

High aerosol acidity despite declining atmospheric sulfate concentrations

Lessons learned from the SE US and implications for models.

<u>A.Nenes</u>^{1,2,3,4}, R.J. Weber¹, H.Guo¹, A.Russell⁵ with contributions from C. Liu⁵, P. Vasilakos², A.Bougiatioti^{1,3} and N.Mihalopoulos³

¹Georgia Tech, School of Earth and Atmospheric Sciences, ²Georgia Tech, School or Chemical & Biomolecular Engineering, ³IERSD, National Observatory of Athens, Greece, ⁴ICE-HT, Foundation for Research and Technology Hellas, Greece, ⁵Georgia Tech, School of Civil & Environmental Engineering

Introduction

Particle pH:

- 1. Controls particle phase acid-catalyzed reactions;
 - Isoprene (the largest VOC) \rightarrow IEPOX-OA
 - Laboratory studies found that acidity enhances IEPOX-OA formation (*Surratt et al., 2007&2010*).
 - IEPOX-OA 20% of OA in SE in summer (*Xu et al., 2015*)

2. Controls acidic and basic gas-particle partitioning;

• e.g. Nitric acid and nitrate

 $HNO_{3(g)} + H_2O \leftrightarrow HNO_3 \cdot H_2O,$ $HNO_3 \cdot H_2O \leftrightarrow NO_3^- + H^+,$

 K_H

 K_a

3. Solubilizes mineral dust and metals;

- 1-2% Fe mobilized after 4 days at pH=2 → ecosystem nutrient (*Meskhidze et al., 2003*)
- redox metals → reactive oxygen species (ROS) (Verma et al., 2014)

Introduction

Particle Acidity sources and evolution in atmosphere:

Historical SO₂ and SO₄²⁻ trends:

✤ In the past twenty years, SO₂ emissions have decreased significantly (-6.2% yr⁻¹, 2000-2010, *Hand et al. 2012*).

 $Oldsymbol{SO}_4^{2-}$ followed SO₂ reduction.

Scientific questions:

- 1. Are particles in southeast US becoming neutral as SO₂ emissions go down?
- 2. Are nitrate particles becoming dominant aerosols in southeast US?

(Hand et al., 2012)

The acidity "paradox"

Historical Data: SO_4 is going down NH_3 is constant Nitrate is ~ 0

The acidity "paradox"

Historical Data: SO_4 is going down NH_3 is constant Nitrate is ~ 0

Aerosol response: Should have become more neutralized -

The acidity "paradox"

Historical Data: SO_4 is going down NH_3 is constant Nitrate is ~ 0

Aerosol response: Should have become more neutralized -

... but it's NOT becoming more neutral. In fact it's "acidifying".

Determining aerosol pH: The problem

Acidity / pH definition:

 $pH = -\log_{10}[H^+] = -\log_{10}\frac{1000H_{air}^+}{LWC}$

 H_{air}^+ , LWC units: $\mu g m^{-3} air$

How to determine particle pH:

- pH cannot be measured for single particles *in-situ*.
- "pH proxies" (ion balance, molar ratios), **do not strongly correlate with pH**.
 - ✓ Ions can be in multiple forms depending on pH and pKa.
 - ✓ pH depends on LWC, which can vary considerably.

Determining aerosol pH: How we do it (model+obs)

Follow the approach of Guo et al. (2015):

- Particle ions (**SO**₄²⁻, **NH**₄⁺, NO₃⁻, Cl⁻, Na⁺, K⁺, Ca²⁺, Mg²);
- Gas (**NH**₃);
- Particle water or total organics & κ_{org} ;
- **RH** and T;

Lu et al. (2015) PNAS; Guo et al., (2015) ACP; Cerully et al., (2015) ACP

Determining aerosol pH: The "heart" of it

1. Solid phase: NaHSO₄, NH₄HSO₄, Na₂SO₄, NaCl, (NH₄)₂SO₄, (NH₄)₃H(SO₄)₂, NH₄NO₃, NH₄Cl, NaNO₃, **K₂SO₄**, **KHSO₄**, **KNO₃**, **KCl**, **CaSO₄**, **Ca(NO₃)₂**, **CaCl₂**, **MgSO₄**, **MgCl₂**, **Mg(NO₃)₂** Species in **bold** were introduced in ISORROPIA II (Fountoukis and Nenes, 2007)

In this study, ISORROPIA-II was run in "**Forward mode**", which calculates equilibrium partitioning given total concentration of species (gas + particle).

http://isorropia.eas.gatech.edu

The acidity paradox

Historical Data: SO_4 is going down NH_3 is constant Nitrate is ~ 0

Aerosol response: Should have become more neutralized -It's "acidifying".

The acidity paradox

Historical Data: SO_4 is going down NH_3 is constant Nitrate is ~ 0

Aerosol response: Should have become more neutralized – it hasn't.

pH calculations: Confirm that this is the case for SE US.

SE US: pH is very low despite large reductions in SO₂

Historical Data: SO_4 is going down NH_3 is constant Nitrate is ~ 0

Aerosol response: Should have become more neutralized it hasn't.

pH calculations: Confirm that this is the case for SE US.

SOAS Data analysis confirms pH calculations

SOAS Data analysis confirms pH calculations

This means that prediction biases in pH would result in appreciable biases in the $NH_{3(g)}$ fraction.

pH 0.5-1.5 is indeed likely for the SE US.

Proof from observation: 3 years (AMoN sites)

<u>Summary:</u>

In the past, NH_3 has been fairly constant.

In the future, NH_3 will probably stay at current level or increase slightly.

(Erisman et al., 2008)

Proof from observation: 3 years (AMoN sites)

<u>Summary:</u>

In the past, NH_3 has been fairly constant.

In the future, NH_3 will probably stay at current level or increase slightly.

(Erisman et al., 2008)

Proof from mass balance (in the boundary layer):

 E_{NH_3} : gas phase NH_3 emission rate; v_d^{NH3} : gas phase deposition velocity; $v_d^{NH_4^+}$: particle phase deposition velocity; h: boundary layer mixed depth

Proof from observation: 3 years (AMoN sites)

<u>Summary:</u>

In the past, NH_3 has been fairly constant.

In the future, NH_3 will probably stay at current level or increase slightly.

(Erisman et al., 2008)

Proof from mass balance (in the boundary layer):

 E_{NH_3} : gas phase NH_3 emission rate; v_d^{NH3} : gas phase deposition velocity; $v_d^{NH_4^+}$: particle phase deposition velocity; h: boundary layer mixed depth

but $v_d^{NH3} \gg v_d^{NH_4^+}$

Proof from mass balance (in the boundary layer):

$$[NH_3] \cong \frac{hE_{NH_3}}{v_d^{NH3}}$$

 E_{NH_3} : gas phase NH_3 emission rate; v_d^{NH3} : gas phase deposition velocity; h: boundary layer mixed depth

 E_{NH_3} increased slightly (~10%) during the last decade globally. (*Erisman et al., 2008*)

*NH*₃ has and probably will remain the same

Looking into the future: how will acidity respond?

Reference state: average SOAS conditions (RH=75%, T=25°C)

For constant total NH_3 , R_{SO4} goes *down* as SO_4 drops.

This is seen in the data too.

Looking into the future: how will acidity respond?

For constant total NH_3 , R_{SO4} goes *down* as SO_4 drops.

This is seen in the data too.

The pH levels remain insensitive to SO_4 changes in the SE US.

Huge changes in NH_3 (which won't happen) are needed to increase pH

Why this behavior? NH₃ is semi-volatile, buffers system

Why this behavior? NH₃ is semi-volatile, buffers system

Low acidities are found everywhere

Summertime data (2013)

- ACSM/WAD (comp.)
- Nephelometer (LWC)
- pH analysis

Look at average and each airmass type sampled

Bougiatioti et al., ACPD (2016)

Finokalia, Crete pH distributions

Airmass type: Mineral dust aerosol (fine)

Summary/implications:

- NH_3 vs SO_4 is like in SE US, aerosol is quite acidic.
- Most of the time, very low NO₃ levels on fine mode aerosol (Surprise!!).

Finokalia, Crete pH distributions

Airmass type: Continental aerosol (fine)

Summary/implications:

- NH_3 vs SO_4 is like in SE US, aerosol is quite acidic.
- Most of the time, low levels of NO_3 on fine mode aerosol.

Finokalia, Crete pH distributions

Airmass type: Smoke/Biomass burning

Summary/implications:

- NH_3 is very high (vs SO₄) and that leads to neutralization of aerosol.
- Most of the time, a lot (almost all) HNO_3/NO_3 partitions to aerosol.

Some take home messages

Findings:

- Particle pH is low (-0.5 to 1.5) and NH₃ varied little in the SE US. Very low acidity seen in dusty regions too (E.Med; Bougiatioti et al., 2016).
- Future particle pH may remain low even if SO₄ goes down. pH is insensitive to shifts in NH₃ and SO₄ levels because NH₄ is volatile.
- You can have very acidic aerosol even if $NH_4/SO_4 > 2$.

Some take home messages

Findings:

- Particle pH is low (-0.5 to 1.5) and NH₃ varied little in the SE US. Very low acidity seen in dusty regions too (E.Med; Bougiatioti et al., 2016).
- Future particle pH may remain low even if SO₄ goes down. pH is insensitive to shifts in NH₃ and SO₄ levels because NH₄ is volatile.
- You can have very acidic aerosol even if $NH_4/SO_4 > 2$.

Implications:

- pH proxies used for decades do **not** work well and should be **avoided**.
- Aerosol nitrate, contrary to current belief and policy, may **not** be a major component of the regional aerosol as sulfate levels drop.
- Acid-mediated process may continue to remain unchanged.
- Mineral dust (land use change)/seasalt emissions very important.

Some take home messages

Findings:

- Particle pH is low (-0.5 to 1.5) and NH₃ varied little in the SE US. Very low acidity seen in dusty regions too (E.Med; Bougiatioti et al., 2016).
- Future particle pH may remain low even if SO₄ goes down. pH is insensitive to shifts in NH₃ and SO₄ levels because NH₄ is volatile.
- You can have very acidic aerosol even if $NH_4/SO_4 > 2$.

Implications:

- pH proxies used for decades do **not** work well and should be **avoided**.
- Aerosol nitrate, contrary to current belief and policy, may **not** be a major component of the regional aerosol as sulfate levels drop.
- Acid-mediated process may continue to remain unchanged.
- Mineral dust (land use change)/seasalt emissions very important.

Models have *never* been evaluated for their ability to predict pH – and presents a unique opportunity for understanding predictive biases.

Acknowledgements

THANK YOU!

This publication was made possible by US EPA grant R834799 and R835410. This publication's contents are solely the responsibility of the grantee and do not necessarily represent the official views of the US EPA. Further, US EPA does not endorse the purchase of any commercial products or services mentioned in the publication.