Hydrochloric acid mass emission rate, lb/hr.
Qs(std)	-	Volumetric flowrate of dry stack gas at standard conditions, dscf/min.

EXAMPLE CALCULATIONS FOR FILTERABLE AND CONDENSIBLE PM-10 PARTICULATE MATTER

1. Filterable PM-10 particulate concentration, gr/dscf.

	FPMwt
FPMC1 =	15.432 x
	Vm(std)

Where:

FPMC1 = FPMwt =	Filterable particulate concentration, gr/dscf. Total weight of particulate caught on filter
	and probe wash adjusted for the site blank samples.
Vm(std) =	Volume of water vapor in the gas sample corrected to standard conditions, scf.
15.432 =	Conversion factor from grams to grains.

2. Filterable PM-10 particulate mass emission rate, lb/hr.

FPMR1 =	0.008571 x FPMC1 x Qs(std)
Where:	
FPMR1 = Qs(std) = 0.008571 =	Filterable particulate mass emission rate, lb/hr. Volumetric flow rate of dry stack gas at standard conditions, dscf/min. Conversion factor relating grains to pounds and minutes to hours.

3. Condensible PM-10 particulate concentration, gr/dscf.

	CPMwt
CPMC1 =	15.432 x
	Vm(std)

Where:

CPMC1 =	Condensible particulate concentration, gr/dscf.
CPMwt =	Total weight of Organic particulate plus Inorganic particulate, corrected for blank train samples.
Vm(std) =	Volume of water vapor in the gas sample corrected to standard conditions, sef.
15.432 =	Conversion factor from grams to grains.

4. Condensible PM-10 particulate mass emission rate, lb/hr.

CPMR1 =	0.008571 x CPMC1 x Qs(std)
Where:	
CPMR1 =	Condensible particulate mass emission rate, lb/hr.
Qs(std) =	Volumetric flow rate of dry stack gas at standard conditions, dscf/min.
0.008571 =	Conversion factor relating grains to pounds
	and minutes to hours.

5. Total PM-10 concentration, gr/dscf.

0.008571 =

TPMC1 = 15.432 xVm(std)	
Vm(std)	
* mass	
Where:	
TPMC1 = Total particulate concentration, gr/dscf.	
TPMwt = Total weight of Filterable particulate plus Condensible particulate minus blank correcti	on.
Vm(std) = Volume of water vapor in the gas sample corrected to standard conditions, scf.	
15.432 = Conversion factor from grams to grains.	
6. Total PM-10 mass emission rate, lb/hr.	
$TMR1 = 0.008571 \times TPMC1 \times Qs(std)$	
Where:	
TMR1 = Total particulate mass emission rate, lb/hr.	
Qs(std) = Volumetric flow rate of dry stack gas at standard conditions, dscf/min.	

Conversion factor relating grains to pounds

and minutes to hours.

9/11/20094334 WEC001_Opactiy_003983 \\Weston\iaswc\EmissionTestingData\AIRTEAM\SAMPLECALC\Smpcalc-Blank\Manual\blank filterable and condensible PM-10.xls

EXAMPLE CALCULATIONS FOR LEAD

1. Lead concentration, lb/dscf.

$$C_1 = \frac{W \times 2.2046 \times 10^{-9}}{Vm_{(std)}}$$

Where:

W	=	Weight of Lead collected in sample in ug (corrected for site blanks).
C_1	=	Lead concentration, lb/dscf

 2.2046×10^{-9} = Conversion factor from ug to pounds. Vm(std) = Volume of gas sample measured by the

Vm(std) = Volume of gas sample measured by the dry gas meter, corrected to standard conditions, dscf.

2. Lead mass emission rate, lb/hr.

$$MR1 = C_1 x Qs(std) x 60$$

Where:

MR1	==	Lead mass emission rate, lb/hr.
60	æ	Conversion factor from minutes to hours.
Qs(std)	=	Volumetric flow rate of dry stack gas at standard conditions, dscf/min.

3. Lead concentration, ug/dscm.

$$C_2 = 35.31 \text{ x} - \frac{W}{Vm_{(std)}}$$

Where:

 C_2 = Lead concentration, ug/dscm.

W = Weight of Lead collected in sample in ug.

35.31 = Conversion factor from cubic feet to cubic meters.

Note: Calculations identical for all target metals

EXAMPLE CALCULATIONS FOR BIAS CORRECTION AND MASS EMISSION RATES OF NITROGEN OXIDES

1. Bias corrected value of Nitrogen Oxides dry basis, ppm.

Where:

AVG	=	Average NOx concentration for the test run.
Zbias	=	The average of pre and post test zero bias checks.
Sbias	===	The average of pre and post test span bias check.
SPAN GAS	_	The calibration gas closest to the gas stream concentration, which was used for the BIAS check.
NOx(corr)		Bias corrected value.

Note: Bias correction is the same for O_2 , CO_2 , and SO_2 .

2. Nitrogen Oxides mass emission rate dry basis, lb/hr.

 $MR1(NOx) = \frac{NOx(corr) \times Qs(std) \times 46.01 \times 60 \text{ min/hr}}{385.35 \times 10^{6}}$

Where:

MR1(NOx) = Nitrogen Oxides mass emission rate, lb/hr.

Qs(std) = Average volumetric gas stream flow rate at standard conditions, dscf/min.

46.01 =Molecular weight of Nox.

 $385.35 \times 106 =$ Conversion factor from ppm to lbs.

Note: Mass rate for SO_2 is calculated using the above equation except the specific molecular weight (64.06) and measured concentration of SO_2 is used.

EXAMPLE CALCULATIONS FOR MOISTURE, BIAS, O₂ CORRECTION, AND MASS EMISSION RATES OF TOTAL VOC

1. Bias corrected value of total VOC as methane, dry basis (ppm/v).

	AVG - ZERO
C(corr)	 x SPAN GAS
	BIAS - ZERO

Where:

AVG	=	Average VOC concentration for the test run as methane as reported by the analyzer.
ZERO	-	The average of pre and post test zero bias check of the complete system with "zero" air.
BIAS	=	The average of pre and post test bias check of the complete system with the calibration span gas.
SPAN GAS	=	The calibration gas closest to the gas stream concentration, which was used for a BIAS check.
C(corr)		The bias corrected VOC concentration as methane.

2. Moisture corrected value of VOC, dry basis (ppm/v).

CVOC	_	C(corr)
CVUC	=	(100 - % MOISTURE)/100

Where:

C(corr)	=	The bias corrected VOC concentration as methane.
CVOC	=	The concentration of VOC, corrected for moisture, as methane.
% MOISTURE	=	The precentage of water vapor in the gas stream.

3. VOC concentration dry basis, ppm @ 7% O2.

		CVOCx [20.9 - 7% O2]
VOC(corr)	=	[20.9 - O2(measured)]
Where:		
VOC(corr)	=	VOC concentration corrected to 7% O2.
CVOC	=	Average VOC concentration for the test run bias and moisture corrected.
O2(measured)	-	Average oxygen concentration for test run as measured, %.
4. VOC mass emission	n rate dry	basis, lb/hr.
MR1(VOC)	=	CVOC x Qs(std) x 16 x 60 min/hr
		385.35 x 10^6
Where:		
MR1(VOC)		VOC mass emission rate, lb/hr.
Qs(std)		Average volumetric gas stream flow rate at standard conditions, dscf/min.
16	=	Molecular weight of methane.
Q1_LWEC001_Opactiy_003	3986	Conversion factor from ppm to lbs.

APPENDIX F QUALITY CONTROL DATA

Airgas.

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code:

E03NI79E15A00E4 CC333446 ASG - Riverton - NJ B52015 CO2, O2, BALN

Reference Number: 82-124502098-1 Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date:

150.5 CF 2015 PSIG 590 Jul 13, 2015

Expiration Date: Jul 13, 2023

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

		D	o Not Use This Cylinder below	100 psig, i.e. 0.7 megap	oascals.	
			ANALYTICA	L RESULTS		
Compon	ent	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON DIOXIDE 9.000 %		9.000 %	8.774 %	G1	+/- 0.7% NIST Traceable	07/13/2015
OXYGEN		12.00 %	11.97 %	G1	+/- 0.4% NIST Traceable	07/13/2015
NITROGEN Balance		Balance				
			CALIBRATION	STANDARDS	S	
Туре	Lot ID	Cylinder No	Concentration		Uncertainty	Expiration Date
NTRM	13060626	CC413722	13.359 % CARBON E	DIOXIDE/NITROGEN	+/- 0.6%	May 09, 2019
NTRM	09060237	CC263123	9.961 % OXYGEN/NI	TROGEN	+/- 0.3%	Nov 08, 2018
			ANALYTICAL	EQUIPMENT	•	
Instrume	nt/Make/Mod	el	Analytical Prin	ciple	Last Multipoint Cali	bration
Horiba VIA	510-CO2-LDH	9LRNS	NDIR		Jun 17, 2015	
Siemens C	xymat 6E-O2-N	11-M1-0603	Paramagnetic		Jul 02, 2015	

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code:

E03NI62E15A0224 CC452229 ASG - Riverton - NJ B52015 CO2,O2,BALN

Reference Number: 82-124489131-1 Cylinder Volume: Cylinder Pressure: Valve Outlet: 590 Certification Date:

157.2 CF 2015 PSIG Apr 24, 2015

Expiration Date: Apr 24, 2023

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

			ANALYTICA	L RESULTS		
Compon	ent	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON DIOXIDE 17.00 %		17.00 %	16.63 %	G1	+/- 0.7% NIST Traceab	le 04/24/2015
OXYGEN		21.00 %	21.65 %	G1	+/- 0.6% NIST Traceab	le 04/24/2015
NITROGE	N	Balance				
			CALIBRATION	STANDARDS	5	
Туре	Lot ID	Cylinder No	Concentration		Uncertainty	Expiration Date
NTRM	13060739	CC414621	16.939 % CARBON D	OXIDE/NITROGEN	+/- 0.6%	May 08, 2019
	00004444	CC273509	22.53 % OXYGEN/NJ	TROGEN	+/- 0.4%	Mar 08, 2019
NTRM	09061414	002.0000	www.commencement.com/commencement/commencements			
	09061414		ANALYTICAL			
NTRM	nt/Make/Mod		ANALYTICAL Analytical Prin	EQUIPMENT	Last Multipoint Ca	libration
NTRM Instrume		el		EQUIPMENT		libration

Triad Data Available Upon Request

Q1_LWECA00 poordid_foor the lease

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code: E02NI99E15A0406 CC153655 ASG - Riverton - NJ B52012 CO,BALN

Reference Number:82-1Cylinder Volume:144Cylinder Pressure:2013Valve Outlet:350Certification Date:Nov

82-124343564-1 144.3 CF 2015 PSIG 350 Nov 05, 2012

.

Expiration Date: Nov 05, 2020

Do Not Lico This Cylinder below 100 pain i.e. 0.7

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

ANALYTICAL RESULTS							
Compor	nent	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates	
		90.00 PPM Balance	87.96 PPM	G1	+/- 1% NIST Traceable	11/05/2012	
Туре	Lot ID	Cylinder No	CALIBRATION S	STANDARDS	Uncertainty	Expiration Date	
NTRM	12062230	CC365473	97.56 PPM CARBON MON	NOXIDE/NITROGEN	+/- 0.6%	May 25, 2018	
			ANALYTICAL E	QUIPMENT			
Instrum	ent/Make/Mode		Analytical Principle	•	Last Multipoint Calibr	ation	

Triad Data Available Upon Request

<u>Signature on file</u> Q1_LWECOPPOYEd for Belease

Airgas

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code: E02NI99E15A0080 CC17667* ASG - Riverton - NJ B52015 CO.BALN Reference Number:82-124502189-1Cylinder Volume:144.3 CFCylinder Pressure:2015 PSIGValve Outlet:350Certification Date:Jul 15, 2015

Expiration Date: Jul 15, 2023

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

ANALYTICAL RESULTS							
Component		Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates	
CARBON MO	NOXIDE	250.0 PPM Balance	248.1 PPM	G1	+/- 0.5% NIS⊤ Traceable	07/15/2015	
	Þ		CALIBRATION	STANDARDS			
Туре	Lot ID	Cylinder No	Concentration		Uncertainty	Expiration Date	
NTRMplus	12060309	CC353931	249.3 PPM CARBON M	IONOXIDE/NITROGE	N +/- 0.4%	Oct 26, 2017	
			ANALYTICAL B	EQUIPMENT			
Instrument/I	Make/Model		Analytical Princ	ple	Last Multipoint Calib	oration	
Siemens Ultra	mat 6 N1C818	0 COLOW	NDIR		Jul 01, 2015		

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code:

E02AI99E15A67B8 SG9168314BAL ASG - Chicago - IL B12015 CO,BALA

Reference Number: 54-124483425-1 Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date:

146.2 CF 2015 PSIG 590 Apr 08, 2015

Expiration Date: Apr 08, 2023

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

		Di	o Not Use This Cylinder below 1	ananin-nikinan natara kata kata kata kata kata kata kata	scals.		
			ANALYTICAI	L RESULTS			
Compon	ent	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates	
CARBON AIR	MONOXIDE	550.0 PPM Balance	555.2 PPM	G1	+/- 1.0% NIST Traceab	le 04/08/2015	
			CALIBRATION	STANDARDS			
Туре	Lot ID	Cylinder No	Concentration		Uncertainty	Expiration Date	
NTRM	11060327	CC2139	988.8 PPM CARBON MO	NOXIDE/NITROGEN	+/- 0.4%	Dec 13, 2016	
Instrument/Make/Model Analytical Principle Last Multipoint Calibration							
CO-1 HORIBA VIA-510 TKPPF7FG			NDIR		Mar 27, 2015		

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code:

E02NI99E15A3614 CC352229 ASG - Riverton - NJ B52014 NO,NOX,BALN

Reference Number: 82-124454983-1 Cylinder Volume: Cylinder Pressure: Valve Outlet: 660 Certification Date:

144.4 CF 2015 PSIG Sep 29, 2014

Expiration Date: Sep 29, 2022

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

ANALYTICAL RESULTS							
Compoi	nent	Requested Concentration	Actual Concentration	Protocol Method	Total Relati Uncertainty		Assay Dates
NOX	-0-1-1250-0-11-14-0-15-19-0-1-14-	250.0 PPM	253.0 PPM	G1	+/- 1.1% NIS	T Traceable	09/22/2014, 09/29/2014
NITRIC C	DXIDE	250.0 PPM	252.1 PPM	G1	+/- 0.8% NIST	F Traceable	09/22/2014, 09/29/2014
NITROGE	EN	Balance					1
CALIBRATION STANDARDS							
Туре	Lot ID	Cylinde	er No Concentra	tion		Uncertainty	Expiration Date
NTRM	1206193	4 CC36	7643 250.8 PPM	NITRIC OXIDE/NIT	ROGEN	+/- 0.5%	May 04, 2018
PRM	12312	68017	'9 10.01 PPM I	NITROGEN DIOXID	E/NITROGEN	+/- 2.0%	Oct 15, 2014
GMIS	1242068	89137 CC32	3703 4.449 PPM I	NITROGEN DIOXID	E/NITROGEN	+/- 2.0%	Aug 14, 2017
The SRM,	PRM or RGM	noted above is only in re	ference to the GMIS used in	n the assay and not pa	rt of the analysis.		-
			A NT A T X/T	TICAL FOUR	እ ለጠን እ የባጥ		
				ICAL EQUIP			
Instrum	ent/Make/i	Viodel	Analytical	Principle	Las	t Multipoint Cali	bration
Nicolet 67	700 AHR080	1933 NO	FTIR		Sep	12, 2014	
Nicolet 67	700 AHR080	1933 NO2	FTIR		Sep	12, 2014	

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code:

E02NI99E15A0167 CC137964. ASG - Riverton - NJ B52015 NO,NOX,BALN

Reference Number: 82-124475133-1 Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date:

144.4 Cubic Feet 2015 PSIG 660 Jan 31, 2015

Expiration Date: Feb 10, 2023

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

ANALYTICAL RESULTS							
Compor	nent Reques Concen		ual ncentration	Protocol Method	Total Relati Uncertainty		Assay Dates
NOX	450.0 PP	VI 432.	6 PPM	G1	+/- 1.0% NIST	Traceable	01/31/2015, 02/10/2015
NITRIC C	XIDE 450.0 PP	VI 432.	6 PPM	G1	+/~ 1.0% NIST	Traceable	01/31/2015, 02/10/2015
NITROGE	EN Balance						
CALIBRATION STANDARDS							
Туре	Lot ID	Cylinder No	Concentrat	ion		Uncertainty	Expiration Date
NTRM	12061004	CC359348	500.7 PPM N	ITRIC OXIDE/NITE	ROGEN	+/- 0.5%	Feb 16, 2018
PRM	12312	680179	10.01 PPM N	ITROGEN DIOXID	E/NITROGEN	+/- 2.0%	Oct 15, 2014
GMIS	124206889137	CC323703	4.449 PPM N	ITROGEN DIOXID	E/NITROGEN	+/- 2.0%	Aug 14, 2017
The SRM,	PRM or RGM noted abov	e is only in reference	to the GMIS used in	the assay and not pa	t of the analysis.		
			A NT A T X771	OAT FOID			
_				ICAL EQUIP			
Instrume	ent/Make/Model		Analytical F	Principle	Last	t Multipoint Calil	bration
Nicolet 67	00 AHR0801933 NO		FTIR		Feb	04, 2015	
Nicolet 67	00 AHR0801933 NO2		FTIR		Feb	04, 2015	

Airgas.

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code: E02NI99E15A0016 CC366152 ASG - Riverton - NJ B52014 SO2,BALN

016 Reference Number: 82-124449619-3 Cylinder Volume: 144.4 CF - NJ Cylinder Pressure: 2015 PSIG Valve Outlet: 660 Certification Date: Aug 25, 2014 Expiration Date: Aug 25, 2022

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals. ANALYTICAL RESULTS

			ANALYT	ICAL RESU	LIS		
Component Requested Concentration				Total R Uncert		Assay Dates	
SULFUR D	DIOXIDE	250.0 PPM	252.3 PPM	G1	+/- 1.0%	NIST Traceable	08/18/2014, 08/25/2014
NITROGE	N	Balance					
			CALIBRATI	ON STANI	DARDS		
Туре	Lot ID	Cylinder No	Concentration			Uncertainty	Expiration Date
NTRM	11060854	CC343551	241.0 PPM SULF	UR DIOXIDE/NI	FROGEN	+/- 0.9%	May 13, 2017
			ANALYTIC	ALEOUIP	MENT		
Instrument/Make/Model			Analytical Principle			_ast Multipoint Cal	ibration
Nicolet 6700 AHR0801933 SO2			FTIR			Aug 21, 2014	

Airgas, Inc.

600 Union Landing Road Cinnaminson, NJ 08077 856-829-7878 Fax: 856-829-6576 www.airgas.com

E02NI99E15A0259 CC409079 ASG - Riverton - NJ B52014 SO2,BALN Reference Number:82-124431126-1Cylinder Volume:144.4 CFCylinder Pressure:2015 PSIGValve Outlet:660Certification Date:May 07, 2014

Expiration Date: May 07, 2022

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

	Do	o Not Use This Cylinder below 100	psig, i.e. 0.7 megar	pascals.	
		ANALYTICAL	RESULTS		-
nent	Requested Concentrati	Actual on Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
DIOXIDE	450.0 PPM	451.2 PPM	G1	+/- 0.8% NIST Traceable	04/29/2014, 05/07/2014
EN	Balance				
		CALIBRATION S'	TANDARD	S	
1	O Harden Na			-	
Lot ID	Cylinder No	Concentration		Uncertainty	Expiration Date
12062932	CC407456	483.1 PPM SULFUR DIOXI	DE/NITROGEN	+/~ 0.6%	Jul 18, 2018
12062925	CC407415	483.1 PPM SULFUR DIOXI	DE/NITROGEN	+/- 0.6%	Jul 18, 2018
		ANALYTICAL EQ	UIPMENT	1	
ent/Make/Mod	el	Analytical Principle	Last Mult	ipoint Calibration	
00 APW110039	1 SO2	FTIR	May 01, 20	14	
	DIOXIDE EN Lot ID 12062932 12062925 ent/Make/Mode	nent Requested Concentration DIOXIDE 450.0 PPM EN Balance Lot ID Cylinder No 12062932 CC407456	ANALYTICAL I nent Requested Concentration Actual Concentration DIOXIDE 450.0 PPM 451.2 PPM EN Balance CALIBRATION ST Lot ID Cylinder No Concentration 12062932 CC407456 483.1 PPM SULFUR DIOXID 12062925 CC407415 483.1 PPM SULFUR DIOXID ANALYTICAL EQ Analytical Principle	ANALYTICAL RESULTS Nent Requested Concentration Actual Concentration Protocol Method DIOXIDE 450.0 PPM 451.2 PPM G1 EN Balance CALIBRATION STANDARDS Lot ID Cylinder No Concentration 12062932 CC407456 483.1 PPM SULFUR DIOXIDE/NITROGEN 12062925 CC407415 483.1 PPM SULFUR DIOXIDE/NITROGEN ANALYTICAL EQUIPMENT Analytical Principle Last Mult	Requested Concentration Actual Concentration Protocol Method Total Relative Uncertainty DIOXIDE 450.0 PPM 451.2 PPM G1 +/- 0.8% NIST Traceable EN Balance V V Lot ID Cylinder No 12062932 CC407456 483.1 PPM SULFUR DIOXIDE/NITROGEN +/- 0.6% 12062925 CC407415 483.1 PPM SULFUR DIOXIDE/NITROGEN +/- 0.6% HALLYTICAL EQUIPMENT ent/Make/Model Analytical Principle Last Multipoint Calibration

Triad Data Available Upon Request

Notes:

Approved for Release

Air	ya	S
-----	----	---

Airgas, Inc. 600 Union Landing Road

600 Union Landing Road Cinnaminson, NJ 08077 (856) 829-7878 Fax: (856) 829-6576 www.airgas.com

Part Number:					
Cylinder Number:					
Laboratory:					
PGVP Number:					
Gas Code:					

E02AI99E15A0440 CC308182 ASG - Riverton - NJ B52013 CH4,BALA

Reference Number:82-124396834-1Cylinder Volume:146.2 CFCylinder Pressure:2015 PSIGValve Outlet:590Certification Date:Oct 01, 2013

Expiration Date: Oct 01, 2021

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use	This Cylinder	below 100 psig, i	.e. 0.7 megapascal	s.
				Entra Providence

ANALYTICAL RESULTS							
Compo	nent	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates	
METHAN	IE	15.00 PPM	15.26 PPM	G1	+/- 1.0% NIST Tra	ceable 10/01/2013	
AIR		Balance					
CALIBRATION STANDARDS							
Туре	Lot ID	Cylinder No	Concentration		Uncertainty	Expiration Date	
NTRM	07060510	CC207907	10.00 PPM METHANE/AIR	nykańszadowyczy i i karakterie i karakterie i karakterie i karakterie i karakterie i karakterie i karakterie i	+/- 0.8%	Apr 27, 2017	
			ANALYTICAL EQU	JIPMENT	,		
Instrument/Make/Model			Analytical Principle	Last Multipoint Calibration		on	
Nicolet 6700 AHR0801933 CH4			FTIR	Sep 24,	2013		

Triad Data Available Upon Request Notes:

Approved for Release

Airgas

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code: E02A!99E15A0570 CC452183 ASG - Riverton - NJ B52014 CH4,BALA

Reference Number: Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date: Airgas, Inc.

82-124443565-1

146.2 CF

590

2015 PSIG

Jul 16, 2014

600 Union Landing Road Cinnaminson, NJ 08077 856-829-7878 Fax: 856-829-6576 www.airgas.com

Expiration Date: Jul 16, 2022

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

			Jse This Cylinder below 100 psic ANALYTICAL RE			
Componen	t	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	As s ay Dates
METHANE AIR	1	25.00 PPM Balance	25.39 PPM	G1	+/- 0.9% NIST Trace	
		C	ALIBRATION STA	NDARD	5	· · · · · · · · · · · · · · · · · · ·
Туре	Lot ID	Cylinder No	Concentration		Uncertainty	Expiration Date
NTRMplus	100612	CC323612	53.48 PPM METHANE/AIR		+/- 0.7%	Jul 13, 2016
		A	NALYTICAL EQU	IPMENT		
Instrument/Make/Model			Analytical Principle	Last M	ultipoint Calibratio	n
Nicolet 6700	AHR0801933 C	CH4 F	FTIR	Jul 08, 2	2014	

Triad Data Available Upon Request

Notes:

Approved for Release

2699

Page 1 of 82-124443565-1

Airgas Specialty Gases

600 Union Landing Road www.airgas.com

			n or mail guoteents			
Part Number:	E02AI99E15A0569	Reference Number:	82-124305015-1			
Cylinder Number:	XC031000B	Cylinder Volume:	146 Cu.Ft.			
Laboratory:	ASG - Riverton - NJ	Cylinder Pressure:	2015 PSIG			
PGVP Number:	B52012	Valve Outlet:	590			
Gas Code:	APPVD	Analysis Date;	Feb 25, 2012			
Expiration Date: Feb 25, 2015						

Certification performed in accordance with "EPA Traceability Protocol (Sept. 1997)" using the assay procedures listed. Analytical Methodology does not require correction for analytical interferences. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 150 psig.i.e. 1 Mega Pascal

Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty
45.00 PPM Balance	45.22 PPM	G1	+/- 1% NIST Traceable
		RDS	Expiration Date
		ENT	Jul 13, 2016
	-		Last Multipoint Calibration
-	Concentration 45.00 PPM Balance CALIBRA Ocncentr 3618 53.48PPM ANALYT	Concentration Concentration 45.00 PPM 45.22 PPM Balance Balance CALIBRATION STANDA oder No Concentration 3618 53.48PPM METHANE/NITROGEN	Concentration Concentration Method 45.00 PPM 45.22 PPM G1 Balance CALIBRATION STANDARDS Inder No Concentration 3618 53.48PPM METHANE/NITROGEN ANALYTICAL EQUIPMENT

Notes: Approved for Release

Airgas.

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code: E02AI99E15A1704 CC500481 ASG - Durham - NC B22014 NO2,BALA

Reference Number: Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date:

122-124455358-1 146.2 CF 2015 PSIG 660 Sep 30, 2014

Expiration Date: Sep 30, 2017

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

		Do	Not Use This Cylinder below		apascals.		
Compo	nent	Requested Concentration	ANALYTICA Actual Concentration	L RESULTS Protocol Method		Relative rtainty	Assay Dates
NITROG AIR	EN DIOXIDE	50.00 PPM Balance	48.70 PPM	G1	+/- 2.2	%	09/23/2014, 09/30/2014
			CALIBRATION	I STANDARI)S		
Туре	Lot ID	Cylinder No	Concentration			Uncertainty	Expiration Date
GMIS PRM	0207201407 12325	CC500947 APEX1099251	59.72 PPM NITROG 50.00 PPM NITROG			+/- 2.0% +/- 2.0%	Feb 07, 2017 Jul 26, 2014
The SRM,	PRM or RGM noted	above is only in reference t	o the GMIS used in the assa	y and not part of the ar	nalysis.		
			ANALYTICAL	EQUIPMEN	Т		
Instrum	ent/Make/Mode	el	Analytical Prine			t Multipoint Cal	ibration
Ametek 9	0000 H2S ZA-9000)-10312-1	Ultraviolet		Sep	25, 2014	

NOx CONVERTER EFFICIENCY

Number 1

Client: LWEC Location: L'Anse, MI Source: ESP Out

Calibration 1

Project Number: Operator: FJS Date: 24 Sep 2015

Start Time: 08:03

NO2 Standard: 48.7 ppm, Cylinder CC500481, Expires 9-30-2017

Analyz	NO _x zer: Thermo	o 42i
Time	ppm	Status
08:04:05	44.4	Pass
08:04:20	44.5	Pass
08:04:35	44.6	Pass
08:04:50	44.6	Pass
Avg	44.5	Pass

Airgas.

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code: E03NI62E15A0224 CC287635 ASG - Riverton - NJ B52015 C02,02,BALN Reference Number:82-1Cylinder Volume:157Cylinder Pressure:201Valve Outlet:590Certification Date:Jun

82-124498006-1 157.2 CF 2015 PSIG 590 Jun 17, 2015

Expiration Date: Jun 17, 2023

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

			ANALYTICA	L RESULTS		
Component		quested ncentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON DIO	XIDE 17.	00 %	16.50 %	G1	+/- 0.7% NIST Traceable	06/17/2015
OXYGEN	21.	00 %	21.29 %	G1	+/- 0.9% NIST Traceable	06/17/2015
NITROGEN	Bal	ance				
· ·			CALIBRATION	STANDARDS		
Туре	Lot ID	Cylinder No	Concentration		Uncertainty	Expiration Date
NTRM	13060739	CC414621	16.939 % CARBON I	DIOXIDE/NITROGEN	+/- 0.6%	May 08, 2019
NTRMplus	09061404	CC267783	22.53 % OXYGEN/N	ITROGEN	+/~ 0.4%	Mar 08, 2019
			ANALYTICAL	EQUIPMENT		
Instrument/M	/lake/Model		Analytical Princ	iple	Last Multipoint Calib	oration
Horiba VIA 510	-CO2-LDH9LRN	IS	NDIR		May 19, 2015	
Siemens Oxym	at 6E-O2-N1-M1	1-0603	Paramagnetic		Jun 04, 2015	

Airgas

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code: E03NI79E15A00E4 CC158735 ASG - Riverton - NJ B52015 CO2,O2,BALN

Reference Number:82-1Cylinder Volume:150Cylinder Pressure:2013Valve Outlet:590Certification Date:Jul 2

82-124503751-1 150.5 CF 2015 PSIG 590 Jul 22, 2015

Expiration Date: Jul 22, 2023

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This	Cylinder below	100 psig. i.e	. 0.7 megapascals.

		anna feir ann ann a fairte ann ann ann ann ann ann ann ann ann an	ANALYTICA	L RESULTS		
Compon	ent	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON	DIOXIDE	9.000 %	8.726 %	G1	+/- 0.7% NIST Traceable	07/22/2015
OXYGEN		12.00 %	11.83 %	G1	+/- 0.5% NIST Traceable	07/22/2015
NITROGE	N	Balance				
			CALIBRATION	I STANDARDS	5	
Туре	Lot ID	Cylinder No	Concentration		Uncertainty	Expiration Date
NTRM	13060626	CC413722	13.359 % CARBON [DIOXIDE/NITROGEN	+/~ 0.6%	May 09, 2019
NTRM	09060237	CC263123	9.961 % OXYGEN/NI	TROGEN	+/- 0.3%	Nov 08, 2018
			ANALYTICAL	EQUIPMENT		
Instrume	nt/Make/Mod	el	Analytical Prin	ciple	Last Multipoint Calib	oration
Horiba VIA	510-CO2-LDH	9LRNS	NDIR		Jul 17, 2015	
Siemens O	xymat 6E-O2-N	I1-M1-0603	Paramagnetic		Jul 02, 2015	-

Triad Data Available Upon Request

Signature on file

RUN DATA

Number 5

Client: LWEC Location: L'Anse, MI Source: ESP Out	Са	libration	1	Project Number: Operator: FJS Date: 24 Sep 2015
	Time	CO ppm	THC ppm	
	Linearity Ch	eck 248	.1 ppm CO	
	19:47:31	240	0.0	
	19:47:46	240	0.0	
	19:48:01	242	0.0	
	19:48:16	246	0.0	
	19:48:31	246	0.0	
	19:48:46	246	0.8	
Linea	arity check w 5.071	ppm CH	4 CC 23075	Exp 9/24/22
	19:53:16	. 9	5.2	•
	19:53:31	47	5.3	
	19:53:46	37	5.2	
	19:54:01	6	5.2	
	19:54:16	1	5.2	
	19:54:31	0	5.2	
	Avgs	130	2.7	

 Date:
 12/4/14-12/5/14

 Analyzer
 Type:

 Serial No:
 4900

 Serial No:
 49000-652921

 Calibration Span:
 21.09 %

 Pollutant:
 21.09% O₂ - CC418692

	ANALYZER RESPONSE			
INTERFERENT GAS	INTERFERENT GAS RESPONSE (%)	INTERFERENT GAS RESPONSE, WITH BACKGROUND POLLUTANT (%)	% OF CALIBRATION SPAN ^(a)	
CO ₂ (30.17% CC199689)	0.00	-0.01	0.00	
NO (445 ppm CC346681)	0.00	0.02	0.11	
NO2 (23.78 ppm CC500749)	NA	NA	NA	
N ₂ O (90.4 ppm CC352661)	0.00	0.05	0.24	
CO (461.5 ppm XC006064B)	0.00	0.02	0.00	
SO ₂ (451.2 ppm CC409079)	0.00	0.05	0.23	
CH4 (453.1 ppm SG901795)	NA	NA	NA	
H ₂ (552 ppm ALM048043)	0.00	. 0.09	0.44	
HCl (45.1 ppm CC17830)	0.00	0.03	0.14	
NH ₃ (9.69 ppm CC58181)	0.00	0.01	0.03	
	TOTAL INTERFERENCE RESPO	NSE	1.20	
	METHOD SPECIFICATION		< 2.5%	

(a) The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences.

<u>Chrod Waller</u> Chad Walker

Date: 12/4/14-12/5/14 Analyzer Type: Servomex - CO₂ Model No: 4900 Serial No: 49000-652921 Calibration Span: 16.65% Pollutant: 16.65% CO₂ - CC418692

	ANALYZEF		
INTERFERENT GAS	INTERFERENT GAS RESPONSE (%)	INTERFERENT GAS RESPONSE, WITH BACKGROUND POLLUTANT (%)	% OF CALIBRATION SPAN ^(a)
CO ₂ (30.17% CC199689)	NA ·	NA	NA
NO (445 ppm CC346681)	0.00	0.02	0.10
NO ₂ (23.78 ppm CC500749)	0.00	0.00	0.02
N ₂ O (90.4 ppm CC352661)	0.00	0.01	0.04
CO (461.5 ppm XC006064B)	0.00	0.01	0.00
SO ₂ (451.2 ppm CC409079)	0.00	0.11	0.64
CH₄ (453.1 ppm SG901795)	0.00	0.07	0.44
H ₂ (552 ppm ALM048043)	0.00	0.04	0.22
HCl (45.1 ppm CC17830)	0.10	0.06	0.60
NH ₃ (9.69 ppm CC58181)	0.00	0.02	0.14
	TOTAL INTERFERENCE RESPO	NSE	2.19
	METHOD SPECIFICATION		< 2.5%

(a) The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences.

<u>AlcoDalle</u> Chad Walker

.

•

Date: 12/4/14-12/5/14 Analyzer Type: Thermo Scientific - NOx Model No: 42i Serial No: 1010241985 Calibration Span: 89.96 ppm Pollutant: 89.96 ppm NOx- CC280558

	ANALYZER RESPONSE			
INTERFERENT GAS	INTERFERENT GAS RESPONSE (ppm)	INTERFERENT GAS RESPONSE, WITH BACKGROUND POLLUTANT (ppm)	% OF CALIBRATION SPAN ^(a)	
CO ₂ (30.17% CC199689)	0.20	0.13	0.22	
NO (445 ppm CC346681)	NA	NA	NA	
NO ₂ (23.78 ppm CC500749)	NA	NA	NA	
N ₂ O (90.4 ppm CC352661)	0.30	0.28	0.33	
CO (461.5 ppm XC006064B)	0.20	0.09	0.22	
SO ₂ (451.2 ppm CC409079)	0.40	0.49	0.54	
CH4 (453.1 ppm SG901795)	0.00	0.25	0.27	
H ₂ (552 ppm ALM048043)	0.10	0.05	0.11	
HCl (45.1 ppm CC17830)	0.10	0.26	0.28	
NH ₃ (9.69 ppm CC58181)	0.20	0.16	0.22	
	TOTAL INTERFERENCE RESPO	NSE	2.21	
	METHOD SPECIFICATION		< 2,5%	

(a) The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences.

<u>Chio Waller</u>

Date: 12/4/14-12/5/14 Analyzer Type: AMETEK - SO2 Model No: 9000 Serial No: ZZ-9000-S743 Calibration Span: 90.00 ppm Pollutant: 90.00 ppm SO2- CC274334

	ANALYZER		
INTERFERENT GAS	INTERFERENT GAS RESPONSE (ppm)	INTERFERENT GAS RESPONSE, WITH BACKGROUND POLLUTANT (ppm)	% OF CALIBRATION SPAN ^(*)
CO ₂ (30,17% CC199689)	0.00	0.06	0,06
NO (445 ppm CC346681)	0.00	0.06	0.07
NO ₂ (23.78 ppm CC500749)	0.00	0.87	0.96
N ₂ O (90.4 ppm CC352661)	0.00	0.11	0.12
CO (461.5 ppm XC006064B)	0.00	0.06	0.06
SO ₂ (451.2 ppm CC409079)	NA	NA	NA
CH₄ (453.1 ppm SG901795)	0.00	0.11	0.12
H ₂ (552 ppm ALM048043)	0.00	0.12	0.14
HCl (45.1 ppm CC17830)	0.00	0.06	0.07
NH ₃ (9.69 ppm CC58181)	0.00	0.14	0.16
	TOTAL INTERFERENCE RESPO	NSE	1.76
	METHOD SPECIFICATION		< 2.5%

(a) The larger of the absolute values obtained for the interferent tested with and without the pollutant present was used in summing the interferences.

<u>Chad Walker</u>

RUN

Number 1

Location	Client: LWEC Location: L'Anse, MI Source: ESP Out		Calibra	ation: 1	Project N Op	umber: perator: Date:	FJS 24 Sep 2015
	02	CO2	NOx	SO2	THC		
Time	%	%	ppm	ppm	ppm		
Response Time =	65 sec						
Point 2							
08:28	9.4	10.7	105	126	1.2		
08:29	9.2	10.8	104	136	4.2		
08:30	9.1	11.0	104	123	1.2		
08:31	9.3	10.7	104	130	1.1		
08:32	9.2	10.8	105	128	1.3		
Average	9.24	10.8	3 104.4	i 128.6	1.8		
Point 1							
08:38	9.4	10.7	107	121	1.0		
08:39	9.2	10.7	104	128	1.7		
08:40	9.1	11.0	104	120	1.2		
08:41	9.0	10.9	105	127	1.0		
08:42	9.1	11.0	108	126	1.0		
Average	9.16	10.9	9 105.6	5 124.4	1.2		
Point 3							
08:47	9.1	10.9	105	131	1.4		
08:48	9.0	11.2	104	126	0.9		
08:49	9.2	10.7	105	132	0.9		
08:50	9.0	11.0	104	128	0.8		
08:51	9.4	10.6	104	135	1.2		
Average	9.14	10.9) 104.4	l 130.4	1.0		
					*		
Overall Average	9.18	10.8	3 104.8	3 127.8	1.3		
5% minimum	8.7						
5% maximum	9.6	11.4	110.0) 134.2	1.41		
10% minimum	8.3	9.8	3 94.3	3 115.0			
10% maximum	10.1	11.9	9 115.3	3 140.6	1.47		

Long Cal and Temperature Cal Datasheet for Standard Dry Gas Meter Console

Calibrator	PM	-	Met	er Box Number_	26		Ambient Temp		Simulator	
Date	Date 13-Jul-15		Wet Test	Meter Number_	P-2952	Temp Re	Temp Reference Source		(Accuracy +/- 1°F)	
			Dry Gas	Meter Number	16300942					
Setting	Gas	Volume		Tempera				Baro Press, in Hg (Pb)	29.69	
Orifice Manometer	Wet Test Meter	Dry gas Meter	Wet Test Meter	`)ry Gas Mete	er [°]		Calibration	Results	
in H₂0 (∆H)	ft ³ (Vw)	ft ³ (Vd)	°F (Tw)	Outlet, °F (Td _o)	Inlet, ^o F (Td _i)	Average, °F (Td)	Time, min (O)	Y	ΔH	
0.5	5.0	429.136 434.141 5.005	73.0	74.00 75.00 74.50	74.00 75.00 74.50	74.5	13.3	1.0006	2.007	
1.0	5.0	434.141 439.147 5.006	73.0	75.00 77.00 76.00	75.00 77.00 76.00	76.0	9.6	1.0019	2.086	
1.5	10.0	439.147 449.183 10.036	73.0	77.00 80.00 78.50	77.00 80.00 78.50	78.5	16.4	1.0030	2.272	
2.0	10.0	449.183 459.241 10.058	73.0	80.00 81.00 80.50	80.00 81.00 80.50	80.5	14.1	1.0033	2.2314	
3.0	10. 0	459.241 469.336 10.095	73.0	81.00 83.00 82.00	81.00 83.00 82.00	82.0	11.6	0.9999	2,259	
		rough the wet test n ough the dry gas m		0 - Time of calibra Pb - Barometric P		Y.	Average Vw *Pb	$\frac{1.0017}{(td + 460)}$	2.1714	

Tdi - Temp of the inlet gas of the dry gas meter

Tdo - Temp of the outlet gas of the dry gas meter

Td - Average temp of the gas in the dry gas meter

orifice

Y - Ratio of accuracy of wet test

meter to dry gas meter

 $Vd * [Pb + \frac{13.6}{13.6}] * (tw + 460)$ $\Delta H = \left[\frac{0.0317 * \Delta H}{Pb * (td + 460)}\right] * \left[\frac{(tw + 460) * O}{Vw}\right]^2$

Reference Temperature Select Temperature			Temperature	_		nocouple Input ¹		Average Temperature	Temp Difference ²
0.0-	● °F			Chann	Reading	(%)			
O°C	• •	1	2	3	4	5	6		(/
32	2	32	32	32	32	32		32.0	0.0%
21	2	212	212	212	212	212		212.0	0.0%
93	2	932	932	932	932	932		932.0	0.0%
183	32	1830	1830	1830	1830	1830	· · · · · · · · · · · · · · · · · · ·	1830.0	0.1%
		ith +/- 5°F or 3°C ence less than 1.5	_% Temp D	$\operatorname{Diff} = \left[\frac{(\operatorname{Reference})}{(\operatorname{Reference})}\right]$		60)–(Test Temp Femp(°F)+460	p(°F)+460)		

Long Caper 26E 298 15 Opactiy_004010

Y Factor Calibration Check Calculation

METHOD 26A (PART/HCI)TEST TRAIN

METER BOX NO. 26

RUN NO. 3 9/24/15

MWd = Dry molecular weight source gas, lb/lb-mole.	
0.32 = Molecular weight of oxygen, divided by 100.	
0.44 = Molecular weight of carbon dioxide, divided by 100.	
0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100.	
% CO ₂ = Percent carbon dioxide by volume, dry basis.	11.5
$% O_2 =$ Percent oxygen by volume, dry basis.	8.7

 $MWd = (0.32 * O_2) + (0.44 * CO_2) + (0.28 * (100 - (CO_2 + O_2)))$

MWd = (0.32 * 8.7) + (0.44 * 11.5) + (0.28 * (100 - (11.5 + 8.7)))

MWd = (2.78) + (5.06) + (22.34)

MWd = 30.19

$Tma = Source Temperature, absolute(^{\circ}R)$	
Tm = Average dry gas meter temperature, deg F.	79.9

Tma = Ts + 460

Tma = 79.92 + 460

Tma = 539.92

Ps = Absolute meter pressure, inches Hg.	
13.60 = Specific gravity of mercury.	
delta H = Avg pressure drop across the orifice meter during sampling, in H2O	1.745
Pb = Barometric Pressure, in Hg.	29.74

Pm = Pb + (delta H / 13.6)

Pm = 29.74 + (1.745 / 13.6)

Pm = 29.87

Yqa = dry gas meter calibration check value, dimensionless.	
0.03 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2.	
29.00 = dry molecular weight of air, lb/lb-mole.	
Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.	47.060
Y = Dry gas meter calibration factor (based on full calibration)	1.0017
Delta H@ = Dry Gas meter orifice calibration coefficient, in. H2O.	2.1714
g SQRT Delta H = Avg SQRT press. drop across the orifice meter during sampling , in. H_2O	1.3130
O = Total sampling time, minutes.	72

 $Yqa = (O \ / \ Vm \) * SQRT \ (\ 0.0319 * Tma * 29 \) \ / \ (\ Delta \ H@ * Pm * MWd \) \quad * avg \ SQRT \ Delta \ H$

Yqa = (72.00 / 47.06) * SQRT (0.0319 * 539.92 * 29) / (2.17 * 29.87 * 30.19) * 1.31

Yqa = 1.530 * SQRT 499.477 / 1,957.985 * 1.31

Yqa = 1.015

Diff = ((Y - Yqa) / Y) * 100

Diff = ((1.0017 - 1.015) / 1.0017) * 100

Diff = Absolute difference between Yqa and Y

Long Cal and Temperature Cal Datasheet for Standard Dry Gas Meter Console

Ca	librator	PM

Meter Box Number

Ambient Temp 73 Thermocouple Simulator

Date 15-Sep-15

Wet Test Meter Number P-2952

23

Temp Reference Source

(Accuracy +/- 1°F)

Baro Press, in

Dry Gas Meter Number 15042595

Orifice	NR7-4 7 . 4			1	ratures			Hg (Pb)	30.11
Manometer	Wet Test Meter	Dry gas Meter	Dry gas Meter Dry Gas Meter		Dry gas Meteri			Calibration	Results
in H₂0 (∆H)	ft ³ (Vw)	ft ³ (Vd)	°F (Tw)	Outlet, °F (Td _o)	Inlet, ^o F (Td _i)	Average, °F (Td)	Time, min (O)	Y	ΔH
0.5	5.3	53.925 59.229 5.304	73.0	78.00 79.00 78.50	78.00 79.00 78.50	78.5	14.9	1,0083	2.1949
1.0	5.0	59.229 64.257 5.028	73.0	79.00 79.00 79.00	79.00 79.00 79.00	79.0	10.2	1.0032	2.3093
1.5	10.0	64.257 74.308 10.051	73.0	79.00 81.00 80.00	79.00 81.00 80.00	80.0	17.1	1.0043	2.4294
2.0	10.0	74.308 84.376 10.068	73.0	81.00 82.00 81.50	81.00 82.00 81.50	81.5	14.9	1.0042	2.4525
3.0	10.0	84.376 94.430 10.054	73.0	82.00 83.00 82.50	82.00 83.00 82.50	82.5	12.1	1.0050	2.4216
		ough the wet test m		0 - Time of calibr	Antonia 2000, provinský začele a kon		Average	1.0050	2.3615

Tw - Temp of gas in the wet test meter

Tdi - Temp of the inlet gas of the dry gas meter

Tdo - Temp of the outlet gas of the dry gas meter

Td - Average temp of the gas in the dry gas meter

∆H - Pressure differential across

orifice

Y - Ratio of accuracy of wet test

meter to dry gas meter

v	Vw *Pb * (td + 460)						
	$Vd * \left[Pb + \frac{(\Delta H)}{13.6} \right] * (tw + 460)$						
лы	$= \left[\frac{0.0317 * \Delta H}{Pb * (td + 460)}\right] * \left[\frac{(tw + 460) * O}{Vw}\right]^2$						
411	$\left[\frac{Pb * (td + 460)}{Vw} \right]^* \left[\frac{Vw}{Vw} \right]$						

Reference Temperature Select Temperature			Temperature	Reading from I	ndividual Thern	nocouple Input ¹		Average Temperature	Temp Difference ²
				Chann	el Number		Reading		
O°C	● °F	1	2	3	4	5	6		(%)
32	2	32	32	32	32	32		32.0	0.0%
21	2	213	213	213	213	213		213.0	-0.1%
93	2	933	933	933	933	933		933.0	-0.1%
18:	32	1830	1830	1830	1830	1830		1830.0	0.1%
	-	ith +/- 5°F or 3°C ence less than 1.5	_% Temp D	0iff=[(Referenc		60)-(Test Temp Femp(°F)+460	p(°F)+460)		

Y Factor Calibration Check Calculation

METHOD 201A/202 (PM10) TEST TRAIN

METER BOX NO. 23

RUN NO. 3 9/24/15

MWd = Dry molecular weight source gas, lb/lb-mole.	
0.32 = Molecular weight of oxygen, divided by 100.	
0.44 = Molecular weight of carbon dioxide, divided by 100.	
0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100.	
% CO_2 = Percent carbon dioxide by volume, dry basis.	11.5
$% O_2$ = Percent oxygen by volume, dry basis.	8.7

 $MWd = (0.32 * O_2) + (0.44 * CO_2) + (0.28 * (100 - (CO_2 + O_2)))$

MWd = (0.32 * 8.7) + (0.44 * 11.5) + (0.28 * (100 - (11.5 + 8.7)))

MWd = (2.78) + (5.06) + (22.34)

MWd = 30.19

Tma = Source Temperature, absolute(°R)	
Tm = Average dry gas meter temperature , deg F.	76.0

Tma = Ts + 460

Tma = 76.00 + 460

Tma = 536.00

Ps = Absolute meter pressure, inches Hg.	
13.60 = Specific gravity of mercury.	
delta H = Avg pressure drop across the orifice meter during sampling, in H2O	0.490
Pb = Barometric Pressure, in Hg.	29.74

Pm = Pb + (delta H / 13.6)

Pm = 29.74 + (0.49 / 13.6)

Pm = 29.78

Yqa = dry gas meter calibration check value, dimensionless.	
0.03 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2.	
29.00 = dry molecular weight of air, lb/lb-mole.	
Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.	33.565
Y = Dry gas meter calibration factor (based on full calibration)	1.0050
Delta H@ = Dry Gas meter orifice calibration coefficient, in. H2O.	2.3615
SQRT Delta H = Avg SQRT press. drop across the orifice meter during sampling , in. H_2O	0.7000
O = Total sampling time, minutes.	96

Yqa = (O / Vm) * SQRT (0.0319 * Tma * 29) / (Delta H@ * Pm * MWd) * avg SQRT Delta H

Yqa = (96.00 / 33.57) * SQRT (0.0319 * 536.00 * 29) / (2.36 * 29.78 * 30.19) * 0.70

Yqa = 2.860 * SQRT 495.854 / 2,122.985 * 0.70

Yqa = 0.968

Diff = Absolute difference between Yqa and Y

. . .

Diff = ((Y - Yqa) / Y) * 100

Diff = ((1.005 - 0.968) / 1.005) * 100

Long Cal and Temperature Cal Datasheet for Standard Dry Gas Meter Console

Calibrator	ΡM
------------	----

Meter Box Number 31

Ambient Temp 72 Thermocouple Simulator

Date 16-Jan-15

Wet Test Meter Number P-2952

Temp Reference Source

(Accuracy +/- 1°F)

Dry Gas Meter Number 17485128

Setting	Gas	Volume		Tempe	ratures			Baro Press, in Hg (Pb)	2 9 .74
Orifice Manometer	Wet Test Meter	Dry gas Meter	Wet Test Meter		Dry Gas Mete	r		Calibration	Results
in H₂0 (∆H)	ft ³ (Vw)	ft ³ (Vd)	°F (Tw)	Outlet, °F (Td _o)	Inlet, [°] F (Td _i)	Average, °F (Td)	Time, min (O)	Y	ΔH
0.5	5.0	224.247 229.318 5.071	70.0	75.00 75.00 75.00	76.00 76.00 76.00	75.5	13.1	0.9950	1.9190
1.0	6.0	229.318 235.392 6.074	70.0	77.00 77.00 77.00	78.00 78.00 78.00	77.5	11.3	0.9993	1.9758
1.5	10.1	235.392 245.678 10.286	70.0	78.00 78.00 78.00	79.00 79.00 79.00	78.5	16.0	0.9940	2.0930
2 .0	10.4	245.678 256.403 10.725	70.0	80.00 80.00 80.00	81.00 81.00 81.00	80.5	14.3	0.9840	2.0946
3.0	10.0	256.403 266.722 10.319	70.0	81.00 81.00 81.00	83.00 83.00 83.00	82.0	11.2	0.9837	2.0789
							Average	0.9912	2.0323

Vd - Gas Volume passing through the dry gas meter

Tw - Temp of gas in the wet test meter

Tdi - Temp of the inlet gas of the dry gas meter

Tdo - Temp of the outlet gas of the dry gas meter

Td - Average temp of the gas in the dry gas meter

Pb - Barometric Pressure Δ H - Pressure differential across

orifice

Y - Ratio of accuracy of wet test

meter to dry gas meter

$v = -\frac{Vw * Pb * (td + 460)}{Vw * Pb * (td + 460)}$
$Y = \frac{(d + 166)}{Vd * \left[Pb + \frac{(\Delta H)}{13.6}\right] * (tw + 460)}$
$\Delta H = \left[\frac{0.0317 * \Delta H}{Pb * (td + 460)}\right] * \left[\frac{(tw + 460) * O}{Vw}\right]^2$
$\Delta \Pi = \left[\frac{Pb * (td + 460)}{Vw}\right]^{*} \left[\frac{Vw}{Vw}\right]$

	ence Temperature		Temperature	Average Temperature	Temp Difference ²				
	●°F			Chann	el Number			Reading	(%)
O°C	● °F	1	2	3	4	5	6	7 7	(,,,
32	2	31	31	31	31	31		31.0	0.2%
21:	2	212	212	212	212	212		212.0	0.0%
93	2	932	932	932	932	932		932.0	0.0%
183	32	1831	1831	1831	1831	1831		1831.0	0.0%
		/ith +/- 5°F or 3°C rence less than 1.5	_% Temp D	Diff=[(Reference)		60)–(Test Tem Гemp(°F)+460	p(°F)+460)	<u>un</u>	4 000000000000000000000000000000000000

Y Factor Calibration Check Calculation

METHOD 26A (HCI)TEST TRAIN

METER BOX NO. 31

RUN NO. 3 11/5/15

MWd = Dry molecular weight source gas, lb/lb-mole.	
0.32 = Molecular weight of oxygen, divided by 100.	
0.44 = Molecular weight of carbon dioxide, divided by 100.	
0.28 = Molecular weight of nitrogen or carbon monoxide, divided by 100.	
% CO ₂ = Percent carbon dioxide by volume, dry basis.	11.2
$% O_2 =$ Percent oxygen by volume, dry basis.	9.1

 $MWd = (0.32 * O_2) + (0.44 * CO_2) + (0.28 * (100 - (CO_2 + O_2)))$

MWd = (0.32 * 9.1) + (0.44 * 11.2) + (0.28 * (100 - (11.2 + 9.1)))

MWd = (2.91) + (4.93) + (22.32)

MWd = 30.16

Tma = Source Temperature, absolute(°R)	
Tm = Average dry gas meter temperature, deg F.	75.2

Tma = Ts + 460

Tma = 75.17 + 460

Tma = 535.17

Ps = Absolute meter pressure, inches Hg.	
13.60 = Specific gravity of mercury.	
delta H = Avg pressure drop across the orifice meter during sampling, in H2O	1.360
Pb = Barometric Pressure, in Hg.	29.09

Pm = Pb + (delta H / 13.6)

Pm = 29.09 + (1.36 / 13.6)

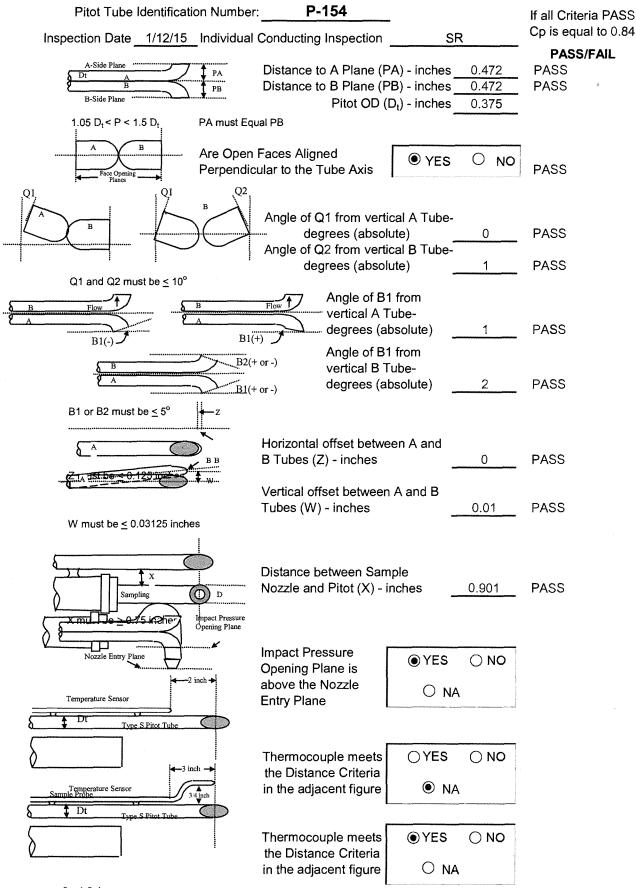
Pm = 29.19

Yqa = dry gas meter calibration check value, dimensionless.	
0.03 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2.	
29.00 = dry molecular weight of air, lb/lb-mole.	
Vm = Volume of gas sample measured by the dry gas meter at meter conditions, dcf.	36.988
Y = Dry gas meter calibration factor (based on full calibration)	0.9912
Delta H \widehat{w} = Dry Gas meter orifice calibration coefficient, in. H2O.	2.0323
g SQRT Delta H = Avg SQRT press. drop across the orifice meter during sampling , in. H_2O	1.1570
O = Total sampling time, minutes.	60

Yqa = (O / Vm) * SQRT (0.0319 * Tma * 29) / (Delta H@ * Pm * MWd) * avg SQRT Delta H

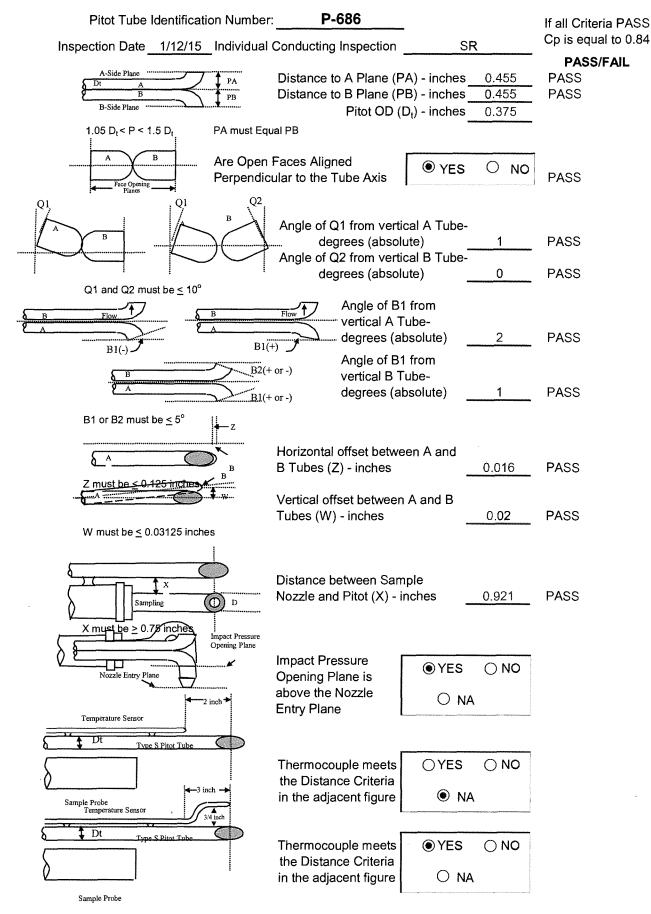
Yqa = (60.00 / 36.99) * SQRT (0.0319 * 535.17 * 29) / (2.03 * 29.19 * 30.16) * 1.16

Yqa = 1.622 * SQRT 495.083 / 1,788.939 * 1.16

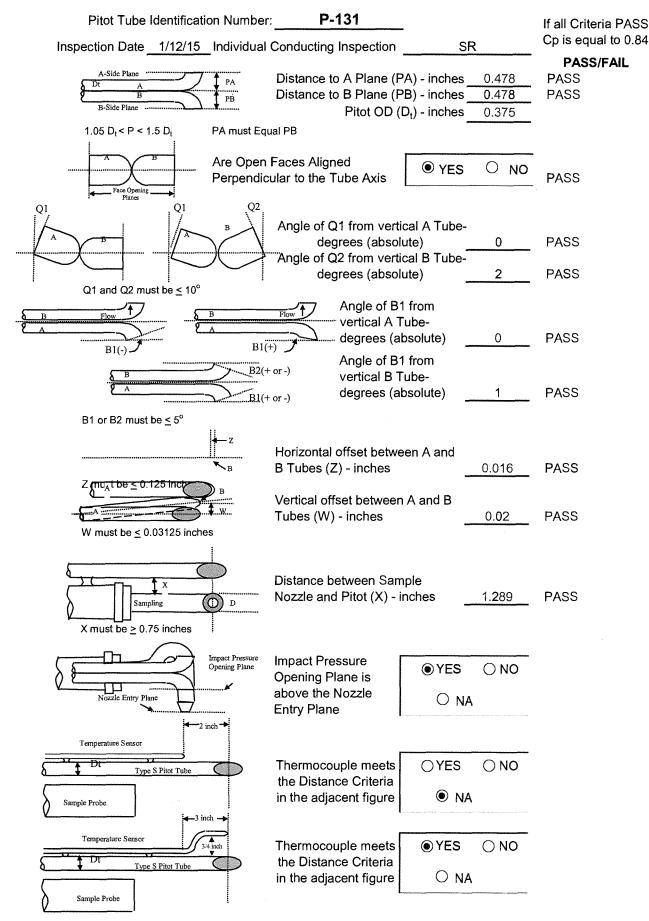

Yqa = 0.987

Diff = Absolute difference between Yqa and Y	

Diff = ((Y - Yqa) / Y) * 100


Diff = ((0.9912 - 0.987) / 0.9912) * 100

Type S Pitot Tube Inspection Data Form



Sample Probe

Type S Pitot Tube Inspection Data Form

Type S Pitot Tube Inspection Data Form

