The role of nitrate radicals (NO$_3$) in aerosol life cycle: Secondary organic aerosol formation and aging of atmospheric organic aerosols

Nga Lee “Sally” Ng,
Lu Xu, Christopher Boyd, Theodora Nah, Javier Sanchez
Georgia Institute of Technology

+ SOAS collaborators

EPA STAR Review
March 14, 2016
Nitrate radicals (NO$_3$) are a major nighttime oxidant

- Reacts with approximately 20% of all biogenic volatile organic carbons (Pye et al., 2010)

- Monoterpene+NO$_3$ reaction has high organic nitrate and SOA yields (e.g., Griffin et al., 1999; Fry et al., 2009)

- NO$_3$ is created by the reaction of anthropogenic NO$_2$ with O$_3$

 \[
 \text{NO}_2 + \text{O}_3 \rightarrow \text{NO}_3 + \text{O}_2
 \]

Nitrate radical oxidation of BVOCs represent a direct way for linking anthropogenic emissions and biogenic SOA formation
Synergetic Approach of Studying Organic Aerosols

Research Goal: determine the extent to which \(\text{NO}_3 \) radicals oxidation of BVOC affect organic aerosol loading and composition over its atmospheric lifetime.

Foundation for predicting aerosol formation

- Laboratory studies

Evolution of ambient aerosols (sources, processes, fates)

- Field measurements

Instrumentation

Advanced mass spectrometry
Field Measurements: SOAS and SCAPE

- Southern Oxidant and Aerosol Study (SOAS)
 - 2013 June - July
 - Centreville (rural Alabama)

- Southeastern Center of Air Pollution and Epidemiology study (SCAPE)
 - 2012 May - 2013 Feb
 - Greater Atlanta Area (urban and rural)

Xu et al., PNAS, 2015
Xu et al, ACP, 2015
OA Source Apportionment in the SE US

- OA sources vary spatially and seasonally
- Less-Oxidized Oxygenated Organic Aerosol (LO-OOA) is an important factor across all seasons and sites
- LO-OOA can account for 19-34% of total OA in SE US

Xu et al., PNAS, 2015
Diurnal trends are similar for all sites and all seasons (diurnal trends are normalized by the highest LO-OOA concentration of each dataset).

- A diurnal maximum at night and a minimum in the afternoon.

Xu et al., PNAS, 2015
LO-OOA Nighttime Increase
-- boundary layer height change or production?

Nighttime increase still exists after adjusting by the boundary layer height
→ nighttime aerosol production

Xu et al., PNAS, 2015
LO-OOA at SOAS

- LO-OOA peaks at night and has same diurnal as monoterpenes.
- LO-OOA is identified in all seasons → monoterpenes seasonal variation
- LO-OOA is strongly correlated with “nitrate groups (-ONO2) in organic nitrates”
- Estimated based on AMS-IC method

Contribution of monoterpenes + NO$_3^-$ chemistry to LO-OOA

Xu et al., PNAS, 2015
Estimation of Particulate Organic Nitrates

Three independent methods to estimate particulate organic nitrates

1. AMS-IC method: AMS total nitrate - PILS inorganic nitrate

2. AMS NO\(^+\)/NO\(_2\)\(^+\) ratio method: (Farmer et al., 2010)

\[
\begin{align*}
\frac{\text{NO}_2,\text{org}}{\text{NO}_2,\text{meas} \times \left(\frac{R_{\text{meas}}}{R_{\text{ON}}} - \frac{R_{\text{AN}}}{R_{\text{ON}}} \right)} & \quad \text{NO}^+$/NO\(_2\)^+ for ammonium nitrate \ (~ 2) \\
\frac{\text{NO}_\text{org}}{\text{NO}_\text{AN}} & \quad \text{NO}^+$/NO\(_2\)^+ for organic nitrate \ (depends on VOC, instrument, etc, \ ~ 5 - 10)
\end{align*}
\]

3. PMF method: include NO\(^+\) and NO\(_2\)^+ in PMF analysis

Xu et al., ACP, 2015
NO$_3_{\text{org}}$ and NO$_3_{\text{inorg}}$ in the SE US

- Concentration of “nitrate groups” (-ONO$_2$)
- **Organic origin**: similar amount year round, is ~ 0.2 ug/m3
- **Inorganic origin**: higher in winter months, $\sim 0.8 - 1.4$ ug/m3

Xu et al., ACP, 2015
Ubiquitous Presence of Particulate Organic Nitrate

Organic origin: 63-100% of total “nitrate groups” conc. in summer

Organic nitrates are 5-12% of total OA in summer
(assume MW = 200 -300 g/mole)

Xu et al., ACP, 2015
Fundamental Lab Studies: Monoterpenes + NO$_3$

1. Laboratory studies of SOA formation from monoterpenes + NO$_3$
 SOA (SOA yields, formation mechanisms, organic nitrates)
 - Effect of RH
 - Seed Acidity (highly acidic seed, Guo et al., 2015)
 - Peroxy radical fate: Mostly likely “Low-NOx” chemistry (RO$_2$+HO$_2$)
 - Loadings ~ 10 μg/m3
 - α-pinene, β-pinene, limonene

2. Changes in SOA and organic nitrates with continued processing
 - Hydrolysis
 - Dilution
 - Temperature Change
 - Dark/photochemical aging
Fate of Peroxy Radicals (RO$_2$)

Figure 1. General schematic of gas-phase peroxy radical chemistry in SOA formation.
Continued Processing of OA and ON

- Different Perturbations
- Changes with hydrolysis, atmospheric dilution, temperature change, photochemical (OH) and dark (NO$_3$) aging,
Georgia Tech Environmental Chamber Facility

Dual chamber facility, 300 lights, temperature range 4-40 °C.

Boyd et al., ACP, 2015
Georgia Tech Environmental Chamber Facility

Gas-phase measurements
- Q-CIMS
- HR-ToF-CIMS
- GC-FID
- O₃ monitor
- Chemiluminescence NO/NO₂/NOₓ analyzer
- CAPS NO₂ monitor

Particle-phase measurements
- HR-ToF-AMS
- FIGAERO-HR-ToF-CIMS
- SMPS
- CPC
- Offline filter characterization
SOA Formation from α-pinene + NO$_3$ and β-pinene + NO$_3$

- Temperature = 25 °C
- RH = 50 – 54%
- Highly acidic MgSO$_4$/H$_2$SO$_4$ seed
- RO$_2$+HO$_2$ and RO$_2$+NO$_3$ pathways

Nah et al., ES&T, 2016
• Humidity and RO$_2$ fate does not have a strong effect on aerosol mass yield
• Aerosol mass yields: 27.0-104.1% for mass loadings ranging from 5.1-216.1 µg/m3
• β-pinene+NO$_3$ can potentially contribute to a large fraction of ambient aerosol

Boyd et al., ACP, 2015
β-pinene+NO$_3$: Gas-phase Products

- Aerosol and gas phase species appear almost immediately
- Organic nitrate species identified by Q-CIMS
- Fast reaction with immediate condensation of products

Boyd et al., ACP, 2015
β-pinene+NO$_3$: Aerosol Composition and Dark Aging

- Large fraction of nitrate species at NO$^+$ (m/z 30) and NO$_2^+$ (m/z 46), 11%
- NO$^+$ / NO$_2^+$ ratio = 4.8 – 10.2
- Relatively large signal at m/z 67 (C$_5$H$_7^+$) and m/z 91 (C$_7$H$_7^+$)
- Increase in O/C with dark aging: 18% (dry), 6% (humid)
 Boyd et al., ACP, 2015

45-74% of aerosol is organic nitrates
Relevance of β-pinene+NO$_3$ to SOAS

Spectrum of LO-OOA at SOAS has similar features to laboratory β-pinene+NO$_3$ SOA at $m/z > 60$

Using results from chamber experiments →

β-pinene+NO$_3$ can potentially make up as much as 50% of nighttime OA production at SOAS

Xu et al., PNAS, 2015
Boyd et al., ACP, 2015
Highly-Oxygenated ON in Chamber Studies (β-pinene + NO₃)

- Highly-oxygenated ON observed in FIGAERO-CIMS with 4 – 9 oxygen atoms
- Rapid formation, likely occurs through auto-oxidation (Crounse et al., 2013; Ehn et al., 2014)

Nah et al., ES&T, 2016
ON Observed with FIGAERO-HR-ToF-CIMS

<table>
<thead>
<tr>
<th>Molecule-iodide adduct formula</th>
<th>Exact m/z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{10}H_{12}NO_{3}I</td>
<td>342.020782</td>
</tr>
<tr>
<td>C_{10}H_{12}NO_{3}I</td>
<td>356.00031</td>
</tr>
<tr>
<td>C_{10}H_{12}NO_{3}I</td>
<td>358.015686</td>
</tr>
<tr>
<td>C_{10}H_{12}NO_{3}I</td>
<td>360.031311</td>
</tr>
<tr>
<td>C_{10}H_{12}NO_{3}I</td>
<td>369.97934</td>
</tr>
<tr>
<td>C_{10}H_{12}NO_{3}I</td>
<td>371.99465</td>
</tr>
<tr>
<td>C_{10}H_{12}NO_{3}I</td>
<td>374.01062</td>
</tr>
<tr>
<td>C_{10}H_{12}NO_{3}I</td>
<td>376.026306</td>
</tr>
<tr>
<td>C_{10}H_{12}NO_{3}I</td>
<td>385.974213</td>
</tr>
<tr>
<td>C_{10}H_{12}NO_{3}I</td>
<td>387.989688</td>
</tr>
<tr>
<td>C_{10}H_{12}NO_{3}I</td>
<td>390.005524</td>
</tr>
<tr>
<td>C_{10}H_{12}NO_{3}I</td>
<td>392.02121</td>
</tr>
<tr>
<td>C_{10}H_{13}NO_{3}I</td>
<td>401.969147</td>
</tr>
<tr>
<td>C_{10}H_{13}NO_{3}I</td>
<td>403.984772</td>
</tr>
<tr>
<td>C_{10}H_{13}NO_{3}I</td>
<td>406.000427</td>
</tr>
<tr>
<td>C_{10}H_{13}NO_{3}I</td>
<td>408.016052</td>
</tr>
<tr>
<td>C_{10}H_{13}NO_{3}I</td>
<td>417.96405</td>
</tr>
<tr>
<td>C_{10}H_{13}NO_{3}I</td>
<td>419.979675</td>
</tr>
<tr>
<td>C_{10}H_{13}NO_{3}I</td>
<td>421.995361</td>
</tr>
<tr>
<td>C_{10}H_{13}NO_{3}I</td>
<td>357.979309</td>
</tr>
<tr>
<td>C_{10}H_{13}NO_{3}I</td>
<td>359.994965</td>
</tr>
<tr>
<td>C_{10}H_{13}NO_{3}I</td>
<td>373.974182</td>
</tr>
<tr>
<td>C_{10}H_{13}NO_{3}I</td>
<td>375.989688</td>
</tr>
<tr>
<td>C_{10}H_{13}NO_{3}I</td>
<td>378.005524</td>
</tr>
<tr>
<td>C_{10}H_{13}NO_{3}I</td>
<td>389.969147</td>
</tr>
<tr>
<td>C_{10}H_{13}NO_{3}I</td>
<td>391.984383</td>
</tr>
<tr>
<td>C_{10}H_{13}NO_{3}I</td>
<td>405.96405</td>
</tr>
<tr>
<td>C_{10}H_{13}NO_{3}I</td>
<td>407.979706</td>
</tr>
<tr>
<td>C_{10}H_{13}NO_{3}I</td>
<td>343.963654</td>
</tr>
<tr>
<td>C_{10}H_{13}NO_{3}I</td>
<td>345.979309</td>
</tr>
<tr>
<td>C_{10}H_{13}NO_{3}I</td>
<td>359.958588</td>
</tr>
<tr>
<td>C_{10}H_{13}NO_{3}I</td>
<td>361.974213</td>
</tr>
<tr>
<td>C_{10}H_{13}NO_{3}I</td>
<td>375.953491</td>
</tr>
<tr>
<td>C_{10}H_{13}NO_{3}I</td>
<td>377.969147</td>
</tr>
<tr>
<td>C_{10}H_{13}NO_{3}I</td>
<td>391.948395</td>
</tr>
<tr>
<td>C_{10}H_{13}NO_{3}I</td>
<td>313.953094</td>
</tr>
<tr>
<td>C_{10}H_{13}NO_{3}I</td>
<td>329.947998</td>
</tr>
<tr>
<td>C_{10}H_{13}NO_{3}I</td>
<td>331.963654</td>
</tr>
<tr>
<td>C_{10}H_{13}NO_{3}I</td>
<td>345.942932</td>
</tr>
<tr>
<td>C_{10}H_{13}NO_{3}I</td>
<td>347.958588</td>
</tr>
<tr>
<td>C_{10}H_{13}NO_{3}I</td>
<td>361.937836</td>
</tr>
</tbody>
</table>

- 41 ON observed for β-pinene+NO$_3$ (32 observed at SOAS, Lee et al., 2016)
- 5 ON for α-pinene+NO$_3$ (4 observed at SOAS, Lee et al., 2016)

NO$_3$ chemistry forms atmospherically relevant highly oxygenated ON

Nah et al., ES&T, 2016
Aerosol ON that is not removed by deposition can either form nitric acid through hydrolysis or be released as NO\textsubscript{x} through photolysis or OH oxidation.
1. β-pinene+NO$_3$: Organic Nitrate Hydrolysis

- Likely that majority (~90%) of ON is primary (which do not hydrolyze at appreciable rates)
- ~10% of ON hydrolyzes with a lifetime of 3-4.5 hr
 - Much higher than primary/tertiary ON ratio predicted by SOA formed from photooxidation under high NOx conditions (Browne et al., 2013)
- What happens to ON that do not hydrolyze? (do they get photolyzed /OH reaction?)

Nitrate/Org in wet expt

Nitrate/Org in dry expt

Boyd et al., ACP, 2015
2. Photochemical Aging of Nighttime Aerosol

β-pinene + NO₃

α-pinene + NO₃

- Photochemically aging, OH + hν
- β-pinene+NO₃ SOA: photochemical aging has little effect
- α-pinene+NO₃: a large fraction of reactive nitrogen is released from the α-pinene SOA back to the gas phase during photooxidation.

Nah et al., ES&T, 2016
Conclusions

- LO-OOA (19-34%): likely originates from monoterpenes, and its formation could be controlled by nighttime NO$_3$ chemistry (NO$_x$ effect)

- ON contributes up to 12% of ambient OA in SE US in summer

- β-pinene+NO$_3$ reaction
 - FIGAERO-HR-ToF-CIMS: Formation of highly oxygenated ON species in both gas- and particle-phase, many of which observed at SOAS
 - This reaction likely contributes substantially to ambient LO-OOA and ON
 - Peroxy radical fate and RH does not have a strong effect on SOA yield

- Hydrolysis: ~90% of the ON formed from the β-pinene+NO$_3$ reaction are primary nitrates, do not hydrolyze at appreciable rates

- Atmospheric perturbations
 - Particulate ON from β-pinene+NO$_3$: NOx sinks
 - Particulate ON from α-pinene+NO$_3$: photochemical oxidation may be an important atmospheric NOx source in the day

Laboratory studies should be an integrated part of field studies
Acknowledgement

Georgia Tech
Hongyu Guo, Aikaterini Bougiatioti, Kate Cerully, James Hite, Rodney Weber, Athanasios Nenes

Emory University
Mitchel Klein

UC Berkeley
Gabriel Isaacman-VanWert, Kevin Olson, Allen Goldstein

Aerosol Dynamics
Nathan M. Kreisberg, Susanne V. Hering

NCAR
Christoph Knote

NOAA and CIRES
Abigail Koss, Joost de Gouw

ARA
Karsten Baumann

Kent State University
Shan-Hu Lee

University of Kentucky
Alexis Eugene
Marcelo Guzman