Cloud Condensation Nuclei Measurements During the SENEX Campaign: Observations, Analysis and Impacts

A.Nenes^{1,2}, J. J.Lin¹, A.Bougiatioti^{1,3}, K.M.Cerully², R.Morales¹, C.A.Brock^{4,5}, N.L.Wagner^{4,5}, D.A.Lack^{4,5}, D.Law⁴, T.Gordon^{4,5}, M.S.Richardson^{4,5}, M.Markovic^{4,5}, J.P.Schwarz^{4,5}, A.M.Middlebrook⁴, J.Liao^{4,5}, A.Welti^{4,5†}, J.deGouw^{4,5}, L.Xu², N.L.Ng.^{1,2}, H.Guo¹, R.Weber¹

¹School of Earth and Atmospheric Sciences, Georgia Tech, Atlanta, GA; ²School of Chemical and Biomolecular Engineering, Georgia Tech, Atlanta, GA; ³National Technical University of Athens, Zografou Campus, Athens, Greece; ⁴NOAA Earth System Research Laboratory, Boulder, CO; ⁵CIRES, University of Colorado Boulder, Boulder, CO; ^{*}Now at Departamento de Ingeniería Civil y Ambiental, Universidad de los Andes, Colombia; [†]Now at Institute for Atmosphere and Climate, ETH Zürich, Switzerland

Acknowledgments: EPA, NSF, NOAA, NASA

Climate-relevant impacts of Aerosol

Relevant properties : Water uptake (hygroscopicity), CCN number, optical properties.

Climate impacts from US anthropogenic aerosol

Liebensperger et al., ACP, 2012a

Warm (Liquid) Cloud Formation

The "simple story" (1D parcel theory)

Consider conservation of energy and water vapor condensing on aerosol particles in cloudy updrafts.

Conceptual steps are:

- Air parcel cools, exceeds dew point
- Water vapor is supersaturated
- Droplets start forming on existing CCN.
- Condensation of water on droplets becomes intense.
- Humidity reaches a maximum
- No more additional drops form

A "classical" nucleation/growth problem

When does an aerosol act as a CCN ?

Examine the equilibrium vapor pressure of a wet aerosol particle. Consider the effects of *solute* and *droplet curvature*

The combined Kelvin and Raoult effects is known as the Köhler equation (1922).

You can be in equilibrium even if you are above saturation.

When does an aerosol particle act as a CCN ?

Droplet number needs CCN and max.cloud RH...

Algorithm for calculating N_d (Mechanistic parameterization)

1. Calculate s_{max} (approach-dependent)

2. N_d is equal to the CCN with $s_c \le s_{max}$

Mechanistic Parameterizations:

Twomey (1959); Abdul-Razzak et al., (1998); Nenes and Seinfeld, (2003); Fountoukis and Nenes, (2005); Kumar et al. (2009), Morales and Nenes (2014), and others.

Input: P,T, vertical wind, particle size distribution, composition.

Output: Cloud properties (droplet number, size distribution).

Comprehensive review & intercomparison: Ghan, et al., *JAMES* (2011); Morales and Nenes (2014)

Aerosol Problem: Complexity

An integrated "soup" of

Inorganics, organics (1000's)
 Particles can have uniform composition with size...

📕 ... or not

Can vary vastly with space and time (esp. near sources)

Organic species have been a headache

- They can facilitate cloud formation by acting as surfactants and adding solute (hygroscopicity)
- Oily films can form and delay cloud growth kinetics

In-situ data to study the aerosol-CCN link: Usage of CCN activity measurements to "constrain" the above "chemical effects" on cloud droplet formation.

Parameterizing "characteristic" CCN activity...

Petters and Kreidenweis (2007) expressed the solute parameter in terms of a "hygroscopicity parameter", κ

$$s_c = \left(\frac{4A^3}{27B}\right)^{1/2}$$
 \implies $s_c = \left(\frac{4A^3}{27\kappa}\right)^{1/2} d^{-3/2}$

 $\kappa \sim 1$ for NaCl, ~ 0.6 for (NH₄)₂SO₄, $\sim 0-0.3$ for organics

 κ rarely exceeds 1 in atmospheric aerosol

Simple way to think of κ : the "equivalent" volume fraction of NaCl in the aerosol (the rest being insoluble).

 $\kappa \sim 0.6 \Rightarrow$ particle behaves like 60% NaCl, 40% insoluble

Hygroscopicity Space

 \mathbf{I} $\mathbf{\kappa}$ is used to parameterize the activation of particles in the atmosphere

Source of CCN measurements: DMT CFSTGC

Outlet: [Droplets] = [CCN]

- Standard CCN measurement (>100 instruments in operation).
- Metal cylinder with wetted walls
- Streamwise Temp. Gradient
- Water diffuses faster than heat
- Supersaturation, S, generated at the centerline = f (Flowrate, Pressure, and Temp. Gradient)
- Operated as a *spectrometer* using Scanning Flow CCN Analysis (Moore and Nenes, 2009)

Roberts and Nenes (2005), US Patent 7,656,510 Lance et al., (2006), Lathem and Nenes (2011), Raatikainen et al. (2012, 2013)

Obtaining κ from CCN Measurements

1. Using Scanning Flow CCN Analysis, determine CCN concentration, [CCN], at a given s*

30

Elapsed Time (s)

0

60

3. Calculate κ

2. Find where backwards integrated size distribution = [CCN] to obtain the critical diameter, d_p^*

$$\kappa \approx \frac{4A^3}{27d_p^3 s^{*2}} = \frac{M_w \rho_s}{\rho_w M_s} \upsilon \varepsilon_s$$

Our goals for **SOAS** and SENEX

Photo credit: Jon Mak's Long-EZ

- Study links between volatility, hygroscopicity & oxidation state of the Organic Aerosol (OA).
- Investigate which fractions of the OA are responsible for the observed hygroscopicity and volatility.
- Quantify the major contributors of LWC variability, particularly the relative role of organic vs. inorganic species.
- Estimate the impact of aerosol properties on cloud droplet number and cloud supersaturation

SOAS: Measurement Setup

 Measured ambient and water-soluble (PILS) aerosol at 3 different supersaturations and 4 temperature conditions (non-denuded, 60°C, 80°C, and 100°C)

SOAS: κ_{org} , Volatility, and O:C

 κ_{org} calculated from AMS composition measurements: $\kappa = \kappa_{org} \varepsilon_{org} + \kappa_{inorg} \varepsilon_{inorg}$ with volatility

lorg with volutility			
	Ambient	PILS	
Non-denuded	0.14±0.09	0.14 ± 0.06	Most volatile fraction is also the most hygroscopic (contradictory to expected link) but why?
TD at 60°C	0.12 ± 0.08	0.12 ± 0.06	
TD at 80°C	0.12±0.11	0.09 ± 0.04	
TD at 100°C	0.08 ± 0.07	0.08 ± 0.06	

Investigate $\kappa_{\rm org}$ and oxidation state... Looking at ambient data

K

Organic fraction hygroscopicity actually seems to go down a little when you heat the aerosol a lot.

Cerully et al., ACP, (2015)

SOAS: $\kappa_{\rm org}$ and O:C of PMF Factors

- AMS Positive Matrix Factorization (PMF) determined 3 factors describing the PILS aerosol (Xu et al., PNAS, 2015)
 - Less oxidized oxygenated organic aerosol (LO-OOA)
 - More oxidized oxygenated organic aerosol (MO-OOA)
 - Isoprene-derived organic aerosol (Isoprene-OA)
- The κ_{org} of each respective factor was found by bootstrapped resampling of the linear regression of the three factors:

SOAS: κ_{org} and O:C of PMF Factors

- MO-OOA displayed a higher κ_{org} and 0:C compared to LO-OOA
- In general, no clear correlation between κ_{org} and O:C (or oxidation state)

Using hygroscopicity for LWC calculations

Inorganic species: ISORROPIA-II (Fountoukis and Nenes, 2007)

Organic species: κ-Köhler theory (Petters and Kreidenweis, 2007)

$$W_o = \frac{m_o}{\rho_p} \frac{\kappa_o}{(1 - \mathsf{RH})}$$

 m_o : aerosol mass ρ_p : aerosol density k_o : hygroscopicity parameter

Predicted LWC vs measured LWC (SOAS)

- ✤ W_i: LWC associated with inorganics
 W_o: LWC associated with organics
- Total predicted water ($W_i + W_o$) matches nephelometer-derived water very well.
- LWC diurnal ratio (max/min) is 5.
- *W_o* was significant, **29-39%** of total LWC at all sites.

Our goals for SOAS and SENEX

Photo credit: Jon Mak's Long-EZ

- Study links between volatility, hygroscopicity & oxidation state of the Organic Aerosol (OA).
- Investigate which fractions of the OA are responsible for the observed hygroscopicity and volatility.
- Quantify the major contributors of LWC variability, particularly the relative role of organic vs. inorganic species.
- Estimate the impact of aerosol properties on cloud droplet number and cloud supersaturation

SENEX: flight overview (June-July 2013)

Lin et al., in prep; Bougiatioti et al., in prep

Area of interest: SE US around Centerville

Lin et al., in prep; Bougiatioti et al., in prep

CCN spectra: SE US around Centerville

Lin et al., in prep

Aerosol hygroscopicity: SE US around Centerville

From SENEX data to cloud drops and s_{max}

Input: P,T, vertical wind, particle size distribution & *k* or CCN spectra.

Output: N_{d} , S_{max}

- CCN at fixed give an **incomplete** picture of cloud droplet responses to aerosol.
- You need to know s_{max} in clouds and how it responds to aerosol changes because of water vapor competition.
- Droplet parameterizations for climate models solve this effectively.
- We use Nenes and Seinfeld, (2003) with modifications by Fountoukis and Nenes, (2005), Barahona et al., (2010) and Morales and Nenes (2014).
- Input velocity: Integrated droplet number over a PDF of vertical velocities characteristic of BL clouds
 ✓ σ_w=0.3 ms⁻¹, 0.6 ms⁻¹
- Attribution of N_d variability with sensitivities

SENEX: Birmingham and Alabama (Flight 5)

SENEX: Birmingham and Alabama (Flight 5)

- Above 2-3km, concentrations drop considerably, and s_{max} increases
- Between 1-2km, there is mixing of airmasses, so s is between 0.1-0.2%.
- In the boundary layer, s much less than 0.1% again (its ~ 0.06%).
- Droplet number shows very little sensitivity to aerosol changes *even* when flying through the EC plume.

SENEX: Atlanta PM flight (Flight 6)

-87

SENEX: Atlanta PM flight (Flight 6)

- Above 2-3km, concentrations drop considerably, and s_{max} increases
- Between 1-2km, there is mixing of airmasses, so s is between 0.1-0.2%.
- In the boundary layer, s much less than 0.1% again (its < 0.06%).
- Droplet number shows very little sensitivity to aerosol changes *even* when flying through Atlanta.

Bougiatioti et al., in prep

Summary of Results: SOAS

- Changes in total κ from thermally-denuding are small (relative change<12%) even with mass losses of ~ 35%.
- κ_{org} appears to decrease with increased heating regardless of O:C or oxidation state, opposing the conventional view of the most volatile compounds being the least hygroscopic.
- No clear correlation between κ_{org} and O:C for all PILS non-denuded PMF factors, but MO-OOA and LO-OOA factors show the expected property relationships.
- MO-OOA is responsible for 50% of the mass and up to 60% of the water uptake of all the organic aerosol.
- Organic contribution to aerosol LWC is maximum early morning and can be up to 70% of the total aerosol water (diurnal average: 30%).

Summary of Results: SENEX

- Aircraft measured size distributions have a prominent Aitken mode

 not seen in ground site data.
- Accumulation mode aerosol dominated by organics with overall $\kappa \sim 0.2$ consistent with ground & P3 AMS data (bulk).
- Aitken mode aerosol is much more $(NH_4)_2SO_4$ -like, with $\kappa \sim 0.6$.
- Cloud droplet calculations driven by the aircraft data show that:
 - Much of the variability of CCN observed in the CCN is *not* reflected in the droplet calculations. Supersaturation fluctuates in response to aerosol fluctuations.
 - ✓ Strong insensitivity of N_d to aerosol levels in BL clouds. We actually see at times evidence of a *negative* impact of aerosol increases on N_d (from overseeding)
 - ✓ Very low s_{max} is predicted for those clouds (0.05-0.1%).
 - ✓ Any impacts of aerosol can only be seen in the "buffer" zone and detrainment in the free troposphere.

Acknowledgements

EPA Grant R83541001*

National Science Foundation

SOAS/SENEX participants

THANK YOU!

*A portion of this work was made possible by US EPA grant R8341001. The contents are solely the responsibility of the grantee and do not necessarily represent the official views of the US EPA. Further, US EPA does not endorse the purchase of any commercial products or services mentioned in the work.