Development Document for Effluent Limitations Guidelines and New Source Performance Standards for the

TEXTILE MILLS

Point Source Category

June 1974
DEVELOPMENT DOCUMENT

for

EFFLUENT LIMITATIONS GUIDELINES

and

NEW SOURCE PERFORMANCE STANDARDS

for the

TEXTILE

POINT SOURCE CATEGORY

Russell E. Train
Administrator

James Agee
Acting Assistant Administrator for Water and Hazardous Materials

Allen Cywin
Director, Effluent Guidelines Division

James D. Gallup
Project Officer

June, 1974

Effluent Guidelines Division
Office of Water and Hazardous Materials
U.S. Environmental Protection Agency
Washington, D.C. 20460
ABSTRACT

This document presents the findings of a study of the textile manufacturing industry for the purpose of developing waste water effluent limitation guidelines and Federal standards of performance for new sources in order to implement Section 304(b) and 306 of the Federal Water Pollution Control Act Amendments of 1972 (the "Act"). This study covers approximately 7,000 plants in S.I.C. 22.

Effluent limitations guidelines are set forth for the degree of effluent reduction attainable through the application of the "Best Practicable Control Technology Currently Available", and the "Best Available Technology Economically Achievable", which must be achieved by existing point sources by July 1, 1977 and July 1, 1983, respectively. The "Standards of Performance for New Sources" set forth the degree of effluent reduction which is achievable through the application of the best available demonstrated control technology, processes, or other alternatives.

The proposed regulations for July 1, 1977 and for new source performance standards, require in-plant waste management and operating methods, together with the best secondary biological treatment technology currently available for discharge into navigable water bodies. This technology is represented by preliminary screening, primary treatment (wool scouring only), coagulation (carpet mills only), and secondary biological treatment. In addition, multi-media filtration or its equivalence for the control of TSS is recommended for new sources.

The recommended technology for July 1, 1983 is in-plant waste management and preliminary screening, latex coagulation (carpet mills and dry processing only), primary sedimentation (wool scouring only), biological secondary treatment and advanced treatment such as multi-media filtration and/or chemical coagulation/clarification.

Supportive data and rationale for development of the proposed effluent limitation guidelines and standards of performance are contained in this report.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>CONCLUSIONS</td>
</tr>
<tr>
<td>II</td>
<td>RECOMMENDATIONS</td>
</tr>
<tr>
<td>III</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td></td>
<td>Purpose and Authority</td>
</tr>
<tr>
<td></td>
<td>Methodology</td>
</tr>
<tr>
<td></td>
<td>General Description of the Industry</td>
</tr>
<tr>
<td></td>
<td>Profile of Manufacturing Processes</td>
</tr>
<tr>
<td></td>
<td>Wool Fiber and Fabric Finishing Operations</td>
</tr>
<tr>
<td></td>
<td>Cotton Fiber and Fabric Finishing Operations</td>
</tr>
<tr>
<td></td>
<td>Synthetic Fiber and Fabric Finishing Operations</td>
</tr>
<tr>
<td></td>
<td>Process Description by Subcategory</td>
</tr>
<tr>
<td>IV</td>
<td>INDUSTRY CATEGORIZATION</td>
</tr>
<tr>
<td></td>
<td>Previous Approaches</td>
</tr>
<tr>
<td></td>
<td>Categorization</td>
</tr>
<tr>
<td>V</td>
<td>WASTE CHARACTERISTICS</td>
</tr>
<tr>
<td></td>
<td>Subcategory 1 - Raw Wool Scouring</td>
</tr>
<tr>
<td></td>
<td>Subcategory 2 - Wool Finishing</td>
</tr>
<tr>
<td></td>
<td>Subcategory 3 - Dry Processing</td>
</tr>
<tr>
<td></td>
<td>Subcategory 4 - Woven Fabric Finishing</td>
</tr>
<tr>
<td></td>
<td>Subcategory 5 - Knit Fabric Finishing</td>
</tr>
<tr>
<td></td>
<td>Subcategory 6 - Carpet Mills</td>
</tr>
<tr>
<td></td>
<td>Subcategory 7 - Stock and Yarn Dyeing and Finishing</td>
</tr>
<tr>
<td></td>
<td>Subcategory 8 - Commission Finishing</td>
</tr>
<tr>
<td>VI</td>
<td>SELECTION OF POLLUTANT PARAMETERS</td>
</tr>
<tr>
<td></td>
<td>Waste Water Parameters of Major Significance</td>
</tr>
</tbody>
</table>
CONTENTS (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI</td>
<td></td>
</tr>
<tr>
<td>Rationale for Selection of Major Parameters</td>
<td>69</td>
</tr>
<tr>
<td>Biochemical Oxygen Demand</td>
<td>69</td>
</tr>
<tr>
<td>Chemical Oxygen Demand</td>
<td>70</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>70</td>
</tr>
<tr>
<td>Oil and Grease</td>
<td>71</td>
</tr>
<tr>
<td>Color</td>
<td>72</td>
</tr>
<tr>
<td>Chromium</td>
<td>73</td>
</tr>
<tr>
<td>Sulfides</td>
<td>73</td>
</tr>
<tr>
<td>Phenol</td>
<td>73</td>
</tr>
<tr>
<td>Fecal Coliforms</td>
<td>74</td>
</tr>
<tr>
<td>pH, alkalinity, and acidity</td>
<td>74</td>
</tr>
<tr>
<td>Rational for Selection of Minor Parameters</td>
<td>75</td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td>75</td>
</tr>
<tr>
<td>Ammonia Nitrogen and Other Nitrogen Forms</td>
<td>76</td>
</tr>
<tr>
<td>Phosphates</td>
<td>76</td>
</tr>
<tr>
<td>Temperature</td>
<td>76</td>
</tr>
<tr>
<td>Other Heavy Metals</td>
<td>76</td>
</tr>
<tr>
<td>Toxic Organic Chemicals</td>
<td>77</td>
</tr>
<tr>
<td>VII</td>
<td>79</td>
</tr>
<tr>
<td>CONTROL AND TREATMENT TECHNOLOGY</td>
<td></td>
</tr>
<tr>
<td>In-Process Control</td>
<td>79</td>
</tr>
<tr>
<td>New Process Technology</td>
<td>82</td>
</tr>
<tr>
<td>Specific In-Process Changes</td>
<td>85</td>
</tr>
<tr>
<td>Biological Treatment Technology</td>
<td>87</td>
</tr>
<tr>
<td>Performance of Biological Treatment Systems</td>
<td>94</td>
</tr>
<tr>
<td>Advance Waste Water Treatment Systems</td>
<td>98</td>
</tr>
<tr>
<td>Phase Change</td>
<td>99</td>
</tr>
<tr>
<td>Physical Separation</td>
<td>102</td>
</tr>
<tr>
<td>Sorption Systems</td>
<td>109</td>
</tr>
<tr>
<td>Chemical Clarification</td>
<td>119</td>
</tr>
<tr>
<td>VII</td>
<td>123</td>
</tr>
<tr>
<td>COST, ENERGY, AND NON-WATER QUALITY ASPECTS</td>
<td></td>
</tr>
<tr>
<td>Cost and Reduction Benefits of Alternative Treatment and Control Technologies</td>
<td>123</td>
</tr>
<tr>
<td>Basis of Economic Analysis</td>
<td>123</td>
</tr>
<tr>
<td>Cost Effectiveness of Treatment Alternatives</td>
<td>137</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>VIII</td>
<td>Impact of Waste Treatment Alternatives on Finished Product</td>
</tr>
<tr>
<td></td>
<td>Alternative Treatment Systems</td>
</tr>
<tr>
<td></td>
<td>Electrical Energy Requirements</td>
</tr>
<tr>
<td></td>
<td>Thermal Energy Requirements</td>
</tr>
<tr>
<td></td>
<td>Solid Wastes</td>
</tr>
<tr>
<td>IX</td>
<td>EFFLUENT REDUCTION ATTAINABLE THROUGH THE APPLICATION OF THE BEST PRACTICABLE CONTROL TECHNOLOGY CURRENTLY AVAILABLE EFFLUENT LIMITATIONS GUIDELINES</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
</tr>
<tr>
<td></td>
<td>Effluent Reduction Attainable Through the Application of Best Practicable Control Technology Currently Available</td>
</tr>
<tr>
<td></td>
<td>Identification of Best Practicable Control Technology Currently Available</td>
</tr>
<tr>
<td></td>
<td>Rationale for the Selection of Best Practicable Control Technology Currently Available</td>
</tr>
<tr>
<td></td>
<td>Age and Size of Equipment and Facility</td>
</tr>
<tr>
<td></td>
<td>Total Cost of Application in Relation to Effluent Reduction and Benefits</td>
</tr>
<tr>
<td></td>
<td>Engineering Aspects of Control Technique Applications</td>
</tr>
<tr>
<td></td>
<td>Process Changes</td>
</tr>
<tr>
<td></td>
<td>Non-Water Quality Environmental Impact</td>
</tr>
<tr>
<td></td>
<td>Factors to be Considered in Applying Level I Guidelines</td>
</tr>
</tbody>
</table>
CONTENTS (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>181</td>
</tr>
<tr>
<td>EFFLUENT REDUCTION ATTAINABLE THROUGH THE APPLICATION OF THE BEST AVAILABLE TECHNOLOGY ECONOMICALLY ACHIEVABLE EFFLUENT LIMITATIONS GUIDELINES</td>
<td>181</td>
</tr>
<tr>
<td>Introduction</td>
<td>181</td>
</tr>
<tr>
<td>Effluent Reduction Attainable Through Application of the Best Available Technology Economically Achievable</td>
<td>182</td>
</tr>
<tr>
<td>Identification of the Best Available Technology Economically Achievable</td>
<td>182</td>
</tr>
<tr>
<td>Rationale for the Selection of Best Available Control Technology Economically Achievable</td>
<td>187</td>
</tr>
<tr>
<td>Age and Size of Equipment and Facilities</td>
<td>187</td>
</tr>
<tr>
<td>Total Cost of Application in Relation to Effluent Reduction Benefits</td>
<td>187</td>
</tr>
<tr>
<td>Engineering Aspects of Control Technique Application</td>
<td>187</td>
</tr>
<tr>
<td>Process Changes</td>
<td>188</td>
</tr>
<tr>
<td>Non-Water Quality Environmental Impact</td>
<td>188</td>
</tr>
<tr>
<td>Factors to be Considered in Applying Level II Guidelines</td>
<td>188</td>
</tr>
<tr>
<td>XI</td>
<td>189</td>
</tr>
<tr>
<td>NEW SOURCE PERFORMANCE STANDARDS</td>
<td>189</td>
</tr>
<tr>
<td>Introduction</td>
<td>189</td>
</tr>
<tr>
<td>Effluent Reduction Attainable for New Sources</td>
<td>189</td>
</tr>
<tr>
<td>Rationale for the Selection of New Source Performance Standards</td>
<td>189</td>
</tr>
</tbody>
</table>
CONTENTS (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>XI</td>
<td>190</td>
</tr>
<tr>
<td>Engineering Aspects and costs of Application in Relation to Effluent Reduction Benefits</td>
<td>190</td>
</tr>
<tr>
<td>Pretreatment Requirements</td>
<td>190</td>
</tr>
<tr>
<td>XII</td>
<td>193</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
</tr>
<tr>
<td>XIII</td>
<td>195</td>
</tr>
<tr>
<td>REFERENCES</td>
<td></td>
</tr>
<tr>
<td>Selected Reference Summaries</td>
<td>195</td>
</tr>
<tr>
<td>Bibliography</td>
<td>205</td>
</tr>
<tr>
<td>XIV</td>
<td>221</td>
</tr>
<tr>
<td>GLOSSARY</td>
<td></td>
</tr>
<tr>
<td>XV</td>
<td>229</td>
</tr>
<tr>
<td>APPENDICIES</td>
<td></td>
</tr>
<tr>
<td>XVI</td>
<td>241</td>
</tr>
<tr>
<td>CONVERSION TABLE</td>
<td></td>
</tr>
<tr>
<td>Numbers</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Maximum Thirty Day Average Effluent Limitation Guidelines for July 1, 1977</td>
</tr>
<tr>
<td>2</td>
<td>Maximum Thirty Day Average Effluent Limitation Guidelines for July 1, 1983</td>
</tr>
<tr>
<td>3</td>
<td>Number of Textile Plants by Geographic Areas: 1967</td>
</tr>
<tr>
<td>4</td>
<td>Water Use by the Textile Industry</td>
</tr>
<tr>
<td>5</td>
<td>Water Discharged by the Textile Industry</td>
</tr>
<tr>
<td>6</td>
<td>Industry Categorization</td>
</tr>
<tr>
<td>7</td>
<td>Types and Amounts of Dyes Used in the Textile Industry</td>
</tr>
<tr>
<td>8</td>
<td>Chemicals Used in Application of Dyes</td>
</tr>
<tr>
<td>9</td>
<td>Expected Effluent Suspended Solids from Multi-Media Filtration of Biological Effluents</td>
</tr>
<tr>
<td>10</td>
<td>Carbon Adsorption Pilot Plant: Average Water Quality Characteristics</td>
</tr>
<tr>
<td>11</td>
<td>Accuracy of Standardized Costing Methodology</td>
</tr>
<tr>
<td>12</td>
<td>Waste Water Treatment Costs for Wool Scouring Subcategory</td>
</tr>
<tr>
<td>Numbers</td>
<td>TABLES</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>13</td>
<td>Waste Water Treatment Costs for Wool Finishing Subcategory</td>
</tr>
<tr>
<td>14</td>
<td>Waste Water Treatment Costs for Dry Processing Subcategory</td>
</tr>
<tr>
<td>15</td>
<td>Waste Water Treatment Costs for Woven Fabric Finishing Subcategory</td>
</tr>
<tr>
<td>16</td>
<td>Waste Water Treatment Costs for Knit Fabric Finishing Subcategory</td>
</tr>
<tr>
<td>17</td>
<td>Waste Water Treatment Costs for Carpet Mills Subcategory</td>
</tr>
<tr>
<td>18</td>
<td>Waste Water Treatment Costs for Stock and Yarn, Dyeing and Finishing Subcategory</td>
</tr>
<tr>
<td>19</td>
<td>Maximum Thirty Day Average Effluent Limitations Guidelines for July 1, 1977</td>
</tr>
<tr>
<td>20</td>
<td>Performance of Biological Treatment Systems</td>
</tr>
<tr>
<td>21</td>
<td>Performance of Effluent Treatment Systems</td>
</tr>
<tr>
<td></td>
<td>Subcategory 1: Wool Scouring</td>
</tr>
<tr>
<td>22</td>
<td>Performance of Effluent Treatment Systems</td>
</tr>
<tr>
<td></td>
<td>Subcategory 2: Wool Finishing</td>
</tr>
<tr>
<td>23</td>
<td>Performance of Effluent Treatment Systems</td>
</tr>
<tr>
<td></td>
<td>Subcategory 3: Dry Processing</td>
</tr>
<tr>
<td>24</td>
<td>Performance of Effluent Treatment Systems</td>
</tr>
<tr>
<td></td>
<td>Subcategory 4: Woven Fabric Finishing</td>
</tr>
<tr>
<td>25</td>
<td>Woven Fabric Finishing: Internal Subcategorization for the Establishment of COD Limitations</td>
</tr>
<tr>
<td>26</td>
<td>Performance of Effluent Treatment Systems</td>
</tr>
<tr>
<td></td>
<td>Subcategory 5: Knit Fabric Finishing</td>
</tr>
<tr>
<td>27</td>
<td>Knit Fabric Finishing: Internal Subcategorization for the Establishment of COD Limitations</td>
</tr>
<tr>
<td>Number</td>
<td>Table Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>28</td>
<td>Performance of Effluent Treatment Systems Subcategory 6: Carpet Mills</td>
</tr>
<tr>
<td>29</td>
<td>Performance of Effluent Treatment Systems Subcategory 7: Stock and Yarn Dyeing</td>
</tr>
<tr>
<td>30</td>
<td>Maximum Thirty Day Average Effluent Limitations Guidelines for July 1, 1983</td>
</tr>
<tr>
<td>31</td>
<td>Maximum Thirty Day Average Effluent Limitations Guidelines for New Sources</td>
</tr>
<tr>
<td>Number</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Subcategory 1: Wool Scouring</td>
</tr>
<tr>
<td>2</td>
<td>Subcategory 2: Wool Finishing</td>
</tr>
<tr>
<td>3</td>
<td>Subcategory 3: Greige Mills</td>
</tr>
<tr>
<td>4</td>
<td>Subcategory 4: Woven Fabric Finish</td>
</tr>
<tr>
<td>5</td>
<td>Subcategory 5: Knit Fabric Finishing</td>
</tr>
<tr>
<td>6</td>
<td>Subcategory 6: Carpet Mills</td>
</tr>
<tr>
<td>7</td>
<td>Subcategory 7: Stock and Yarn Dyeing and Finishing</td>
</tr>
<tr>
<td>8</td>
<td>COD Isotherms Using Virgin Carbon and Different Secondary Sewage Effluent</td>
</tr>
<tr>
<td>9</td>
<td>Schematic of an Activated Carbon System Including Thermal Regeneration</td>
</tr>
<tr>
<td>10</td>
<td>Aerated Stabilization Basin Construction Cost</td>
</tr>
<tr>
<td>11</td>
<td>Engineering Costs</td>
</tr>
<tr>
<td>12</td>
<td>Clarifier Capital Cost</td>
</tr>
<tr>
<td>13</td>
<td>Aerated Stabilization Basin (Aeration Equipment Only)</td>
</tr>
<tr>
<td>14</td>
<td>Aerated Stabilization Basin Annual Operation and Maintenance Labor</td>
</tr>
<tr>
<td>15</td>
<td>Aerated Stabilization Basin (Material and Supply Costs, Annual) (Chemical Costs)</td>
</tr>
<tr>
<td>16</td>
<td>Aeration Equipment Annual Power Costs (Aerated Stabilization Basin)</td>
</tr>
<tr>
<td>17</td>
<td>Clarifier, Annual Operation and Maintenance Labor</td>
</tr>
<tr>
<td>18</td>
<td>Clarifier (Material and Supply Costs, Annual) (Major Chemical Costs)</td>
</tr>
<tr>
<td>Number</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>19</td>
<td>Typical Seasonal Variation for Biological Treatment</td>
</tr>
<tr>
<td>20</td>
<td>Distribution of Water Use for Dry Processing</td>
</tr>
</tbody>
</table>
SECTION I

CONCLUSIONS

The purpose of this report is to establish wastewater effluent limitation guidelines for the textile manufacturing industry. A conclusion of this study is that this industry comprises eight subcategories:

1. Wool Scouring
2. Wool Finishing
3. Dry Processing
4. Woven Fabric Finishing
5. Knit Fabric Finishing
6. Carpet Mills
7. Stock and Yarn Dyeing and Finishing
8. Commission Finishing

The major criteria for the establishment of the subcategories are the biochemical oxygen demand (BOD$_5$), chemical oxygen demand (COD), and total suspended solids (TSS) in the plant waste water. Subcategorization is required on the basis of the raw material used and the production process employed. Evaluation of such factors as age or size of facilities, location and climate and similarities in available treatment and control measures substantiate this industry subcategorization.

The wastes from all subcategories are amenable to biological treatment processes and at least eighteen textile manufacturing plants are able to achieve high levels of effluent reduction (BOD$_5$ and total suspended solids) through secondary biological treatment systems. These systems treat wastewaters from dyeing and finishing broadwoven cotton and cotton synthetic blends, knits and stock and yarn. It is estimated that the costs for all plants within the industry to achieve the best practicable effluent reduction would result in final product price increases ranging from 0.6 cents per kilogram product (0.3 cents per pound product) to a high of 2.8 cents per kilogram (1.2 cents per pound). The average price increase is 1.5 cents per kilogram (0.7 cents per pound). The average price increase for new sources (biological treatment and multi-media filtration) is 2.3 cents per kilogram (1.0 cents per pound). These potential price increases assume no credit for treatment systems currently in place.

The cost of achieving the best available effluent limitations is estimated to result in further final product price increases ranging from 0.5 to 5.3 cents per kilogram (0.2 to 2.4 cents per pound) product processed for all dry processing mills and for all small plants in the other seven subcategories. Cost increases are
expected to range from 0.4 to 1.8 cents per kilogram (0.2 to 0.9 cents per pound) for larger plants in the industry subcategories (except dry processing mills). The average price increase is 3.8 cents per kilogram product (1.7 cents per pound product).
SECTION II
RECOMMENDATIONS

The waste water effluent reduction limitations attainable through the application of the best practicable control technology currently available are based on the performances of exemplary secondary biological systems treating textile manufacturing waste water. Best practicable control technology currently available includes the following treatment components: preliminary screening, primary sedimentation (wool scouring only), latex coagulation (carpet mills and dry processing only), and secondary biological treatment.

The waste water effluent reduction limitations attainable through the application of the best available control technology economically achievable are based on the best practicable control technology plus advanced treatment including multi-media filtration for dry processing operations and multi-media filtration and chemical coagulation/clarification for the remaining seven subcategories.

Recommended best practicable effluent limitations to be achieved by July 1, 1977, are set forth in Table 1 and recommended best available effluent limitations to be achieved by July 1, 1983, are set forth in Table 2. These limitations are the average of daily values for any period of thirty consecutive days. Maximum limitations for any one day for BOD\(_5\), TSS, COD, oils and grease, total chromium, phenol, sulfide and color should not exceed these thirty day limitations by more than one hundred percent.

The waste water effluent reduction limitations for new sources are those attainable through the application of the best practicable control technology currently available plus multi-media filtration or its equivalent for TSS control. These limitations are possible because of the present availability of the treatment and control technology to attain this level of effluent reduction.
Table 1
Maximum Thirty Day Average
Effluent Limitations Guidelines (1)
for July 1, 1977

<table>
<thead>
<tr>
<th>Subcategory</th>
<th>BOD5</th>
<th>TSS</th>
<th>COD</th>
<th>Total Chromium</th>
<th>Phenol</th>
<th>Sulfide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wool Scouring (2,4)</td>
<td>5.3</td>
<td>16.1</td>
<td>69.0</td>
<td>0.05</td>
<td>0.05</td>
<td>0.10</td>
</tr>
<tr>
<td>Wool Finishing (4)</td>
<td>11.2</td>
<td>17.6</td>
<td>81.5</td>
<td>0.07</td>
<td>0.07</td>
<td>0.14</td>
</tr>
<tr>
<td>Dry Processing (3)</td>
<td>0.7</td>
<td>0.7</td>
<td>1.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Woven Fabric Finishing (4)</td>
<td>3.3</td>
<td>8.9</td>
<td>30-60</td>
<td>0.05</td>
<td>0.05</td>
<td>0.10</td>
</tr>
<tr>
<td>Knit Fabric Finishing (4)</td>
<td>2.5</td>
<td>10.9</td>
<td>30-50</td>
<td>0.05</td>
<td>0.05</td>
<td>0.10</td>
</tr>
<tr>
<td>Carpet Mills</td>
<td>3.9</td>
<td>5.5</td>
<td>35.1-45.1</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>Stock and Yarn</td>
<td>3.4</td>
<td>8.7</td>
<td>42.3</td>
<td>0.06</td>
<td>0.06</td>
<td>0.12</td>
</tr>
</tbody>
</table>

(1) Expressed as kg(lb) pollutant except Wool Scouring as kg(lb) pollutant
kg(1000 lb) product
and Carpet Mills as kg(lb) pollutant
kg(1000 lb) primary backed carpet

(2) Oil and Grease Limitation for Wool Scouring is 3.6 kg(lb)
kg(1000 lb) raw grease wool

(3) Fecal Coliform Limit for Dry Processing is 400 MPN per 100 ml.

(4) For those plants identified as Commission Finishers, an additional allocation of 100% of the guidelines is to be allowed for the 30 day maximum levels.
Table 2

Maximum Thirty Day Average Effluent Limitations Guidelines (1) for July 1, 1983

<table>
<thead>
<tr>
<th>Subcategory</th>
<th>BOD5</th>
<th>TSS</th>
<th>COD</th>
<th>Total Chromium</th>
<th>Phenol</th>
<th>Sulfide</th>
<th>Fecal Coliform</th>
<th>Color (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wool Scouring (3,4)</td>
<td>2.4</td>
<td>2.0</td>
<td>18.0</td>
<td>0.05</td>
<td>0.05</td>
<td>0.10</td>
<td>400 MPN</td>
<td>600</td>
</tr>
<tr>
<td>Wool Finishing (4)</td>
<td>4.6</td>
<td>2.5</td>
<td>27.1</td>
<td>0.07</td>
<td>0.07</td>
<td>0.14</td>
<td>400 MPN</td>
<td>600</td>
</tr>
<tr>
<td>Dry Processing</td>
<td>0.2</td>
<td>0.2</td>
<td>0.4</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>400 MPN</td>
<td>---</td>
</tr>
<tr>
<td>Woven Fabric Finishing (4)</td>
<td>2.2</td>
<td>1.5</td>
<td>10.0-20.2</td>
<td>0.05</td>
<td>0.05</td>
<td>0.10</td>
<td>400 MPN</td>
<td>300</td>
</tr>
<tr>
<td>Knit Fabric Finishing (4)</td>
<td>1.7</td>
<td>1.7</td>
<td>10.0-16.7</td>
<td>0.05</td>
<td>0.05</td>
<td>0.10</td>
<td>400 MPN</td>
<td>300</td>
</tr>
<tr>
<td>Carpet Mills</td>
<td>2.0</td>
<td>1.0</td>
<td>11.7-15.0</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
<td>400 MPN</td>
<td>225</td>
</tr>
<tr>
<td>Stock and Yarn Dyeing and Finishing (4)</td>
<td>2.3</td>
<td>1.9</td>
<td>14.1</td>
<td>0.06</td>
<td>0.06</td>
<td>0.12</td>
<td>400 MPN</td>
<td>300</td>
</tr>
</tbody>
</table>

(1) Expressed as kg (lb) pollutant except Wool Scouring as kg (lb) pollutant kkg (1000 lb) product and Carpet Mills as kg (lb) pollutant kkg (1000 lb) primary backed carpet.

(2) Color in APHA units.

(3) Oil and Grease limitations for Wool Scouring is 1.0 kg (lb) kkg (1000 lb) raw grease wool.

(4) For those plants identified as Commission Finishers, an additional allocation of 100% of the guidelines is to be allowed for the 30 day and maximum levels.
SECTION III
INTRODUCTION

Purpose and Authority

Section 301(b) of the Act requires the achievement, by not later than July 1, 1977, of effluent limitations for point sources, other than publicly owned treatment works, which are based on the application of the best practicable control technology currently available as defined by the Administrator pursuant to Section 304(b) of the Act. Section 301(b) also requires the achievement, by not later than July 1, 1983, of effluent limitations for point sources, other than publicly owned treatment works, which are based on the application of the best available technology economically achievable which will result in reasonable further progress toward the national goal of eliminating the discharge of all pollutants, as determined in accordance with regulations issued by the Administrator pursuant to Section 304(b) to the Act. Section 306 of the Act requires the achievement by new sources of a Federal standard of performance providing for the control of the discharge of pollutants which reflects the greatest degree of effluent reduction which the Administrator determines to be achievable through the application of the best available demonstrated control technology, processes, operating methods, or other alternatives, including, where practicable, a standard permitting no discharge of pollutants.

Section 304(b) of the Act requires the Administrator to publish within one year of enactment of the Act, regulations providing guidelines for effluent limitations setting forth the degree of effluent reduction attainable through the application of the best practicable control technology currently available and the degree of effluent reduction attainable through the application of the best control measures and practices achievable including treatment techniques, process and procedure innovations, operation methods and other alternatives. The regulations proposed herein set forth effluent limitations guidelines pursuant to Section 304(b) of the Act for the textile manufacturing source category.

Section 306 of the Act requires the Administrator, within one year after a category of sources is included in a list published pursuant to Section 306(b) (1) (A) of the Act, to propose regulations establishing Federal standards of performances for new sources within such categories. The Administrator published in the Federal Register of January 16, 1973 (38 F.R. 1624), a list of 27 source categories. Publication of the list constituted announcement of the Administrator's intention of establishing, under Section 306, standards of performance applicable to new sources within the
textile manufacturing source category, which was included within the list published January 16, 1973.

Methodology

The effluent limitations guidelines and standards of performance proposed herein were developed in the following manner. The textile industry was first categorized for the purpose of determining whether separate limitations and standards are appropriate for its different segments. Considerations in the industry categorization process included raw materials, the products, manufacturing process, and raw waste characteristics.

The raw waste characteristics for each subcategory were identified through analyses of: (1) the sources and volumes of water and waste waters and (2) the constituents of all waste waters including toxic or hazardous constituents and other constituents which result in taste, odor or color. The constituents of waste waters that should be subject to effluent limitations guidelines and standards of performance were identified.

The full range of control and treatment technologies existing within each subcategory were identified. This included an identification of each distinct control and treatment technology, including both in-plant and end-of-process technologies, which are existent or capable of being designed for each subcategory. It also included an identification, in terms of the amount of constituents and the chemical, physical, and biological characteristics of pollutants, of the effluent level resulting from the application of each of the treatment and control technologies. The problems, limitations, and reliability of each treatment and control technology and the required implementation time were also identified. The non-water quality environmental impact were also identified, e.g., the effects of the application of such technologies upon other pollution problems, including air, solid waste, noise, and radiation. The energy requirements of each of the control and treatment technologies were identified as well as the cost of the application of such technologies.

The information, as outlined above, was then evaluated to determine what levels of technology constituted the "best practicable control technology currently available," "best available technology economically achievable" and "best available demonstrated control technology, processes, operating methods, or other alternatives." In identifying such technologies, various factors were considered. These included the total cost of application of technology in relation to the effluent reduction benefits to be achieved from such application, the age of equipment and facilities involved, the process employed, the engineering aspects of the application of various types of control techniques process changes, non-water
quality environmental impact (including energy requirements), the treatability of the wastes, and water use practices.

The data for the identification and analyses were derived from a number of sources. These sources included EPA research information, published literature, previous EPA technical guidance for textile manufacture, various industry associations, qualified technical consultation, and on-site visits and interviews at exemplary textile manufacturing plants in the United States. All references used in developing the guidelines for effluent limitations and standards of performance for new sources reported herein are listed in Chapter XIV.

General Description of the Industry

Since 1638, when the first commercial mill was erected at Raleigh, Massachusetts, the U.S. textile industry has burgeoned to a point where there are nearly 7100 plants in 47 states, employing about one million people, and in 1972 selling goods valued at just under $28 billion. These plants range from highly integrated manufacturing complexes that process basic raw materials into finished products, to small non-integrated contract plants that process goods owned by other producers.

According to the 1967 Census of Manufacturers, the textile industry, SIC Code 22, contains ten major SIC classifications. In recent decades, the industry has been concentrating in the Southeast—notably in the Carolinas, Georgia and Alabama—and this trend is continuing. Today 38 percent of the textile plants are in the Southeast and 92 percent are on the eastern seaboard. The rest, as shown in Table 3, are scattered throughout the country. Knitting mills, with almost 2,700 plants listed, constitute the largest group but there are also about 1,000 weaving mills of various types and over 1,000 plants which process miscellaneous textile goods. Most of the textile industry is contained within EPA Regions 1, 2, 3 and 4, with Region 4 accounting for a major proportion of the industry. As shown below, almost 80 percent of the industry is located in the southern and mid-atlantic states.
<table>
<thead>
<tr>
<th>Region</th>
<th>Number of Mills</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>South</td>
<td>2656</td>
<td>38</td>
</tr>
<tr>
<td>Mid-Atlantic</td>
<td>2821</td>
<td>40</td>
</tr>
<tr>
<td>New England</td>
<td>978</td>
<td>14</td>
</tr>
<tr>
<td>North Central</td>
<td>321</td>
<td>4</td>
</tr>
<tr>
<td>West</td>
<td>304</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>7080</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: 1967 Census of Manufacturers
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NORTHEAST REGION</td>
<td></td>
</tr>
<tr>
<td>New England Div.</td>
<td>978</td>
<td>21</td>
<td>64</td>
<td>127</td>
<td>121</td>
<td>113</td>
<td>98</td>
<td>128</td>
<td>35</td>
<td>176</td>
<td>325</td>
<td>48</td>
<td>176</td>
<td>354</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maine</td>
<td>56</td>
<td>4</td>
<td>7</td>
<td>18</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>11</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Hampshire</td>
<td>79</td>
<td>1</td>
<td>9</td>
<td>16</td>
<td>15</td>
<td>15</td>
<td>4</td>
<td>-</td>
<td>11</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermont</td>
<td>14</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massachusetts</td>
<td>400</td>
<td>-</td>
<td>19</td>
<td>41</td>
<td>37</td>
<td>49</td>
<td>45</td>
<td>19</td>
<td>53</td>
<td>129</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhode Island</td>
<td>293</td>
<td>4</td>
<td>23</td>
<td>36</td>
<td>51</td>
<td>15</td>
<td>31</td>
<td>10</td>
<td>34</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connecticut</td>
<td>136</td>
<td>4</td>
<td>6</td>
<td>9</td>
<td>15</td>
<td>28</td>
<td>18</td>
<td>1</td>
<td>16</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid. Atlantic Div.</td>
<td>2,821</td>
<td>57</td>
<td>132</td>
<td>89</td>
<td>137</td>
<td>1,503</td>
<td>325</td>
<td>48</td>
<td>176</td>
<td>354</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>1,521</td>
<td>17</td>
<td>33</td>
<td>39</td>
<td>50</td>
<td>964</td>
<td>144</td>
<td>16</td>
<td>70</td>
<td>188</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Jersey</td>
<td>558</td>
<td>25</td>
<td>37</td>
<td>10</td>
<td>31</td>
<td>192</td>
<td>131</td>
<td>3</td>
<td>28</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>742</td>
<td>15</td>
<td>62</td>
<td>40</td>
<td>56</td>
<td>347</td>
<td>50</td>
<td>29</td>
<td>78</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO. CENTRAL REGION</td>
<td>321</td>
<td>-</td>
<td>7</td>
<td>22</td>
<td>14</td>
<td>76</td>
<td>29</td>
<td>13</td>
<td>15</td>
<td>141</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. No. Central Div.</td>
<td>251</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>9</td>
<td>61</td>
<td>24</td>
<td>7</td>
<td>15</td>
<td>111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ohio</td>
<td>74</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>19</td>
<td>12</td>
<td>2</td>
<td>5</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indiana</td>
<td>13</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illinois</td>
<td>76</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>14</td>
<td>13</td>
<td>-</td>
<td>4</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michigan</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wisconsin</td>
<td>58</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>25</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>17</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W. No. Central Div.</td>
<td>70</td>
<td>-</td>
<td>3</td>
<td>10</td>
<td>5</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minnesota</td>
<td>24</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iowa</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missouri</td>
<td>34</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3 (Con't)

<table>
<thead>
<tr>
<th>Product</th>
<th>Cotton</th>
<th>Synthetic</th>
<th>Mills-Wool</th>
<th>Mills</th>
<th>Mills</th>
<th>Mills</th>
<th>Mills</th>
<th>Mills</th>
<th>Mills</th>
<th>Mills</th>
<th>Mills</th>
<th>Mills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textile Mills</td>
<td>22</td>
<td>221</td>
<td>222</td>
<td>223</td>
<td>224</td>
<td>225</td>
<td>226</td>
<td>227</td>
<td>228</td>
<td>229</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weaving</td>
<td></td>
</tr>
<tr>
<td>Narrow Fabric Finishing</td>
<td></td>
</tr>
<tr>
<td>Knitting Covering Thread</td>
<td></td>
</tr>
<tr>
<td>Textile Goods</td>
<td></td>
</tr>
<tr>
<td>South Region</td>
<td></td>
</tr>
<tr>
<td>South Atlantic Div.</td>
<td>2,214</td>
<td>254</td>
<td>178</td>
<td>43</td>
<td>83</td>
<td>770</td>
<td>145</td>
<td>199</td>
<td>387</td>
<td>155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delaware</td>
<td>13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Maryland</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Virginia</td>
<td>109</td>
<td>6</td>
<td>22</td>
<td>10</td>
<td>9</td>
<td>30</td>
<td>9</td>
<td>3</td>
<td>8</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Virginia</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>North Carolina</td>
<td>1,260</td>
<td>67</td>
<td>77</td>
<td>6</td>
<td>40</td>
<td>630</td>
<td>77</td>
<td>35</td>
<td>262</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Carolina</td>
<td>359</td>
<td>112</td>
<td>57</td>
<td>11</td>
<td>19</td>
<td>38</td>
<td>31</td>
<td>19</td>
<td>41</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Georgia</td>
<td>407</td>
<td>67</td>
<td>21</td>
<td>11</td>
<td>6</td>
<td>44</td>
<td>16</td>
<td>142</td>
<td>70</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Florida</td>
<td>31</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>East So. Central Div.</td>
<td>344</td>
<td>34</td>
<td>10</td>
<td>7</td>
<td>18</td>
<td>130</td>
<td>19</td>
<td>24</td>
<td>51</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kentucky</td>
<td>27</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tennessee</td>
<td>149</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>76</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alabama</td>
<td>141</td>
<td>29</td>
<td>6</td>
<td>2</td>
<td>7</td>
<td>29</td>
<td>6</td>
<td>7</td>
<td>35</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mississippi</td>
<td>27</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>15</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>West So. Central Div.</td>
<td>98</td>
<td>19</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>10</td>
<td>6</td>
<td>8</td>
<td>-</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Arkansas</td>
<td>16</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Louisiana</td>
<td>10</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Texas</td>
<td>66</td>
<td>15</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>West Region</td>
<td>304</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>11</td>
<td>96</td>
<td>19</td>
<td>58</td>
<td>6</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mountain Division</td>
<td>18</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Utah</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pacific Division</td>
<td>286</td>
<td>-</td>
<td>-</td>
<td>18</td>
<td>11</td>
<td>91</td>
<td>17</td>
<td>57</td>
<td>5</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oregon</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>California</td>
<td>245</td>
<td>-</td>
<td>-</td>
<td>9</td>
<td>10</td>
<td>80</td>
<td>16</td>
<td>56</td>
<td>5</td>
<td>66</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The industry's basic raw materials are wool, cotton, and man-made fibers. Of the roughly 5.0 billion kilograms (11 billion pounds) of raw materials consumed by the industry in 1972, wool (computed on a clean basis) accounted for about 0.09 billion kilograms (0.2 billion pounds), cotton for 1.8 billion kilograms (4 billion pounds) and man-made fibers for 3.2 billion kilograms (7 billion pounds).

Among the man-made fibers, the most important are rayon, acetate, nylon, acrylic, polyester, polypropylene, and glass fiber.

The natural fibers are supplied in staple form, (staple being short fibers). The man-made fibers are supplied as either staple or continuous filament. In either case the fiber is spun into yarn, which is simply a number of filaments twisted together. The yarn is woven or knit into a fabric, and the fabric then dyed and treated to impart such characteristics as shrink resistance, crease resistance, etc. The finished fabric is delivered--directly or through converters, jobbers, and wholesalers--to the manufacturer of textile products.

The many woven fabrics are produced by variations in the weaving pattern. Plain, or tafeta, weaves give such fabrics as broadcloth, calico, cheesecloth, muslin, seersucker, flannel and tweed. Twill weaves are represented by serge, herringbone, jersey, gabardine, and ticking. Because of their superior strength, twill fabrics are used for work clothes and men's suits. Satin weaves are smooth but weak; the best known are crepe satin, sateen, and damask. Dobby and Jacquard weaves are used to produce patterned fabrics. Dobby weaves are used in men's shirting and women's dress fabrics. Jacquard weaves are used extensively for upholstery and drapery materials. Finally, there are the pile weaves, which include velvets, pluses, corduroys and Turkish toweling.

In transforming a fiber into one of these woven fabrics, two types of processes are used: wet and dry. The SIC code breakdown is not particularly useful for evaluating the waste effluent problems of the textile industry. These codes are grouped primarily by the process used--e.g., weaving or knitting--whereas the waste effluent problems stem from all the wet processes which are used to desize, wash, dye and finish the textile fabric. The wet processes of interest include: scouring, desizing, mercerizing, bleaching, dyeing and finishing. Dry processes include: spinning, weaving, knitting, bonding and laminating. Although SIC Code 226 identifies textile finishing, Code 221 identifies weaving mills which may also be integrated mills that have a finishing operation or may be greige goods mills that have only dry processing. Knitting mills fall into a similar category; many of the mills identified as knitting mills, in fact, process dyed yarns and, therefore, essentially carry out dry operations.
There is no exact figure for the number of wet processing plants or the total water use by the industry, but the Census of Manufacturers gave for 1968 under Textile Mill Products a total of 684 wet plants which consume 412 billion liters (109 billion gallons) of process water per year. (This includes sanitary and cooling water, etc.) A more recent estimate, by the American Textile Manufacturers' Institute in 1970, found 346 plants using 394 billion liters (104 billion gallons) per year, estimated to be 83 percent of the total industry use.

Table 4 gives details of the process water used and discharged divided as far as possible according to the EPA subcategories. The largest water users are undoubtedly the finishing plants, with a total of 269 billion liters (71 billion gallons) per year, averaging 7.3 million cubic meters per day (19 million gallons per day). The next highest category is the wool finishing operations, with 47.3 billion liters (12.5 billion gallons) per year averaging 27,000 cubic meters per day (0.7 million gallons per day) but consisting of a much smaller segment of the textile industry.

A summary of this data is presented in Table 5, which shows that 110 billion liters (29 billion gallons) per year or 26.6 percent of the water was discharged to municipal sewers and 73.2 percent or 303 billion liters (80 billion gallons) per year to surface water. The 73.2 percent also divides into 24.2 percent that received no treatment, 21 percent that received primary treatment and 28.2 percent that received secondary treatment before discharge. Since 1968 many more treatment plants have been built and from a consideration of RAPP data and the recent survey by the ATMI, we estimate that about 35 percent of the water used is now discharged to municipal sewers, 15 percent receives no treatment, 5 percent receives primary treatment and 45 percent receives secondary treatment. Undoubtedly, the smaller mills or those using the least amounts of water have found it more economical to use municipal treatment instead of constructing their own facilities.
Table 4

Water Use by the Textile Industry

<table>
<thead>
<tr>
<th>SIC Code</th>
<th>ADL Category</th>
<th>Value of Shipments (Million dollars)</th>
<th>No. of Plants</th>
<th>Process Water Used 10^6 cu m/yr (BG/yr)</th>
<th>Process Water Used cu m/d (MGD)</th>
<th>Average Water use/plant 10^6 cu m/yr (BG/yr)</th>
<th>Water Sewer 10^6 cu m/yr (BG/yr)</th>
<th>Discharged Surface 10^6 cu m/yr (BG/yr)</th>
<th>Treated Before Discharge Total 10^6 cu m/yr (BG/yr)</th>
<th>Discharge Ponds 10^6 cu m/yr (BG/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Total</td>
<td>9,235.5</td>
<td>684</td>
<td>413.</td>
<td>(109.0)</td>
<td>2100.</td>
<td>192.</td>
<td>306.</td>
<td>203</td>
<td>117</td>
</tr>
<tr>
<td>2297</td>
<td>1</td>
<td>49.5</td>
<td>9</td>
<td>2.6</td>
<td>(0.7)</td>
<td>1100.</td>
<td>.38</td>
<td>3.4</td>
<td>2.3</td>
<td>-</td>
</tr>
<tr>
<td>2231</td>
<td>2</td>
<td>758.2</td>
<td>67</td>
<td>47.3</td>
<td>(12.5)</td>
<td>2600</td>
<td>15.</td>
<td>42.4</td>
<td>26.</td>
<td>15</td>
</tr>
<tr>
<td>+2283</td>
<td></td>
</tr>
<tr>
<td>2211</td>
<td>4</td>
<td>4,787.3</td>
<td>348</td>
<td>269.</td>
<td>(71.1)</td>
<td>2800</td>
<td>99.5</td>
<td>213.</td>
<td>137</td>
<td>74.9</td>
</tr>
<tr>
<td>+2221</td>
<td></td>
</tr>
<tr>
<td>+2241</td>
<td></td>
</tr>
<tr>
<td>+ 226</td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>5</td>
<td>1,119.7</td>
<td>100</td>
<td>32.</td>
<td>(8.4)</td>
<td>1100.</td>
<td>28.</td>
<td>11.</td>
<td>8.7</td>
<td>2.3</td>
</tr>
<tr>
<td>227</td>
<td>6</td>
<td>1,067.6</td>
<td>50</td>
<td>30.</td>
<td>(7.8)</td>
<td>2100.</td>
<td>23.</td>
<td>11.</td>
<td>11.</td>
<td>6.4</td>
</tr>
<tr>
<td>228</td>
<td>7</td>
<td>660.3</td>
<td>60</td>
<td>21.</td>
<td>(5.6)</td>
<td>1200.</td>
<td>16.</td>
<td>16.</td>
<td>15.</td>
<td>14.</td>
</tr>
<tr>
<td>(-2283)</td>
<td></td>
</tr>
</tbody>
</table>

Source: Department of Commerce -- 1967 Census of Manufacturers
Table 5
Water Discharged by the Textile Industry

<table>
<thead>
<tr>
<th></th>
<th>1968</th>
<th></th>
<th>1972</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amount</td>
<td>Percent</td>
<td>Amount</td>
<td>Percent</td>
</tr>
<tr>
<td></td>
<td>10⁶ cu m/yr</td>
<td>of Total</td>
<td>10⁶ cu m/yr</td>
<td>of Total</td>
</tr>
<tr>
<td>To Municipal Sewer</td>
<td>110.</td>
<td>26.6</td>
<td>166.</td>
<td>35.</td>
</tr>
<tr>
<td></td>
<td>(29.)</td>
<td></td>
<td>(44.)</td>
<td></td>
</tr>
<tr>
<td>To Surface Water:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. No Treatment</td>
<td>99.5</td>
<td>24.2</td>
<td>71.</td>
<td>15.</td>
</tr>
<tr>
<td></td>
<td>(26.3)</td>
<td></td>
<td>(19.)</td>
<td></td>
</tr>
<tr>
<td>2. Primary Treatment</td>
<td>86.7</td>
<td>21.0</td>
<td>24.</td>
<td>5.</td>
</tr>
<tr>
<td></td>
<td>(22.9)</td>
<td></td>
<td>(6.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(30.8)</td>
<td></td>
<td>(56.)</td>
<td></td>
</tr>
<tr>
<td>TOTAL PROCESS WATER</td>
<td>413.</td>
<td>100.0</td>
<td>473.</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>(109.)</td>
<td></td>
<td>(125.)</td>
<td></td>
</tr>
</tbody>
</table>

Sources: Department of Commerce 1967 Census of Manufacturers
Refuse Act Permit Program Data
American Textile Manufacturers Institute
Arthur D. Little, Inc. Estimates
Profile of Manufacturing Processes

As mentioned above the industry's basic raw materials are wool, cotton and synthetic fibers. The fiber and fabric finishing operations are described below for each of these three materials. Finally, these operations are related to the selected subcategorization through brief process descriptions of each subcategory. The rationale for subcategorization along with detailed descriptions of the seven segments is given in Section IV.

Wool Fiber and Fabric Finishing Operations

Wool fiber consumption is smaller than either cotton or synthetic fiber and the trend seems to be a decreased demand in the future on a percentage basis. The operations required to produce a finished piece of woolen fabric are described below - either knitting or weaving can be done at a given mill. The first treatment given to raw wool after it leaves the sheep's back is usually that of scouring or washing. Scouring frees the wool from considerable quantities of natural grease, soluble salts (perspiration or suint), sand and dirt which are always present. There are two methods of wool scouring - detergent scouring and solvent scouring. In the United States the detergent scouring process is used almost exclusively. The process is carried out in a series of four long narrow bowls. The first two bowls have a capacity of between 1500 and 2000 gallons and the normal procedure is to employ sodium carbonate and a little soap or non-ionic detergents of the ethylene oxide condensate class. In the third bowl a small quantity of non-ionic detergent is used and the last bowl employs water only. The pH of the scouring bath varies between pH 9 and 10.5 depending upon the type of wool. The temperature varies from 125 - 130°F in the first bowl to 110 - 115°F in the last bowl. This process consumes a volume of 8,000 to 12,000 gallons of water per 1000 lbs. of wool fiber. Wool scouring produces one of the strongest wastes in terms of BOD. This process contributes 55 to 75% of the total BOD load in wool finishing.

The next wet processing step is carbonizing and the object is to remove cellulosic impurities existing either as vegetable burrs and seeds or as vegetable fibers from wool materials (in the form of loose wool or woven goods).

The carbonizing treatment is based on the degradation of cellulose to hydro-cellulose when acted upon by mineral acids - generally sulfuric acid - at high temperatures and consists essentially of impregnating the contaminated materials with a dilute solution of acid; drying, baking, and subjecting to mechanical action whereby the degraded cellulose is removed as dust.
Loose wool intended for manufacture on the woolen system is carbonized in this form if the content of vegetable impurity is high or if it is to be used in the production of fancy woolens. Wool containing less vegetable contamination and destined for manufacture into piece dyed styles is carbonized in the piece form.

Following carbonizing, the wool stocks or fabrics are thoroughly rinsed and neutralized with sodium carbonate. After this neutralization bath the fabric is rinsed again. Since sulfuric acid and sodium carbonate have little or no BOD this process contributes less than 1% of the total BOD.

Wool is dyed in either the loose state, as yarn or as piece goods. The classes of dyes are - acid dyes, mordant dyes and metallized dyes. Dye formulations will vary depending on the use of the wool. Acid dyes are generally used for women's wear with mordant and metallized dyes used for men's wear. In dyeing of wool the dye bath temperature will vary from 140°F to 205°F. The pH will vary, depending upon the dyes used, from pH 6.5 to highly acid pH 1.5. The volume of waste water generated by dyeing is large and highly colored. The BOD load is contributed by the process chemicals used, and the contribution of wool dyeing to the mills total BOD load is 1 to 5 percent.

Loose wool is oiled after drying to facilitate the spinning operation. The oiling step does not contribute directly to the waste water stream. The process chemicals are washed out of the fabric during the fulling step or scouring prior to dyeing or bleaching. Woolen fabrics are generally fulled prior to dyeing. Shrinkage is induced and controlled according to the type of finish required.

There are two common fulling methods, alkali and acid fulling. In the former case soap or detergent, sodium carbonate, and sequestering agents are used. In the acid fulling, the fabric is impregnated with an aqueous solution of sulfuric acid (from carbonizing). In either case the bath temperature is 100 - 115°F at pH 4.0 to 8.0. Following this operation the goods are washed to remove the fulling chemicals. It is estimated that from 10 to 25% of the fulled cloth's weight is composed of process chemicals that will be washed out in this process and wasted. Due to this large amount of waste, wool washing after fulling is the second largest source of BOD, contributing 20 - 30% of the total. The usual procedure in the process is to subject the fulled cloth to two soapings, two warm washes and one cold rinse. Usually a 2% solution of soap or detergent is used in the soaping. The warm water rinsing is done at 100°F. This process consumes from 15,000 - 25,000 gallons of water for each 1000 lbs. of wool fabric. Analyses show that wool, once thoroughly washed, will produce little or no BOD of itself on being rewarshed.
In the processing of wool fibers, five sources of pollution load exist - scouring, dyeing and/or whitening or bleaching, fulling, carbonizing and chemical finishing. Figures 1 and 2 represent the basic operations that take place in woolen fabric manufacturing.

Cotton Fiber and Fabric Finishing Operations

The consumption of cotton fibers by textile mills in the United States exceeds that of any other single fiber; however, the total synthetic fiber poundage consumed by the textile industry is greater than that of cotton. The operations required to produce a piece of finished cotton fabric are described below.

Slashing is the first process in which liquid treatment is involved. In this process, the warp yarns are coated with "sizing" in order to give them tensile strength to withstand the pressures exerted on them during the weaving operation. Such substances as starch, starch substitutes, polyvinyl alcohol, carboxy methyl cellulose, gelatin glue and gums have been used as size agents. The source of pollution in this process results from the cleaning of slasher boxes, rolls, and make up kettles. The volume is therefore usually low; however, the BOD can be quite high, especially if starch is used.

The operation of desizing removes the substance applied to the yarns in the slashing operation, by hydrolyzing the size into a soluble form. There are two methods of desizing - acid desizing and enzyme desizing. In acid desizing, the fabric is soaked in a solution of sulphuric acid, at room temperature, for 4 to 12 hours, and then washed out. In enzyme desizing, complex organic compounds produced from natural products or malt extracts are used to solubilize the size. The bath is maintained at a temperature of $130^\circ - 180^\circ$F. and a pH of 6-7.7, for a period of 4-8 hours. Due to the unstable nature of these organic compounds, the whole bath must be discarded after each batch. After the size has been solubilized, the fabric is rinsed clean. Desizing contributes the largest BOD of all cotton finishing processes - about 45 percent.

Scouring follows desizing. In this process, the cotton wax and other non-cellulosic components of the cotton are removed by hot alkaline detergents or soap solutions. In most modern plants, scouring is done in conjunction with desizing rather than as a separate operation. Caustic soda and soda ash along with soaps and synthetic detergents and inorganic reagents are used to remove the non-cellulose impurities. The bath is characterized by a pH of 10 to 13 and temperatures of up to 212°F. Although the strength of alkali in the beginning of the operation is between 1 percent and 5 percent, the waste liquor will have a 0.3 percent alkaline concentration, the rest being taken out of solution by the cotton fibers. In a few mills, the scouring process is a batch operation.
requiring the fabric to remain in the kier for a period of from 2 - 12 hours. Scouring is the second largest BOD contributing process in the finishing of cotton textiles - about 31 percent. Following the "boil-off," the goods are rinsed clear with hot and cold water to remove residual alkali.

Bleaching, the next process, removes the natural yellowish coloring of the cotton fiber and renders it white. The two bleaches most commonly used for cotton are sodium hypochlorite and hydrogen peroxide. In hypochlorite bleaching the fabric, after scouring, is impregnated with an alkaline solution of hypochlorite and allowed to stand at room temperature for 4 to 12 hours. It is then washed, saturated with a weak solution of hydrochloric or sulfuric acid for neutralization and then again washed.

About 80% of the cotton containing fabrics which are bleached white are done on continuous ranges using hydrogen peroxide. The fabric, after desizing, is impregnated with a 2-3% solution of caustic soda and stored in a "J" box at 200°F for 1 hour. This operation replaces the kier scouring of the batch method. After the caustic scour, the fabrics are washed and then impregnated with a 2-3% solution of hydrogen peroxide and again go into a storage "J" for 1 hour at 200°F. After this the fabrics are washed. All of the above are synchronized so as to give a continuous output of 50 to 200 yards per minute depending on the weight of the fabric and size of the equipment.

The mercerization process was originally developed to give increased luster to cotton fabrics. Today it is still used for that purpose, but more importantly to impart increased dye affinity and tensile strength to the fabric. It is estimated that only 30 percent of all cotton fabrics are now mercerized, and with the increasing use of cotton-polyester blends, less will probably be done in the future. The process uses a 15 to 24 percent solution of sodium hydroxide at room temperature for 1/2 to 3 minutes. The fabric is then rinsed in an acid wash to neutralize the fabric, washed in water and then dried. The effluent from this process is alkaline and high in dissolved solids, but low in BOD.

After mercerizing, the goods are sent to the dye house or color shop. In the dye house they are dyed either in small volumes in batch process machines, or on continuously dyeing ranges in large volumes. There are five important classes of dyes used on cotton fabrics: vat, developed, sulphur, direct, and fiber reactive.

The dyeing process is carried out in an aqueous bath with pH variations. Cotton fabrics are printed with primarily three classes of colors: pigments, vats, and fiber reactives. The most important methods of printing are roller printing and rotary and flat bed screen printing. The color in the former method of printing is
delivered to the fabric by way of a print paste from an engraved roll. The latter method requires the print paste to be pushed through a perforated screen to the fabric. The print paste contains color, thickener, Varsol (pigment systems only), hygroscopic substances, resins (pigment system only), and water. With fiber reactive dyes, the pH of the print paste is adjusted to 8.5. The pH of the print paste for vat dye is neutral, but the print is treated with caustic soda and hydrosulfite prior to flash aging.

The pollutional load from the color shop comes mainly from the washdown rinses used to clean the equipment in the shop and the cloth rinsings. The pollutional load is rather low in both volume and BOD. When a mill does both printing and dyeing, the BOD contribution of the combined processes is 17 percent, and the total BOD load comes from the process chemicals used.

Synthetic Fiber and Fabric Finishing Operations

In this category of textile fibers there are two broad classifications: cellulosic and non-cellulosic fibers. The two major cellulosic fibers are rayon and cellulose acetate. The major non-cellulosic fibers are nylon, polyester, acrylics and modacrylics. There are other fibers in both classes, but at present they are not consumed in as large a volume as the six fibers mentioned above. The largest volume of synthetic fibers consumed by textile mills comes from the non-cellulosic fibers; and the trend is toward an even greater demand in the future, particularly for polyester fibers. Synthetic fibers can be converted into fabrics in one of two ways. Continuous filament yarns can be used to manufacture 100 percent synthetic fabrics, or staple yarns can be used to produce fabrics that are blends of man-made fibers or man-made and natural fibers. Blended fabrics are processed according to the natural fiber component of the yarn.

The first process in which synthetic fibers would be subject to an aqueous treatment is stock dyeing, unless the fabric is to be piece dyed, printed, or used in white. When stock dyeing is used, the liquid waste discharge will vary from about 8 to 15 times the weight of the fibers dyed.

Due to the low moisture regain of the synthetics, static electricity is a problem during processing. To minimize this problem, anti-static materials are applied to the yarns, which also serve as lubricants and sizing compounds. These compounds commonly used are: polyvinyl alcohol, styrene-base resins, polyalkylene glycols, gelatin, polyacrylic acid, and polyvinyl acetate. These compounds become a source of water pollution when they are removed from the fabrics during scouring. Since the manufacture of synthetic fibers can be well controlled, chemical impurities are relatively absent in these fibers; therefore, only light scouring and little or no
bleaching are required prior to dyeing; and if synthetics are bleached, the process is not normally a source of organic or suspended solids pollution. The process may generate dissolved solids when chlorine bleaches are used.

Process Description by Subcategory

Subcategory 1 - Wool Scouring: A generalized flow diagram of the wool scouring process is shown in Figure 1. Scouring consists of sorting the fleece and feeding it to a hopper. The wool then is carried through a series of scouring bowls where scour liquor flows countercurrent to it. Detergent is added in the third or fourth bowls to emulsify the greases and oils. The scoured wool is then dried. In mills where the cleaned wool is converted into wool top, the wool is combed and gilled. The products are short fibers (used for wool yarn) and long fibers (used for worsted yarn).

Subcategory 2 - Wool Finishing: The wool finishing process is depicted in Figure 2. The three distinct finishing processes are shown as stock, yarn and fabric finishing. Because the pollution generated by the fabric finishing operation is similar to that generated by the other two, fabric finishing is included in this discussion. If the greige goods are 100 percent wool, they are first cleaned of vegetable matter by carbonizing and then cleaned of spinning oils and any weaving sizes by a light scour. The 100 percent woolens are then dimensionally stabilized, principally by "fulling," or mechanical working of the wet fabric in the presence of detergents, to produce a controlled shrinkage or "felting." Worstedts and most wool-synthetic blends are not fulled. Worstedts are hard, tightly-woven and dimensionally stable as received at the finishing plant; woolens are loosely-woven, soft and often are firmed up by fulling.

The fabric is then dyed in batches in vessels called becks, washed in the same vessels, and taken to dry finishing operations. The only dry finishing operation of concern to water pollution is mothproofing.
Figure 1 Subcategory 1: Wool Scouring

Figure 2 Subcategory 2: Wool Finishing
Subcategory 3 - Dry Processing: Dry processing textile mills include greige mills (yarn manufacture, yarn texturizing, and unfinished fabric manufacture), coated fabrics, laminated fabrics, tire cord fabrics and felts and carpet tufting and carpet backing. The principal source of effluent from such products and processes is the washing and cleaning of equipment.

Any mill making unfinished fabric is known as a greige mill. Weaving textile yarns into a fabric requires application of size to the warp yarns in order to resist the abrasive effects of the filling yarns as these are positioned by the shuttle action of the loom. Greige mills apply the size and complete the weaving, but do no materials finishing. Many operate as completely independent facilities. Figure 3 shows operations generally performed at one type of greige mill.

Weaving is a dry operation, but is normally done in buildings maintained at high humidity. Under these conditions, the size film is flexible, and yarn breaks on the loom are minimized. Yarns sized with polyvinyl alcohol may be woven at a somewhat lower humidity than yarns sized with starch. Cooling and humidifying water used in a greige mill represents a substantial portion of the total water usage. Industrial wastes from knit greige goods are nil. If any wastes are generated they are from the knitting oils, however, these would only enter the waste stream through spills, wash up or possibly from the washing of the final product.

Polyvinyl chloride (PVC) coated fabrics dominate coated fabric production included under SIC code 22. Rubberized, or rubber coated, fabrics are specifically excluded from this code and are assigned to SIC code 3069. It is estimated that PVC coatings account for 70 percent or more of total coated fabric production. These coatings are applied as 100 percent "active solids" systems either as plastisols (dispersion of polymer particles in liquid plasticizer) or as melts (flexible grade polymer plus plasticizer). The plastisols are generally coated by knife over roll coaters and the melts are applied by calenders. A minor portion, estimated at 10 percent or less, of coated fabrics is coated with polymer latices (PVC or acrylic). In this case some dilute aqueous waste is generated from equipment wash-ups. Plastisol coating and calendering of PVC coatings do not involve process water use. Therefore, these plants are dry operations.

Felts are composed of fur, hair, wool and synthetic fibers in various combinations. Synthetics are vastly predominant today. Felt is a nonwoven material formed by physically interlocking fibers by a combination of mechanical work, chemical action, moisture, and heat. After felting, the felt is rinsed. If dyeing is performed, it is done in the fiber form before felting. Often the felts are
finished with a resin of the resorcinol/formaldehyde or acrylic type.

Nonwoven webs made by so-called dry processes (carded webs, air-laid webs, etc.) comprise the largest segment of the nonwoven industry. While the webs are formed by a dry process, binders are usually applied in the form of latex by dip, gravure roll, or spray application. Acrylic polymer type latices account for about 80 percent of total binders used. The binder formulations are conserved for use on a day-to-day basis. However, some dilute aqueous wastes are generated by equipment wash-ups.

Tire cord fabric plants prepare the cord fabrics used in the production of tires. These plants purchase yarns and twist and weave the yarns into a loose fabric structure. The fabric is then dipped in a latex based bath and dried in what is referred to as a Z-calendering operation. This treatment serves to prime the fabric to provide adhesion to the rubber during vulcanization of the tire. The only process waste generated in these plants originates from occasional wash-ups of equipment. Our assessment of available data from a number of these plants indicates that waste loads are extremely small.

For carpet backing, a continuous applicator applies a foamed latex layer to the carpet's underside. In double-backed carpet, a layer of unfoamed latex is applied in the same manner, and a final fabric backing is pressed on, being cemented in place by the latex. In either case, a liquid latex waste is generated. Some of the latex becomes hardened, so a mixture of solid and liquid latex results. Some of this material is collected by shovelling it into a barrel for land-fill disposal. The rest is washed off by hosing and removed by coagulation.

Subcategory 4 - Woven Fabric Finishing: Wet processes which are used in finishing woven greige fabric may be divided into two groups: those used to remove impurities, clean or modify the cloth; and those in which a chemical is added to the cloth.

The first of these groups includes desizing, scouring, bleaching, mercerizing, carbonizing and fulling. Only cotton and cotton blends are mercerized. The last two of these processes are used only on wool and wool blends.

The second group of processes includes dyeing, printing, resin treatment, water proofing, flame proofing, soil repellency and a few special finishes whose use represents a very small proportion of the total.

Certain fabrics, including denims and some drapery goods, are "loom finished." In production of these goods, the warp yarns are dyed,
woven to a fabric, and the fabric finished with a permanent size. For these fabrics, the first group of processes listed above (cleaning and preparing the cloth) is avoided entirely. For this reason, mills producing this group of fabrics may be a subcategory, although we have not treated it as such. The degree of finishing necessary to provide fabric ready for sale depends significantly on the fiber(s) being processed. The natural fibers (cotton and wool) contain substantial impurities, even after they have been woven as greige goods, and require special treatments to convert them to the completely white, uniformly absorbent form that is essential for dyeing, resin treatment, etc. Synthetic fibers contain only those impurities that were necessary for manufacture of the fiber and spinning to obtain yarn.

The different operations listed above have been described in the literature. A flow sheet for woven fabric finishing is given in Figure 4.

Subcategory 5 - Knit Fabric Finishing: The wet processing operations performed in knit fabric finishing are shown schematically in Figure 5. This is necessarily a generalized flowsheet; the specific operations employed will vary from plant to plant. In general, the yarns are purchased in the undyed state, with a knitting oil finish to provide lubrication for the knitting operation. The amount of finish on the yarn ranges from 1 to 7 percent depending on the type of yarn and fiber. This is a significant difference from weaving yarns which are sized with starch or other polymeric materials. After the yarn has been knitted into fabric, the fabric may be processed by one or more of the alternative routes indicated in Figure 5. The wet process operations employed in a plant depend on the nature of the goods involved and the end product requirements.

Subcategory 6 - Carpet Mills: Carpets are yarn dyed, piece dyed, and printed. When yarn dyed carpets are made, the yarn is often dyed in another mill and brought to the carpet mill. The relative quantities of carpets which are produced from yarn-dyed fiber, or colored by beck dyeing, continuous dyeing or printing may vary widely. The amount and degree of latexing may also vary.

The dyed or greige yarn is tufted onto a polypropylene or jute woven backing in a dry operation (Figure 6). Following this, the tufted carpet can be either printed or dyed. If printed, a semi-continuous screen printing operation is performed, followed by a wash and rinse step in the same machine. If dyed, the most common method is beck dyeing, in a manner quite similar to that described in previous categories for piece goods. The industry claims a higher liquor-to-fabric ratio, however, because of the difficulty in making the carpet sink and become thoroughly wetted. Many small air bubbles become entrapped in the tufts and excess water must be added to
weigh down the carpet. The continuous dyeing process consists of
the application of dye followed by a steam fixation treatment in a
mildly acidic atmosphere. Washing follows to remove residual dye,
acid, thickeners, and any materials which had been previously
applied to the yarn to facilitate tufting. Substantial amounts of
dyes and chemicals may be in the effluent from both the steamer and
the wash boxes. After it is dyed the carpet is dried in a tunnel
drier. The carpet is then ready for application of either a single
or a double backing.

Subcategory 7 - Stock and Yarn Dyeing and Finishing: In this
subcategory, crude yarn is obtained from a spinning facility. The
yarn may be natural, synthetic, or blended. Wet processes used by
yarn mills include scouring, bleaching, mercerizing, dyeing, and
finishing (Figure 7).

Several techniques are available for processing raw yarn into the
finished product. The most common process is probably package
dyeing, but other processes, such as skein or space dyeing, are
widely used. In the former process, yarn wound on perforated tubes
is placed in a large vessel, which is sealed. The dye solution, at
an appropriate temperature, is circulated through the yarn and dye
fixation or exhaustion is carried out at an appropriate temperature.
The dyed yarn is worked, rinsed and dried. In space dyeing, yarn is
knit and the fabric is piece dyed, washed, rinsed and dried. The
fabric is then unravelled and the yarn is wound on cones. In skein
drying hanks of yarn are placed in a dyeing vessel and the dye bath
circulated through the hanks. Following rinsing, the yarn is
rewound on hanks for future use.

Subcategory 8 - Commission Finishing

The processing operations performed in commission finishing plants
may be any sequence of operations discussed for the above
subcategories and shown schematically in Figures 1-7.

Commission finishers process material upon demand according to their
customer’s specification. Hence, they have little or no control
over the scheduling and flow of material through the plants.
Because they must respond to a wide range of customer needs, they
must have the capability to provide a broad variety of processes.
They characteristically carry out special or "problem-type"
operations that fall outside the capability of conventional
operations. They typically process short runs of material which
often require batch processing equipment as well as continuous
processes. By its nature, the commission house is unable to
carefully plan and schedule its operations due to dependence on
outside sources for quantity, quality and rate of supply. The
processes involved may be extremely varied, and a single plant may
carry out dyeing and finishing of textiles in all forms, from yarn
and stock to printed and finishing fabric. Because of the flexibility required, the equipment is typically not automated nor as efficient as those found in larger, integrated dyeing and finishing plants.
Figure 3 Subcategory 3: Greige Mills

- Raw Cotton
 - Opening and Picking
 - Carding and Spinning
 - Slashing (Sizing)
 - Weaving
 - Pure Cotton Woven Fabrics
 - To Yarn Dyeing and Finishing (Cat. 7)
- Polyester Stock
 - Blend
 - Carding and Spinning
 - Blended Yarn
 - Slashing (Sizing)
 - Weaving
 - Cotton-Polyester Woven Fabrics
 - To Woven Fabric Finishing (Cat. 4)
- Starch, PVA, or CMC
 - SW
 - LW
 - To Knit Fabric Finishing (Cat. 5)

Legend:
- SW = Solid Waste
- LW = Liquid Waste
Figure 4 Subcategory 4: Woven Fabric Finish
Figure 5 Subcategory 5: Knit Fabric Finishing
Figure 6 Subcategory 6: Carpet Mills
Figure 7 Subcategory 7: Stock and Yarn Dyeing and Finishing
SECTION IV

INDUSTRY CATEGORIZATION

PREVIOUS APPROACHES

In deriving this industry categorization system, existing categorizations and other previous attempts at categorization have been considered. The principal systems investigated were:

a. SIC codes. These codes do not lend themselves to a classification of the industry with respect to characterization of the pollution loads generated. For example, Subcategory 3, dry processing, includes more than 10 SIC categories.

b. The method advanced by the report, "A Simplification of Textile Waste Survey and Treatment" by Masselli, Masselli and Burford. This approach consists of synthesizing the raw waste load from a textile mill by additive contributions of the chemicals used. Tables of BOD values for many chemicals are given in the report. This method was judged too difficult to be implemented by persons not versed in Textile Chemistry and not knowledgeable about the chemicals used.

c. A previous categorization scheme prepared for EPA which employed unit processes to synthesize the raw waste loads. This method was also judged too difficult to implement.

d. The preliminary system developed by EPA in the "interim guidance" for the textile industry.

e. The system developed by the Institute of Textile Technology and Hydrosciences in the study for the American Textile Manufacturer's Institute, Inc., and Carpet and Rug Institute.

Based on knowledge of the various pollution problems, loads generated by the different unit operations in the textile industry, actual and potential waste treatment practices and current manufacturing and processing practices, these five approaches were combined and simplified.

The last two methods (d and e) and the present one have in common a categorization according to the products produced by a mill that in turn relates to type of wastes.
A comparison of the EPA interim guidance and the ATMI/CRI categorizations with those used in this study is given in Table 6.
TABLE 6

COMPARISON INDUSTRY-EPA SUBCATEGORIZATION

<table>
<thead>
<tr>
<th>ATMI SUBCATEGORIZATION</th>
<th>EPA FINAL SUBCATEGORIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wool Scouring</td>
<td>Wool Scouring</td>
</tr>
<tr>
<td>Wool Finishing</td>
<td>Wool Finishing</td>
</tr>
<tr>
<td>Carpet Backing and Foam</td>
<td>Dry Processing</td>
</tr>
<tr>
<td>Greige Mills</td>
<td></td>
</tr>
<tr>
<td>Specialized Finishing</td>
<td></td>
</tr>
<tr>
<td>Woven Fabric Finishing</td>
<td>Woven Fabric Finishing</td>
</tr>
<tr>
<td>Knit Fabric Finishing</td>
<td>Knit Fabric Finishing</td>
</tr>
<tr>
<td>Carpet Mills</td>
<td>Carpet Mills</td>
</tr>
<tr>
<td>Stock Yarn Dyeing and Finishing</td>
<td>Stock Yarn Dyeing and Finishing</td>
</tr>
<tr>
<td>Multiple Operation Commission House</td>
<td>Commission Finishing*</td>
</tr>
<tr>
<td>Greige and Fabric Finishing</td>
<td>Calculated by Proration</td>
</tr>
<tr>
<td>Greige Plus Yarn and Fabric Finishing</td>
<td>Among Dry Processing,</td>
</tr>
<tr>
<td></td>
<td>Woven and Knit Fabric,</td>
</tr>
<tr>
<td></td>
<td>and Stock and Dyeing</td>
</tr>
<tr>
<td></td>
<td>and Finishing</td>
</tr>
<tr>
<td>Combined Materials Finishing</td>
<td></td>
</tr>
<tr>
<td>-Stock, Yarn Wovens, Knits</td>
<td></td>
</tr>
</tbody>
</table>

*The term "Commission Finishing" shall mean the finishing of textile materials, 50 per cent or more of which are owned by others, in mills that are 51 per cent or more independent (i.e. only minority ownership by companies with greige or integrated operations); the mills must process 20 per cent or more of their commissioned production through batch, non-continuous processing operations, with 50 per cent or more of their commissioned orders processed in lots of 50,000 yards or less.
Categorization

The following factors were considered in establishing subcategories in the textile industry.

a) raw material
b) age and size of facilities
c) products and production processes
d) location and climate
e) waste treatability

The principal basis for subcategorization is the configuration of the predominant material being processed. Knit and woven fabrics are different and each is different from carpet, yarn or other fibers. Special processes such as wool scouring and commission finishing provide additional subcategorization. Waste water volume and characteristics vary widely for the different materials and processes and support the proposed categorization. Although waste water volume and characteristics vary significantly, the treatability of textile wastes by similar biological treatment methods has been demonstrated. Thus, subcategorization by waste treatability is not required. Location and climate have a material effect upon pollution control methodology for any given operation or segment of the industry. However, the impact of either location or climate is not sufficient for defining or substantiating subcategories. (Variability in treatment operation has been taken into account in Section IX.) Available data indicates that neither the age nor the size of facilities significantly affects waste character or water usage. Any effect of size or age is predominately reflected in the type or size of production facility, and was taken into consideration through subcategorization based on different manufacturing processes.

The subcategorizations selected for the purpose of developing waste water effluent limitations guidelines and standards are as follows:

1. Wool scouring
2. Wool finishing
3. Dry Processing
4. Woven fabric finishing
5. Knit fabric finishing
6. Carpet mills
7. Stock and yarn dyeing and finishing
8. Commission finishing

Subcategories 1 and 2 deal with wool processing; subcategories 3, 4, 5, 7 and 8 cover the various types of processing for cotton and synthetic fibers; and subcategory 6 covers the carpet industry. These subcategories are described in detail below.
Subcategory 1 - Wool Scouring

Wool scouring and topmaking is a conveniently separated subcategory as a significant number of plants perform this function alone. The initial washing and cleaning of wool generates a wide variety of organic and inorganic products in the waste effluent. The raw wool contains suint, dirt, and grease along with oils such as lanolin. In addition, the preparation and cleaning of wool requires a heavy use of detergents. Recovery of wool grease has some economic incentive in that it has market value. However, even with grease recovery, wool scouring wastes present a highly concentrated waste.

Wool scouring is conveniently separated from other segments of the textile industry because of its uniqueness. Raw wool (grease wool) must be wet processed to clean it before the fiber can be dry processed to produce fiber, yarn or fabric for the further wet processing steps found in a finishing plant. Neither cotton nor the synthetic fibers require this initial wet-cleaning. Furthermore, most wool scouring mills are geographically separate from other textile operations. Exceptions exist where wool scouring is physically separated from, but shares the waste treatment plant with, finishing mills.

The grease wool contains 25 to 75 percent non-wool materials, consisting of wool grease and other excretions and secretions of the sheep such as urine, feces, sweat and blood, as well as dirt consisting of both soil and vegetable matter. Additional materials that may be present are insecticides (sheep dip), and fugitive dyes used for identification. This variability in yield and in the composition of impurities and grease causes a correspondingly variability in raw waste loads. An average composition of raw grease wool is 39 percent clean, dry wool, 6 percent regain moisture, 6 percent suint and associated moisture, 4 percent wool wax and 45 percent dirt.

Subcategory 2 - Wool Finishing

Wool finishing could involve the use of certain metalized dyes peculiar to this fiber which often may result in the presence of metal ions such as chromium in the waste effluent. In addition, phenols occur from dyeing polyester blends. Only a small amount of pure wool is now processed. The bulk of the operations involves wool-polyester blends which give high BOD loads from the dye carrier which is used. The resulting wastes are similar to those in Woven Fabric Finishing and Knit Fabric Finishing, but have a higher raw waste load.
Several major mills have integrated wool scouring and top making with wool finishing. Such mills can be accommodated by a combination of Subcategories 1 and 2.

This industry consists of many small mills -- most of them in the North (New England, New York and New Jersey) and most are fully integrated mills -- and about 25 larger mills, mostly in the South (Virginia, the Carolinas and Georgia).

A sample of 29 textile mills participated in a waste treatment survey prepared by the Wool Manufacturers Council of the Northern Textile Association. Of the 29 mills, 25 were wool finishers and 4 were cotton and synthetic mills. Of the 29 mills 7 have completed tie-ins into municipal treatment facilities; 15 plan to tie into municipal facilities that are in various stages of construction or planning; 4 have completed private treatment facilities and 3 have plans to construct private treatment facilities.

Most small mills do some commission dyeing, and even the larger mills that are part of the larger corporations commonly perform commission dyeing. Commission dyeing operations imply a wide range of fabrics and finishes as well as fiber types.

Probably not more than five mills still do more than 50 percent wool and wool blends: the rest process primarily other fabrics.

The processes of carding and spinning wool into yarn, and subsequent weaving or knitting into fabric are included in Subcategory 3, Greige Mills.

Yarns made from wool are classified into either woolen yarns or worsted yarns. Woolen yarns are characteristically of loose construction and composed of relatively short fibers; worsted yarns are of tight construction with few protruding fiber ends and composed of selected long fibers (tops). As a result, worsted yarns are stronger.

Wool finishing has been differentiated from other finishing categories because of (1) the wide variety of chemicals used to process wool fabrics and (2) high raw waste loading.

In addition to processing all wool fabrics, today's wool finishing mills process wool blend fabrics and fabrics made of 100% synthetic fibers. The percentage of wool used by a woolen mill is based on market demand and availability of wool. The variety of fabrics varies from mill to mill, season to season and year to year. Shifts back and forth between fibers cannot be predicted.

Few of today's wool finishing mills process all wool. Many of the woolen mills by name handle 20 percent or less wool with the balance
being woven and knit synthetics. Also, within the 20 percent or less portion, woolen/synthetic blends (most often with polyester) usually constitute the bulk of the fabric.

High water usage in the subcategory appears to be a result of washing after the fulling operation (peculiar to 100 percent wool fabrics and to some wool blends). Wax lubricants and emulsified oil are sometimes used in processing wool yarns. These waxes and oils are difficult to remove and require thorough washing to be removed properly. Because of the low percentage of wool actually processed in mills today, and the small amount of sizing used, this category appears in most ways similar to Subcategory 5, Knit Finishing.

Variations occur in processing, similar to other finishing categories, in that some fabrics are woven or knit from yarns that are already dyed, either in the fiber or yarn form. A given mill may dye and finish part of its production while only finishing the remainder.

Subcategory 3 - Dry Processing

Dry processing textile operations include products and processes which by themselves do not generate large effluent volumes (more than 12.5 l/kg (1.5 gal/lb) of product). Some operations include yarn manufacture, yarn texturizing, unfinished fabric manufacture, fabric coating, fabric laminating, tire cord and fabric dipping, and carpet tufting and carpet backing. The principal source of effluent from such processes is the washing and cleaning of equipment.

Manufacturing yarn texturizing and unfinished fabric manufacturing may be done in a greige goods mill. There are many greige goods mills, although they carry out mainly dry operations (with the exception of slashing) and hence contribute little to the overall waste problems of the textile industry. In many plants the sanitary BOD load is comparable to the process BOD load. This category applies equally well to woven or knitted greige goods.

Greige goods manufacturing includes spinning and texturizing of yarns which require a lubricating oil, similar to mineral oil. This oil is applied to the fibers or yarns and stays with them, to be removed prior to dyeing in the dye house. However, some oil finds its way into the drains because of clean-ups and spills.

Prior to being woven, the yarns are coated with a sizing material to give the yarn both lubrication and strength that will permit it to withstand the severe mechanical demands of weaving. Cottons generally are coated with starch and synthetics with polyvinyl alcohol. Wool and wool blends are seldom sized, unless the yarns are quite fine. Since most wool yarns are blends, both starch and PVA may be used. The slasher, where the sizing is applied, is
washed down about once a week and thus contributes to the liquid wastes. Generally the waste flow from the slashing operation represents a low percentage of the total plant flow.

Greige mills generally manufacture yarn and unfinished fabric. In general greige mills include the production of woven greige goods, knit greige goods and greige yarn production. However, knit greige goods production is almost always combined with a finishing operation and therefore may be included in the knit finishing subcategory. Carpets are sometimes backed in a separate plant. The industrial portion of the waste water consists of equipment washing which may be performed once a day or once a week. The resulting waste flow is small, relative to plant size and pounds of product.

It has been estimated that there are 600 to 700 greige woven mills, 80 percent of which are in North Carolina, South Carolina, Georgia, Alabama and Virginia. Perhaps 20 percent of the 600 have their own waste treatment plants, with almost all the rest disposing of wastes at municipal facilities. Less than 5 percent are believed to dispose of their wastes in waterways without treatment.

Carpet is backed with either latex foam or coated with latex and a burlap-type woven fabric backing put over the latex. In either case, carpet backing results in the generation of a liquid latex waste. Some of the latex becomes hardened, so a mixture of solid and liquid latex results. Some of this material is collected by shovelling it into a barrel for landfill disposal. The rest is washed off by hosing and removed by settling such as alum coagulation. pH control may also be needed. This pretreatment and treatment technology is also applicable to processors of coated fabrics and tire cord fabrics and felts.

Subcategory 4 - Woven Fabric Finishing

This category is one of the most important, because such plants constitute much of the waste water effluent load in the textile industry. Integrated woven fabric finishing mills are included in this subcategory because the greige goods section of these mills contributes only a small amount to the overall effluent load.

The size removed after weaving is a major contribution to the BOD load from the plant. Two sizing compounds are commonly employed: starch and polyvinyl alcohol (PVA). PVA tends to be less readily biodegradable than starch and therefore presents a lower BOD5 level but contributes a high COD level. In addition to high BOD, the wastes generally have high total dissolved solids, color, and a variety of dispersing agents. They also may be very alkaline from the use of caustic soda in mercerizing cottons.
The dyes and associated additives used in woven fabric finishing represent the most complicated problem, since the BOD load and color can vary considerably with the type of dye fabric being processed and the color effects to be achieved.

Processing steps in this category generally include cleaning the greige goods, bleaching, mercerizing of cotton (treating with caustic), dyeing, washing and rinsing, followed by application of finishes such as soil repellents, anti-statics, etc.

This category encompasses mills which finish woven goods (or integrated greige goods and finishing mills). It has been estimated that about 600 mills fall into subcategory 4. About 20 percent treat their own waste, 75 percent discharge to municipal systems, and 5 percent have no waste treatment.

This category predominates in the Southeast (North and South Carolina, Georgia, Virginia, Alabama), but there are some large operations in New York and New England.

Subcategory 5 - Knit Fabric Finishing

The main difference between woven and knit fabric finishing is that the sizing/desizing and mercerizing operations are not required for knits. Although desizing and mercerizing are not required, these fabrics do contain lubricants and anti-static agents. Therefore, the raw waste loads are different for all parameters as compared to woven fabric finishing.

The knitting industry is characterized by a large number of plants and a structure organized along specialized product segments. The major segments are knit fabric piece goods, hosiery, outerwear, and underwear.

While the industry has shown substantial growth in value of shipments, it has been estimated that through consolidation and other factors the current number of plants in this industry is about 2500. Of this number, it has been estimated that about 1100 plants have only dry operations. These are plants such as sweater mills in the outerwear segment, which knit goods from purchased or commission dyed yarns, or mills which have finished goods dyed on a commission basis and therefore, have no process water requirements. Most of the sweater mills are located in the Northeast. In those isolated instances where sweater or similar mills dye their own yarn, these mills should be subject to subcategory 7 guidelines.

Of the 1400 plants believed to have wet process operations, it has been estimated that 85 percent discharge to municipal treatment systems. The great bulk of these are hosiery plants (700-800) located primarily in North Carolina, Tennessee, and Pennsylvania.
The knit fabric segment of the industry has about 540 plants. These plants are the source of finished knit piece or yard goods for the apparel, industrial, and household goods trades, and also serve to augment supplies of fabric to underwear and outerwear manufacturers. These plants are the main subject of subcategory 5. The large knit fabric plants are located mainly in North and South Carolina and Georgia, but substantial numbers are also located in New York, and Pennsylvania.

Subcategory 6 - Carpet Mills

Carpet mills form a distinct part of the industry although their effluents are similar in many ways to those of Subcategory 5, Knit Fabric Finishing. Carpets use mostly synthetic fibers (nylon, acrylics and polyesters) but some wool is still processed. As in Subcategory 2, Wool Finishing, such wool carpet mills produce synthetics as well. As a result, no subcategory for wool carpets is proposed.

Tufted carpets account for well over 65 percent of the plants and 86 percent of the dollar volume, and constitute 74 percent of the employment in this industry. Therefore, the guidelines are generated principally around this segment. About 70 percent of the industry is located in Dalton, Georgia and these mills are connected into the municipal treating system. However, the remaining carpet mills are of sufficient quantity to warrant effluent guidelines.

Tufted carpets consist of face yarn that is looped through a mat backing (mostly polypropylene, some jute), and dyed or printed.

The dominant face yarn is nylon, followed by acrylic and modacrylic, and polyester; the latter two groups total less than 50% of the poundage of nylon. Since dyeing of these fibers in carpets differs little from dyeing fabric, the dyeing descriptions for these fibers given in other categories applies here. Beck, continuous dyeing, and screen printing are practiced.

Subcategory 7 - Stock and Yarn Dyeing and Finishing

Yarn dyeing and finishing are different from woven fabric finishing because there is no sizing and desizing operation. They are different from knit fabric finishing because of their mercerizing operations and water use. The combined differences are sufficient to justify a separate category. The waste loads from this type of plant can vary more than those from other types of integrated textile mills or finishing mills. Many multiple-operation, commission houses fall under this category.
Subcategory 7 includes plants which clean, dye and finish fiber stock or yarn. The plants may or may not have yarn spinning facilities. Sewing thread, textile and carpet yarn are typical products.

It has been estimated that 750 plants fall into this category. Most (probably 80 percent) dispose of their wastes at municipal facilities. We believe that 5 to 10 percent treat their own waste and the rest have no waste treatment facilities.

About 60 percent of yarn dyeing and finishing is performed in Virginia, North Carolina, South Carolina, Georgia and Alabama, with the remainder distributed across the eastern U.S. and the Far West.

Subcategory 8 - Commission Finishing

Commission finishing plants may process raw materials into products in any of the above textile subcategories. The common denominator is that these plants process greige goods on a commission basis. The main difference between these plants and those of other subcategories is their ability to control the fabrics and finishing specifications demanded. Because "commission house" is an economic description of a plant, some "commission houses" can control the processing fabrics and are not characterized by extreme variability in waste load and waste composition. Other "commission houses" cannot control the scheduling and flow of material through the plant and these operations are characterized by an extremely high variability in waste load and composition. Thus, commission finishing subcategory plants are defined as manufacturers of textile materials owned outside their organization. Furthermore, commission finishing subcategory plants must produce 20 percent or more of their commission production from batch operations and process 50 percent of their commission orders in lots of 5,000 yards or less.
SECTION V
WASTE CHARACTERISTICS

INTRODUCTION

Many of the mechanical operations used in the manufacture of textile fabrics are common to the industry as a whole and the character of the waste waters are similar. Typically, the textile fibers are combined into yarns and then the yarns into fabrics. After the fabrics are manufactured, they are subject to several wet processes collectively known as finishing and it is in these finishing operations that the major waste effluents are produced.

In Section III wool, cotton and synthetic fiber and fabric finishing operations were briefly described. General descriptions of the manufacturing processes were given in Section IV for the purpose of industry subcategorization. In this section the waste waters from each operation within each subcategory are characterized.

The principle parameters used to characterize waste effluents were the flow, biochemical oxygen demand, chemical oxygen demand, total suspended solids and oil and grease. In addition, chromium, phenol and sulfide can be present. As discussed in Section VI, these parameters are considered to be the best available measure of the waste load.

Subcategory 1 - Raw Wool Scouring

The raw waste from raw wool scouring is different from the waste from all other categories used in this study; it contains significant quantities of oil and grease, even after in-process recovery. The wool grease constitutes a special problem in treatment since it does not appear to be readily biodegradable. Therefore, a grease recovery step is important to reduce pollution.

Sulfur is brought in with the wool, as well as phenolic and other organic materials derived from the sheep urine, feces, blood, tars, branding fluids and insecticides used in sheep-dips. These items appear randomly in the effluent.

Wool scouring is generally performed in a series of scouring bowls. In these scouring bowls, the heavier dirt and grit settles to the
cone-shaped bottoms where it is blown down once an hour or so, and carried to the treatment plant by scour liquor.

The scour liquor, after picking up the soluble and less heavy dirt and grit, is piped to a separation tank where further settling of dirt and grit occurs. This material is also blown down and carried to the treatment plant once a day, or more often if the dirt content of the wool is high.

From the separation tank the scouring liquor is processed to break the emulsion and recover the wool grease. Two methods are commonly used to do this: centrifuging and acid-cracking.

In centrifuging (as shown in Figure 1) the top low-density stream contains concentrated grease, which is further dewatered in additional centrifuges to yield the recovered, unrefined wool grease. The medium-density stream is combined with the relatively clean bottoms from the auxiliary centrifuges and recycled to the wool scouring train as fresh scour liquor. The high-density-bottoms streams consists mainly of dirt and grit, and is sent to the treatment plant.

An alternative means to break the grease emulsion for wool grease recovery is the acid-cracking grease recovery system, also shown in Figure 1. Sulfuric acid is added to the scour liquor to break the grease/water emulsion. Heating the mixture increases the efficiency of separation. The grease is separated from the liquor in a settling tank and recovered. The liquor is then treated with lime to neutralize the acid and subsequently passes through the waste treatment plant.

In the centrifugal method, about 60 percent of the grease is recovered; the remaining 40 percent is attached to the dirt and grit. In the acid-cracking method, pilot plant performance indicates a 98 percent recovery of grease from the degrittied liquor.

Grease yield, in total, is 8 to 15 percent by weight of the greasy wool, and this constitutes 50 to 65 percent of the wool grease initially present. (Ref. 141). Note that 1-3 percent of the wool grease present in the grease wool is allowed to remain in the wool as a conditioner.

Also, alkaline scouring has been used in which soda ash is added to the wash water. The soda ash combines with some of the wool grease to form a natural soap, thereby requiring less detergent but also lowering recovered wool grease yield.

Some "raw" wools, mostly the Australian and New Zealand wools, are pre-scoured at the source. However, this fact does not appear to
significantly affect this analysis of U.S. raw wool scouring mills. Note that scoured wool is often converted into "tops" at the same mill. In this operation, the short fibers are separated mechanically from the long ones; the long fiber "tops" are used for worsted yarn and the short fibers are used to blend into woolen yarns. No added pollution occurs. Water load is increased by air conditioning and air scrubbing.

Subcategory 2 - Wool Finishing

Wool finishing has been differentiated from other finishing categories because of 1) the wide variety of chemicals used to process wool fabrics, 2) its peculiar BOD loadings, and 3) the higher water usage per pound of product.

Since many wool mills investigated are working on blends, principally polyester, carriers such as orthophenol, phenol, diphenyl, or benzoic acid derivatives will be present at significant levels in their raw wastes. Phenolics appear to be losing favor because of their odor, but current practice includes them and they will be present in most wool-blend mill wastes.

The Subcategory 2 mills have a higher water usage rate than any other finishing category. The heaviest contributor appears to be the rinsing after fulling. The wet unit processes are described in more detail below.

Heavy Scour

Heavy scouring is the term applied to the washing of the fabric by the use of detergents, wetting agents, emulsifiers, alkali, ammonia, or various other washing agents. The purpose of this heavy scour is to remove oils, grease, dirt, fulling solutions, emulsified oil, lubricants or any other substances that are either introduced in prior processing steps or that are carried to the finished fabric from the raw stock.

This process is one of the most important steps in wool finishing because if all of the foreign materials are not completely washed out, the finished fabric is susceptible to rotting, smelling, bleeding and will not accept dyes uniformly.

Fancy goods, in contrast to piece dyed goods, are only scoured prior to mechanical finishing. Piece dyed goods, on the other hand, must be scoured completely prior to the dyeing step. The weight, foreign material content and degree of felting of the fabric all have a direct bearing on the degree of scouring required.

49
Heavy weight, closely woven fabrics with a high percentage of recycled wool require very heavy detergents, long wash times and extensive rinsing to clean the goods. High organic and hydraulic loadings are associated with this type of fabric. Light open goods with a low percentage of wool generally scour more easily with lighter detergents, shorter wash times and less rinsing resulting in lower organic and hydraulic discharges.

Some mills produce both types of goods at the same time and relative proportion of each type will vary greatly causing great fluctuations in organic hydraulic discharge. Also some mills produce only light open goods while others produce heavy, close woven fabrics. The majority of finished product weights range from 12 ounces per yard to 26 ounces per yard; however, because of the differences in raw stock and felting requirements the hydraulic and organic discharges may differ greatly.

Carbonizing. Carbonizing consists of soaking the fabric in strong sulfuric acid, squeezing out the excess, and then heating the wet fabric in an oven. The hot acid reacts chemically with vegetable matter and any cellulosic fiber contaminant and oxidizes these contaminants to gases and a solid carbon residue. The fabric is then passed between pressure rolls where the charred material is crushed so that it may be separated by mechanical agitation and flowing air. A solid waste is produced, and the acid bath is dumped when it becomes too contaminated for further use, about once every two days.

Fulling. Fulling is usually used on 100 percent woolen fabrics but not usually on woolen/polyester blends and to a lesser degree on worsteds. Since this operation stabilizes the dimensions of the wool by "felting" it, the blends usually do not need it, nor do the worsteds, since they are a very tight yarn and weave to begin with. Fulling is accomplished by mechanical work performed on the greige goods while they are in a bath of detergent and water. Detergent is added as needed but no effluent occurs until the following washing step. This is true of both "dry" and "wet" fulling except that in the "wet" fulling, the water bath is dumped about once every 2 to 3 days. In "dry" fulling, just enough water is picked up by the fabric to lubricate it so the fabric is not standing in water before its turn in the fulling device.

The fulling is followed by extensive rinsing to prevent rancidity and wool spoilage. This step produced over 50 percent of the hydraulic load in an all-woolen mill investigated.

Crabbing. Crabbing is the name given to the operation used to align the fabric rectilinearly. Since the fabric comes in wet and goes out wet, no effluent of significance occurs.
Pre-Scour. The pre-scour step is a final cleaning of the greige goods prior to dyeing. Often, if a light scour or fulling is performed before dyeing, the pre-scour step is not used. On sensitive dyeing, however, both light scour and pre-scour are sometimes used. Detergents and wetting agents are added. This and subsequent dyeing and rinsing steps are performed in becks.

Dyeing. In the dyeing process, the fabric is dyed in atmospheric becks or pressure equipment. Pure wool fabric is dyed only in atmospheric becks, but blends (mostly with polyester) are dyed in either atmospheric or pressure equipment. Knit woolen blend fabrics also are dyed in either atmospheric or pressure becks, but most often they are dyed in jet becks, a variation of the pressure beck that is supposed to reduce physical damage to the knits.

In conventional becks, the fabric is sewn into a long tube that alternately soaks in a tub and then is pulled up and over a large diameter slatted wheel. In a jet beck the fabric is pulled up and put back in the tub by the action of the dye liquor being pumped through a venturi and carrying the fabric with it. Pressurizing of dyeing equipment is desirable for dyeing the polyester portion of the fabric, since little or no carrier need be used. At atmospheric pressures large quantities of carriers are required to swell the polyester fiber and enable the dye molecules to penetrate.

In the dyehouse, the operation usually consists of filling the dyeing machine with water and a detergent for scouring (pre-scour, described above). The scour water is dumped and the beck is refilled with water and a wetting agent. After the fabric is wet-out and the temperatures raised somewhat, the dyestuffs are added and the beck brought up to temperature (95°C - 205°C in atmospheric machines, higher in pressure units). After 2 to 4 hours, 90 percent or more of the dye is exhausted, and the dye bath is discharged to the sewer. This dye step is followed by a clear water rinse. Since the dyes are very expensive, effort is made to assure as high an exhaustion level as possible.

Blends are sometimes dyed in a single bath, sometimes in two separate baths. Therefore, the hydraulic load can from this unit process increase by 50 percent in the case of two baths (including a rinse step after all dyeing is completed).

The more commonly used dyes for wool or wool components in blends are acid dyes or metallized dyes. Others used to a small extent are mordant dyes or fiber reactives. The use of mordant (chrome) dyes is diminishing.

As mentioned, the metallized dyes used for wool are very fast (i.e., do not fade or rub off readily). Hence on 100 percent wool cloth, these dyes are often used. These dyes have a very high affinity for
wool, even under mildly acidic conditions and at low temperatures (below 205°F). Hence, these dyes are almost completely exhausted from the bath and only a small amount of metallic ions (chrome) will be expected in the effluent. In the blends, however, the dyes used for polyester and other synthetic fibers have poorer fastness, so, in these blends many woolen mills have converted to non-chrome dyes. As a result, an all-wool mill may be expected to have some chrome in its effluent, but in a wool-blend mill, the chrome will be considerably less or even non-existent. Rework levels appear to be 3 to 4 percent of total production. When goods are reworked, they are either redyed to a darker shade, or stripped with reducing chemicals, rinsed and redyed.

After it is dyed, the fabric is cooled with clear water and rinsed until the dump or overflow water is clear.

Finishing. After it is dyed and rinsed, the fabric is removed from the beck and, when used, soil repellents and other finishing agents are padded onto it. Next, the fabric is dried and any subsequent dry finishing operations -- principally shearing (solid waste) and pressing (steam condensate) -- are performed.

Mothproofing is accomplished with Mitten-FF for government fabrics or with Dieldren for certain other specialized fabrics. Spillage appears to be the only way this material might find its way into the waste waters.

Any of the finishing chemicals can appear in the waste when the padding equipment is dumped and washed.

Subcategory 3 - Dry Processing

Waste at greige mills constitute residues in size boxes at the end of a day or a week, and water used for clean-up. The volumes of textile wastes in a greige mill are small. Significant amounts of water used in a greige mill (e.g., cooling water) may not enter the waste treatment plant.

A typical sizing formulation is composed of a film-forming material, a fatty or waxy component, and water. In some formulations, a water-soluble dye may be used to give the grey cloth an identifying color. A preservative may be used in some sizing mixtures.

The most common film forming materials are starch, polyvinyl alcohol and carboxymethyl cellulose. Other sizes, such as polyacrylic acid and styrene-maleic anhydride polymer, are used occasionally in weaving special cloths.

Starch is a traditional sizing material, but in the past several years the volume of polyvinyl alcohol used in the textile industry
has increased substantially, since starch does not adhere well to
the synthetic hydrophobic fibers. In many cases, mixtures of starch
and polyvinyl alcohol are used.

When formulations based on starch are used, the add-on of size
amounts to 10 to 15 percent by weight of warp yarn. When polyvinyl
alcohol is used, a lower add-on, 3 to 8 percent by weight of the
fabric, is typical. The range of add-on depends on cloth
construction factors such as warp yarn diameter, "tightness" of the
fabric, etc.

The total waste load at a dry processing mill is typically greater
than 90 percent sanitary and the remainder is industrial.

Treatability of dry processing mill wastes is often related to the
size used. Starch is very readily degraded biologically, and may be
given a preliminary enzyme treatment to improve biodegradability.
On the other hand, polyvinyl alcohol is consumed by organisms
relatively slowly, though recent studies show that organisms
acclimate to polyvinyl alcohol. (See Subcategory 4 below.)

A special waste, peculiar to the carpet backing industry, exists
because of the use of foamed and unfoamed latex backing. The latex
is not soluble in water but is used in a highly dispersed form;
hence suspended solids and COD could be a problem unless they are
coagulated. This stream (from equipment washdown once a day to once
a week) is usually segregated, acidified to hasten coagulation, and
settled before it joins dyehouse wastes. An alternative to latex
backsizing is the application of a hot melt composition. The hot
melt size does not contribute to the aqueous waste disposal load.
Subcategory 4 - Woven Fabric Finishing

The wastes associated with finishing woven goods result from removal of foreign material during the cleaning and from the various chemicals used in finishing the fabric.

Desizing

Enzymatic removal of starch size generates starch solids, fat or wax, enzyme, sodium, chloride and wetting agent in the effluent stream. The waste contains dissolved solids (both organic and inorganic), suspended solids, and some fat or wax; it has a pH of 6 to 8, is light colored, and contains no toxic materials.

Sulfuric acid removal of starch size generates waste containing starch solids, fat or wax and sulfuric acid. It contains organic and inorganic dissolved solids, suspended solids, and some oil and grease. It has a pH of 1 to 2 and is relatively light colored.

After the desizing agent has been applied, the goods are placed in a bind or a steamer to provide the residence time required. Residence time in storage bins are typically 12 hours or more. If elevated temperatures are used by employment of J-boxes or steamers the residence time is reduced to 30 minutes at 180°F or a few minutes at 210°F to 212°F. Finally, the goods are washed with water to remove the decomposed starches from the fabric. Polyvinyl alcohol and carboxymethyl cellulose are both removable with water alone. The goods are washed with water at 180°F or higher on washers without the use of steamers, J-boxes, or padders. Desizing these materials will thus contribute suspended solids, dissolved solids and oil and grease. Since these sizes are used at about one-half the concentration of starch, the total solids generated in the waste stream are about one-half the level corresponding to starch use. When mixtures of starch and polyvinyl alcohol are used, desizing may involve the use of enzyme (to solubilize the starch) and water; total wastes generated would be intermediate between that developed by either size used alone.

Desizing may contribute 50 percent or more of the total waste solids in a woven goods finishing mill.

The contribution of starch to BOD of waste streams has been documented many times. On the other hand, polyvinyl alcohol has been considered very slowly biodegradable, and as such, a major source of COD. Recent studies performed by producers of polyvinyl alcohol, in cooperation with textile mills, indicate that biological waste systems will develop organisms acclimated to polyvinyl alcohol, and when this has occurred, biodegradation is relatively rapid and complete.
Scouring

Scouring, using 2 to 3 percent sodium hydroxide, is done to remove much of the natural impurities of cotton; phosphate, chelating agents and wetting agents may be used as auxiliary chemicals. The synthetic fibers require much less vigorous scouring; sodium carbonate and a surfactant may suffice. In the case of cotton/synthetic blends, Varsol may be used in conjunction with the aqueous scouring liquor.

The operation known as kier boiling is now seldom employed to scour desized cotton and cotton/polyester woven fabrics. The kier is a large vertical cylindrical pressure vessel which can hold up to several tons of fabrics. The goods (in rope form) are plaited into the kier by the kier plaiter, the covers are installed, and the scouring chemicals are recirculated through the goods and an external heat exchanger for temperature control. An aqueous mixture of sodium hydroxide, soap and sodium silicate is employed at temperatures of up to 220°F and pressures of 10 to 20 psig. The goods are scoured for 6 to 12 hours. The kiers are then cooled by recirculation of cooling water and the goods are displacement washed. In certain instances, difficult fabrics are double-scoured. The scouring step is designed to remove fats, waxes and pectins from the woven fabric.

Certain heavyweight fabrics normally are not processed in rope as required for kier boiling since creases result in streaks in subsequent dyeing steps. These goods are therefore processed in an open-width boil-out machine, also known as the progressive jig. The jig is loaded with a scouring solution and the goods are fed through it continuously, from roll to roll and the temperature and residence time are maintained for proper scouring of the goods. The goods are wound onto rolls in the machine and maintained in contact with scouring liquids for the necessary period. Then they are unrolled through wash boxes and folded into a cloth truck or onto a roll.

The scoured cotton may be used directly for producing dark shades or may be bleached by padding through hydrogen peroxide solutions, and subsequently washed, neutralized, and dried before dyeing.

Scouring liquors are strongly alkaline (pH greater than 12), and dark colored due to cotton impurities. They contain significant levels of dissolved solids and oil and grease. A modest level of suspended solids results from the presence of cotton impurities.

The natural cotton impurities removed from greige fabric by scouring contribute BOD and are biodegraded rapidly.
Scouring of cotton/polyester greige blends generates the same waste in proportion to the amount of cotton in the blend.

Scouring of synthetic woven goods generates a low level of dissolved solids from surfactant, soda ash, or sodium phosphate.

Mercerization

Physically, mercerization swells the cellulose fibers as alkali is absorbed into them, with higher concentrations, longer residence times, and lower temperatures favoring greater swelling. The mercerization step is conducted with the fabric either under tension or in the slack condition, with tension mercerizing favoring increases in tensile strength and slack mercerizing favoring increases in abrasion resistance.

Mercerization is normally conducted continuously; the operation consists of the following steps:

(a) A scutcher and water mangle are employed to open the goods from the rope form, and a mangle is used to dewater the goods to a uniform moisture concentration.

(b) A multiple-contact saturating operation is conducted usually with three saturating bowls. The goods are fed through the system continuously which provides sufficient residence time and contact to completely saturate the fabric with caustic soda solution.

(c) Timing cans are employed to increase the residence time of the fabric in the sodium hydroxide solution.

(d) A tenter frame is employed to maintain the fabric under tension as the fabric travels through the system and the actual mercerization of the cellulose takes place.

(e) At the end of the tenter frame is a washing system that includes water sprays, vacuum units and wash water heaters and re-circulators to wash the fabric and reduce the caustic content while the fabric is still under tension in the tenter frame.

(f) The fabric is given a final wash, which removes the remainder of the sodium hydroxide from the fabric and reduces the residual pH to an acceptable level (i.e., 8.5).

Mercerization wastes are predominantly the alkali used in the process. The waste stream contains high levels of dissolved solids,
and may have a pH of 12 to 13. Small amounts of foreign material and wax may be removed from the fiber, and will appear as suspended solids and wax in the wastes; these materials will contribute a small BOD load.

In most mills, caustic soda is recovered and concentrated for reuse, thus, saving chemical and avoiding a sizeable waste load. Estimates have indicated that recovery of mercerizing caustic is justified when the caustic use is more than 5 million pounds per year (dry), and concentration of the alkali is not permitted to fall below 2%.

Bleaching

The following process units constitute a typical, continuous peroxide bleaching range, using J-boxes for storage:

Washing. The goods are washed, using either open width or rope washers to ensure removal of converted starches from the desizing step.

Caustic Saturator. As the goods continuously leave the washer they are squeezed through rolls to a minimum water content and then saturated with sodium hydroxide solution in additional squeeze rolls. The goods may be in either rope or open width form, but must remain in the saturator long enough to permit them to become completely saturated with sodium hydroxide solution.

Caustic J-Box. The goods are then fed continuously to the caustic J-box, whose function is to saturate the cloth for the necessary length of time at the desired temperature (205°-210°F). The throughput of the J-box is controlled to provide a residence time ranging from 40 minutes to one hour, resulting in saponification of natural fats and waxes carried in the cotton.

Caustic Washers. The caustic solution is then removed from the fabric by countercurrent washing, usually with large quantities of hot water to ensure complete removal.

Peroxide Saturator. The peroxide saturator is similar to the caustic saturator. It contains a solution of hydrogen peroxide and sodium silicate in sufficient concentrations to retain 1.5 percent of the hydrogen peroxide and 1.5 to 3 percent of the sodium silicate based on the dry weight of goods.

Peroxide J-Box. The design and operation of the peroxide J-box is the same as for the caustic J-box. The unit is operated at about 200°F, with a residence time that varies from 40 minutes to 1 hour to bleach the fabric.
White Washes. The bleached goods are now washed to final purity before piling into bins or going directly to the dryer. Hot water is preferred for washing, but cold water is employed in certain instances. Flow meters are employed to regulate the flow of fresh water, and countercurrent conditions are maintained.

In certain instances, two stages of bleaching are operated, sometimes with sodium hypochlorite in the final stage.

Hypochlorite Saturator. The hypochlorite saturator is similar to the caustic and peroxide saturators. Its purpose is to apply a solution of sodium hypochlorite to the fabric to complete the bleaching operation. The solution is maintained at room temperature and the quantities are continuously monitored in order to control the bleaching operation.

Hypochlorite J-Box. The operation of the hypochlorite J-box is similar to those discussed before, except that it is operated at ambient temperatures. Residence times are similar to those employed in peroxide bleaching, and the same unit may be employed for hypochlorite and peroxide bleaching at different times.

Washers. Two washers are normally required to neutralize and wash the goods after hypochlorite treatment. At least a portion of the first washer is used to apply sodium bisulfite or sulfur dioxide solutions to neutralize excess bleaching chemicals.

Steamers. In open width bleaching ranges, steamer units may be used instead of J-boxes to store goods after they have been impregnated with caustic or bleaching solutions. These are particularly useful in processing heavyweight fabrics.

Small Open Width J-Boxes. More recent bleaching technology employs a more concentrated solution and more drastic operating conditions and has resulted in the development of the small open width J-box which permits effective bleaching with residence times of only 10 to 15 minutes.

Continuous Pressure Scouring and Bleaching. The newest type of steamer for bleaching ranges is an enclosed type with pressure locks and seals. This enables the steamers to be operated as a pressure vessel and the reaction time for the chemical is reduced from 40 minutes to only one to two minutes. The treatment of fabrics is a function of time, temperature and concentration. The increased temperatures made possible by pressure steamers reduce the time needed for complete chemical reaction.

The problems associated with equipment designed for operation at 25 psig and for continuous entry and removal of continuous webs have posed a substantial design problem. However, several machines are
now available with satisfactory sealing devices, so they may perform well at these pressures. Some of these units utilize rolls as a sealing mechanism and others have developed a system involving a lip seal. In addition there are reports of pressure steamers which may be operated at pressures up to 45 psig and develop temperatures of 292°F, resulting in residence times only of one or two minutes.

Sodium Chlorite Bleaching. Although sodium chlorite bleaching had shown some success in the bleaching of man-made fibers, the use of sodium chlorite has been prohibited by OSHA.

Hydrogen Peroxide Bleaching. Bleaching with hydrogen peroxide contributes very small waste loads, most of which are dissolved solids. The dissolved solids are both inorganic (sodium silicate, sodium hydroxide and sodium phosphate) and organic (a surfactant and chelating agent). The waste stream contains a low level of suspended solids when goods containing cotton are bleached.

Dyeing

Dyeing is the most complex of all textile finishing processes. Table 7 shows the dyes used in the textile industry, the fibers they are generally used to color, and the relative amounts of each dye used by the industry.

When textiles are dyed, a sufficient amount of the dyestuff is used to make the shade. Various other chemicals may be used to help deposit the dye, or to develop the color. Dye loadings vary widely even with a particular dye class, depending on the weight of fabrics being treated and the depth of color desired. The range of chemicals employed in dyeing also varies widely from place to place and operation to operation, and depends substantially upon the dictates of the marketplace.

Table 8 presents a summary of chemicals used in application of dyes to textiles. Dyed goods are generally, but not always, washed and rinsed to remove excess dye and chemicals from the cloth. Washing may involve use of a detergent, and also may involve the use of soda ash or a sodium phosphate.

The chemical used in dyeing depends significantly on the dyeing procedure. Both batch and continuous dyeing are practiced, and both may be employed in the same finishing plant.

Textile goods are dyed continuously when the demand for a single shade is sufficiently high to justify the necessary equipment. Production of denims, in which the warp yarns are dyed continuously, is one example; no special chemicals are required as a result of dyeing continuously. In Thermosol dyeing, which is practiced on woven cotton (or rayon) or polyester blends, a dye blend is padded
TABLE 7

Types and Amounts of Dyes Used in the Textile Industry

<table>
<thead>
<tr>
<th>Dye Types</th>
<th>Acrylic</th>
<th>Cotton</th>
<th>Wool</th>
<th>Acetate</th>
<th>Rayon</th>
<th>Polyester</th>
<th>PE/cotton</th>
<th>Nylon</th>
<th>Nylon/Cotton</th>
<th>Amount Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>10</td>
</tr>
<tr>
<td>Azoic</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td>Aniline Black</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Basic (Cationic)</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>6</td>
</tr>
<tr>
<td>Developed</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Dye blends</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Direct</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>17</td>
</tr>
<tr>
<td>Disperse</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>15</td>
</tr>
<tr>
<td>Fiber-reactive</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>Fluorescent</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>Indigo</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Sulfur</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>10</td>
</tr>
<tr>
<td>Vats</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>26</td>
</tr>
<tr>
<td>Natural</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Oxidation Base</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Mordant</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>Pigments</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>-</td>
</tr>
</tbody>
</table>

Approximate percent of total textile use. Usage of Dyes for which amounts are not shown totals approximately 10 per cent (not including dye blends).
on the fabric, which is then dried and heated, washed and dried. Thermosol dyeing requires the use of a migration inhibitor (usually a gum such as sodium alginate) in the pad bath in order to obtain a uniform application of the dye.

Piece dyeing, on runs which are not long enough to justify continuous processing, is normally performed in becks or jigs, operated at boiling temperature, or in a sealed pressure vessel, operated at 250°F to 270°F. In modern units, the entire dye cycle (including washing and rinsing) is controlled automatically. Pressure equipment usually requires use of less carrier; wastes are decreased correspondingly.

Dyeing processes contribute substantially to textile wastes. Color is an obvious waste. A high level of dissolved solids is expected. Suspended solids should be low. Carriers, which are essential for dyeing polyester and acetic acid, have high BOD. Sodium hydrosulfite has a high immediate oxygen demand. Plants using sulfur dyes will contain sulfides in the raw waste. Dichromates may appear when sulfur dyes are used.

Some of the wastes from dyeing textile fabrics are related to the production equipment and to the size of the mill. On long runs, where continuous Thermosol dyeing of synthetics or synthetic blends can be justified, carriers are not required; the gum used as a migration inhibitor will contribute a low BOD.

Table 8 shows alternative chemicals that may be used as substitutes for sodium dichromate. Controls are available for the reduction of vat dyes and their reoxidation; use of the controls could minimize pollutants.

Printing

Printing involves application of dyes or pigments in the form of a pattern on to fabric. Dyes penetrate and color the fiber; pigments are bonded to the fabric with a resin. In general, the formulated print paste is applied to one side of the fabric only.

The auxiliary chemicals used in printing are included in Table 8. In addition to the dyes and auxiliary chemicals, a thickener is used to give the print paste the desired viscosity for the method of printing and the pattern to be printed. The types of gums commonly used are locust bean, guar, alginate, starch and combinations of these gums. Urea, thiourea, and glycols are used in many print formulations.
The same general formula is used for pigments regardless of the fiber being printed. The pigment systems include the pigment, resin binder, latex, emulsifier, varsol, thickener (optional), and water.

The important dye classes and fibers used in printing are listed below.

<table>
<thead>
<tr>
<th>Dye Class</th>
<th>Fiber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vats, Fiber Reactives, Pigments</td>
<td>Cotton, rayon</td>
</tr>
<tr>
<td>Acid</td>
<td>Nylon</td>
</tr>
<tr>
<td>Disperse</td>
<td>Polyester, triacetate, acetate</td>
</tr>
<tr>
<td>Cationic</td>
<td>Acetate, acrylic, polyester</td>
</tr>
<tr>
<td>"Dybln," Pigments</td>
<td>Polyester/cotton blends</td>
</tr>
<tr>
<td>Dye Type</td>
<td>Auxiliary Chemicals Necessary</td>
</tr>
<tr>
<td>----------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Vat</td>
<td>sodium hydroxide</td>
</tr>
<tr>
<td></td>
<td>sodium hydrosulfite</td>
</tr>
<tr>
<td></td>
<td>dispersing agent</td>
</tr>
<tr>
<td></td>
<td>hydrogen peroxide</td>
</tr>
<tr>
<td></td>
<td>acetic acid</td>
</tr>
<tr>
<td></td>
<td>sodium perborate alternative</td>
</tr>
<tr>
<td>Direct</td>
<td>sodium chloride</td>
</tr>
<tr>
<td></td>
<td>sequestering agent</td>
</tr>
<tr>
<td></td>
<td>sodium sulfate</td>
</tr>
<tr>
<td>Disperse</td>
<td>orthophenylphenol</td>
</tr>
<tr>
<td></td>
<td>butyl benzoate carriers</td>
</tr>
<tr>
<td></td>
<td>chlorobenzene</td>
</tr>
<tr>
<td></td>
<td>acetic acid</td>
</tr>
<tr>
<td></td>
<td>dispersing agent</td>
</tr>
<tr>
<td></td>
<td>and many other carriers</td>
</tr>
<tr>
<td>Sulfur</td>
<td>sodium sulfide</td>
</tr>
<tr>
<td></td>
<td>sodium carbonate</td>
</tr>
<tr>
<td></td>
<td>sodium dichromate</td>
</tr>
<tr>
<td></td>
<td>acetic acid alternatives</td>
</tr>
<tr>
<td></td>
<td>hydrogen peroxide</td>
</tr>
<tr>
<td></td>
<td>acetic acid</td>
</tr>
<tr>
<td>Acid</td>
<td>acetic acid</td>
</tr>
<tr>
<td></td>
<td>ammonium sulfate</td>
</tr>
<tr>
<td></td>
<td>ammonium acetate</td>
</tr>
<tr>
<td></td>
<td>sulfuric acid</td>
</tr>
<tr>
<td></td>
<td>sodium sulfate</td>
</tr>
<tr>
<td></td>
<td>monosodium phosphate</td>
</tr>
<tr>
<td>Cationic</td>
<td>acetic acid</td>
</tr>
<tr>
<td></td>
<td>formic acid</td>
</tr>
<tr>
<td></td>
<td>oxlaic acid</td>
</tr>
<tr>
<td></td>
<td>sodium sulfate</td>
</tr>
<tr>
<td></td>
<td>sodium acetate</td>
</tr>
<tr>
<td></td>
<td>ethylene carbonate</td>
</tr>
</tbody>
</table>
Reactive
sodium chloride
urea
sodium carbonate
sodium hydroxide

Developed
developer
sodium chloride
sodium nitrite
sulfuric acid
sodium carbonate
hypochloric acid

1 (In addition to the chemicals listed, all of the dye types will usually use a small amount of surfactant. After the dyeing has been completed, the dyed goods are washed and then rinsed. Washing will involve use of a detergent as well as soda ash and a phosphate.)

The method most commonly used for developing vat prints is to pad caustic soda and hydrosulfite to the print prior to flash aging. The prints are then rinsed in water followed by oxidation with a solution of acetic acid and hydrogen peroxide or sodium perborate and then rinsed again. The development of the other dye classes to their corresponding substrate requires no chemical treatment other than the auxiliary chemicals used in the print paste. However, prints of the other dye types are scoured, after development, with surface active agents and in the case of disperse dyes may be scoured with a solution of caustic soda and hydrosulfite to remove any surface dye.

Printing wastes are comparable in many respects to dye wastes. Printing requires use of gums, which will contribute BOD. Solvents (Varsol) and glycerine are also common constituents in printing, but pose no special waste treating problem. Printing pigments will introduce some suspended solids into the waste. Much of the waste from printing comes from the cleaning of make-up tanks and process equipment. These relatively concentrated wastes may justify segregated treatment, perhaps by incineration.

Other Treatment Wastes

Special finishes such as resin treatment, water proofing, flame proofing, and soil release endow the fabric with a particular
property desired by consumers. The property is indicated by the name, except for resin treatment, which designates finishes that provide wrinkle resistance. Several of the treatments may be applied from a single bath.

As would be expected for processes that provide such diverse effects, the range of chemicals used is very broad. For resin treatment, a urea-formaldehyde-glyoxal compound ("DMDHEU"), a fatty softner, and a catalyst (zinc nitrate, magnesium chloride) are used together. Water repellents include silicones, fluorochemicals, and fatty materials, each generally applied with a catalyst. Soil release treatments include special acrylic polymers and fluorochemicals.

These finishes are generally applied by impregnation of the fabric followed by squeezing to the desired add-on. The moist material is dried and then cured by additional heat. The cured fabric is frequently packed for shipment without rinsing. Most resin-treated goods are subsequently cured in a garment factory and must not be rinsed, since the catalyst would be removed.

Wastes from resin treatment, water-proofing, flame-proofing and soil release are small, since the chemicals are applied by padding, followed by drying and curing. The chemicals used are diverse and small amounts of them will enter the wastes.

Subcategory 5 - Knit Fabric Finishing

Fabrics may be knitted from dyed or undyed yarns. Fabrics knitted from dyed yarn are scoured or dry cleaned to remove knitting oils and/or waxing. A softener, as an aqueous solution, can be exhausted onto the fabric or can be padded onto the fabric, as desired.

Typically, knits are processed in piece goods form. The fabric may be washed on continuous countercurrent washers prior to loading the fabric in dye machines to remove knitting oils and other contaminants, or washing may be the first step in the dye machine cycle. Warm water with a small amount of added detergent is used. In contrast, woven goods require more extensive treatment to remove starch or polymeric sizes.

The types of dyeing equipment generally employed include: atmospheric becks, pressure becks, jet (atmospheric or pressure) becks, atmospheric or pressure beam dyeing machines, and paddle type machines. Some plants may also package dye a portion of their yarns.

The types of dyestuffs, auxiliaries, and conditions employed for dyeing knit goods are essentially the same as for woven goods of
comparable fiber composition. See the discussion under subcategory 4 for details of the dyeing operation.

Flat knit fabrics which are beam dyed are first wet batched. In the wet batching operation, the fabric is passed through a dilute aqueous surfactant bath at controlled temperatures before being wound on a perforated beam. This treatment removes some of the inherent shrinkage, and also enhances penetration of dye liquors in the dyeing process. There is some waste generation from the wet batching operation; a small quantity of the dilute bath is dumped occasionally for cleanup and there is a continual slow drain of water from the wetted fabric. The wet treatment may remove some of the knitting oils; however, the fabric can be scoured and dyed in a single step, or in a two-step operation in the beam machine if the fabric is particularly dirty.

In knit plants, finishing cotton fabric -- e.g., for underwear and sleepwear -- wet process operations also include scouring and bleaching in kiers or comparable equipment. Plants that process either cotton or synthetic goods may also have fabric printing operations.

Most knit fabrics are treated with softners, and resin finished, and in some cases, with water and oil repellents. These finishes are applied from a pad bath just prior to final drying and dry finishing operations. These baths are discharged periodically as required for fabric lot or formulation changes, but the total daily volume of discharges is very small.

The main differences between knit and woven fabric wet processing operations are that knit yarns are treated with lubricants rather than with the starch or polymeric sizes used for woven goods yarns, and that mercerizing operations are not employed with knit goods. Otherwise, the character of the wastes generated from comparable unit operations performed on different fibers--cotton, synthetics, and blends--are similar to those found in woven fabric finishing.

Lubricating finishes applied to knitting yarns generally are based on mineral oils, vegetable oils, synthetic ester type oils, or waxes, and may also contain antistatic agents, antioxidants, bacteriostats, and corrosion inhibitors. Specific formulations are proprietary with the yarn supplier or throwster who applies the finish. The amount applied varies with the type of yarn; general levels of add-on by percent of weight on yarn are: untexturized synthetic yarns, 1 and 2 percent; texturized synthetic yarns, 4 to 7 percent; and cotton yarns 3 percent or less. These knitting oils are readily emulsified or soluble in water, and are removed by washing prior to the dyeing operations.

Subcategory 6 - Carpet Mills
The carpet industry wastes are very similar in nature to those from Subcategory 5, Knit Fabric Finishing. When polyester is dyed, the carriers present the same problem as in other categories. Polyester carpet is second in volume to nylon, and will continue to grow, followed by acrylic, modacrylic and wool. Although steps are being taken to produce polyester fiber that can be dyed without carriers, disposal of carrier will remain a problem. Most wool used in carpets is dyed in yarn form, with the use of acid dyes predominating, thus minimizing chromium use. The pH of carpet wastes is usually close to neutral.

With the lack of other wet processing steps in the mill, the hot dye wastes sometimes present a problem to biological treatment systems.

The color problem is similar to that of other finishing categories.

Where carpets are printed or dyed continuously, the thickeners present a high BOD load, as in fabric printing.

Subcategory 7 - Yarn Dyeing and Finishing

Wastes generated in yarn processing plants will depend substantially on whether natural fibers, blends, or synthetics alone are processed.

When synthetics alone are handled, only light scouring and bleaching is required, and wastes would contain low levels of detergents, soda ash, sodium phosphate, and perhaps a low bleach level. Wastes for this step would have low BOD, and dissolved solids. Dyeing would contribute a stronger waste, primarily due to the carrier in the case of polyester, and to some acetic acid; wastes, of course, would contain some color.

Scouring, bleaching, and mercerizing of cotton generate BOD and color because of the fiber impurities, and a high level of dissolved solids because of the mercerizing. Because of the relatively low amounts involved, it does not appear reasonable to recover caustic soda.

Subcategory 8 - Commission Finishing

A commission finishing subcategory plant may have a high hydraulic loading and waste water typically less treatable than that from other wet finishing operations. Greater water usage is characteristic of batch processing; additional water usage may result from the fact that a number of relatively incompatible processes may be carried out in sequence. The thorough washing and rinsing required between processes adds further to the hydraulic loading. Further, batch processing does not easily lend itself to the advantages of recycling or reuse of water, which is possible in
many continuous operations. In addition, a wide variety of processes and specialized treatment must be carried out. A commission finishing plant also characteristically finishes "problem" type materials (for example, a commission finisher may be called upon to dye and finish multi-fiber specialty fabrics, which require several separate processing steps to achieve the end product characteristics.)

The chemical content of the effluent from a commission finishing subcategory plant may continually change, containing effluents from a wide range of products and processes, which may render the effluent less treatable than more typical wet finishing operations. A typical problem is the requirement that many commission finishers must desize fabrics before finishing or dyeing. Each size agent requires a specific biological environment for effective degradation and unscheduled variations in loadings of the sizing agent could affect the ability of the treatment plant to effectively degrade the effluent. Further, the materials fed into the treatment system can be so variable that the biological system may not have an opportunity to continuously operate in a steady state condition, as is the case with the more typical finishing plant. Because of the above factors, the efficiency of the treating system, and hence the treated waste characteristics, may be subject to substantial changes.
SECTION VI
SELECTION OF POLLUTANT PARAMETERS

WASTE WATER PARAMETERS OF MAJOR SIGNIFICANCE

A thorough analysis of the literature, industry data and sampling data obtained from this study, and EPA Permit data demonstrates that the following waste water parameters are of major pollutional significance for the textile industry:

Biochemical Oxygen Demand
Total Suspended Solids
Chemical Oxygen Demand
Oil and Grease
Color
Chrome
Sulfide
Phenol
pH
Fecal Coliform

Rationale for Selection of Major Parameters

Biochemical Oxygen Demand (BOD5)

Biochemical oxygen demand (BOD) is a measure of the oxygen consuming capabilities of organic matter. The BOD does not in itself cause direct harm to a water system, but it does exert an indirect effect by depressing the oxygen content of the water. Sewage and other organic effluents during their processes of decomposition exert a BOD, which can have a catastrophic effect on the ecosystem by depleting the oxygen supply. Conditions are reached frequently where all of the oxygen is used and the continuing decay process causes the production of noxious gases such as hydrogen sulfide and methane. Water with a high BOD indicates the presence of decomposing organic matter and subsequent high bacterial counts that degrade its quality and potential uses.

Dissolved oxygen (D.O.) is a water quality constituent that, in appropriate concentrations, is essential not only to keep organisms living but also to sustain species reproduction, vigor, and the development of populations. Organisms undergo stress at reduced D.O. concentrations that make them less competitive and able to sustain their species within the aquatic environment. For example, reduced D.O. concentrations have been shown to interfere with fish population through delayed hatching of eggs, reduced size and vigor of embryos, production of deformities in young, interference with food digestion, acceleration of blood clotting, decreased tolerance to certain toxicants, reduced food efficiency and growth rate, and
reduced maximum sustained swimming speed. Fish food organisms are likewise affected adversely in conditions with suppressed D.O. Since all aerobic aquatic organisms need a certain amount of oxygen, the consequences of total lack of dissolved oxygen due to a high BOD can kill all inhabitants of the affected area.

If a high BOD is present, the quality of the water is usually visually degraded by the presence of decomposing materials and algae blooms due to the uptake of degraded materials that form the foodstuffs of the algal populations.

COD

COD is a measure of the potential oxygen requirement of a wastewater sample. The test measures potential oxygen consumption and includes the requirements of components that are not degraded by biological activity and therefore not measured as BOD.

Materials not degraded biologically may depress D.O. concentrations by chemical reaction with and subsequent removal of oxygen from solution. The depletion of D.O. may lead to catastrophic effects on the ecosystem and to conditions with the effects of depleted D.O. as described under BOD.

The measurement of COD, by the nature of the test used, gives an immediate implication of stream condition. By representing biochemical and chemical oxygen consumption COD is a more accurate evaluation of the total reduction potential of wastewater.

Textile wastes, being in part non-biodegradable, may effect D.O. depletion by biological and chemical removal of D.O. from water and therefore, impose stress conditions on the receiving stream. The total D.O. depletion potential is better described by COD.

Total Suspended Solids

Total suspended solids include both organic and inorganic materials. The inorganic components include sand, silt, and clay. The organic fraction may include such materials as grease, oil, tar, animal and vegetable fats, various fibers, sawdust, hair, and various materials from sewers. These solids may settle out rapidly and the resulting bottom deposits are often a mixture of both organic and inorganic solids. They adversely affect fisheries by covering the bottom of the stream or lake with a blanket of material that destroys the fish-food bottom fauna or the spawning ground of fish. Deposits containing organic materials may deplete bottom oxygen supplies and produce hydrogen sulfide, carbon dioxide, methane, and other noxious gases.
In raw water sources for domestic use, state and regional agencies generally specify that suspended solids in streams shall not be present in sufficient concentration to be objectionable or to interfere with normal treatment processes. Suspended solids in water may interfere with many industrial processes, and cause foaming in boilers, or encrustations on equipment exposed to water, especially as the temperature rises. Suspended solids are undesirable in water for textile industries; paper and pulp; beverages; dairy products; laundries; dyeing; photography; cooling systems, and power plants. Suspended particles also serve as a transport mechanism for pesticides and other substances which are readily sorbed into or onto clay particles.

Suspended solids in water may be suspended in water for a time, and then settle to the bed of the stream or lake. These settleable solids discharged with man's wastes may be inert, slowly biodegradable materials, or rapidly decomposable substances. While in suspension, they increase the turbidity of the water, reduce light penetration and impair the photosynthetic activity of aquatic plants.

Solids in suspension are aesthetically displeasing. When they settle to form sludge deposits on the stream or lake bed, they are often much more damaging to the life in water, and they retain the capacity to displease the senses. Solids, when transformed to sludge deposits, may do a variety of damaging things, including blanketing the stream or lake bed and thereby destroying the living spaces for those benthic organisms that would otherwise occupy the habitat. When of an organic and therefore decomposable nature, solids use a portion or all of the dissolved oxygen available in the area. Organic materials also serve as a seemingly inexhaustible food source for sludgeworms and associated organisms.

Turbidity is principally a measure of the light absorbing properties of suspended solids. It is frequently used as a substitute method of quickly estimating the total suspended solids when the concentration is relatively low.

Oil and Grease

Oil and grease exhibit an oxygen demand. Oil emulsions may adhere to the gills of fish or coat and destroy algae or other plankton. Deposition of oil in the bottom sediments can serve to inhibit normal benthic growths, thus interrupting the aquatic food chain. Soluble and emulsified material ingested by fish may taint the flavor of the fish flesh. Water soluble components may exert toxic action on fish. Floating oil may reduce the re-aeration of the water surface and in conjunction with emulsified oil may interfere with photosynthesis. Water insoluble components damage the plumage and costs of water animals and fowls. Oil and grease in water can
result in the formation of objectionable surface slicks preventing the full aesthetic enjoyment of the water.

Oil spills can damage the surface of boats and can destroy the aesthetic characteristics of beaches and shorelines.

Wool wax is a substantial pollutant in the wool scouring subcategory; in other textile subcategories, other materials measured as grease and oil are much less troublesome.

Color

Color is defined as either "true" or "apparent" color. In Standard Methods for the Examination of Water and Wastewater (4), the true color of water is defined as "the color of water from which the turbidity has been removed." Apparent color includes "not only the color due to substances in solution, but also due to suspended matter."

Color in textile waste water results from equipment washup, textile washwater and from dye not exhausted in the dyeing process.

Color bodies interfere with the transmission of light within the visible spectrum which is absorbed and used in the photosynthetic process of microflora. Color will affect the aquarian ecosystem balance by changing the amount of light transmitted and may lead to species turnover.

Color bodies discharged to waterways alter the natural stream color and thereby become an aesthetic pollutant. Unnatural receiving water color detracts from the visual appeal and recreational value of the waterways.

Color when discharged to receiving waters has detrimental effects on downstream municipal and industrial water users. Color is not treated for in conventional water treatment systems and when passed to users may result in consumer discontent and may also interfere with industrial processes which demand high quality water.

Color is found in wastewater throughout the textile industry. Some colors are water soluble and some are not (dispersed and vat dyes). Biodegradability is highly variable. Many hues are used in dyeing, and may appear in wastes; their combination in waste streams frequently generates a gray or black color. There is no universally accepted monitoring method. An analytical method developed by the American Dye Manufacturers Institute (A.D.M.I.) will be used in evaluating textile effluent color. The analytical procedure and the calculations required to evaluate color are reported in Appendix A.
Chromium

Chromium, in its various valence states, is hazardous to man. It can produce lung tumors when inhaled and induces skin sensitizations. Large doses of chromates have corrosive effects on the intestinal tract and can cause inflammation of the kidneys. Levels of chromate ions that have no effect on man appear to be so low as to prohibit determination to date.

The toxicity of chromium salts toward aquatic life varies widely with the species, temperature, pH, valence of the chromium, and synergistic or antagonistic effects, especially that of hardness. Fish are relatively tolerant of chromium salts, but fish food organisms and other lower forms of aquatic life are extremely sensitive. Chromium also inhibits the growth of algae.

In some agricultural crops, chromium can cause reduced growth or death of the crop. Adverse effects of low concentrations of chromium on corn, tobacco and sugar beets have been documented.

Sulfide

Sulfides discharged to neutral receiving waters can be reduced to hydrogen sulfide. Hydrogen sulfide is an extremely toxic, odiferous, and corrosive gas. It is very soluble and exists as a dissolved gas in receiving waters.

Minute concentrations (less than .002 mg/l) of hydrogen sulfide impart an objectionable odor and taste to water, making it unfit for municipal consumption.

The proven toxicity of sulfides to aquatic life makes them objectionable components of the waste stream. Sulfide corrosion of metal and cement structures are additional problems. In addition to corrosion, discoloration of structures through sulfide oxidation is a cause for concern.

Organic sulfer and sulfides are in the waste flow from the dyeing operation, and are also derived from other processes using compounds containing organic sulfer.

Phenols

Phenols and phenolic wastes are derived from textile processing chemicals; petroleum, coke, and chemical industries; wood distillation; and domestic and animal wastes. Many phenolic compounds are more toxic than pure phenol; their toxicity varies with the combinations and general nature of total wastes. The effect of combinations of different phenolic compounds is cumulative.
Phenols and phenolic compounds are both acutely and chronically toxic to fish and other aquatic animals. Also, chlorophenols produce an unpleasant taste in fish flesh that destroys their recreational and commercial value.

It is necessary to limit phenolic compounds in raw water used for drinking water supplies, as conventional treatment methods used by water supply facilities do not remove phenols. The ingestion of concentrated solutions of phenols will result in severe pain, renal irritation, shock and possibly death.

Phenols also reduce the utility of water for certain industrial uses, notably food and beverage processing, where it creates unpleasant tastes and odors in the product.

Fecal Coliforms

Fecal coliforms are used as an indicator since they have originated from the intestinal tract of warm blooded animals. Their presence in water indicates the potential presence of pathogenic bacteria and viruses.

The presence of coliforms, more specifically fecal coliforms, in water is indicative of fecal pollution. In general, the presence of fecal coliform organisms indicates recent and possibly dangerous fecal contamination. When the fecal coliform count exceeds 2,000 per 100 ml there is a high correlation with increased numbers of both pathogenic viruses and bacteria.

Many microorganisms, pathogenic to humans and animals, may be carried in surface water, particularly that derived from effluent sources which find their way into surface water from municipal and industrial wastes. The diseases associated with bacteria include bacillary and amoebic dysentery, *Salmonella* gastroenteritis, typhoid and paratyphoid fevers, leptospirosis, chlorea, vibriosis and infectious hepatitis. Recent studies have emphasized the value of fecal coliform density in assessing the occurrence of *Salmonella*, a common bacterial pathogen in surface water. Field studies involving irrigation water, field crops and soils indicate that when the fecal coliform density in stream waters exceeded 1,000 per 100 ml, the occurrence of *Salmonella* was 53.5 percent.

pH, Acidity and Alkalinity

Acidity and alkalinity are reciprocal terms. Acidity is produced by substances that yield hydrogen ions upon hydrolysis and alkalinity is produced by substances that yield hydroxyl ions. The terms "total acidity" and "total alkalinity" are often used to express the buffering capacity of a solution. Acidity in natural waters is caused by carbon dioxide, mineral acids, weakly dissociated acids,
and the salts of strong acids and weak bases. Alkalinity is caused by strong bases and the salts of strong alkalies and weak acids.

The term pH is a logarithmic expression of the concentration of hydrogen ions. At a pH of 7, the hydrogen and hydroxyl ion concentrations are essentially equal and the water is neutral. Lower pH values indicate acidity while higher values indicate alkalinity. The relationship between pH and acidity or alkalinity is not necessarily linear or direct.

Waters with a pH below 6.0 are corrosive to water works structures, distribution lines, and household plumbing fixtures and can thus add such constituents to drinking water as iron, copper, zinc, cadmium and lead. The hydrogen ion concentration can affect the "taste" of the water. At a low pH water tastes "sour". The bactericidal effect of chlorine is weakened as the pH increases, and it is advantageous to keep the pH close to 7. This is very significant for providing safe drinking water.

Extremes of pH or rapid pH changes can exert stress conditions or kill aquatic life outright. Dead fish, associated algal blooms, and foul stenches are aesthetic liabilities of any waterway. Even moderate changes from "acceptable" criteria limits of pH are deleterious to some species. The relative toxicity to aquatic life of many materials is increased by changes in the water pH. Metalocyanide complexes can increase a thousand-fold in toxicity with a drop of 1.5 pH units. The availability of many nutrient substances varies with the alkalinity and acidity. Ammonia is more lethal with a higher pH.

The lacrimal fluid of the human eye has a pH of approximately 7.0 and a deviation of 0.1 pH unit from the norm may result in eye irritation for the swimmer. Appreciable irritation will cause severe pain.

Rationale for Selection of Minor Parameters

Total Dissolved Solids (TDS)

The dissolved solids in waste water are mainly inorganic salts. They are particularly important as they are relatively unaffected by biological treatment processes and can accumulate in water recirculation systems. Failure to remove them may lead to an increase in the total solids content of ground waters and surface water sources. The dissolved solids in discharge water, if not controlled, may be harmful to vegetation and may also preclude use in various irrigation practices. There is not sufficient data available to establish effluent limitations for TDS, but at land treatment systems TDS must be managed to ensure satisfactory
performance without damage to the physical properties of the soil or to the quality of the ground waters.

Ammonia Nitrogen and Other Nitrogen Forms

The three most common forms of nitrogen in wastes are organic, ammonia and nitrate. Organic nitrogen will break down into ammonia, nitrogen and nitrate. When ammonia nitrogen is present in effluent waste water, it may be converted to nitrate nitrogen by oxidation. When ammonia and nitrates are added to ponds and lakes, they contribute to eutrophication. Additions of ammonia or urea as a nutrient to nitrogen deficient waste is a common practice in the industry.

Phosphates

Phosphorus, like nitrate, is linked directly to the eutrophication process of lakes and streams. When applied to soil, phosphorus does not exhibit a runoff potential because it is readily absorbed and tenaciously bound on the surface of soil particles. In this case, movement of phosphorus to ground water is essentially precluded and water contamination can only occur if actual erosion of the soil takes place. Phosphates may also be added as nutrients to biological treatment systems.

Temperature

The temperature of effluent waste water is important, since release of water at elevated temperatures into surface waters or ground water formations could result in damage to the aquatic micro-ecosystems. The design of treatment facilities is also dependent upon the plant effluent temperature. Raw waste from many textile mills is hot, but the temperature reduction occurs naturally in waste treatment, and the temperature of the final effluent should be very close to ambient. Therefore, effluent water temperature does not present a problem.

Other Heavy Metals

Copper salts are still used in some dyeing operations of the textile industry. Since they are harmful in biological systems, they should be considered as pollutants. Zinc nitrate is widely used as a catalyst for durable press goods, and small amounts will enter waste systems. Magnesium chloride may be used in the same process. Mercury was considered because of its known occurrence in raw materials such as sodium hydroxide which is used in large amounts by the textile industry. In normal operation, we would not expect the
concentration of these materials in the waste water to exceed harmful limits.

Toxic Organic Chemicals

Dieldrin, a moth proofing agent used for carpets would fall into this grouping, but this chemical is no longer used. Carriers based on chlorinated benzenes are considered toxic and care should be exercised when they are used.
The technology for control and treatment of waterborne pollutants in the textile industry can be divided into two broad categories: in-process and end-of-pipe. In-process control of waterborne pollutants in turn depends upon two major conditions: (1) altering the process requirements that generate water pollutants, and (2) controlling water usage in nonprocess as well as process areas. For example, pollutants can often be kept from entering waste water streams through the institution of better housekeeping procedures, containment of leaks and spills, good maintenance practices, and the segregation and treatment of selected concentrated waste water streams.

At present, the textile industry is concerned principally with end-of-pipe treatment of its waste waters. However, the application of waste water treatment technology has often been instituted without detailed investigation of the alternatives to water and waste water management within the process operations. This approach, of course, is a natural one to follow since institution of in-process changes for an operating plant is frequently time consuming and expensive. Furthermore, the incorporation of in-process control of waterborne pollutants demands attention to specific operations which are often proprietary whereas end-of-pipe waste water treatment technology is based on generally similar principles which are available from consultants, equipment manufacturers and the company's own competitors.

The textile industry relies principally upon biological treatment of its waste waters at the end-of-pipe. A large number of plants, especially small ones, send waste waters into municipal sewage systems where they may be a minor portion of the total flow; however, in some instances the waste water flow to a municipal plant is predominantly waste water from textile plants.

In-Process Control

Ancillary Process Control Technology. A big portion of the textile waste load is inherent in the methods of textile processing and independent of the efficiency of the processing plants. For example, size is applied to warp yarns to give them mechanical strength in the weaving operations; all of this size must be taken off before subsequent bleaching and dyeing. A finishing plant can use variable amounts of water in removing this size, but the raw waste load due to size is unchanged. The same applies to spinning finishes on synthetic fibers, which are put on the yarn as a
lubricant and to reduce static in the high-speed spinning and textile operations. All of these “temporary” finishes must be removed before dyeing of the yarn, so again the raw waste load is almost independent of scouring efficiency.

On the other hand there are many unit operations which are dependent on chemical concentrations to provide desired effects. The raw waste loads of pollutants produced by these processes can be substantially reduced through water reduction. A plant can also reduce the other raw waste loads—such as spills, reworks, etc.—in many ways. These are considered below.

The principal axiom in reducing the waterborne pollutant loads through control external to the process is to prevent pollutants from entering the water streams. Although this seems obvious, its successful application requires continual attention by operating personnel. In fact, it is synonymous with creation of an effective work safety program. In the textile industry, with its large number of batch operations, one of the most important aspects of reducing waterborne pollutants is to institute an effective water management program—including expanded use of liquid-level-controls, flow indicators and flow meters, adequate capacity for generating hot water for wash operations, etc.—in conjunction with a good maintenance program which will insure that leaks from valves, pipes, pumps, etc., are promptly repaired so as to prevent process fluids from entering floor drains, etc. Except for Subcategory 1 the concentration levels of pollutants at the inlet to the waste water treatment plants are not excessively high for industrial waste waters. Consequently, a significant reduction in hydraulic capacity should normally effectively lower the total emitted pollutants from a given waste water treatment plant even if the concentration level in the effluent rose moderately. Obviously, if process operations can be changed to reduce the pollutant load to the waste water treatment plant simultaneously with a reduction in hydraulic flow the emitted pollutants will be reduced even more.

Procedures and methods for preventing spills and leaks should be the paramount consideration, but passive systems for containment or preventing their entry into water courses should be part of any control plan. Only through assessment of the potential for pollutants to enter water streams from accidental occurrences and the development of action plans is it possible to develop a high degree of assurance that spilled liquids will be prevented from polluting water courses.

In summary, strict attention to housekeeping procedures and process operation, can minimize abnormal waste loads.

Conventional Processing With Better Water Economy. The greatest potential for improved water economy in the textile industry stems from the use of better washing methods. About 80 percent of all the
Water used in textile wet processing is used for removing foreign material—either that carried on the raw fiber, or materials resulting from treating operations such as sizing, scouring, dyeing and finishing. Furthermore, most applications of treating materials are already carried out at low liquor ratio for the sake of material and time economy. It follows that important water economies in conventional processing can be made by reducing the amount of wash water.

Water usage can be improved substantially as design engineers take water economy into more active consideration. For example, so-called "double laced" box washers have recently been introduced, with claimed savings of up to 40 percent in a number of machines. Significant water savings are claimed, but detailed quantitative data are not available. More complex open-width washing machines designed to induce greater turbulence, have been offered without great success. Since the physical aim to be accomplished is clear, i.e., breaking down an effective thick diffusion film in the fabric interstices, it is likely that more efficient open-width machines can be developed.

Rope washers generally are more effective than open-width washers and may be susceptible to further improvement if back-mixing can be controlled in a practical manner.

In addition to better washer design, there are opportunities for water economy in more counter-current flows. A finishing plant operator prefers to use fresh water at every machine, for ease of control and adjustment, and for freedom from danger of cross-contamination. However, some opportunities for counter-flow are neither unduly difficult nor hazardous to quality. For example, it is almost always acceptable to counter-flow water from machine to machine where several machines are used in series at the same point in the process. For example, it is common to use 5 or 6 or more open-width box washers in series after scouring or mercerizing operations, or two Tensitrol-type rope washers after scouring operations. It is best for water economy to counter-flow the water through the series. This is frequently but not universally practiced today. Furthermore, it is practical to counter-flow water from some later stages to some earlier stages. For example, white washer effluent can almost certainly be used as feed water for caustic washers. Additional opportunities for backflow of water also exist. However, there are limitations; wash water from dyeing operations, for example, always contains color, and is generally unsuitable for re-use without cleanup. Caustic scour and desizing wash waters are heavily laden with dissolved and suspended solids and unsuitable for re-use.
In principle, water cleanup could be used around particular machines or groups of machines, thus extending water economy still further. Preliminary consideration of investment and operating costs indicates that this is generally less economical than pooling effluents and operating one large treating plant. Closing of water cycles around individual operations or groups of operations will probably be limited to very special circumstances.

In summary, further water economies can be achieved by machine improvements and by wider use of countercurrent flow.

New Process Technology

Solvent Processing. Serious study of textile processing in organic solvents dates back at least 15 years, although batch applications of special finishing, such as water repellents has been practiced for more than a generation. In the late 1950's, Imperial Chemical Industries pioneered a solvent system for continuous scouring of cotton piece goods. Several large machines of this type have been operated in the United States at various times since 1960. During the 1960's, a number of continuous solvent scouring and finishing ranges were devised and tested in Europe. In most of these cases the development work has been carried out by solvent suppliers or equipment manufacturers.

In the course of this work it has become clear that chlorinated solvents such as perchloroethylene and trichloroethylene are the most advantageous materials now available. It has also become clear that suitable machines can be manufactured and operated so as to control air pollutions in the work space. Solvent loss remains an economic problem. Extremely tight control is needed to keep solvent loss per operation below 5 percent of fabric weight. To date, there has been no appreciable commercial use of solvent finishing for woven goods. However, solvent processing has established a firm, if specialized, position in knit fabric finishing, especially in the finishing of synthetic knits.

Solvent processing has found commercial use only where superior fabric properties have been achieved. For example, solvent applications of stain repellent finish to upholstery and drapery materials are widely practiced. In this case, aqueous treatment is not always possible, because the fabric is sensitive to water. Similarly, solvent scouring and finishing of synthetic knit fabrics is widely practiced because it is, in these cases, advantageous to quality to avoid wetting with water. Some finishes, furthermore, are not available in water soluble or dispersible form and can be used only in solvents.
On the other hand, very substantial research and development efforts in the last decade or so have not led to replacement of aqueous processing to any appreciable extent.

 Adoption of a complete solvent processing scheme avoids the problem of dealing with both aqueous and solvent wastes. As noted above, however, a complete line of textile processing and finishing compounds would first be required. Some thousands of different dyestuffs and chemicals are now used in commercial textile processing. Only a limited number can be directly transferred to solvent use.

On the grounds noted above, it is becoming clear that solvent processing generally will be introduced only as superior results are demonstrated. In general, this implies better properties in the finished fabric, although processing advantages may lead the way in a few cases. The prospects for solvent processing are outlined below for each of several important finishing steps.

Solvent Scouring of Woven Fabric. Despite intense effort, solvent scouring of woven fabrics has not established a firm place. The properties of solvent scoured fabrics are not generally superior. The wastes generated are the same with respect to organic content, but, of course, free from the alkali generally used for aqueous scouring.

Solvent Scouring of Knit Fabric. Solvent scouring of some synthetic knit fabrics is well established and growing. Commercial use is based on superior results, fast drying and easy extension to specialized solvent finishing. Contribution to water pollution abatement is modest because scouring of knits does not contribute very heavily to textile pollution loads.

Bleaching. It is possible to bleach from solvent systems and large scale demonstrations have been carried out. However, the process used generates both aqueous and solvent wastes. No advantages have been demonstrated with respect to fabric properties.

Dyeing. A very large effort has been devoted to solvent dyeing. Some fibers are commercially dyed from solvent systems, notably nylon sportswear and carpets by the STX beam dyeing process. The advantages and limitations of solvent dyeing, both practical and theoretical, were discussed at length in a January 1973 AATCC Symposium. Collected papers, available from the American Association of Textile Chemists and Colorists Research Triangle Park, North Carolina, 27709, should be consulted for details. Although many important textile fibers can be dyed from solvent
systems, practical applications will apparently be limited to special cases. There are not grounds for broad reliance on solvent processing to solve current liquid effluent problems arising from dyeing operations.

Solvent Finishing Woven Goods. It has been shown that many functional finishes can be applied from solvents. Some advantageous properties have been demonstrated, but no practical use has been achieved. It is believed that advantages shown so far have been insufficient to justify a changeover from the familiar aqueous systems. In any event, chemical finishing is but a modest contributor to textile effluents, since the aim is to capture a very high fraction of the active agent on the cloth.

In special cases, i.e., water-sensitive fabrics, solvent finishing has become fairly standard practice. Application of stain and soil resistant finishes to upholstery fabrics is a typical example.

Solvent Finishing of Knit Fabric. Synthetic knit fabrics lend themselves admirably to combination scouring and finishing from solvents. Some modern finishes, such as silicone polymers for single-knits, can be applied only from solvent. In other cases, solvent processing recommends itself because of ease and speed of drying, or because of superior properties developed by solvent finishing. Although much of this development started with batch operations in dry cleaning machinery, highly developed continuous processing machines are now available from several manufacturers, both domestic and foreign. It is clear that solvent processing of knit fabrics is established and growing.

In summary, solvent processing is clearly finding a place in modern textile processing. There are, however, no grounds for supposing that aqueous processing will be totally displaced by solvent processing.

Recovery and Re-use of Warp Size. Most woven goods require the use of warp size during manufacture. The sizing, traditionally starch, coats the warp yarns and binds the individual fibers together. This action is necessary to preserve the warps from excessive abrasion damage during weaving. The sizing is generally removed as the first operation in the fabric finishing sequence. Warp size constitutes, on the average, about 5 percent of the weight of the fabric, and it all ends up in the effluent waters. Accordingly, it is a very substantial contributor to the total BOD and COD in textile mill effluents. Sizing waste accounts for about half the total BOD and COD load from textile operations.

Since the advent of synthetic fibers, newer sizing agents have been developed. A solubilized cellulose derivative, and polyvinyl
alcohol have been widely used. At this time, PVA, alone or in blends with starch, is the most popular size for the important cotton/polyester blend fabrics.

While solvent sizing/desizing has been suggested as a means of reducing aqueous waste loads of BOD and COD, feasibility has not been demonstrated. Organic solvents will contribute to both air and water pollution load since recovery of solvents over 95% is almost impossible. Water is also a solvent for demonstrated effective warp sizes, such as polyvinyl alcohol or carboxy methyl cellulose (CMC). Research now underway may eventually confirm the economic practicality of recovering and reusing both the warp size (PVA or CMC) and water. It is premature to state that solvent size/desize will eventually find practical application.

Since the size is to be used repeatedly, some means to purge impurities is mandatory. While this is a difficult problem, the potential advantages of solvent size and desize are substantial. Solvent size/desize will eventually find practical application. It is likely that adoption of new sizing technology will be based on demonstrated advantages over conventional methods rather than on pollution control considerations alone.

Specific In Process Changes

Wool Scouring. One of the problems in defining wool scour wastes and in controlling the process for optimum performance is that detergent is added on a fixed flow basis, and the demand for it varies widely with the natural variations in the fleece as received. Future effort may profitably be spent in developing a method to measure the detergent demand and control its addition accordingly; less detergent will be used, BOD load reduced and perhaps a more easily separated emulsion will yield higher grease recoveries.

In addition, in the centrifuge recovery system described, rewashing of the grit for recovery of up to 40 percent more grease than is presently being recovered, appears possible with developmental efforts. Furthermore, the value of centrifuge-recovered wool grease is higher than that of acid-cracked grease (20¢ per pound in 1973).

Re-use of the waste treatment plant effluent as make-up water to the scouring train may be feasible. One of the obvious problems is that dissolved salts will build up.

Solvent scouring has been used to remove the wool grease from the wool. Jet fuel, benzene, carbon tetrachloride, ethyl alcohol, methyl alcohol and isopropyl alcohol have been tried. The problems
of flammability and explosive hazards, and of efficiency of solvent recovery have prevented its use in the United States.

Solvent scouring requires subsequent detergent washing to remove the dirt. More efficient methods of grease recovery using the water scouring process appear capable of achieving grease recovery levels comparable to that with solvent methods, and hence would probably offer the better choice for further reducing pollution load in the future.

Wool Finishing. Further effort should be extended to segregating waste streams within the mill. In particular, many of the rinse waters appear satisfactory for reuse both for subsequent initial rinses and for pre-scouring steps and perhaps for fulling rinses.

Solvent scouring is practiced in several mills in place of initial detergent scouring, to remove spin oils, sizes, and fugitive tints. The savings in detergent costs appear to justify these systems, resulting in a lower BOD load and somewhat lower water use.

Woven and Knit Fabric Finishing and Stock and Yarn Dyeing. The possibilities for reducing water consumption in finishing woven fabric were discussed earlier. In this section we will emphasize pollutants other than water.

Scouring, mercerizing and bleaching generate substantial wastes, particularly in textiles containing cotton. Large textile users already recover spent caustic soda and this should be extended to other users.

Better control of dyeing processes as a possible result of automation could bring about reductions in dye and chemical usage as well as in water.

Automation and instrumentation will reduce the amounts of auxiliary chemicals essential for dyeing, e.g., salts; and sodium hydrosulfite. Most mills have abandoned the use of chromates in favor of peroxide and perborate. The use of pressure becks for dyeing polyester is increasing, thus reducing carrier usage. Some printing processes use solvent (Varsol) which can be recovered by flotation and distillation.

Carpets. Continuous dyeing has been stated to use 20 to 25 percent less the amount of water used in beck dyeing. Stock dyeing and printing rinse also are similar lower level uses. However, a mill can use a continuous process only if the volume of a given shade is sufficiently high.
If polyester becomes a major face-yarn material, there will be an increase in raw waste load. This can be abated to some extent by the use of pressure dye becks, as in subcategories 4 and 5, that permit a reduction in the use of carriers and their attendant heavy BOD load.

Commission Finishers - For those plants identified as commission finishers in the above subcategories, the same process changes are recommended. In addition, special attention to in-house management and scheduling control, where possible, will bring additional benefits and aid in pollutant control.

Biological Treatment Technology

The treatment of waste effluents by biological methods is an attractive alternative when a high proportion of the biodegradable material is in the soluble form, as is the case in the textile industry. These methods are applicable in this industry irrespective of plant size, age or location.

Many types of microorganisms remove organic materials from liquid wastes. Those most commonly used in treatment systems are heterotrophs, which utilize organic carbon for their energy and growth. Some are aerobic and require molecular oxygen for converting wastes to carbon dioxide and water. Others are anaerobic and grow without molecular oxygen. Anaerobic microorganisms grow more slowly than aerobes and produce less sludge per unit of waste treated than do aerobic microorganisms. Anaerobes also release acids and methane, and their action on sulfur-containing wastes may create odor problems. Some microorganisms are facultative; that is, they can grow in either an aerobic or anaerobic environment.

The biological treatment of industrial wastes often lacks necessary nutrients in the waste to sustain desirable biological growth. Added nutrients, most often nitrogen and sometimes phosphorus, may be required for efficient biological treatment of processing wastes. Processing wastes generally require the addition of nitrogen before successful biological treatment. Often this can be economically accomplished by the addition of nutrient-rich wastes from another source for combined treatment.

A discussion of the various methods of biological treatment is presented in the following sections.

Activated Sludge: In this case the active biota are maintained as a suspension in the waste liquid. Air, supplied to the system by mechanical means, mixes the reaction medium and supplies the microorganisms with the oxygen required for their metabolism. The microorganisms grow and feed on the nutrients in the inflowing waste waters. There are fundamental relationships between the growth of
these microorganisms and the efficiency of the system to remove BOD$_5$.

A number of activated sludge systems have been designed, all of which have their own individual configurations. Basically, these designs consist of some type of pretreatment, usually primary sedimentation and aeration, followed by sedimentation which will allow the sludge produced to separate, leaving a clear effluent. Portions of the settled sludge are recirculated and mixed with the influent to the aeration section, usually at a proportion ranging between 10 to 100 percent, depending upon the specific modification to the basic activated sludge process.

The goal of these plants is to produce an actively oxidizing microbial population which will also produce a dense "biofloc" with excellent settling characteristics. Usually, optimization of floc growth and overall removal is necessary since very active microbial populations do not always form the best flocs.

Activated sludge treatment plants are capable of removing 95 percent or better of the influent BOD$_5$ from textile manufacturing plants.

The extended aeration modification of the activated sludge process is similar to the conventional activated sludge process, except that the mixture of activated sludge and raw materials is maintained in the aeration chamber for longer periods of time. The common detention time in extended aeration is one to three days, rather than six hours. During this prolonged contact between the sludge and raw waste, there is ample time for organic matter to be adsorbed by the sludge and also for the organisms to metabolize the organic matter which has been built up into the protoplasm of the organism. Hence, in addition to high organic removals from the waste waters, up to 75 percent of the organic matter of the microorganisms is decomposed into stable products and consequently less sludge will have to be handled.

In extended aeration, as in the conventional activated sludge process, it is necessary to have a final sedimentation tank. Some of the solids resulting from extended aeration are finely divided and therefore settle slowly, requiring a longer period of settling.

The long detention time in the extended aeration tank makes it possible for nitrification to occur. If it is desirable for this to occur, it is necessary to have sludge detention times in excess of three days. This can be accomplished by regulating the amounts of sludge recycled and wasted each day. Oxygen enriched gas could be used in place of air in the aeration tanks to improve overall performance. This would require that the aeration tank be partitioned and covered, and that the air compressor and dispersion system be replaced by a rotating sparger system, which costs less to
buy and operate. When co-current, staged flow and recirculation of gas back through the liquor is employed, between 90 and 95 percent oxygen utilization is claimed.

Activated sludge in its varied forms is an attractive alternative in textile waste treatment. Conventional design criteria are not directly transferrable from municipal applications. However, high levels of efficiency are possible at the design loadings normally employed in treating other types of high strength organic wastes. The general experience has been that biological solids separation problems can be avoided if the dissolved oxygen concentration remains above zero throughout the aeration basin, if management minimizes very strong, concentrated waste releases, and if sufficient amounts of nitrogen are available to maintain a critical nitrogen: BOD5 ratio. This ratio has been recommended to be 3 to 4 kg(lb) N per 100 kg(lb) of BOD5 removed. Numerous cases have been reported of successful combined treatment of textile and domestic wastes by activated sludge and its modifications. Activated sludge systems require less room than other high reduction biological systems, but have higher equipment and operating costs. Properly designed and operated systems can treat textile wastes to achieve high BOD reductions.

Biological Filtration (Trickling Filter): The trickling filter process has found application in treatment of many industrial wastes. Very tall filters employing synthetic media, high recirculation, and forced air circulation have been used to treat strong wastes in the 300-4000 mg/l BOD5 range.

The purpose of the biofilter system is to change soluble organic wastes into insoluble organic matter primarily in the form of bacteria and other higher organisms. As the filter operates, portions of the biological growth slough off and are discharged as humus with the filter effluent. Usually, some physical removal system is required to separate this insoluble organic material which can be treated by other suitable methods, usually anaerobic fermentation in a sludge digester.

Trickling filters are usually constructed as circular beds of varying depths containing crushed stone, slag, or similar hard insoluble materials. Liquid wastes are distributed over this bed at a constant rate and allowed to "trickle" over the filter stones. Heavy biological growths develop on the surface of the filter "media" throughout the depth of the filter and also within the interstitial spaces.

The biological film contains bacteria, (Zooglea, Sphaerotilus, and Beggiatoa); fungi (Fusarium, Geotrichum, Sepedonium); algae, both green and blue-green (Phormidium, Ulothrix, Mononostrona); and a very rich fauna of protozoa. A grazing fauna is also present on
these beds consisting of both larval and adult forms of worms (Oligochaeta), insects (Diptera and Coleoptera among others), and spiders and mites (Arachnida).

A common problem with this type of filter is the presence of flies which can become a severe nuisance. Insect prevention can usually be achieved by chlorinating the influent or by periodically flooding the filter.

Recirculation of waste water flows through biological treatment units is often used to distribute the load of impurities imposed on the unit and smooth out the applied flow rates. Trickling filter BOD₅ removal efficiency is affected by temperature and the recirculation rate. Trickling filters perform better in warmer weather than in colder weather. Recirculation of effluent increases BOD₅ removal efficiency, as well as keeping reaction-type rotary distributors moving, the filter media moist, organic loadings relatively constant, and increases contact time with the biologic mass growing on the filter media.

Furthermore, recirculation improves distribution, equalizes unloading, obstructs entry and egress of filter flies, freshens incoming and applied waste waters, reduces the chilling of filters, and reduces the variation in time of passage through the secondary settling tank.

Trickling filter BOD₅ removal efficiency is inversely proportional to the BOD₅ surface loading rate; that is, the lower the BOD₅ applied per surface area, the higher the removal efficiency. Approximately 10-90 percent BOD reduction can be attained with trickling filters.

Anaerobic Processes: Elevated temperatures (29° to 35°C or 85° to 95°F) and the high concentrations of organic material typically found in industrial wastes make these wastes well suited to anaerobic treatment. Anaerobic or facultative microorganisms, which function in the absence of dissolved oxygen, break down the organic wastes to intermediates such as organic acids and alcohols. Methane bacteria then convert the intermediates primarily to carbon dioxide and methane. Also, if sulfur compounds are present, hydrogen sulfide may be generated. Anaerobic processes are economical because they provide high overall removal of BOD₅ and suspended solids with no power cost (other than pumping) and with low land requirements. Two types of anaerobic processes are possible: anaerobic lagoons and anaerobic contact systems.

Anaerobic lagoons are used as the first step in secondary treatment or as pretreatment prior to discharge to a municipal system. Reductions of 85 percent in BOD₅ and 85 percent in suspended solids
can be achieved with these lagoons. A usual arrangement is two anaerobic lagoons—relatively deep (3 to 5 meters, or about 10 to 17 feet), low surface-area systems with typical waste loadings of 240 to 320 kg BOD$_5$/1000 cubic meters (15 to 20 lb BOD$_5$/1000 cubic feet) and a detention time of several days.

Plastic covers of nylon-reinforced Hypalon, polyvinyl chloride, and styrofoam can be used on occasion to retard heat loss, to ensure anaerobic conditions, and hopefully to retain obnoxious odors. Properly installed covers provide a convenient method for collection of methane gas.

Influent waste water flow should be near, but not on, the bottom of the lagoon. In some installations, sludge is recycled to ensure adequate anaerobic seed for the influent. The outlet from the lagoon should be located to prevent short-circuiting the flow and carry-over of the scum layer.

Advantages of an anaerobic lagoon system are: initial low cost; ease of operation; and the ability to handle shock waste loads and yet continue to provide a consistent quality effluent. Disadvantages of an anaerobic lagoon are odors although odors are not usually a serious problem at well managed lagoons.

Anaerobic lagoons used as the first stage in secondary treatment are usually followed by aerobic lagoons. Placing a small, mechanically aerated lagoon between the anaerobic and aerobic lagoons is becoming popular. It is currently popular to install extended aeration units following the anaerobic lagoons to obtain nitrification.

The anaerobic contact system requires far more equipment for operation than do anaerobic lagoons, and consequently is not as commonly used. The equipment, consists of equalization tanks, digesters with mixing equipment, air or vacuum gas stripping units, and sedimentation tanks (clarifiers). Overall reduction of 90 to 97 percent in BOD and suspended solids is achievable.

Equalized waste water flow is introduced into a mixed digester where anaerobic decomposition takes place at a temperature of about 33° to 35°C (90° to 95°F). BOD$_5$ loadings into the digester are between 2.4 and 3.2 kg/cubic meter (0.15 and 0.20 lb/cubic foot), and the detention time is between three and twelve hours. After gas stripping, the digester effluent is clarified and sludge is recycled at a rate of about one-third the raw waste influent rate. Sludge at the rate of about 2 percent of the raw waste volume is removed from the system.

Advantages of the anaerobic contact system are: high organic waste load reduction in a relatively short time; production and collection
of methane gas that can be used to maintain a high temperature in
the digester and also to provide auxiliary heat and power; good
effluent stability to waste load shocks; and application in areas
where anaerobic lagoons cannot be used because of odor or soil
conditions. Disadvantages of anaerobic contractors are high initial
and maintenance costs and some odors emitted from the clarifiers.

Anaerobic contact systems are usually used as the first stage of
secondary treatment and can be followed by the same systems that
follow anaerobic lagoons or trickling filter roughing systems.

Other Aerobic Processes: Aerated lagoons have been used successfully
for many years in a number of installations for treating industrial
wastes. However, with recent tightening of effluent limitations and
because of the additional treatment aerated lagoons can provide, the
number of installations is increasing.

Aerated lagoons use either fixed mechanical turbine-type aerators,
floating propeller-type aerators, or a diffused air system for
supplying oxygen to the waste water. The lagoons usually are 2.4 to
4.6 m (8 to 15 feet) deep, and have a detention time of two to ten
days. BOD₅ reductions range from 40 to 60 percent with little or no
reduction in suspended solids. Because of this, aerated lagoons
approach conditions similar to extended aeration without sludge
cycle.

Advantages of this system are that it can rapidly add dissolved
oxygen (DO) to convert anaerobic waste waters to an aerobic state;
provide additional BOD₅ reduction; and require a relatively small
amount of land. Disadvantages are the power requirements and that
the aerated lagoon, in itself, usually does not reduce BOD₅ and
suspended solids adequately to be used as the final stage in a high
performance secondary system. Aerated lagoons are usually a single
stage of secondary treatment and should be followed by an aerobic
(shallow) lagoon to capture suspended solids and to provide
additional treatment.

Aerobic lagoons (or stabilization lagoons or oxidation ponds), are
large surface area, shallow lagoons, usually 1 to 2.3 m deep (3 to 8
feet), loaded at a BOD₅ rate of 22-56 kilograms per hectare (20 to
50 pounds per acre). Detention times will vary from several days to
six or seven months; thus aerobic lagoons require large areas of
land.

Aerobic lagoons serve three main functions in waste reduction:

1. Allow solids to settle out.
2. Equalize and control flow.
3. Permit stabilization of organic matter by aerobic and facultative microorganisms and also by algae.

Actually, if the pond is quite deep, 1.8 to 2.4 m (6 to 8 feet), so that the waste water near the bottom is void of dissolved oxygen, anaerobic organisms may be present. Therefore, settled solids can be decomposed into inert and soluble organic matter by aerobic, anaerobic or facultative organisms, depending upon the lagoon conditions. The soluble organic matter is also decomposed by microorganisms causing the most complete oxidation. Wind action assists in carrying the upper layer of liquid (aerated by air-water interface and photosynthesis) down into the deeper portions. The anaerobic decomposition generally occurring in the bottom converts solids to liquid organics which can become nutrients for the aerobic organisms in the upper zone.

Algae growth is common in aerobic lagoons; this currently is a drawback when aerobic lagoons are used for final treatment. Algae may escape into the receiving waters, and algae added to receiving waters are considered a pollutant. Algae in the lagoon, however, play an important role in stabilization. They use CO₂, sulfates, nitrates, phosphates, water and sunlight to synthesize their own organic cellular matter and give off free oxygen. The oxygen may then be used by other microorganisms for their metabolic processes. However, when algae die they release their organic matter in the lagoon, causing a secondary loading. Ammonia disappears without the appearance of an equivalent amount of nitrite and nitrate in aerobic lagoons. From this, and the fact that aerobic lagoons tend to become anaerobic near the bottom, it appears that some denitrification is occurring.

High winds can develop a strong wave action that can damage dikes; Riprap, segmented lagoons, and finger dikes are used to prevent wave damage. Finger dikes, when arranged appropriately, also prevent short circuiting of the waste water through the lagoon. Rodent and weed control, and dike maintenance are all essential for good operation of the lagoons.

Advantages of aerobic lagoons are that they reduce suspended solids, oxidize organic matter, permit flow control and waste water storage. Disadvantages are the large land required, the algae growth problem, and odor problems.

Aerobic lagoons usually are the last stage in secondary treatment and frequently follow anaerobic or aerated lagoons. Large aerobic lagoons allow plants to store waste water discharges during periods of high flow in the receiving body of water or to store for irrigation during the summer. These lagoons are particularly
popular in rural areas where land is available and relatively inexpensive.

Rotating Biological Contactor: The rotating biological contactor (RBC) consists of a series of closely spaced flat parallel disks which are rotated while partially immersed in the waste waters being treated. A biological growth covering the surface of the disk adsorbs dissolved organic matter present in the waste water. As the biomass on the disk builds up, excess slime is sloughed off periodically and is removed in sedimentation tanks. The rotation of the disk carries a thin film of waste water into the air where it absorbs the oxygen necessary for the aerobic biological activity of the biomass. The disk rotation also promotes thorough mixing and contact between the biomass and the waste waters. In many ways the RBC system is a compact version of a trickling filter. In the trickling filter the waste waters flow over the media and thus over the microbial flora; in the RBC system, the flora is passed through the waste water.

The system can be staged to enhance overall waste water reduction. Organisms on the disks selectively develop in each stage and are thus particularly adapted to the composition of the waste in that stage. The first couple of stages might be used for removal of dissolved organic matter, while the latter stages might be adapted to other constituents, such as nutrient removal.

The major advantages of the RBC system are its relatively low installed cost, the effect of staging to obtain dissolved organic matter reductions, and its good resistance to hydraulic shock loads. Disadvantages are that the system should be housed to maintain high removal efficiencies and to control odors. Although this system has demonstrated its durability and reliability when used on domestic wastes, it has not yet been fully tested to treat textile processing wastes.

Rotating biological contactors could be used for the entire aerobic secondary system. The number of stages required depend on the desired degree of treatment and the influent strength. Typical applications of the rotating biological contactor, however, may be for polishing the effluent from anaerobic processes and from roughing trickling filters and as pretreatment prior to discharging wastes to a municipal system. A BOD₅ reduction of over 90 percent is achievable with a multi-stage RBC.

Performance of Biological Treatment Systems

Evaluation of data obtained from the textile waste water treatment plants surveyed indicate that the operational mode for exemplary biological systems is extended aeration. No exemplary plant has an
average residence time in the aeration basin of less than 17 hours. Eighteen exemplary biological systems with an average BOD removal efficiency of greater than 95 percent are listed in Table 20. The complete treatment scheme for most exemplary waste treatment plants includes screening and extended aeration followed by clarification and polishing lagoons.

Removal of fibers from the waste water prior to their entering the aeration basin is often necessary to prevent floating scum from building on the surface of the basin or to prevent the aeration equipment from malfunctioning and reducing oxidation efficiency. Usually, these fibers are removed satisfactorily through the use of bars or screens.

Removal of BOD5 and suspended solids from textile waste water is accomplished most satisfactorily through the employment of extended aeration including clarification and sludge return. Textile waste water usually contains ample phosphates which are available as nutrients for the microorganism of the biological system. Nitrogen in the form of ammonia or nitrate may be required in some cases in which this nutrient deficiency has been identified.

Suspended solids are removed from biologically-treated waste water by gravity sedimentation. The concentrated slurries are recycled to aeration basins while the overflow from the clarifier goes to lagoons for further polishing or discharge to the receiving stream. Because of colloidal particulates from certain operations, chemical coagulation may be required prior to biological treatment. This operation is usually carried out by the addition of coagulating chemicals and/or the use of coagulant aids to improve sedimentation. In general, the clarifiers used in the textile industry are designed for overflow rates considerably less than those usually found in municipal systems.

Excluding the high BOD5 values for wool scouring-subcategory 1, the average BOD5 concentration of the exemplary treatment is about 20 mg/l, running from a low of 2 to a high of 83 mg/l. Of this group approximately 20 percent exceeded 30 mg/l.

In effect, many of the waste water treatment plants are being operated as a two-stage biological system since polishing lagoons of various residence times may follow the aerated basin.

Chemical oxygen demand (COD) is measured less frequently than BOD5. As in the case of BOD5, the COD of wool scouring waste is greater than that of waste waters from other categories, both on a concentration basis. Exclusive of the wool scouring waste, the industry's average COD for the plants surveyed is 222 mg/l with a low value of 68 mg/l and a high of 427 mg/l. The ratio of COD to
BOD5 increases significantly across the waste water treatment plants, which indicates the refractory nature of some of the components of the waste waters. Although COD is probably a better measure of the pollutant level of waste waters, other parameters such as total organic carbon (TOC) or total oxygen demand (TOD) might be even more indicative.

Although the ratio of COD to BOD is generally recognized as an indicator of the biologically refractory nature of waste water pollutants, the variability in this ratio is affected by many factors. One is the capabilities of a specific biological system to degrade carbonaceous substances. For example, PVA, one of the most extensively used sizes in the textile industry, has been considered to be essentially refractory in terms of its loading on an activated sludge plant, 1 percent BOD, whereas the theoretical oxygen demand is 36 percent. This would indicate that only 3 percent of the PVA is normally attacked in a five-day BOD test, or loosely speaking, 97 percent of it would pass unaffected through an activated sludge plant. However, recent data shows that this is not the case; in some activated sludge plants where the organisms have become acclimated to the PVA, substantial PVA reduction is achieved.

Textile process operations often require high-temperature water, however, heat reclamation is also widely practiced as a matter of economics so the waste waters sent to the treatment plants usually do not present any significant thermal shock problems. Furthermore, the long residence time generally found in the waste water treatment systems serves effectively to prevent rapid changes in temperature. The most important temperature effect is not expected to be high temperatures, but low temperatures. In northern areas, the low wintertime temperatures in biological treatment systems will reduce the biological activity and thus the efficiency of BOD5 removal.

Color in the waste waters of the textile industry is inherent in the nature of the operations. Since color chemicals are specifically formulated for resistance to degradation under the oxidizing conditions of the world, it is not surprising that removal of color in aerobic biological systems is erratic. Although color concentration normally is reduced somewhat in the biological systems surveyed, data obtained were in arbitrary units, most often APHA(Y) standard. Color removal efficiency is known to be highly specific to the individual plant and the particular processes being operated at a given time. Although a number of research and development projects have been carried out, there is no one generally accepted method for color removal. Use of adsorptive technology—such as flocculation and activated carbons—and anaerobic treatment appear to offer the best possibility for removing color.
Chromium is the most significant heavy metal of concern in the textile industry although others are employed selectively. Phenol and sulfides have been identified as pollution parameters which may be present in the textile waste stream, associated with some of the processes used in textile manufacture. There is good evidence that at low levels of chromium, phenol and sulfides in the raw waste an activated sludge treatment plant removes a substantial portion.

Pollution experts within the textile industry have noted that chromium, phenol and sulfide removal across a waste treatment plant is proportional to the amount of BOD removed (more specifically the excess sludge removed) and is inversely proportional to the amount of suspended solids carried over in the final effluent from the secondary clarifier. Proper removal of chrome, phenol and sulfide is dependent on proper removal of suspended solids.

Other Constituents: Wastewaters from ancillary operations such as cooling towers, steam generating facilities and water treatment plants may be significant factors in the waste water volumes emitted from the textile industry. In those instances where one must handle cooling tower and boiler blowdowns that contain corrosion inhibiting chemicals, algacides and biocides, the technology for selective removal is usually available. Of course, the best practicable control technology currently available for process waste waters will not remove soluble inorganic salts which predominate in these blowdowns. Toxic and hazardous substances in these systems can be controlled either by eliminating them, replacing them with less toxic, less hazardous substances or treating isolated streams to remove them. Selection of a course of action to cope with toxic and hazardous materials in these blowdowns is more a question of economics than a question of technology.

Reliability, operability and consistency of operation of the waste water treatment processes found to be most frequently used in the textile industry can be high if appropriate designs and operational techniques are employed. The end-of-pipe treatment utilizing extended aeration biological systems is a well established technology that requires attention to a limited number of variables to ensure a high degree of reliability. Although many variables can affect the operability of a biological system, in general the best overall performance is achieved when the highest consistency of flow and waste water composition occurs.

Since the textile industry is predominantly a batch type process operation rather than continuous, it follows that both flow rates and waste water composition will vary significantly. That the industry recognizes this variability is apparent from the nature of the waste water treatment systems, i.e., long residence time systems which hold sufficient volumes so that high instantaneous flow rates
or high concentrations can be rapidly equalized to prevent shock loading of the biological system.

The most important operational aspects of these extended aeration systems are equipment reliability and attention to operating detail and maintenance. Spare aeration equipment (usually floating surface aerators) improves the possibility of consistent operation; however, many treatment systems have an adequate overcapacity already installed as insurance against the results of equipment failure. It is desirable to install spare equipment at critical points, for example, sludge return pumps. Perhaps of equal importance is a design that permits rapid and easy maintenance of malfunctioning equipment.

Therefore, control of the biological treatment plant and the consistency of the results obtained are largely a matter of conscientious adherence to well-known operational and maintenance procedures. Automatic control of biological treatment plants is far from a practical point. Although in-line instrumentation for measurement of pH, dissolved oxygen, temperature, turbidity and so on, can improve the effectiveness of operation, its use is minimal in the textile industry's existing waste water treatment plants. Nevertheless, no practical in-line instrumentation can replace the judicious attention to operational details of a conscientious crew of operators.

An activated sludge system which is permitted to operate at a constant F:M ratio all year round and with minimum operational changes would have a natural variation as shown in Section IX by the solid line in Figure 19. A similar system with careful operational control would have a controlled monthly average variation as shown by the points. Although the mean value is the same, the amount of natural variation is controlled by the operator through aeration rate control, sludge recycling and F:M ratio adjustments. These adjustments can be made daily so that monthly averages can be held within the desired limits.

A well-operated and properly designed facility can be controlled within ±25 percent of the average on a monthly operating basis. A system with minimal operational control, or an allowance of ±50 percent of the averages on a monthly basis, has been used to calculate the maximum monthly effluent limitation.

ADVANCED WASTE WATER TREATMENT TECHNOLOGY

In all categories of textile plants, it is assumed that good secondary treatment will have a high quality effluent as demonstrated by the exemplary plants. The definition of advanced
treatment systems is therefore confined to tertiary treatment of the secondary effluents, dewatering and incineration of sludges, and possibly to preconditioning of some specialized waste streams to render them compatible with the advanced waste treatment process.

In some cases, advanced treatment systems have been tried out on textile wastes and their effectiveness in dealing with these various pollutant parameters has been assessed. In other cases it is necessary to predict their usefulness to the textile industry from experience with other similar waste streams or by an understanding of the physico-chemical principles involved.

The processes under consideration have been grouped according to the overall chemical or physical mechanism of their operation:

1. phase change
2. physical separation
3. sorption systems
4. chemical clarification

Phase Change

Distillation: The multistage flash (MSF) process consists essentially of pumping hot salt, brackish, or contaminated water through suitable nozzles into a chamber in which the temperature and pressure are lower than that of the water itself. Part of the water flashes off instantly as steam which passes through demisters to remove entrained droplets of impurities and condenses on tubing cooled by entering feed water. The distilled water drops off the tubes into a trough and is collected as the product water.

In order to improve the efficiency of the process and recover most of the heat energy a multi-stage system is preferred in which the latent heat from the condensation of the steam produced in the evaporation chamber is used to preheat the cooler feed water flowing in the condenser tubes counter current to the brine in the flash chambers. Thus, the chief thermal energy requirement is that needed to raise the feed water from ambient temperatures to the temperature of the outgoing brine. Recirculation of the brine improves thermal efficiency considerably and all modern MSF plants are of this design.

Two types of feed water treatment are generally employed to reduce scale formation. Frequently a proprietary material is used, containing a polyphosphate or polyelectrolyte as the active ingredient. These compounds do not prevent scale from forming but rather modify its character so that it may be easily washed out or dissolved by weak acids periodically. Often acid treatment is used,
with sulfuric acid generally preferred. The acid is added continuously to the feed water in small amounts to reduce the pH below 7 and decompose the carbonate compounds that cause hard scaling in the tubes and flash chambers. In many of the units using acid, the carbon dioxide released by the acid is removed in a separate decarbonator placed in the feed water circuit after the reject stages. Otherwise the carbon dioxide is removed with the other dissolved gases by the steam jet deaerator. In modern units steam jet deaerators are used to deaerate the flash chambers and to produce a vacuum.

The vertical tube evaporator (VTE) is a long-tube vertical distillation type of desalting plant.

In the climbing-film vertical evaporator, the most common design, the brine is maintained at a predetermined level inside the vertical tubes. These tubes are heated externally by the incoming steam in the first effect or by the hot product vapors in subsequent effects. This is in direct contrast to a submerged tube type of unit which has the steam inside and the boiling brine outside the tubes. The vapors from the boiling brine rise in the vertical tubes into a vapor chamber and are led from there into the vertical tube heat exchanger in the next effect where the heat is given up to the brine circulating in these tubes.

The resulting fresh water condensed on the outside of the tubes is removed and combined with product from the subsequent effects. The combined product is cooled in a final condenser with feed water. The incoming feed water is fed into the first effect and the concentrated brine flows in the same direction as the vapors. The brine in each effect circulates either by natural temperature differences or by forced circulation.

In another modification, known as the thermal recompression evaporator, part of the vapors from the last effect are entrained and compressed by expanded live steam from the boiler. The resulting mixture becomes the heating medium for the first effect. This scheme is particularly advantageous where high-pressure steam is available as a source of heat and it can be used in conjunction with a single or multiple effect vertical-tube evaporator.

Relevance to Textile Waste Treatment. The waste waters from the textile industry may have a moderately high concentration of organic chemicals in comparison with the concentrations in brackish or saline waters.

In some instances, it might be necessary to treat waste water by activated carbon adsorption to insure adequate removal of organic species. Therefore, a thorough consideration of the entire process chemistry will be required before one can determine whether
Evaporation can be successfully applied to waste waters containing carbonaceous substances. If the waste water streams contain very low concentrations of organics and high concentrations of dissolved inorganic salts, the applicability of evaporation is more readily predicted, being essentially an evaluation of economics.

Freezing Techniques: It has long been recognized that individual ice crystals formed in chilled impure water are composed of pure water. Much effort has therefore gone toward the development of practical processes to take advantage of this phenomenon for the desalination or purification of water. Attention is presently centered on two types of equipment.

The vacuum freeze vapor compression (VFVC) system has the longest history. In this type of device, feed water is chilled and exposed to a slight vacuum. Some of the water vaporizes and the resulting loss of heat of vaporization causes ice crystals to form in the system.

The ice crystals are separated mechanically from the brine by means of sieves and scrapers and transferred to melting chambers. At the same time the water vapor formed during the boiling-freezing stage is compressed and introduced also to the melting chamber, where it condenses on the ice crystals. In practice the system is more complicated, with particular care being required to wash the ice crystals free from feed water and to maintain the correct temperatures and pressures throughout.

The second type of design employs as the vaporizing constituent a secondary refrigerant which is insoluble in water. Usually, liquid butane under pressure is bubbled through the feed water, vaporizing, expanding and causing ice crystals to form. As in the vacuum freeze system, the crystals are then separated mechanically and washed by liquid butane. The secondary refrigerant system has the advantage that the equipment operates at higher pressures and smaller volumes of gas (butane), resulting in less expensive and more reliable pumps and compressors.

Relevance to Textile Waste Treatment. A few small VFVC plants have been erected in this country and abroad for desalination of seawater, but have not had enough service to develop useful histories.

Their principal advantage appears to be that they are relatively insensitive to the nature of the chemicals in the feed water and, because they operate at low temperatures, resist the scaling and corrosion problems which plague most other types of plants. None has been used for waste water treatment. The secondary refrigerant system is still in the pilot plant stage of development.
Although neither type of freezing plant has been used in the textile industry for waste water treatment, it might be attractive because of its tolerance of high levels of salts, organics, suspended solids and other materials in the feed water. It can be operated at brine-to-product ratios as low as about 0.02, and brine concentrations as high as 60,000 mg/l TDS. This, of course, considerably reduces the cost of ultimate brine evaporation or disposal.

Physical Separation

Filtration:

The removal of suspended solids or colloidal material from water by filtration is accomplished by one of a number of mechanisms which may be generally classified as straining or transport attachment. Straining is the elimination of particulate matter by size discrimination; that is, a particle of greater diameter than a pore opening will be physically restrained from passage.

Transport - Attachment refers to a two step principle and is applied to particulate matter which may be much smaller than the pore size. The particles are transported across the stream lines to the proximity of the filter medium where attachment forces predominate.

Filtration is the most common form of advanced waste water treatment practiced today. This is due to its relatively inexpensive nature and its effectiveness in removing suspended solids and the organics associated with those solids. It provides excellent preparation of waste for application of other advanced waste treatment techniques and is an integral part in many designs of these systems.

Relevance to Textile Waste Treatment. Rapid sand type filters have had considerable use in waste treatment systems for direct filtration of secondary effluent.

Early work on filtration of secondary effluent took place in Europe. Truesdale and Birkbeck reported on tests run between October, 1949, and May 1950, at the Luton Sewage Works. Beds of sand 2 feet deep, ranging in size from 0.9 mm to 1.7 mm, exhibited 72 to 91 percent removal of suspended solids and 52 to 70 percent removal of BOD. Flow rates ranged from 1.33 to 3.3 IMP.gal/min/sq.ft.

Naylor, Evans and Dunscome later reviewed 15 years of studies of tertiary treatment at Luton. A 3-foot deep bed of 10 to 18 mesh sand consistently provided an effluent of 4 to 6 mg/l suspended solids at flow rates of 3.3 Imp.gal/min/sq.ft.

In the U. S., most direct filtration work has been with activated sludge effluent. At the Hyperion Plant in Los Angeles, sand of 0.95 mm effective size was used in a shallow bed (11 inches deep)
traveling backwash filter. This study lasted for six months during which time 46 percent suspended solids removal and 57 percent BOD removal were obtained. Filtration rate was 2 gal/min/sq.ft. Difficulty was encountered in cleaning the filters and performance gradually deteriorated during the study. Use of a finer sand (0.45 mm effective size) in an attempt to yield a better effluent was a failure due to very rapid clogging of the filter.

Much greater success utilizing the traveling backwash filter for activated sludge effluent treatment was obtained by Lynam in Chicago. The effective size of sand used in this study was 0.58 mm. Suspended solids removal of 70 percent and BOD removal of 80 percent were obtained at flow rates of 2 to 6 gal/min/sq.ft. Terminal headloss was quite low (11 inches of water.) The range of flows studied exhibited no significant difference in terms of suspended solids removal.

Culp and Culp reviewed the work on plain filtration of secondary effluent with both single medium and multi-media filters. They concluded that, with either type of filter, better results would be obtained as the degree of self flocculation of the sludge increased. Thus, a high-rate activated sludge effluent which contains much colloidal material should filter poorly, while an extended aeration effluent should filter well. Multi-media filters exhibit a marked superiority for filtration of activated sludge effluent because of the high volume of floc storage available in the upper bed and the polishing effect of the small media. They indicated the expected performance of multi-media filters for plain filtration of secondary effluents as shown in Table 9.
Table 9

EXPECTED EFFlUENT SUSPENDED SOLIDS FROM MULTI-MEDIA FILTRATION OF BIOLOGICAL EFFlUENTS

<table>
<thead>
<tr>
<th>Biological System</th>
<th>Effluent TSS (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Rate Trickling</td>
<td>10 - 20</td>
</tr>
<tr>
<td>2 - Stage Trickling Filter</td>
<td>6 - 15</td>
</tr>
<tr>
<td>Contact Stabilization</td>
<td>6 - 15</td>
</tr>
<tr>
<td>Conventional Activated Sludge</td>
<td>3 - 10</td>
</tr>
<tr>
<td>Extended Aeration</td>
<td>1 - 5</td>
</tr>
</tbody>
</table>

The application of filtration to biologically treated effluent is dependent on the nature of the biological system and the biological solids produced by that system rather than the nature or characteristics of the raw waste. That is, application of filtration to secondary effluent from textile wastes will remove the biological solids the same as it would remove the biological solids generated from other wastes.

Reverse Osmosis. Reverse osmosis for desalinization of sea water and brackish water has been under extensive investigation since the discovery in the early 1960's of high flux membranes capable of rejecting salts. Much of the research and development work was made with a view toward recovering potable water from sea water. Although this aim still has not been fully attained at prices competitive with other processes such as flash distillation, improved technology arising from these programs and increased commercial interest has resulted in some successful utilization of reverse osmosis for removal of dissolved salts from industrial waste streams.

The process of reverse osmosis relies upon the ability of certain specialized polymeric membranes, usually cellulose acetate or nylon to pass pure water at fairly high rates and to reject salts. And to do this saline feed streams are passed at high pressures over the surfaces of the membranes. The applied hydraulic pressures must be high enough to overcome the osmotic pressure of the saline feed stream, and to provide a pressure driving force for water to flow from the saline compartment through the membrane into the fresh water compartment.
In a typical reverse osmosis system, feedwater is pumped through a pretreatment section which removes suspended solids and, if necessary, ions such as iron and magnesium which may foul the system. The feedwater is then pressurized and sent through the reverse osmosis modules. Fresh water permeates through the membrane under the pressure driving force, emerging at atmospheric pressure. The pressure of the concentrated brine discharge stream is reduced by a power recovery turbine, which helps drive the high pressure pump, and then is discharged.

Three types of reverse osmosis configurations are currently popular. The first, known as the "spiral wound" configuration, uses flatsheet cellulose acetate membranes wound in a spiral to produce a multitude of thin channels through which the feed water flows under high laminar shear. This configuration is inexpensive, produces high water fluxes, and consequently efficient use of membrane area. Its major difficulty is that the resulting thin channels become easily fouled and plugged, so a process stream must have a very low level of suspended solids.

The second configuration uses tubular cellulose acetate membranes to bring about turbulent flow and overcome concentration polarization. The membrane is formed into a tube—with an inside diameter of about 1 inch, and the "active" (salt rejecting) face of the membrane on the inside of the tube—through which the feed stream is recirculated at high turbulent speeds. Membrane utilization is not as efficient as in the spiral wound configuration, but there is less trouble with flow distribution, fouling and plugging. This system can handle highly contaminated wastes with high concentrations of suspended solids.

Finally, a reverse osmosis system using a multitude of hollow nylon fibers has shown considerable utility on commercial waste streams. A bundle of fibers, with the "active" side of the nylon membranes on the exterior of the fibers, is encased in a module. Feed water is passed at high velocities between the fibers, and fresh product water permeates into the interior lumens of the fibers from where it is collected. This configuration results in rather low utilization of membrane area, but since the cost per unit area of the membranes is considerably lower than the cost of the cellulose acetate membranes, the ultimate cost of water recovery is competitive for low salinity feed streams. This configuration, like the spiral wound one, is highly susceptible to fouling by suspended solids, and requires thorough pre-treatment of the feed stream.

Relevance to Textile Wastes Treatment. The major application of reverse osmosis to textile wastes would appear to be in removal of salt from secondary sewage plant effluent. The technology appears adequate to reduce the effluent salts to potable levels (less than
200 mg/l). The process should also result in excellent color removal, and substantial removal of residual BOD and COD. The major limitation appears to be cost: for large plants, 19,000 cu m/day (5 mgd) or greater, costs are 13 to 19¢/1000 liters (50 to 75¢/1000 gallons). However, the costs increase greatly for smaller plants because of greater labor costs.

The major technical limitation of the process for treatment of secondary effluent is the requirement of feed stream quality. High levels of suspended solids greatly reduce water flux rates through the membranes, and increase costs substantially. It will therefore be necessary to remove the suspended solids from the feed. Grease and oil in the feed may also retard fluxes to some degree, although this effect reportedly is not as great in the tubular configurations.

In addition to treatment of secondary sewage effluent, reverse osmosis has been considered for a number of other applications in textile wastes. An experimental hollow-fiber reverse-osmosis pilot plant operates on the total waste stream from a textile plant. This system, which has allowed 80% recovery of the product water, with good color removal. Data on flux rates, cost, or longevity are inadequate to extrapolate to the ultimate utility of the process. It is expected that flux decline, because of suspended solids, may be a problem, and COD may not be removed adequately.

Another potential application of reverse osmosis is recovery of sizing materials. Carboxymethylcellulose (CMC) and polyvinylalcohol (PVA) will both be retained at great efficiency by reverse osmosis, allowing these sizing materials to be concentrated for reuse. The savings from reuse of these sizing streams may offset the costs of the smaller plants required to process just the sizing waste streams.

Ultrafiltration: Ultrafiltration is similar to reverse osmosis in that it relies on the permeation of water through a semipermeable membrane under a hydraulic driving pressure. The distinction between reverse osmosis and ultrafiltration lies primarily in the retention properties of the membranes: reverse osmosis membranes retain all solutes, including salts, while ultrafiltration membranes retain only macromolecules and suspended solids. Thus salts, solvents, and low molecular weight organic solutes pass through ultrafiltration membranes with the permeant water. Since salts are not retained by the membrane, the osmotic pressure differences across ultrafiltration membranes are negligible. Flux rates through the membranes usually are fairly high, and hence lower pressures can be used than are practical in reverse osmosis. Typical pressure driving forces for ultrafiltration are 20 to 100 psi.
Membranes may be made from cellulose acetate, polyelectrolyte complexes, nylon, or a variety of inert polymers. Hence, highly acidic or caustic streams may be processed, and the process is not usually limited by chemical attack of the membranes.

Relevance to Textile Waste Treatment. Since ultrafiltration does not remove salts and low molecular weight organic compounds such as dissolved dyes, its utility in textile waste treatment would appear to be limited to macromolecules and suspended solids.

Concentration and recovery of disperse dyes by ultrafiltration may be feasible, where a single color is in the waste stream. Concentration of polymeric cotton sizing materials (PVA and CMC) is technically feasible since the UF membranes will retain the polymers and pass the polymer-free water at reasonable fluxes. An experimental system is being used to test the feasibility of PVA concentration by ultrafiltration, with the ultimate aim of re-using the sizing polymer. The membrane in this system is a new experimental "dynamically formed" membrane based on deposition of organic surfactants on porous carbon, but the process should be feasible on more conventional UF membranes at a cost of 13¢ to 26¢ per 1000 liters (50¢ to $1.00 per thousand gallons) of water removed.

Electrodialysis: The production of potable water from brackish waters by electrodialysis is a mature desalting process. Economically, the process is usually limited to feed waters having total dissolved solids up to 10,000 mg/l and more commonly it treats waters with 1000 to 2000 mg/l solids. It is not practical to reduce the total solids in the produce water to a few mg/l as is done in distillation plants; about 200 mg/l is the highest purity attainable in a practical plant.

The general principles of electrodialysis are as follows. The process involves the separation of a given flow of water containing dissolved and ionized solutes into two streams, one more concentrated and one more dilute than the original, by specially synthesized semi-permeable membranes. Some ion exchange membranes are permeable only to cations; thus, only positive ions will migrate through them under the influence of an electric field. Other ion exchange membranes, permeable only to anions, will permit migration of negative ions only.

In electrodialysis, water is fed, usually in parallel, into the compartments formed by the spaces between alternating cation permeable and anion permeable membranes held in a stack. At each end of the stack is an electrode having the same area as the membranes. A d-c potential applied across the stack causes the
positive and negative ions to migrate in opposite directions. Because of the properties of the membranes, a given ion will either migrate to the adjacent compartment or be confined to its original compartment, depending on whether or not the first membrane it encounters is permeable to it. As a result, salts are concentrated or diluted in alternate compartments.

To achieve high throughput, the electrodialysis cells in practice are made very thin and assembled in stacks of cells in series. Each stack consists of more than 100 cells. Feed water is first filtered to remove suspended particulate matter which could clog the system or foul the membrane and, if required, is given an ion exchange treatment to remove oxidizing materials such as ferrous or manganous ions which would damage the membranes. Very high organic levels may also lead to membrane fouling. The catholyte stream is commonly acidified to offset the increase in pH which would normally occur within the cell, and an antiscaling additive may be required as well. An operating plant usually contains many recirculation, feedback and control loops and pumps to optimize the concentrations and pH's at different points and thus maximize the overall efficiency.

Relevance to Textile Waste Treatment The mechanism of the electrodialysis process limits it to the removal of relatively small, mobile, ionized constituents from the waste stream. Sodium, potassium, chlorides and sulfates readily pass through the membranes. Larger ions, and those doubly charged, such as phosphate, calcium or barium, have limited mobility in the membranes and tend to remain in the feed stream. There may be some incidental transport of small dissolved organic species through the membranes but it is not significant. Electrodialysis has been used successfully for more than a decade to convert brackish (2000-5000 mg/l TDS) water to potable water (500 mg/l TDS). While this does not represent a waste water treatment application per se, it can provide useful reliability and cost data from the 150 plants which have been built.

Unfortunately, electrodialysis has not been used to treat textile plant wastes although some efforts have been made to investigate its use in dye removal. Because of their large molecular size, dye materials do not traverse the membranes readily. There may be some possibility of using electrodialysis to remove dissolved salts from dye solutions, but this has not yet been demonstrated.

Suspended solids in the feed stream are undesirable. High levels of organic materials must be avoided as they may attack the membranes. Thus feed water to the plant should have a low BOD and COD and these will not be substantially changed by the process.
Sorption Systems

This group of advanced waste treatment processes is concerned with methods in which the waste water is contacted with a material which sorbs components of the water. The material is usually regenerated and the sorbed material ejected into a gaseous or more concentrated liquid waste stream. The concentrated liquid waste stream is normally converted to a solid waste by evaporation. Such processes include adsorption on activated carbon and ion exchange.

Activated Carbon: Activated carbon is a commercially available and particularly versatile absorbent primarily because of its relatively low cost (22 to 110¢/kg or 10 to 50¢/lb) and large surface area (about 112 hectares per kilogram or 126 acres per pound) which relates directly to its capacity for adsorbed material (0.7 to 0.9 kilograms of adsorbed material per kilogram of carbon).

The most popular form of activated carbon is the granular, which is easily handled, deposits the minimum of fines into the water stream, and may be regenerated by heat with less than 10% loss per cycle. However, attempts are being made to develop techniques for the use of powdered carbon, which is considerably less expensive (about 22¢/kg or 10¢/lb) than granular carbon (66¢/kg or 30¢/lb) but which is difficult to separate efficiently from the waste water and regenerate.

Activated carbon, while acting largely as a general adsorbent, shows some selectivity:

<table>
<thead>
<tr>
<th>Strongly Adsorbed</th>
<th>Weakly Adsorbed</th>
</tr>
</thead>
<tbody>
<tr>
<td>weak electrolytes</td>
<td>strong electrolytes</td>
</tr>
<tr>
<td>sparingly soluble</td>
<td>very soluble</td>
</tr>
<tr>
<td>high molecular wt.</td>
<td>materials</td>
</tr>
<tr>
<td></td>
<td>low molecular wt.</td>
</tr>
<tr>
<td></td>
<td>compounds</td>
</tr>
</tbody>
</table>

The amount of a given material adsorbed is a function of its chemical nature, the amount in solution, the pH and the temperature.

Typical adsorption capacities of activated carbon at different residual COD levels are illustrated in Figure 8.

Several types of water carbon contactors have been proposed and utilized. Usually one or more fixed bed columns are linked in parallel. Carbon capacity is utilized more efficiently by placing several fixed bed columns in series, the spent upstream column being replaced with a regenerated column at the downstream side as appropriate. A recent, more efficient development is the use of moving bed systems.
The carbon is usually regenerated in multiple hearth furnaces; in some cases, such as in the adsorption of phenol, partial regeneration may be achieved by chemical treatment. A schematic of a treatment process including thermal regeneration is illustrated in Figure 9.

Relevance to Textile Waste Treatment. The Environmental Protection Agency has undertaken detailed studies of the use of activated carbon for the tertiary treatment of municipal wastes - primarily at Pomona, California and Lebanon, Ohio. The Pomona plant has been run for over four years and deserves detailed description.

The plant has a capacity of 1100 cu m/day (0.3 mgd) and is a four-stage, fixed-bed, granular activated carbon plant.

The carbon is periodically backwashed to remove entrapped suspended solids and regenerated when necessary after a steady state adsorption capacity of about 0.4 to 0.5 kilograms of COD per kilogram of carbon has been reached. Carbon losses averaged 8 1/2 percent per cycle. One complete cycle of the 12,200 kilograms (26,800 pounds) of carbon in the plant is achieved each year of operation. The effectiveness of the plant in improving water quality is illustrated in Table 10.
Figure 8
COD Isotherms Using Virgin Carbon and Different Secondary Sewage Effluents
(after Masse, 1967)
Figure 9
Schematic of an Activated Carbon System Including Thermal Regeneration
Table 10
Carbon Adsorption Pilot Plant:
Average Water Quality Characteristics
(June 1965 to July 1969)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Influent</th>
<th>Effluent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspended solids mg/l</td>
<td>9</td>
<td>0.6</td>
</tr>
<tr>
<td>COD mg/l</td>
<td>43</td>
<td>10</td>
</tr>
<tr>
<td>Dissolved COD mg/l</td>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>TOC mg/l</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Nitrate as N mg/l</td>
<td>8.1</td>
<td>6.6</td>
</tr>
<tr>
<td>Turbidity (JTU)</td>
<td>8.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Color (Platinum-Cobalt)</td>
<td>28</td>
<td>3</td>
</tr>
<tr>
<td>Odor</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>CCE mg/l</td>
<td>--</td>
<td>0.026</td>
</tr>
<tr>
<td>BOD mg/l</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
About 75% of the influent COD is removed, and the values of most other parameters such as suspended solids, turbidity, color, odor, and BOD are reduced to insignificant levels. The effluent water had an average dissolved COD of 8 mg/l.

Another activated carbon plant studied by the EPA is part of the advanced waste treatment facility at the District of Columbia's advanced waste treatment facility. Following lime precipitation, filtration and water stabilization, the secondary effluent is passed through five pressurized activated carbon columns in series at a rate of 190 cu m/day (50,000 gallons per day). When the preceding clarification was operating efficiently, up to 75 percent of the TOC was removed by the carbon adsorption system. Because of operating difficulties the carbon had to be replaced before saturation, at a loading of only 0.133 kilograms TOC/kilogram carbon.

Activated carbon treatment was also used successfully at Lake Tahoe to produce drinkable water from secondary effluent. A 28,000 cu m/day (7.5 million gpd) unit operated at a cost of 6¢/1000 liters (23¢ per 1000 gallons).

Experience with the Use of Activated Carbon on Textile Wastes. The use of activated carbon to treat textile wastes was pioneered at a carpet mill in Pennsylvania. Of the raw waste from the dyeing and rinsing plant, 80 percent was treated and reused. Capacity of the system was 1900 cu m/day (500,000 gallons per day) and it utilized 22,700 kilograms (50,000 pounds) of granular activated carbon. The carbon was regenerated by heating it in a furnace.

EPA has supported work in a unique activated carbon system in which regeneration is accomplished by backwashing the absorbed organic material into an aerobic biological treatment unit.

After encouraging results in a laboratory unit operating on synthetic textile waste water, a pilot system was installed at a carpet yarn fiber dyeing plant. The flow of the pilot system has a capacity of 190 cu m/day (50,000 gpd).

A range of studies on the treatment of dye waste waters was made by a textile company in North Carolina. The company encountered only partial success in the use of carbon for effluent polishing following biological treatment. In this study anthracite-based media proved unreliable in removing color contamination; bone char proved successful but cost about $2.20 per kilogram ($1.00 per pound) compared to 66¢ per kilogram (30¢ per pound) for the former materials.
There are several further instances of the use of activated carbon adsorption for the treatment of textile wastes, particularly in regard to color removal. A mill in Pennsylvania operates a closed dye cycle using alum, diatomaceous earth, and carbon to yield a color of less than 50 units. The consensus appears to be that while color can be removed by activated carbon, some elements (particularly the dispersed dyes) are not adsorbed. Chemical coagulation supplemented by activated carbon adsorption remains the best method for the dispersed dyes, while carbon adsorption alone may be adequate for dissolved dyes.

To summarize, activated carbon treatment is a common technique in industrial processes, has been evaluated in some detail and has been successful in treating secondary effluent following biological treatment of municipal waste water. Some successful experience also has been accumulated in the treatment of textile wastes. The advanced process is suitable for reducing low-level organic contamination, but it affects the levels of dissolved ionic solids very little.

Ion Exchange. Ion exchangers are solid materials, insoluble in electrolyte solution, which are capable of exchanging soluble anions or cations with electrolyte solutions. For example, a cation exchanger in the sodium form, when contacted with a solution of calcium chloride, will scavenge the calcium ions from the solution and replace them with sodium ions. This provides a convenient method for removing the "hardness" from waters.

Ion exchange can also be used for total salt removal from waste streams, by employing a series of beds of anion and cation exchangers. The cation exchanger is used in its "acid" form, exchanging hydrogen ions for the cations in the stream. The anion exchanger is used in its "base" form, exchanging hydroxyl ions for the waste stream anions. The hydroxyl and hydrogen ions thus liberated from the ion exchanger recombine to form water, and thus replace the salts in the stream by pure water.

The exchange of ions on ion exchangers is stoichiometric and usually reversible. Thus, after the ion exchanger becomes saturated with the contaminant ion, it can usually be "regenerated" by flushing with a concentrated solution of its original ion. The waste regenerate streams are usually quite concentrated and can be disposed of economically by simple evaporation.

The most important class of ion exchangers is the organic ion-exchange resins made from cross-linked polyelectrolytes. The exchanger exchanges the counter ions to the fixed charges on the polyelectrolyte. These resins are insoluble but swell to a limited
degree, allowing ions from solution to penetrate into the gel matrix formed by the swollen polyelectrolyte.

They are conventionally used in particulate form in packed beds. The ion exchange behavior of the resins depends on the nature of the fixed ionic groups, with the exchanger preferring those ions which strongly associate with the fixed ions.

One of the major advantages of the synthetic resins is the wide ranges of ion exchange properties which can be built into them, allowing considerable latitude in the designing of processes. These exchangers have the additional advantage of being capable of absorbing non-ionic organic solutes from solution.

In general, ion exchange processes are limited by the selectivity of the exchanger for the contaminant ion over its own counter ion. Divalent ions such as calcium and magnesium in general have high affinities for the ion exchange resins, and can therefore be removed with extremely high efficiencies. In general, also, ion exchange is less efficient than electrodialysis or reverse osmosis for high concentration streams. An upper limit frequently given for efficient removal of ions by ion exchange is 200-500 mg/l, but others quote efficient cleansing of 2500 mg/l streams at costs less than that for electrodialysis or reverse osmosis.

Relevance to Textile Waste Water Treatment. Direct data on the applicability of ion exchange to textile wastes is scarce. Extrapolation of data from other waste streams is therefore necessary. It would appear that the major application of ion exchange to textile waste treatment would be to reduce the dissolved solids level of the effluent from the secondary treatment plants or the effluent from other operations such as electrodialysis or reverse osmosis. The dissolved solids levels of the secondary sewage effluents would appear to be in the proper range for effective use of ion exchange. Costs for a 50 percent reduction of this salinity, assuming no other complications, would be expected to be about 12¢/1000 liters (45¢/1000 gallons) of product water, not including the cost of evaporating the concentrated regenerate waste stream. This latter is estimated to be of the order of 3 to 5 liters of concentrated waste saline per 1000 liters of feed water. Recently, a new form of organic ion exchange resin has been developed which may allow economical de-ionization of waste streams at dissolved salt levels of 1000 to 3000 mg/l. This "Desal" process is based upon the discovery that certain weakly basic anion exchange structures can form the bicarbonate salt with solutions of carbon dioxide, and also have a favorable chloride-bicarbonate selectivity coefficient. The process relies on a series of three ion exchange beds.
This process has been operated successfully at the pilot plant scale on brackish water; the concentration was reduced to a final effluent of 20 to 30 mg/l, at an operating cost estimated to be equivalent to 5.3¢/1000 liters (20¢/1000 gallon) (1970) and a total capital investment for a 3785 cu m/day (1-mgd) plant of about $250,000 (1970). A commercial plant achieving similar results was operating in the United States for several years.

More conventional ion exchange resins have been used for the desalination of brackish water. A pilot plant operation at Pomona, California has reduced the salinity of tertiary sewage from 1500 to 250 mg/l with an estimated cost (based on a 37850 cu m/day or 10-mgd plant) reported to be 2.6 to 6.1¢/1000 liters (10-23¢/1000 gallons).

Recently, countercurrent ion exchange has begun to make an impact on American ion exchange technology. This process allows more efficient use of regeneration chemicals, and therefore significantly reduces cost and pollution by regeneration waste streams. Apparently, European manufacturers of ion exchange equipment have recognized the savings for some years and have incorporated the new technology into their systems. It has been predicted that this technology whose success relies upon novel methods of preventing fluidization of the ion exchange resin particles during back flow, will soon become dominant in U.S. markets also, and will lower the cost of ion exchange use. It is predicted that the cost of reducing the salinity of waste water containing 1000 mg/l NaCl to 250 mg/l will be 10 to 12¢/1000 liters (40-45¢/1000 gallons), including amortization of equipment, labor costs, chemicals, etc.

One additional advantage of ion exchange is applicable to highly alkaline textile waste streams. For example, if the effluent is sodium hydroxide the cation exchanger alone may be used.

Thus it may be advantageous, where possible, to leave the alkalinity in the hydroxide form and removing it by ion exchange.

The quality of the waste stream necessary to make ion exchange feasible is a major factor in its usefulness. The level of suspended solids in the waste stream can have a considerable deleterious effect on the long-term operation of the ion exchange columns. It will therefore be necessary to filter suspended solids to a low level before allowing the water to enter the ion exchange columns. Any oxidizing agents in the waste stream will have an adverse effect on the life of the cation exchangers, while organic constituents may shorten the life of the anion exchange resins.
It appears, however, that the projected costs of ion exchange for textile waste clean-up are sufficiently low to justify a study to determine long-term applicability.

Polymeric Adsorption Resins. This type of adsorbent is similar in appearance and structure to ion exchange resins, being solid, spherical materials insoluble in all aqueous solutions and commonly used organic solvents. Unlike ion exchange resins, however, polymeric adsorbents contain no ionic functionality, cationic or anionic, and function instead as true adsorbents, much like activated carbon. They are used like activated carbon or ion exchange resins in fixed-bed columns.

Like carbon, the beads are characterized by high surface area and specific pore size distributions. Not limited to selection of naturally-occurring organic materials for its manufacture as is carbon, the adsorbent resins can be manufactured from a variety of organic monomers that build in specific attractions for organics with a wide range of polarity.

The resin beads may be regenerated with two equal volumes of a common solvent. Methanol is almost universally acceptable. The adsorbed organics from the waste stream are removed from the resin bed in this small volume of solvent which is then distilled away from the concentrated aqueous residue in a distillation column. The distilled methanol is condensed, recovered, and stored for the next resin regeneration cycle.

Relevance to Textile Waste Treatment: Used in conjunction with a weakly functional ion exchange resins, one class of these polymeric adsorbents has demonstrated an ability to remove dyestuffs from aqueous waste streams. The polymeric adsorbent removes the bulk of the dyestuffs and these dyestuffs eventually appear in the concentrated aqueous bottoms of the distillation column, while the recovered methanol is distilled overhead for the next regeneration cycle. The ion exchange resin that may be used following the adsorbent resin bed "polishes" the last traces of dyestuffs from the effluent before final discharge. Final disposal of the dyestuffs may be achieved by further concentrating the aqueous bottoms from the distillation column through evaporation or chemical coagulation before disposing of the dyestuffs and removed organics by landfill or by incineration.

One possible advantage over activated carbon involves the treatment of wastes containing pre-metallized dyes. While both activated carbon and polymeric adsorbents adsorb these organically-complexed metal-containing dyes well, thermal regeneration of activated carbon can burn off the organic portion of the molecule while oxidizing the metal ion, leaving a metal oxide "enameled" on the surface of the carbon. This can cause a decrease in adsorption capacity of the
carbon from cycle to cycle unless the "enameled" metal can be successfully removed with acid washings. Solvent regeneration of the polymeric adsorbents, on the other hand, has been demonstrated to be an effective means of desorbing the pre-metallized dyestuffs without fouling the resin and incurring adsorptive capacity losses. Studies to date have been carried out on concentrated dye wastes from manufacturers of textile dyestuffs, dye wastes from commissioned textile dyers, and on lightly-colored wastes from a textile mill. Simultaneous with color removal from 1,000 APHA to 100 APHA, COD, and BOD reductions of 60% and 40% respectively, were attained.

One commercial installation based on the polymeric adsorbent/ion exchange resin dye waste treatment system has been operating for about a year at a U.S. dye producer's plant.

Chemical Clarification

Suspended solids are a significant element of raw textile mill waste water. The larger components such as lint are readily removed by screens prior to entering a waste water treatment process. Residence in a clarifier permits other smaller yet macroscopic particles to settle as a sludge. Following activated sludge treatment and clarification, the waste water still contains a variety of suspended solids. These may be removed by chemical clarification methods, which, in addition, have been found to be effective for color removal.

Textile wastes typically contain a complex mixture of suspended solids, mostly of organic composition. They include color bodies, proteins, soaps, fibers, mineral fines, oil and grease. Carpet mill wastes can contain considerable quantities of latex. These suspended solids have deleterious effects on the other advanced waste treatment processes used in tertiary treatment of waste streams; they load secondary treatment plants, blind sorbent beds and deposit on membrane surfaces. In themselves, they contribute undesirable properties to the waste water -- suspended COD, turbidity, color, etc.

In addition to the obvious difficulty of removing small particles, the suspensions are stabilized by two effects: hydration and electrostatic charge. Most such particles adopt a negative charge and are prevented from coalescing to the larger, more easily removed particles by electrostatic repulsion. Neutralization of these charges destabilizes the system and leads to coagulation and precipitation or easier filtration. This process is the basis for chemical clarification.

Coagulation is generally accomplished by adding coagulants that contain multivalent cations. These include:
lime, aluminum sulfate, ferric chloride, ammonia alum, potash alum, ferrous sulfate, ferric sulfate and sodium aluminate.

The multivalent cations Al$$^{+++}$$, Fe$$^{+++}$$ and Fe$$^{++}$$ are strongly hydrated and hydrolyzed, forming acidic solutions. Sodium aluminate, on the other hand, forms a strongly alkaline solution and is sometimes used in combination with aluminum sulfate to improve the resulting floc.

Addition of coagulants to the suspended solids and colloidal substances produces a floc which is allowed to settle in a clarifier using gentle agitation. It is important to dissipate the coagulant throughout the waste water as fast as possible; flash mixing at point of entry to the clarifier is normally used.

The correct coagulant dose for a specific waste water and particularly the precise pH for maximum effectiveness must be determined experimentally. Unfortunately, the optimum values of these parameters may not be the same for different components of the waste water; thus turbidity removal may demand an operating pH different from that needed for color removal.

Coagulant aids may also be used to create larger, tougher flocs that are more amenable to sedimentation or filtration. Activated silica has been used for many years; more recently, water soluble polymers, usually polyelectrolytes, have been used successfully for this purpose. They are available in anionic, cationic, or neutral form to treat flocs of differing electrostatic characteristics.

Relevance to Textile Waste Water Treatment. Coagulation and flocculation is a widely used technique in waste water treatment and in the preparation of potable water. Costs typically range from 1-5¢/1000 liters (5 to 20¢/1000 gallons).

Chemical clarification has frequently been used in the treatment of textile waste. Apart from its use to remove suspended solids, it has found particular promise in the removal of troublesome disperse dye particles which are generally not adsorbed by activated carbon. A description of some typical experience in the textile industry will illustrate the usefulness of the process.

A two-stage flocculation process using ferric sulfate as a coagulant was used to treat the combined wastes of a wool scouring and dyeing plant in Virginia. BOD of the combined wastes was reduced by 60 percent and suspended solids by over 90 percent.
In Israel, experimental results showed that flocculation with alum and filtration would reduce color by 95% and turbidity by 97% in a highly colored simulated waste water. Performance was shown to be a strong function of pH and alum dosage; maximum reduction of color levels and turbidity did not necessarily occur at the same pH value. The cationic polyelectrolytes were found to be effective coagulant aids, but only at very high doses (about 30 mg/l).

The treatment of wool processing effluent using coagulants has been discussed by Stewart. Calcium chloride coagulation was used in a plant England. Addition of 2,000 mg/l of calcium chloride followed by filtration reduced a BOD of 15,000 to 30,000 mg/l to 2,700 to 3,800 mg/l, suspended solids of 20,000 to 32,000 mg/l to 1,000 mg/l and grease levels of 17,000 to 20,000 mg/l to 50 mg/l. But the cost was over $1.30 per 1000 liters ($5 per 1,000 gallons) in 1964.

In a review of treatment methods for dye waste waters, it was reported that the most successful coagulation technique for color removal consisted of the use of alum or a combination of alum and a cationic polyelectrolyte. Treatment of wastes before and after activated sludge treatment was studied; in general, less chemical requirement was found prior to biological treatment. Mixed liquor treated with 150 to 250 mg/l alum, 10 mg/l lime and 20 mg/l cationic polymer produced an effluent color with zero suspended solids, but the chemical cost alone was 2.1 to 2.6¢/1000 liters (8 to 10¢/1000 gallons). If chemical clarification must follow biological treatment, 200 to 400 mg/l alum and no coagulant aid may be used. Color removals of about 95 percent can be expected.

The use of a polyelectrolyte has been found to be a useful aid to alum dewatering in other work.

A company in Pennsylvania reports successful color removal of a closed dye cycle water using a combination of alum treatment, diatomaceous earth filtration and carbon adsorption.
SECTION VIII
COST, ENERGY, AND NON-WATER QUALITY ASPECTS

Cost and Reduction Benefits of Alternative Treatment and Control Technologies

A detailed economic analysis showing the cost effectiveness of various treatment and control technologies upon the seven subcategories within the textile industry is given in this document. Five alternative treatment methods have been considered for Subcategories 1 to 7. For the eight subcategories, the alternatives include:

Alternative A - No waste treatment or control.
Alternative B - Preliminary and biological treatment.
Alternative C - Multi-media Filtration.
Alternative D - Multi-media Filtration and Chemical Coagulation.
Alternative E - Activated Carbon Adsorption.
Alternative F - Multiple Effect Evaporation and Incineration.

Basis of Economic Analysis - Following is a summary of the basis for cost estimates:

1. Investment - Investment costs have been derived principally from published data on waste water treatment plant construction costs, consultants' cost data, and information from equipment manufacturers and suppliers.

Published cost data for treatment facilities is derived primarily from experience with waste water treatment installations. Cost information has been reported by some textile manufacturers, but the data are not extensive enough to serve as a basis for the estimates presented herein. Basic data were developed by preparation of graphical relationships between cost and size for each unit operation. Based on treatment plant configuration, design criteria, and size, costs for individual unit operations were added together to determine major facility costs.

An allowance of 15 percent of the total investment has been included as yardwork which includes general site clearing and grading, inter-component piping, lighting, control structures, road paving, and other items outside
the structural confines on an individual plant component. An additional allowance of up to 25 percent of the total investment has been included to cover land, contingencies, engineering and overhead.

2. **Depreciation and Cost of Capital (Interest)** - It was assumed that the annual interest costs (cost of capital) and depreciation would be constant over the life of the treatment facilities. A principal repayment period of 10 years was used. Costs were depreciated on a straight line basis and the depreciation period of 10 years was assumed equal to the principal repayment period and the economic life of the facilities.

Cost of money was assumed to be an average of the cost of debt capital and the cost of equity capital. Cost of debt capital was assumed to be 8 percent and the cost of equity capital 22 percent. Data for the last 10 to 12 years indicated that the average net return on equity capital for the chemical industry and other manufacturing has been 10 to 12 percent. Assuming corporate income tax is equal to net return (50% of gross return), gross return is estimated to be debt capital and 40 percent equity capital. From this analysis, an average rate for the cost of money equal to 13.6 percent was determined. An average annual value for cost of money was derived by subtracting the straight line depreciation cost from the investment cost, times the capital recovery factor. The costs were about 8 percent of the capital investment.

3. **Insurance and Taxes** - An annual cost of 1 1/2 percent of the initial investment was used for insurance and taxes on the waste treatment plant.

4. **Operation and Maintenance Labor** - Operation and maintenance labor manhour requirements were based on published data and independent estimates. The operational requirements include general management and supervisory personnel, equipment operators and laborers, and clerical and custodial personnel. Maintenance labor includes mechanical, electrical, laborers, and other appropriate repair personnel.

Based on labor rates in the Textile industry and municipal waste water treatment plants on August, 1971 average labor rate of $5.00 per hour (including fringe maintenance labor costs).
Chemicals - Chemical costs used in the economic analysis are based on published literature typical in the U.S. The costs used are:

Lime - $22.00 per metric ton ($20.00 per ton)
Soda Ash - $3.96 per 100 kilograms ($1.80 per 100 pounds)
Ferric Chloride - $8.80 per 100 kilograms ($4.00 per 100 pounds)
Polymer - $0.44 per kilogram ($0.20 per pound)
Chlorine - $13.20 per 100 kilograms ($6.00 per 100 pounds)
Sulfuric Acid - $36.40 per metric ton ($33.00 per ton)
Ammonia - $35.90 per metric ton ($32.50 per ton)

Energy - In broad context, energy includes electric power and fuel. Electric power consumption for major units such as aeration, pumping, and mixing was estimated from available data. An allowance of ten percent was made for small power users such as clarifiers, chemical feed equipment, ventilation equipment, and so forth. The cost of electric power was assumed to be $0.015/kwhr. Motor efficiency was assumed to be 70 percent.

For alternative B, steam is required for evaporation. The cost of steam ranged from $1.76 to $2.42/1,000 kg of steam ($0.80 to $1.10/1,000 lb of steam).

Information on actual treatment cost experience in the textile industry was available in varying degrees of completeness from the exemplary plants visited. To verify the quality of the data received and to provide a broader basis for estimation, a costing model was developed based on standard waste water treatment practice. This model covers both capital and operating costs for the equivalent of what appears to be the best technology currently practiced by the industry: essentially primary and secondary treatment as extended aeration with stabilization ponds. Over a plant size range of 400-12,000 cubic meters per day (0.1 to 3.0 MGD), the cost experience data from the plants visited came within 30 percent of that predicted by the cost model, as shown by the examples in Table 11. The costs calculated from the model, therefore, are believed to be realistic bases for estimating the (replacement) value of existing facilities and the economic impact of further secondary-type treatment requirements.
Cost curves developed from the cost model are presented in Figures 10 to 18. (For very small plants (about 110 cu m/day or 30,000 gpd), an overall cost figure of $264 for 1 cu m/day or $1.00 for 1 gpd was assumed.) Figures 14 to 18 present the operating and maintenance costs over the ranges of production found. The initial capital cost of biological treatment systems depends mainly upon (and here is related to) the hydraulic load, the other factors making only minor variations in the total cost. Operating costs, on the other hand, have been viewed as dependent on pollutant as well as hydraulic loads.

Costs for representative large plants in industry categories were developed using these curves and assuming an aerated stabilization basin, which is widely used by the industry when land is readily available. The following items were determined for the individual treatment steps:

1. Construction costs as function of hydraulic load at a given pollutant level;
2. Operating and maintenance labor as a function of hydraulic load;
3. Chemical requirements as a function of hydraulic and pollutant load;
4. Power requirements as a function of hydraulic and pollutant load;
5. Additional material and supply cost as a function of hydraulic load.

Costs have been adjusted to a national average cost level of January 1973 using the ENR Construction Cost Index. The estimated cost curves have been adjusted to exclude unusual construction or site-specific requirements. The curves include all elements of construction cost which a contract bidder would normally encounter in completing the waste water treatment. Included are building materials, labor, equipment, electrical, heating and ventilation, normal excavation and other similar items. Also included are the engineering costs. The annual operating costs include operation and maintenance labor, chemicals, power, material and supplies, and depreciation.
TABLE 11

Accuracy Of Standardized Costing Methodology

<table>
<thead>
<tr>
<th>Example Plant</th>
<th>EPA cost estimate</th>
<th>company reported cost for actual plant</th>
<th>Ratio EPA reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant A (0.394 MGD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subcategory 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aeration basin</td>
<td>$27,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aeration equipment</td>
<td>$136,900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarifier</td>
<td>$35,600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 day lagoon</td>
<td>$12,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>$212,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yard work (15% const)</td>
<td>$31,800</td>
<td>$210,000</td>
<td>1.36</td>
</tr>
<tr>
<td>Engineering</td>
<td>$42,400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>$286,200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Q (2.5 MGD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subcategory 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aeration</td>
<td>$59,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aeration equipment</td>
<td>$123,400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarifier</td>
<td>$116,400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 day lagoon</td>
<td>$3,200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>$330,800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yard work (15% const)</td>
<td>$49,600</td>
<td>$554,000</td>
<td>0.79</td>
</tr>
<tr>
<td>Engineering</td>
<td>$60,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>$440,400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant X (1.7 MGD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subcategory 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aeration basin</td>
<td>$57,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aeration equipment</td>
<td>$23,600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarifier</td>
<td>$98,800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 day lagoon</td>
<td>$27,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>$206,400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yard work (15% const)</td>
<td>$31,000</td>
<td>$335,400</td>
<td>0.85</td>
</tr>
<tr>
<td>Engineering</td>
<td>$47,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>$284,400</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Land cost left off these estimates in order to compare with plant reported cost--maximum land cost, plant Q, is $6,000)
Figure 10
Aerated Stabilization Basin Construction Cost
Figure 11
Engineering Costs
Figure 12
Clarifier Capital Cost

ENR Index = 1811.93, Jan. 1973
ENR Index = 1811.93, Jan. 1973

Figure 13
Aerated Stabilization Basin
(Aeration Equipment Only)
Figure 14
Aerated Stabilization Basin
Annual Operation and Maintenance Labor
Chemicals for "Typical" Plants

Material & Supply Costs

ENR = 1811.93, Jan. 1973

Flow, mgd

Figure 15

Aerated Stabilization Basin
(Material and Supply Costs, Annual)
(Chemical Costs)
Figure 16

Aeration Equipment
Annual Power Costs
(Aerated Stabilization Basin)
Figure 17
Clarifier, Annual Operation and Maintenance Labor
Figure 18

Clarifier
(Material and Supply Costs, Annual)
(Major Chemical Costs)
Cost Effectiveness of Treatment Alternatives

Alternative A - No Waste Treatment or Control

Costs - None
Reduction Benefits - None

Alternative B - Preliminary and Biological Treatment

This alternative includes preliminary screening, primary clarification (wool scouring only) and biological treatment.

Costs - The total capital investment cost is estimated to range from $10,200 to $478,000 for the model plants. The annual treatment cost is estimated to range from $3,900 to $123,000.

Reduction Benefits - Alternative B represents about a 95 percent reduction in BOD₅ compared with Alternative A. There are also significant reductions in TSS and some reduction of COD. Other reductions include total chromium, phenol and sulfide. Oils and grease are reduced from wool scouring operations.

Alternative C - Multi-media Filtration

This alternative consists of a filtration process that is compatible with biological treatment (Alternative B).

Costs - Alternative C represents a total capital investment of from $10,000 to $140,000 over Alternative B costs and an increased annual cost estimated to range from $3,000 to $41,300.

Reduction Benefits - Alternative C represents a further reduction in BOD₅ and a substantial TSS reduction due to solids removal and optimum control over the biological treatment system.

Alternative D - Chemical coagulation/clarification and multi-media filtration.

Alternative D consists of chemical addition for coagulation/clarification followed by multi-media filtration. Within the textile industry this alternative is a compatible supplement to biological treatment (Alternative B).

Costs - Chemical coagulation/clarification followed by multi-media filtration would represent a cost of $107,000 to $816,000 in addition to the cost of Alternative B, with annual costs ranging from $28,000 to $228,000.
Reduction Benefits - The effluent treatment through the addition of Alternative D to Alternative B will result in the further reduction of BOD and removal of a major portion of TSS, COD, and color.

Alternative E - Activated Carbon Adsorption

Alternative E includes an activated carbon adsorption system including carbon regeneration facilities. This system is compatible with biological treatment (Alternative B) and may require filtration (Alternative C). It may also be used for total effluent treatment.

Costs - Alternative E represents a total capital investment which ranges from $151,000 to $1,050,000 over Alternatives B or C and an increased annual cost from $41,000 to $404,800.

Reduction Benefits - Through Alternative E, there are some reductions in BOD₅ and TSS. There are significant reductions in COD, TOC, and color.

Alternative F - Multiple Effect Evaporation and Incineration

Alternative F includes a multiple effect (three stage) evaporator and a fluidized bed incinerator. Residual solids are disposed of by landfill.

Costs - The capital investment is estimated to range from $196,000 to $3,148,000 and annual costs are estimated to range from $95,000 to $2,210,000.

Reduction Benefits - There would be complete removal of all waste water constituents. There would be no waste water discharge.

Impact of Waste Treatment Alternatives on Finished Product

Tables 12-18 illustrate the probable increases in finished product prices for small, medium and some large size plants in the seven textile subcategories required to pay for waste water treatment. The costs to those plants identified as Commission Finishers (Subcategory 8) within each subcategory will be comparable to the costs presented in the tables as representative for that subcategory. Each table lists the increased cost attributable to biological treatment (Alternative B) and the additional cost increases in finished product prices for multi-media filtration (Alternative C), chemical coagulation/chlorification followed by multi-media filtration (Alternative D), activated carbon adsorption (Alternative E) and multiple effect evaporation and incineration (Alternative F). Several conclusions are apparent from this economic analysis.
The best practicable control technology currently available (as represented by Alternative B) is economically feasible for all sizes of plants in all subcategories. As shown in the tables the estimated final product cost increases for the various subcategories will range from 0.6 cents per kilogram of product (0.3 cents per pound of product) to 2.8 cents per kilogram of product (1.3 cents per pound of product) with the average price increase about 2.0 cents per kilogram product (0.9 cents per pound product).

Multi-media filtration (Alternative C), which is recommended as a part of pollutant control technology for new sources, will necessitate only a minor price increase over Alternative B. The costs and price increases are minimal and should have an insignificant impact on new plants. The impact on small plants has been evaluated and determined not to be significant. The maximum cost for any size plant is less than 1.8 cents per kilogram product (0.8 cents per pound of product) with the average cost less than 0.85 cents per kilogram of product (0.4 cents per pound of product).

The possible price increases for the addition of chemical coagulation and multi-media filtration (Alternative D) to biological treatment (Alternative B) average 3.8 cents per kilogram of product (1.7 cents per pound of product) with the range being from 0.7 cents per kilogram of product (0.3 cents per pound of product) to 5.3 cents per kilogram (2.4 cents per pound of product). This cost increase calculated for best available technology is economically achievable, even for plants of all sizes. The impact on small plants has been evaluated and determined not to be significant.

Activated carbon adsorption (Alternative E) has been included as a treatment alternative either in combination with or in place of biological treatment. The costs of carbon adsorption as an addition to a biological system, range from 1.8 cents per kilogram of product (0.8 cents per pound of product) to 23.3 cents per kilogram of product (10.4 cents per pound of product). The average of the potential pass-through price increase is 7.6 cents per kilogram of product (3.3 cents per pound of product) with smaller plants having their costs tending to be comparable to or greater than the average and the costs to the plants identified as medium-sized tends to be lower than the average. The economies of scale are pronounced with this system and favor the larger plants for economically using this
Alternative. Therefore it is included as an alternative for those plants working to achieve BATEA and able to obtain the economies of scale of this system.

The estimated costs and price increases associated with the use of evaporation and incineration to achieve an equivalent of zero discharge, appear to be excessive for all industry subcategories except for the wool scouring subcategory. The price increases that could result from the installation of Alternative F range from less than 5.3 cents per kilogram (2.4 cents per pound) of product (for larger wool scouring plants) to 63.7 cents per kilogram of product (28.4 cents per pound of product). The average price increase would be 30.9 cents per kilogram (13.8 cents per pound) of product in excess of other "best available" technologies as opposed to 7.8 cents per kilogram (3.5 cents per pound of product) over comparable treatment systems for wool scouring plants. Thus, no discharge of pollutants via evaporation and incineration is a feasible alternative treatment for wool scouring plants.

Tables 12-18 indicate the possible costs and price increases for various alternatives associated with the application of BPCTCA, BATEA and NSPS within all subcategories throughout the various size-classes of plants. The average price increase for BPCTCA of 2.0 cents per kilogram (0.9 cents per pound) of product will have a minimal effect on the industry. The incremental addition of BATEA with an average price increase of 3.2 cents per kilogram (1.4 cents per pound) of product in excess of BPCTCA, when viewed as an increase spread over five years presents no threat to the present industry prospectus. The economics of scale associated with larger plants is ameliorated by the time frame within the application of the guidelines and the minor repercussions of this scale factor will not affect the competitive position of smaller plants within the market place. The ability to pre-design treatment systems within new sources effectively eliminates the impact of the guidelines on the prices that products produced by new sources must bring. The costs presented in the Tables are representative though possibly excessive allowances in the cases of new sources. Therefore the effluent limitation guidelines for the textile industry for BPCTCA, BATEA, and NSPS will have an overall minor effect on the industry.
TABLE 12
WASTE WATER TREATMENT COSTS FOR WOOL SOURING (SUBCATEGORY 1)

<table>
<thead>
<tr>
<th></th>
<th>ALTERNATIVE B</th>
<th>ALTERNATIVE C</th>
<th>ALTERNATIVE D</th>
<th>ALTERNATIVE E</th>
<th>ALTERNATIVE F</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 kg/day (1000 lb/day)</td>
<td>20.4</td>
<td>6.0</td>
<td>20.4</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>45.0</td>
<td>13.3</td>
<td>45.0</td>
<td>13.3</td>
<td>13.3</td>
</tr>
<tr>
<td>WATER CONSUMPTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 l/day (1000 gal/day)</td>
<td>257.4</td>
<td>75.7</td>
<td>257.4</td>
<td>75.7</td>
<td>257.4</td>
</tr>
<tr>
<td></td>
<td>68.0</td>
<td>20.0</td>
<td>68.0</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td>CAPITAL INVESTMENT</td>
<td>151.0</td>
<td>15.0</td>
<td>107.0</td>
<td>151.0</td>
<td>392.0</td>
</tr>
<tr>
<td>($1,000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANNUAL COST</td>
<td>41.0</td>
<td>4.4</td>
<td>28.0</td>
<td>41.0</td>
<td>190.0</td>
</tr>
<tr>
<td>($1,000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESTIMATED COST</td>
<td>0.8</td>
<td>0.3</td>
<td>0.5</td>
<td>2.7</td>
<td>12.7</td>
</tr>
<tr>
<td>¢/kg product</td>
<td>0.6</td>
<td>0.3</td>
<td>0.4</td>
<td>1.8</td>
<td>5.3</td>
</tr>
<tr>
<td>(¢/lb product)</td>
<td>0.4</td>
<td>0.1</td>
<td>0.2</td>
<td>0.8</td>
<td>5.7</td>
</tr>
</tbody>
</table>

ALTERNATIVE B = Preliminary and Biological Treatment
ALTERNATIVE C = Multi-Media Filtration
ALTERNATIVE D = Chemical Coagulation/Clarification and Multi-Media Filtration
ALTERNATIVE E = Activated Carbon Adsorption
ALTERNATIVE F = Multiple Effect Evaporation and Incineration
TABLE 13

Waste Water Treatment Costs for Wool Finishing (Subcategory 2)

<table>
<thead>
<tr>
<th></th>
<th>ALTERNATIVE B</th>
<th>ALTERNATIVE C</th>
<th>ALTERNATIVE D</th>
<th>ALTERNATIVE E</th>
<th>ALTERNATIVE F</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 kg/day</td>
<td>4.3</td>
<td>8.2</td>
<td>4.3</td>
<td>8.2</td>
<td>8.2</td>
</tr>
<tr>
<td>(1000 lb/day)</td>
<td>9.5</td>
<td>18.1</td>
<td>9.5</td>
<td>18.1</td>
<td>18.1</td>
</tr>
<tr>
<td>WATER CONSUMPTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 l/day</td>
<td>495.8</td>
<td>946.0</td>
<td>495.8</td>
<td>943.0</td>
<td>943.0</td>
</tr>
<tr>
<td>(1000 gal/day)</td>
<td>131.0</td>
<td>250.0</td>
<td>131.0</td>
<td>250.0</td>
<td>250.0</td>
</tr>
<tr>
<td>CAPITAL INVESTMENT ($1,000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>98.0</td>
<td>60.0</td>
<td>197.0</td>
<td>450.0</td>
<td>1,316.0</td>
</tr>
<tr>
<td>ANNUAL COST ($1,000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30.0</td>
<td>17.7</td>
<td>49.0</td>
<td>132.8</td>
<td>759.0</td>
</tr>
<tr>
<td>ESTIMATED COST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$/kg product</td>
<td>2.8</td>
<td>0.9</td>
<td>4.6</td>
<td>6.5</td>
<td>37.0</td>
</tr>
<tr>
<td>$/lb product</td>
<td>1.2</td>
<td>0.4</td>
<td>2.0</td>
<td>2.9</td>
<td>16.7</td>
</tr>
</tbody>
</table>

ALTERNATIVE B = Preliminary and Biological Treatment

ALTERNATIVE C = Multi-Media Filtration

ALTERNATIVE D = Chemical Coagulation/Clarification and Multi-Media Filtration

ALTERNATIVE E = Activated Carbon Adsorption

ALTERNATIVE F = Multiple Effect Evaporation and Incineration
<table>
<thead>
<tr>
<th></th>
<th>ALTERNATIVE B</th>
<th>ALTERNATIVE C</th>
<th>ALTERNATIVE F</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 kg/day</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>(1000 lb/day)</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>WATER CONSUMPTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 l/day</td>
<td>18.9</td>
<td>18.9</td>
<td>18.9</td>
</tr>
<tr>
<td>(1000 gal/day)</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>CAPITAL INVESTMENT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>($1,000)</td>
<td>10.2</td>
<td>10.0</td>
<td>196.0</td>
</tr>
<tr>
<td>ANNUAL COST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>($1,000)</td>
<td>3.9</td>
<td>3.0</td>
<td>95.0</td>
</tr>
<tr>
<td>ESTIMATED COST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>¢/kg product</td>
<td>1.0</td>
<td>0.8</td>
<td>25.3</td>
</tr>
<tr>
<td>(¢/lb product)</td>
<td>0.4</td>
<td>0.3</td>
<td>9.6</td>
</tr>
</tbody>
</table>

ALTERNATIVE B = Preliminary and Biological Treatment
ALTERNATIVE C = Multi-Media Filtration
ALTERNATIVE F = Multiple Effect Evaporation and Incineration
<table>
<thead>
<tr>
<th></th>
<th>ALTERNATIVE B</th>
<th>ALTERNATIVE C</th>
<th>ALTERNATIVE D</th>
<th>ALTERNATIVE E</th>
<th>ALTERNATIVE F</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 kg/day</td>
<td>4.1</td>
<td>32.9</td>
<td>68.1</td>
<td>4.1</td>
<td>32.9</td>
</tr>
<tr>
<td>(1000 lb/day)</td>
<td>9.0</td>
<td>72.5</td>
<td>150.0</td>
<td>9.0</td>
<td>72.5</td>
</tr>
<tr>
<td>WATER CONSUMPTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 l/day</td>
<td>605.6</td>
<td>4,920.0</td>
<td>10,220.0</td>
<td>605.6</td>
<td>4,920.0</td>
</tr>
<tr>
<td>(1000 gal/day)</td>
<td>160.0</td>
<td>1,300.0</td>
<td>2,700.0</td>
<td>160.0</td>
<td>1,300.0</td>
</tr>
<tr>
<td>CAPITAL INVESTMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>($1,000)</td>
<td>86.0</td>
<td>278.0</td>
<td>442.0</td>
<td>38.0</td>
<td>102.0</td>
</tr>
<tr>
<td>ANNUAL COST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>($1,000)</td>
<td>27.0</td>
<td>79.0</td>
<td>123.0</td>
<td>11.2</td>
<td>30.1</td>
</tr>
<tr>
<td>ESTIMATED COST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$/kg product</td>
<td>2.6</td>
<td>1.0</td>
<td>0.7</td>
<td>1.8</td>
<td>1.0</td>
</tr>
<tr>
<td>($/lb product)</td>
<td>1.2</td>
<td>0.4</td>
<td>0.3</td>
<td>0.8</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ALTERNATIVE B = Preliminary and Biological Treatment
ALTERNATIVE C = Multi-Media Filtration
ALTERNATIVE D = Chemical Coagulation/Clarification and Multi-Media Filtration
ALTERNATIVE E = Activated Carbon Adsorption
ALTERNATIVE F = Multiple Effect Evaporation and Incineration
TABLE 16
Waste Water Treatment Costs for Knit Fabrics (Subcategory 5)

<table>
<thead>
<tr>
<th></th>
<th>ALTERNATIVE B</th>
<th>ALTERNATIVE C</th>
<th>ALTERNATIVE D</th>
<th>ALTERNATIVE E</th>
<th>ALTERNATIVE F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.8</td>
<td>6.8</td>
<td>6.8</td>
<td>6.8</td>
<td>6.8</td>
</tr>
<tr>
<td>PRODUCTION</td>
<td>1000 kg/day</td>
<td>18.2</td>
<td>18.2</td>
<td>18.2</td>
<td>18.2</td>
</tr>
<tr>
<td></td>
<td>(1000 lb/day)</td>
<td>15.0</td>
<td>40.0</td>
<td>15.0</td>
<td>40.0</td>
</tr>
<tr>
<td>WATER CONSUMPTION</td>
<td>1000 l/day</td>
<td>1,136.0</td>
<td>3,028.0</td>
<td>9,084.0</td>
<td>1,136.0</td>
</tr>
<tr>
<td></td>
<td>(1000 gal/day)</td>
<td>300.0</td>
<td>800.0</td>
<td>300.0</td>
<td>800.0</td>
</tr>
<tr>
<td>CAPITAL INVESTMENT</td>
<td>($1,000)</td>
<td>117.0</td>
<td>200.0</td>
<td>74.0</td>
<td>480.0</td>
</tr>
<tr>
<td>ANNUAL COST</td>
<td>($1,000)</td>
<td>35.0</td>
<td>57.0</td>
<td>21.8</td>
<td>135.6</td>
</tr>
<tr>
<td>ESTIMATED COST</td>
<td>¢/kg product</td>
<td>1.7</td>
<td>1.0</td>
<td>0.7</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>¢/lb product</td>
<td>0.8</td>
<td>0.5</td>
<td>0.3</td>
<td>1.6</td>
</tr>
</tbody>
</table>

ALTERNATIVE B = Preliminary and Biological Treatment
ALTERNATIVE C = Multi-Media Filtration
ALTERNATIVE D = Chemical Coagulation/Clarification and Multi-Media Filtration
ALTERNATIVE E = Activated Carbon Adsorption
ALTERNATIVE F = Multiple Effect Evaporation and Incineration
<table>
<thead>
<tr>
<th></th>
<th>ALTERNATIVE B</th>
<th>ALTERNATIVE C</th>
<th>ALTERNATIVE D</th>
<th>ALTERNATIVE E</th>
<th>ALTERNATIVE F</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 kg/day</td>
<td>7.0</td>
<td>5.4</td>
<td>7.0</td>
<td>5.4</td>
<td>5.4</td>
</tr>
<tr>
<td>(1000 lb/day)</td>
<td>15.5</td>
<td>11.9</td>
<td>15.5</td>
<td>11.9</td>
<td>11.9</td>
</tr>
<tr>
<td>WATER CONSUMPTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 l/day</td>
<td>492.0</td>
<td>378.5</td>
<td>495.0</td>
<td>378.5</td>
<td>378.5</td>
</tr>
<tr>
<td>(1000 gal/day)</td>
<td>130.0</td>
<td>100.0</td>
<td>130.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>CAPITAL INVESTMENT (1,000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>98.0</td>
<td>38.0</td>
<td>197.0</td>
<td>400.0</td>
<td>768.0</td>
</tr>
<tr>
<td>ANNUAL COST (1,000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30.0</td>
<td>11.2</td>
<td>49.0</td>
<td>116.0</td>
<td>398.0</td>
</tr>
<tr>
<td>ESTIMATED COST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$/kg product</td>
<td>1.4</td>
<td>0.7</td>
<td>2.3</td>
<td>7.2</td>
<td>24.6</td>
</tr>
<tr>
<td>$/lb product</td>
<td>0.7</td>
<td>0.3</td>
<td>1.1</td>
<td>3.2</td>
<td>11.1</td>
</tr>
</tbody>
</table>

ALTERNATIVE B = Preliminary and Biological Treatment
ALTERNATIVE C = Multi-Media Filtration
ALTERNATIVE D = Chemical Coagulation/Clarification and Multi-Media Filtration
ALTERNATIVE E = Activated Carbon Adsorption
ALTERNATIVE F = Multiple Effect Evaporation and Incineration
TABLE 18

WASTE WATER TREATMENT COSTS FOR STOCK & YARN (SUBCATEGORY 7)

<table>
<thead>
<tr>
<th>PRODUCTION</th>
<th>ALTERNATIVE B</th>
<th>ALTERNATIVE C</th>
<th>ALTERNATIVE D</th>
<th>ALTERNATIVE E</th>
<th>ALTERNATIVE F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 kg/day</td>
<td>5.0</td>
<td>10.9</td>
<td>27.2</td>
<td>4.1</td>
<td>12.4</td>
</tr>
<tr>
<td>(1000 lb/day)</td>
<td>11.0</td>
<td>24.0</td>
<td>60.0</td>
<td>9.1</td>
<td>27.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WATER CONSUMPTION</th>
<th>ALTERNATIVE B</th>
<th>ALTERNATIVE C</th>
<th>ALTERNATIVE D</th>
<th>ALTERNATIVE E</th>
<th>ALTERNATIVE F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 1/day</td>
<td>916.0</td>
<td>1,999.0</td>
<td>4,996.0</td>
<td>752.0</td>
<td>2,275.0</td>
</tr>
<tr>
<td>(1000 gal/day)</td>
<td>242.0</td>
<td>528.0</td>
<td>1,320.0</td>
<td>200.2</td>
<td>600.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPITAL INVESTMENT</th>
<th>ALTERNATIVE B</th>
<th>ALTERNATIVE C</th>
<th>ALTERNATIVE D</th>
<th>ALTERNATIVE E</th>
<th>ALTERNATIVE F</th>
</tr>
</thead>
<tbody>
<tr>
<td>($1,000)</td>
<td>110.0</td>
<td>170.0</td>
<td>293.0</td>
<td>59.0</td>
<td>120.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANNUAL COST</th>
<th>ALTERNATIVE B</th>
<th>ALTERNATIVE C</th>
<th>ALTERNATIVE D</th>
<th>ALTERNATIVE E</th>
<th>ALTERNATIVE F</th>
</tr>
</thead>
<tbody>
<tr>
<td>($1,000)</td>
<td>33.0</td>
<td>49.0</td>
<td>83.0</td>
<td>17.4</td>
<td>35.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ESTIMATED COST</th>
<th>ALTERNATIVE B</th>
<th>ALTERNATIVE C</th>
<th>ALTERNATIVE D</th>
<th>ALTERNATIVE E</th>
<th>ALTERNATIVE F</th>
</tr>
</thead>
<tbody>
<tr>
<td>$/kg product</td>
<td>2.2</td>
<td>1.5</td>
<td>1.0</td>
<td>1.4</td>
<td>1.0</td>
</tr>
<tr>
<td>($/lb product)</td>
<td>1.0</td>
<td>0.7</td>
<td>0.5</td>
<td>0.6</td>
<td>0.4</td>
</tr>
</tbody>
</table>

ALTERNATIVE B = Preliminary and Biological Treatment
ALTERNATIVE C = Multi-Media Filtration
ALTERNATIVE D = Chemical Coagulation/Clarification and Multi-Media Filtration
ALTERNATIVE E = Activated Carbon Adsorption
ALTERNATIVE F = Multiple Effect Evaporation and Incineration
Alternative Treatment Systems

It has been assumed in the economic analysis that an extended biological stabilization process will be utilized for the biological treatment. However, aerobic-anaerobic lagoons or trickling filters or activated sludge can be designed to provide the same degree of biological treatment. These systems require less area and can be utilized where land is not readily available near the textile facility. Activated sludge may result in additional annual costs of as much as $200,000 over those costs presented for Alternative B.

Wool scouring plants (Subcategory 1) with capacities greater than 6,500 kg/day (14,300 lb/day) may be able to economically utilize activated carbon adsorption. Table 12 indicates that evaporation/incineration could be a feasible alternative for large wool scouring plants. Costs could be only 3.5 cents per kilogram of product (1.6 cents per pound product) higher.

Electrical Energy Requirements

The energy requirements (electric power and fuel) for textile facilities vary considerably based upon reported data. This variation is due to the following factors:

1. Type of fiber processed.
2. Type of extent of cleaning and finishing operations.
3. Degree of mechanization within the textile facility.
4. Climate of the textile location.

It is estimated that the contribution of waste treatment is considerably less than 10 percent of the total industry energy consumption at present and is not likely to exceed 10 percent in the future.

Thermal Energy Requirements

Thermal energy costs are considerably less than electrical energy costs for operations within the industry. Waste treatment systems impose no significant addition to the thermal energy requirements of plants. Wastewater can be reused in cooling and condensing service if it is separated from the process waters in non-barometric type condensers. These heated waste waters improve the effectiveness of ponds which are best maintained at 90°F or more. Improved thermal efficiencies are coincidentally achieved within a plant with this technique.
Wastewater treatment costs and effectiveness can be improved by the use of energy and power conservation practices and techniques in each plant. The waste load increases with increased water use. Reduced water use, therefore, will reduce the waste load, pumping costs, and heating costs; the last of which can be further reduced by water reuse as suggested previously.

Solid Wastes

The solid wastes from the textile industry are generally disposed of by landfill. The solid materials, separated during waste water treatment, containing organic and inorganic materials, including those added to promote solids separation, is called sludge. Typically, it contains 95 to 98 percent water prior to dewatering or drying. Some quantities of sludge are generated by both primary and secondary treatment systems with the type of system influencing the quantity. The following table illustrates this:

<table>
<thead>
<tr>
<th>Treatment System</th>
<th>Sludge Volume as Percent of Raw Wastewater Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved air flotation</td>
<td>Up to 10%</td>
</tr>
<tr>
<td>Anaerobic lagoon</td>
<td>(Sludge accumulation in these lagoons is usually sufficient to require removal at any time)</td>
</tr>
<tr>
<td>Extended aeration</td>
<td></td>
</tr>
<tr>
<td>Aerobic & aerated lagoons</td>
<td></td>
</tr>
<tr>
<td>Activated sludge</td>
<td>10 - 15%</td>
</tr>
<tr>
<td>Extended aeration</td>
<td>5 - 10%</td>
</tr>
<tr>
<td>Anaerobic contact process</td>
<td>approximately 2%</td>
</tr>
</tbody>
</table>

The raw sludge can be concentrated, digested, dewatered, dried, incinerated, land-filled, or spread in sludge holding ponds. Sludge from secondary treatment systems is normally dewatered or digested sufficiently for hauling to a land fill. The final dried sludge materials can be safely used as an effective soil builder. Prevention of runoff is a critical factor in plant-site sludge holding ponds. Costs of typical sludge handling techniques for each secondary treatment system generating enough sludge to require handling equipment are already incorporated in the costs for these systems. All other non-water quality environmental impacts of the alternative treatment and control technologies described appear to be minor.
SECTION IX

EFFLUENT REDUCTION ATTAINABLE THROUGH THE APPLICATION OF THE BEST PRACTICABLE CONTROL TECHNOLOGY CURRENTLY AVAILABLE

EFFlUENT LIMITATIONS GUIDELINES

INTRODUCTION

The effluent limitations which must be achieved July 1, 1977, are to specify the degree of effluent reduction attainable through the application of the Best Practicable Control Technology Currently Available. Best Practicable Control Technology Currently Available is generally based upon the average of the best existing performance by plants of various sizes, ages, and unit processes within the industrial category and/or subcategory. This average is not based upon a broad range of plants within the textile industry, but based upon performance levels achieved by exemplary plants.

Consideration must also be given to:

- The total cost of application of technology in relation to the effluent reduction benefits to be achieved from such application;
- The size and age of equipment and facilities involved;
- The processes employed;
- The engineering aspects of the application of various types of control techniques;
- Process changes;
- Non-water quality environmental impact (including energy requirements).

Also, Best Practicable Control Technology Currently Available emphasizes treatment facilities at the end of a manufacturing process, but includes the control technologies within the process itself when the latter are considered to be normal practice within an industry.

A further consideration is the degree of economic and engineering reliability which must be established for the technology to be "currently available". As a result of demonstration projects, pilot plants and general use, there must exist a high degree of confidence in the engineering and economic practicability of the technology at
the time of start of construction of installation of the control facilities.

EFFLUENT REDUCTION ATTAINABLE THROUGH THE APPLICATION OF
BEST PRACTICABLE CONTROL TECHNOLOGY CURRENTLY AVAILABLE

Based on the information contained in Section III through VIII of this report, a determination has been made that the quality of effluent attainable through the application of the Best Practicable Control Technology Currently Available is as listed in Table 19. A number of plants in the industry which have biological treatment systems for which effluent quality data were available are meeting these standards.

A biological treatment system which is permitted to operate at a constant food to microorganism ratio throughout the year and with minimum operational changes would have a natural variation of 50 percent as explained in Section VII and as shown by the solid line in Figure 19. A similar system with careful operational control and proper design can be operated within 25 percent of the average on a monthly operating basis. A biological treatment system without optimum operational control has been used to account for normal treatment variation. Thus, a factor of 50 percent has been used to calculate the maximum 30 day effluent limitations. A further allowance of 100 percent has been applied to maximum 30 day effluent limitations in order to develop the maximum daily effluent limitations. This factor results from the inherent variability associated with a textile manufacturing operation.
Table 19
Maximum Thirty Day Average Effluent Limitations Guidelines (1) for July 1, 1977

<table>
<thead>
<tr>
<th>Subcategory</th>
<th>BOD5</th>
<th>TSS</th>
<th>COD</th>
<th>Total Chromium</th>
<th>Phenol</th>
<th>Sulfide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wool Scouring(2,4)</td>
<td>5.3</td>
<td>16.1</td>
<td>69.0</td>
<td>0.05</td>
<td>0.05</td>
<td>0.10</td>
</tr>
<tr>
<td>Wool Finishing (4)</td>
<td>11.2</td>
<td>17.6</td>
<td>81.5</td>
<td>0.07</td>
<td>0.07</td>
<td>0.14</td>
</tr>
<tr>
<td>Dry Processing (3)</td>
<td>0.7</td>
<td>0.7</td>
<td>1.4</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Woven Fabric Finishing (4)</td>
<td>3.3</td>
<td>8.9</td>
<td>30-60</td>
<td>0.05</td>
<td>0.05</td>
<td>0.10</td>
</tr>
<tr>
<td>Knit Fabric Finishing (4)</td>
<td>2.5</td>
<td>10.9</td>
<td>30-50</td>
<td>0.05</td>
<td>0.05</td>
<td>0.10</td>
</tr>
<tr>
<td>Carpet Mills</td>
<td>3.9</td>
<td>5.5</td>
<td>35.1-45.1</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>Stock and Yarn Dyeing and Finishing (4)</td>
<td>3.4</td>
<td>8.7</td>
<td>42.3</td>
<td>0.06</td>
<td>0.06</td>
<td>0.12</td>
</tr>
</tbody>
</table>

(1) Expressed as kg(lb) pollutant except Wool Scouring as kg(lb) pollutant kkg(1000 lb) product and Carpet Mills as kg(lb) pollutant kkg(1000 lb) primary backed carpet

(2) Oil and Grease Limitation for Wool Scouring is 3.6 kg(lb) kkg(1000 lb) raw grease wool

(3) Fecal Coliform Limit for Dry Processing is 400 MPN per 100 ml.

(4) For those plants identified as Commission Finishers, an additional allocation of 100% of the guidelines is to be allowed for the 30 day maximum levels.
Figure 19

TYPICAL SEASONAL VARIATION FOR BIOLOGICAL TREATMENT

EFFLUENT BOD CONC (mg/l)

CONTROLLED OPERATION x
MINIMUM OPERATIONAL CHANGE *
<table>
<thead>
<tr>
<th>Plant Code</th>
<th>Waste Character</th>
<th>Production 1000 kg/day (1000 lb/day)</th>
<th>Influent BOD5 kg/1000 kg (lb/1000 lb)</th>
<th>BOD Removal Efficiency (Percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>Woven Fabric</td>
<td>88 (194)</td>
<td>66.0</td>
<td>97.1</td>
</tr>
<tr>
<td>K</td>
<td>Woven Fabric</td>
<td>97 (214)</td>
<td>22.2</td>
<td>97.5</td>
</tr>
<tr>
<td>L</td>
<td>Woven Fabric</td>
<td>85.5 (190)</td>
<td>108.0</td>
<td>94.2</td>
</tr>
<tr>
<td>M</td>
<td>Woven Fabric</td>
<td>223.6 (493)</td>
<td>40.6</td>
<td>98.3</td>
</tr>
<tr>
<td>N</td>
<td>Woven Fabric</td>
<td>74.4 (164)</td>
<td>66.2</td>
<td>94.8</td>
</tr>
<tr>
<td>O</td>
<td>Woven Fabric</td>
<td>60.8 (134)</td>
<td>40.0</td>
<td>97.7</td>
</tr>
<tr>
<td>P</td>
<td>Woven Fabric</td>
<td>211 (466)</td>
<td>138.0</td>
<td>97.6</td>
</tr>
<tr>
<td>Q</td>
<td>Woven Fabric</td>
<td>60 (133)</td>
<td>52.3</td>
<td>98.6</td>
</tr>
<tr>
<td>S</td>
<td>Woven Fabric</td>
<td>29.4 (65)</td>
<td>49.3</td>
<td>98.6</td>
</tr>
<tr>
<td>U</td>
<td>Woven Fabric</td>
<td>9.9 (22)</td>
<td>20.9</td>
<td>90.1</td>
</tr>
<tr>
<td>EE</td>
<td>Stock and Yarn</td>
<td>15.9 (35)</td>
<td>38.7</td>
<td>93.8</td>
</tr>
<tr>
<td>GG</td>
<td>Stock and Yarn</td>
<td>13.1 (28.9)</td>
<td>47.2</td>
<td>95.1</td>
</tr>
<tr>
<td>II</td>
<td>Stock and Yarn</td>
<td>44.0 (96.5)</td>
<td>14.9</td>
<td>92.7</td>
</tr>
<tr>
<td>W</td>
<td>Knit Fabric</td>
<td>17.2 (37.8)</td>
<td>49.8</td>
<td>93.0</td>
</tr>
<tr>
<td>X</td>
<td>Knit Fabric</td>
<td>27.7 (61)</td>
<td>19.0</td>
<td>92.6</td>
</tr>
<tr>
<td>Y</td>
<td>Knit Fabric</td>
<td>66.7 (147)</td>
<td>80.3</td>
<td>97.5</td>
</tr>
<tr>
<td>Z</td>
<td>Knit Fabric</td>
<td>17.9 (39)</td>
<td>16.6</td>
<td>94.0</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>51.2</td>
<td>95.5</td>
</tr>
</tbody>
</table>
IDENTIFICATION OF BEST PRACTICABLE CONTROL TECHNOLOGY CURRENTLY AVAILABLE

Best Practicable Control Technology Currently Available for the textile manufacturing industry includes preliminary screening, primary settling (wool scouring only) latex coagulation (carpet mills and dry processing only) and secondary biological treatment. Chlorination is included for dry processing mills only. Strict management control over housekeeping and water use practices result in raw wastes loads which can be treated biologically to the effluent levels listed in Table 19. No special in-plant modification is required. The performances of seventeen different biological treatment systems that achieve these effluent limits are given in Table 20.

Wool Scouring and Wool Finishing

The stated guidelines for subcategory 1 (wool scouring) and subcategory 2 (wool finishing) can be achieved by applying the best practicable control technology to the appropriate subcategory raw waste load. The best practicable control technology for wool scouring plants includes screening, settling, and biological treatment; best practicable control technology for wool finishing plants includes screening and biological treatment. The recommended effluent limitation guidelines for July 1, 1977, for the wool scouring and wool finishing subcategories are based on results from exemplary biological treatment systems (see Table 21 and 22). These systems treat textile waste waters from wool scouring and wool finishing plants.

The effluent limitations for wool scouring plants (subcategory 1) are calculated by data given in Table 21 for the full-scale biological treatment system at mill A. Data from a pilot scale project at mill B has not been used because of its limited practicability. Data from a complete retainment system at mill AB has not been used because the technology is limited to plants with suitable and available land. A complete retainment system, however, is a viable treatment alternative. The BOD₅, TSS and COD effluent limitations are based on the average performance data from mill A with an additional allowance of 50 percent to account for normal operational variation. Thus, the BOD₅, TSS and COD limitations for subcategory 1 plants are 5.3 kg/1000 kg (lb/1000 lb), 16.1 kg/1000 kg (lb/1000 lb) and 69.0 kg/1000 kg (lb/1000 lb) of grease wool.

Results from 12 months (1973) of both warm and cold weather operation at mill A indicates that occasional solids separation problems have been experienced. Seven of forty-three sets of data show TSS levels between 3,700 mg/l and 8,400 mg/l. These results are not representative of the performance that best practicable technology should attain by 1977 and thus have been omitted from the
TABLE 21

PERFORMANCE OF EFFLUENT TREATMENT SYSTEMS
SUBCATEGORY 1: Wool Scouring (1)

<table>
<thead>
<tr>
<th>Plant Code</th>
<th>Production 1000kg/day (1000lb/day)</th>
<th>BOD5 Discharge kg/1000kg (lb/1000lb)</th>
<th>TSS Discharge kg/1000kg (lb/1000lb)</th>
<th>COD Discharge kg/1000kg (lb/1000lb)</th>
<th>Grease Discharge kg/1000kg (lb/1000lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>27 (60)</td>
<td>3.5</td>
<td>10.7</td>
<td>46.0</td>
<td>2.4</td>
</tr>
<tr>
<td>B</td>
<td>74.9 (165)</td>
<td>2.4</td>
<td>2.0</td>
<td>18</td>
<td>0.1</td>
</tr>
<tr>
<td>AB (2)</td>
<td>40.8 (90)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Average (A and B) 3.0 6.4 32.0 1.3

Average Plus 50 Percent 4.5 9.6 48.0 1.9

(1) Production and discharge quantities are recorded per weight on raw grease wool as received and weighed at the plant.

(2) Total waste water containment (Not included in calculation of averages).
TABLE 22

PERFORMANCE OF EFFLUENT TREATMENT SYSTEMS
SUBCATEGORY 2: Wool Finishing (1)

<table>
<thead>
<tr>
<th>Plant Code</th>
<th>Production 1000kg/day (1000lb/day)</th>
<th>BOD5 Discharge kg/1000kg (lb/1000lb)</th>
<th>TSS Discharge kg/1000kg (lb/1000lb)</th>
<th>COD Discharge kg/1000kg (lb/1000lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>12.7 (28)</td>
<td>5.9</td>
<td>9.7</td>
<td>44.0</td>
</tr>
<tr>
<td>D</td>
<td>38.6 (85)</td>
<td>9.0</td>
<td>13.7</td>
<td>64.6</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>7.5</td>
<td>11.7</td>
<td>54.3</td>
</tr>
<tr>
<td>Average Plus 50 Percent</td>
<td></td>
<td>11.2</td>
<td>17.6</td>
<td>81.5</td>
</tr>
</tbody>
</table>

(1) Production and Discharge Quantities are recorded per weight of fiber as received and weighed at the plant.
calculation in Table 21. The average concentration of the remaining 84 percent of the TSS data is 343 mg/l. Mills should be able to maintain the required TSS levels throughout the year. In-plant waste management, grease control, strict treatment operational control and coagulant addition are possible solutions to solids separation problems. Pilot plant results from mill B indicate TSS levels can be consistently controlled at low levels.

Grease is a serious problem in the wool scouring subcategory. Effluent levels observed especially at mill B indicate the grease is recoverable and treatable to low levels. The effluent limitation for grease is based on the grease discharge from mill A with an additional allowance of 50 percent to account for normal operational variation. Thus, the grease limitation for wool scouring plants is 3.6 kg/1000 kg (lb/1000 lb) of grease wool.

The BOD₅ and COD effluent discharges from mills A and B (Table 21) are less than the respective BOD₅ and COD effluent limitations. The TSS and grease discharges from plant B are below the TSS and grease effluent limitations.

The effluent limitations for wool finishing plants (subcategory 2) are based on data from exemplary biological treatment systems treating wool finishing wastes from plants C and D (Table 22). Both of these plants average 50 percent or more wool and blended wool products. The effluent guidelines for subcategory 2 are as follows: BOD₅ limitation is 11.2 kg/kkg (lb/1000 lb); TSS limitation is 17.6 kg/kkg (lb/1000 lb); and COD limitation is 81.5 kg/kkg (lb/1000 lb).

Effluent limitations for subcategories 1 and 2 also include pH, sulfide, phenol and total chromium limitations. Control of these pollutants to the required levels is possible through well operated biological treatment systems. The effluent limitations are based on the mean water usage and effluent concentrations generally attainable through biological treatment. The effluent limitations are substantiated by water usage and waste water treatment data from a study supported by the American Textile Manufacturers Institute, Inc., and the Carpet and Rug Institute. The effluent limitations for wool scouring plants (subcategory 1) are 0.05 kg/1000 kg (lb/1000 lb) for total chromium and for phenol and 0.10 kg/1000 kg (lb/1000 lb) for sulfide. The effluent limitations for wool finishing plants (subcategory 2) are 0.07 kg/1000 kg (lb/1000 lb) for total chromium and phenol and 0.14 kg/1000 kg (lb/1000 lb) for sulfide. Wool scouring and wool finishing plants should control pH to within the range of 6.0 to 9.0.

Dry Processing

The stated guidelines for subcategory 3 (greige goods mills and other dry processing operations) can be achieved by applying the
best practicable control technology to the greige goods raw waste load. The best practicable control technology include screening, biological treatment and chlorination.

As described in Section III, dry processing operations include manufacturers of greige goods, coated fabrics, laminated fabrics, tire cord fabrics and felts, and carpet backing and carpet tufting. The waste effluents from these operations should be less than 12.5 l/kg (1.5 gal/lb) of product as the principal source of effluent is the washing and cleaning of equipment. Many mills discharge their waste to sanitary systems. Of the mills that treat their own waste, most combine their sanitary and industrial waste loads; the respondents to an industry questionnaire indicated that 70 to 90 percent of the load was sanitary.

A compilation of water use figures for various textile subcategories has been presented to EPA by the American Textile Manufacturers Institute and the Carpet and Rug Institute. It appears to present the full range of water uses to be expected for each subcategory. The water use distribution for dry processing mills as shown in Figure 20 illustrates an extremely wide variation. This can be explained by the overriding influences of nonprocess water such as boiler water, cooling water and sanitary wastes which are very significant in some cases and less significant in others.

From the water usage distribution presented, it can be seen that the median water use value is 7.5 l/kg (0.9 gal/lb) and the mean water use value is 12.5 l/kg (1.5 gal/lb). This compares with 12.5 l/kg (1.5 gal/lb) experienced by other segments of the subcategory and a water use figure representative of industry performance. It has been demonstrated that the BOD\textsubscript{5} from these dry processing operations can be reduced to a low level. Because of this high treatability, and the influence of sanitary waste, the best practicable control technology should consistently attain 40 mg/l BOD\textsubscript{5} and 75 mg/l COD. The BOD\textsubscript{5} and COD effluent limitations can be computed by applying this concentration factor to the mean water usage and allowing a 50 percent increase to account for normal operations variation. Thus, the BOD\textsubscript{5} effluent limitation for dry processing (subcategory 3) is 0.7 kg/kkg (lb/1000 lb) of product and the COD effluent limitation is 1.4 kg/kkg (lb/1000 lb) of product.
Table 23

Performance of Effluent Treatment Systems
Subcategory 3: Dry Processing (1)

<table>
<thead>
<tr>
<th>Plant Code</th>
<th>Production 1000kg/day (1000lb/day)</th>
<th>BOD(_5) Discharge (kg/1000kg) (lb/1000lb)</th>
<th>TSS Discharge kg/1000kg (lb/1000lb)</th>
<th>COD Discharge kg/1000kg (lb/1000lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>33 (74)</td>
<td>0.02</td>
<td>0.04</td>
<td>0.29</td>
</tr>
</tbody>
</table>

(1) Plant I is a greige goods mill.
Figure 20

DISTRIBUTION OF WATER USE FOR DRY PROCESSING

MEDIAN WATER USAGE = 0.9 GAL/LB
The total suspended solids (TSS) effluent limitations are equivalent to the BOD$_5$ effluent limitations. Results from the exemplary biological treatment systems indicated that TSS can be consistently reduced to at least this level. Thus, the TSS effluent limitation for dry processing is 0.7 kg/kkg (lb/1000 lb) of product.

These BOD$_5$, COD and TSS effluent limitations are substantiated by a greige goods operation, plant I (Table 23). Two years of data indicate a BOD$_5$ and TSS effluent discharge of less than 0.1 kg/kkg (lb/1000 lb) and COD discharge of less than 0.5 kg/kkg (lb/100 lb).

Effluent limitations for subcategory 3 (dry processing) also include control of pH to within the range of 6.0-9.0 and chlorination to control fecal coliforms to a level of 400 per 100 ml or less. However, the fecal coliform limit will not apply if sanitary wastes are not a constituent of a plant's final effluent.

Woven Fabric Finishing

The effluent guidelines for July 1, 1977, subcategory 4 (woven fabric finishing) are the average of data from exemplary biological systems treating wastes from the dyeing and finishing of broadwoven cotton and cotton-synthetic blends. The BOD$_5$ effluent limitation is calculated from data tabulated in Table 24 from the average of the BOD$_5$ discharge from the biological treatment systems at Mills J, K, L, N, O, P, Q, S, U and V and the TSS effluent limitation is based on the average of treatment systems at Mills J, K, O, P, Q, S, and V; and the effluent guidelines for subcategory 4 (woven fabric finishing) are as follows: BOD$_5$ limitation is 3.3 kg/kkg (lb/1000 lb) and TSS limitation is 8.9 kg/kkg (lb/1000 lb).

The exemplary BOD$_5$ and TSS results from plant M have been omitted from the calculations of BOD$_5$ and TSS effluent limitations because these results are a reflection of biological treatment (BPCTCA) plus the addition of powdered carbon. Total suspended solids limitations have been computed without results from three plants (L, N, and U). Biological treatment systems should be managed and operated in a manner resulting in a TSS to BOD$_5$ ratio of between one and two. These three plants and a wool scouring plant discussed earlier have experienced solids separation problems and their results are not representative of the performance expected from best practicable biological treatment systems in 1977. The TSS limitation is sufficiently high that it should be achieved in a well designed,
managed and operated biological treatment system with a final clarifier.

Effluent data from the exemplary woven fabric finishing plants, as well as other woven plant data was analyzed to determine whether the fiber in use during the process or the complexity of the operation had an impact on effluent quality. With respect to the total suspended solids, (TSS), the data did not indicate a significant influence on the results obtained. This is reasonable since, under the definition of best practical control, clarification equipment should be sufficient to control effluent suspended solids to the levels described above. Similarly, the examination of BOD$_5$ data resulted in only a slightly greater impact of varying compositions or process complexity on effluent concentrations. The groups of plants which are identified to be exemplary include plants which have manufacturing operations varying from simple to very complex. The data from these plant treatment systems show the waste waters to be treatable to the same quantitative degree (measured on a kg(lb) pollutant/kkg (1000 lbs) product basis). For example, a simple woven finishing plant employing cotton has an effluent BOD of 0.6 kg/kkg; a simple plant employing synthetic fibers has a final BOD of 0.9 kg/kkg; and two complex plants blending fibers have effluent BOD's of 0.7 kg/kkg and 0.8 kg/kkg. (See Table 24.) Because the value of BOD$_5$ is essentially independent of the manufacturing process, the level of BOD$_5$ obtained by BPCTCA should approach the equilibrium value of BOD$_5$ of the levels described above. Thus, the BOD$_5$ and TSS effluent levels are not substantially impacted by the fiber or the process, but rather are impacted by waste treatment design.

With respect to the COD that would be anticipated in the effluent, a significant relationship was found between both the fiber employed in the manufacturing process and the complexity of the process with the resulting effluent strength. The basic assumptions in determining the expected effluent levels of COD include an estimate that the residual COD from the biodegradation of the degradable organics plus the residual value of BOD$_5$ would be equal to ten to fifteen pounds of COD per 1,000 pounds of production. These values are supportable from existing data. In addition, five to ten pounds of this effluent COD would result from the fiber preparation step after desizing but prior to dyeing. The cumulative effect of these two phenomena would be to establish a COD of approximately 20 pounds per 1,000 pounds of production. Ten lbs per 1000 pounds of residual COD are expected from the dyeing operations associated with basic fabric finishing and when taken with the other processes establish the minimum COD baseline of 30 pounds of non-degraded COD per 1000 pounds of product. When fibers are blended, allocation of an additional 10 pounds of residual COD per 1000 pounds of product has been demonstrated to be necessary because of additional dyeing steps needed to achieve a uniform fabric color. Additionally, the use of
<table>
<thead>
<tr>
<th>Plant Code</th>
<th>Production 1000kg/day (1000lb/day)</th>
<th>BOD5 Discharge kg/1000 kg (lb/1000 lb)</th>
<th>TSS Discharge kg/1000 kg (lb/1000 lb)</th>
<th>COD Discharge kg/1000 kg (lb/1000 lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>88 (194)</td>
<td>2.0</td>
<td>3.4</td>
<td>49.6</td>
</tr>
<tr>
<td>K</td>
<td>97 (214)</td>
<td>0.6</td>
<td>0.8</td>
<td>2.4</td>
</tr>
<tr>
<td>L</td>
<td>85.5 (190)</td>
<td>6.3</td>
<td>23.8</td>
<td>39.1</td>
</tr>
<tr>
<td>N</td>
<td>74.4 (164)</td>
<td>3.5</td>
<td>23.0</td>
<td>45.3</td>
</tr>
<tr>
<td>O</td>
<td>60.8 (134)</td>
<td>0.9</td>
<td>9.9</td>
<td>14.9</td>
</tr>
<tr>
<td>P</td>
<td>211 (466)</td>
<td>3.3</td>
<td>13.6</td>
<td>33.2</td>
</tr>
<tr>
<td>Q</td>
<td>60 (133)</td>
<td>0.8</td>
<td>6.7</td>
<td>15.6</td>
</tr>
<tr>
<td>S</td>
<td>29.4</td>
<td>0.7</td>
<td>4.8</td>
<td>18.8</td>
</tr>
<tr>
<td>U</td>
<td>9.9 (22)</td>
<td>2.1</td>
<td>21.7</td>
<td>29.8</td>
</tr>
<tr>
<td>V</td>
<td>56 (124)</td>
<td>1.8</td>
<td>2.2</td>
<td>12.7</td>
</tr>
<tr>
<td>Average</td>
<td>2.2</td>
<td>5.9</td>
<td>20 - 40</td>
<td></td>
</tr>
<tr>
<td>Average Plus 50 Percent</td>
<td>3.3</td>
<td>8.9</td>
<td>30 - 60</td>
<td></td>
</tr>
</tbody>
</table>
synthetic fibers would add approximately ten pounds of COD per thousand pounds of product. This discharge of ten pounds of COD per 1,000 pounds of production for synthetic fiber anticipates a reduction of the synthetic sizing material during biological treatment but envisions some residual. This contribution is apparent when it is understood that approximately 40 to 50 pounds of PVA or a similar size is utilized per thousand pounds of fabric processed. Approximately ten pounds of additional COD is anticipated from complex finishing operations such as printing or the like. Without additional treatment such as chemical coagulation or activated carbon adsorption, obtaining values below these levels appears to be impractical except in the cases of a few specific manufacturing operations (i.e. denim production).

For purposes of the following discussion, a simple manufacturing operation has been defined as the unit processes which include desizing, fiber preparation and dyeing. Simple fabric finishing is also included. Operations that require additional manufacturing operations have been termed a complex manufacturing process. Unit operations such as printing, functional fabric preparations, including waterproofing, stain resistance, etc. would constitute complex finishing operations.

In order to more clearly define the expected COD effluent levels, the various process and fiber subdivisions are described below and the resulting COD allowances listed in Table 25. The baseline effluent level of COD described above (30 kg (lb)/kkg (1000 lb) products) applies to simple manufacturing processes employing a natural fiber. An allocation of 10 kg(lb)COD/kkg (1000 lb) product to the baseline is allowed for simple manufacturing operations employing a synthetic fiber, or complex finishing of a natural fiber. Simple manufacturing operations that are processing natural and synthetic fiber blends and complex manufacturing operations that process synthetic fiber are allowed an increment of 20 kg(lb) of COD per kkg (1000 lbs) of product in excess of the baseline relating to effects described above. For complex manufacturing operations using natural and synthetic fiber blends, 30 kg(lb) of COD per kkg (1000 lbs) of product in excess of the baseline is established as the allowable effluent COD level. When combinations of the above classifications occur a prorated approach will be taken to establish the allowable residual COD level.
The matrix described above has been tested with existing plant data from exemplary woven plants and other sufficiently similar plants. The data generally agrees with those values presented above. The effluent levels described above are the average for the subcategory plus 50% to account for variability. Thus, the COD effluent guidelines for subcategory 4 (woven fabric finishing) vary from 30 to 60 kg/kkg (lb/1000 lb).

The BOD$_5$ effluent discharges from mills J, K, O, Q, S, U and V and the TSS effluent discharges from mills J, K, Q, S, and V and the COD effluent discharge for mills K, O, P, Q, S, U and V are less than the respective BOD$_5$, TSS and COD effluent limitations. Mills K, Q, S and V meet BOD$_5$, TSS and COD effluent limitations. Mill M also meets BOD$_5$, TSS and COD effluent limitations.

Effluent limitations for woven fabric finishing plants (subcategory 4) also include pH, sulfide, phenol and total chromium limitations. Control of these pollutants to the required levels is possible through well operated biological treatment systems. The effluent limitations are based on the mean water usage and effluent concentrations generally attainable through biological treatment. The effluent limitations are substantiated by water usage and waste water treatment data from a study supported by the American Textile Manufacturing Institute, Inc., and the Carpet and Rug Institute. The effluent limitations are 0.05 kg/1000 kg (lb/1000 lb) for total chromium and phenol and 0.1 kg/1000 kg (lb/1000 lb) for sulfide. Woven finishing plants should control pH to within the range 6.0 to 9.0.
TABLE 25

WOVEN FABRIC FINISHING
INTERNAL SUBCATEGORIZATION FOR
THE ESTABLISHMENT OF COD LIMITATIONS

<table>
<thead>
<tr>
<th>Raw Material</th>
<th>COD kg/kg product (lb/1000 lb product) S.M.O.*</th>
<th>COD kg/kg product (lb/1000 lb product) C.M.O.**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Fiber</td>
<td>30.0</td>
<td>40.0</td>
</tr>
<tr>
<td>Synthetic Fiber</td>
<td>40.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Natural and Synthetic Fiber Blends</td>
<td>50.0</td>
<td>60.0</td>
</tr>
</tbody>
</table>

* S.M.O. - Simple manufacturing operation: shall mean all the following unit processes: desizing, fiber preparation, and dyeing from woven fabric finishing. Simple fabric finishing is included.

** C.M.O. - Complex manufacturing operation: shall mean "simple manufacturing operations" plus any additional manufacturing operations such as printing or functional fabric finishes such as waterproofing, or treating for stain resistance, for woven fabric finishing.
Knit Fabric Finishing

The effluent guidelines for July 1, 1977 for subcategory 5 (knit fabric finishing) are the average of data from exemplary biological treatment systems. The BOD_5 and TSS effluent limitations are calculated from the average of the BOD_5 and TSS discharges from the biological treatment systems at Mills X, Y, and Z (see Table 26). The BOD_5 and TSS effluent limitations are based on these plants allowing a 50 percent increase to account for treatment plant variation: BOD_5 is 2.5 kg/kkg (lb/1000 lb) and TSS is 10.9 kg/kkg (lb/1000 lb).

Effluent data from the exemplary knit fabric finishing plants as well as other knit plant data were analyzed to determine whether the fiber in use during the process or the complexity of the operation has an impact on the effluent quality. A rational was employed similar to that described previously for woven fabric finishing plants. The effluent levels for BOD_5 and TSS were not substantially impacted by either the fiber or the process, but rather were impacted by waste treatment design. However, the COD was impacted by both the fiber employed in the manufacturing process and the complexity of the process.

For purposes of the above discussion, a simple manufacturing operation has been defined as the unit processes which include desizing, fiber preparation and dyeing. Simple fabric finishing is also included. Operations that require additional manufacturing operations have been termed a complex manufacturing process. Unit operations such as printing, functional fabric preparation, including waterproofing, stain resistance, etc. would constitute complex finishing operations.

The basic assumption in determining the expected effluent levels of COD include an estimate that the residual COD from biodegradation of the degradable organics plus the residual value of COD would be equal to 10 kg COD/1000 kg (lb COD/1000 lb) product each. These values are supported from existing data. In addition, lubricants associated with the knitting of fibers and the processes of bleaching and/or single step dyeing will contribute about 10 kg(lb) of COD per 1000 kg (1000 lb) of product. Approximately 10 kg(lb) of residual COD per 1000 kg (1000 lb) of product is attributable to complex manufacturing operations and an additional 10 kg(lb) of non-degraded COD must be allowed per 1000 kg(1000 lb) of product for duplicate dyeing necessary in manufacturing operations employing natural and synthetic fiber blends.

In order to more clearly define the expected COD effluent levels, the various process and fiber subdivisions are described below and the resulting COD allowances listed in Table 27. The baseline effluent level of COD described above (30 kg/kkg of product (lb/1000
lb of product) applies to simple manufacturing processes finishing either natural or synthetic fibers and complex manufacturing operations employing natural fibers. The finishing of synthetic fiber in a complex manufacturing operation is allowed 10 kg of COD/1000 kg of product (10 lb COD/1000 lb of product) in addition to the baseline level. Blending of natural and synthetic fibers adds 10 kg/1000 kg of product in a simple manufacturing operation and 20 kg of COD/1000 kg of product (1 lb COD/1000 lb product) to the baseline of 30 kg of COD/1000 kg of product (1 lb of COD/1000 lb of product) in a complex manufacturing operation. The matrix described above has been tested with existing plant data from exemplary knit plants and other sufficiently similar plants. The data generally agrees with those values presented above. The effluent levels described above are the average for the subcategory plus 50% to account for variability. Thus, the COD effluent limitations for knit fabric finishing (subcategory 4) vary from 30 to 50 kg/kg (lb/1000 lb). The BOD₅, TSS and COD discharges from mills W, X, Y and Z meet BOD₅, TSS and COD effluent limitations.

Effluent limitations for knit fabric finishing plants (subcategory 5) also include pH, sulfide, phenol and total chromium limitations. Control of these pollutants to the required levels is possible through well operated biological treatment systems. The effluent limitations are based on the mean water usage and effluent concentrations generally attainable through biological treatment. The effluent limitations are substantiated by water usage and waste water treatment data from a study supported by the American Textile Manufacturers Institute, Inc., and the Carpet and Rug Institute. The effluent limitations are 0.05 kg/1000 kg (lb/1000 lb) for total chromium and phenol and 0.1 kg/1000 kg (lb/1000 lb) for sulfide. Knit finishing plants should control pH to within the range 6.0 to 9.0.
TABLE 26

PERFORMANCE OF EFFLUENT TREATMENT SYSTEMS

SUBCATEGORY 5: Knit Fabric Finishing

<table>
<thead>
<tr>
<th>Plant Code</th>
<th>Production 1000kg/day (1000lb/day)</th>
<th>BOD5 Discharge kg/1000kg (lb/1000lb)</th>
<th>TSS Discharge kg/1000kg (lb/1000lb)</th>
<th>COD Discharge kg/1000kg (lb/1000lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>17.7 (38)</td>
<td>3.0</td>
<td>10.9</td>
<td>37.3</td>
</tr>
<tr>
<td>X</td>
<td>27.7 (61)</td>
<td>0.7</td>
<td>9.1</td>
<td>20.0</td>
</tr>
<tr>
<td>Y</td>
<td>66.7 (147)</td>
<td>2.0</td>
<td>3.7</td>
<td>47.3</td>
</tr>
<tr>
<td>Z</td>
<td>17.9 (39)</td>
<td>1.1</td>
<td>5.4</td>
<td>17.0</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>1.7</td>
<td>7.3</td>
<td>20 - 33</td>
</tr>
<tr>
<td>Average Plus 50 Percent</td>
<td></td>
<td>2.5</td>
<td>10.9</td>
<td>30 - 50</td>
</tr>
</tbody>
</table>
TABLE 27

KNIT FABRIC FINISHING

INTERNAL SUBCATEGORIZATION FOR THE ESTABLISHMENT OF COD LIMITATIONS

<table>
<thead>
<tr>
<th>Raw Material</th>
<th>COD kg/kkg product (lb/1000 lb product)</th>
<th>COD kg/kkg product (lb/1000 lb product)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.M.O.</td>
<td>30.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Synthetic Fiber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural and Synthetic Fiber Blends</td>
<td>40.0</td>
<td>60.0</td>
</tr>
</tbody>
</table>

* S.M.O. - Simple manufacturing operation: shall mean all the following unit processes: desizing, fiber preparation, and dyeing from knit fabric finishing. Simple fabric finishing is included.

** C.M.O. - Complex manufacturing operation: shall mean "simple manufacturing operations" plus any additional manufacturing operations such as printing or functional fabric finishes such as waterproofing, or treating for stain resistance, for knit fabric finishing.
Carpet Mills

The effluent guidelines for July 1, 1977 for subcategory 6 (carpets) are the average of data from exemplary biological systems treating carpet mill wastes. The BOD$_5$, TSS and COD effluent limitations are based on the average BOD$_5$, TSS and COD discharges listed in Table 28 as kg (lb) of pollutant per kg (lb) of primary backed carpet (fiber plus primary backing), for systems treating waste water from mills, MC, BS, CC and BB. The effluent limitations for carpet mills (subcategory 6) are as follows: BOD$_5$ is 3.9 kg/kkg (lb/1000 lb); TSS is 5.5 kg/kkg (lb/1000 lb); and COD is 35.1 kg/kkg (lb/1000 lb). Production units are the weight of primary backed carpet.

Effluent data from the exemplary carpet mills as well as other carpet data was analyzed to determine whether the fiber in use during the process of the complexity of the operation had an impact on the effluent quality. A rationale was employed similar to that described previously for woven fabric finishing plants. The effluent levels for BOD$_5$ and TSS were not substantially impacted by either the fiber or the process. The effluent COD was not significantly impacted by the fiber type (most carpets are synthetic fibers). However, the COD was impacted by the complexity of the manufacturing process.

The effluent COD limitations determined from Table 28 is the effluent COD resulting from a simple carpet manufacturing operation. An additional COD increment of 10 kg/1000 kg (lb/1000 lb) of primary backed carpet must be allocated to complex manufacturing operations. Thus, the COD effluent limitation for carpet mills range from 35.1 to 45.1 kg/kkg (lb/1000 lb).

A simple manufacturing operation has been defined as the unit processes which include fiber preparation, dyeing and carpet tufting and backing. A complex manufacturing operation includes processes requiring additional manufacturing operations. Unit operations such as printing or dyeing plus printing would constitute a complex finishing operation.

Effluent limitations for carpet mills (subcategory 6) also include pH, sulfide, phenol and total chromium limitations. Control of these pollutants to the required levels is possible through well operated biological treatment systems. The effluent limitations are based on the mean water usage and effluent concentrations generally attainable through biological treatment. The effluent limitations are substantiated by water usage and waste water treatment data from a study supported by the American Textile Manufacturers Institute, Inc., and the Carpet and Rug Institute. The effluent limitations are 0.02 kg/1000 kg (lb/1000 lb) for total chromium and phenol and 0.04 kg/1000 kg (lb/1000 lb) for sulfide. Carpet mills should control pH to within the range 6.0 to 9.0.
<table>
<thead>
<tr>
<th>Plant Code</th>
<th>Production* 1000kg/day</th>
<th>BOD5 Discharge kg/1000kg (lb/1000lb)</th>
<th>TSS Discharge kg/1000kg (lb/1000lb)</th>
<th>COD Discharge kg/1000kg (lb/1000lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC</td>
<td>8.2 (18.2)</td>
<td>4.8</td>
<td>6.1</td>
<td>33.3</td>
</tr>
<tr>
<td>BS</td>
<td>30.2 (66.5)</td>
<td>2.9</td>
<td>4.1</td>
<td>22.5</td>
</tr>
<tr>
<td>CC</td>
<td>98.3 (216.6)</td>
<td>1.4</td>
<td>2.0</td>
<td>21.7</td>
</tr>
<tr>
<td>BB</td>
<td>68.8 (151.5)</td>
<td>1.4</td>
<td>2.4</td>
<td>16.2</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>2.6</td>
<td>3.65</td>
<td>23.4</td>
</tr>
<tr>
<td>Average Plus 50 Percent</td>
<td></td>
<td>3.9</td>
<td>5.5</td>
<td>35.1</td>
</tr>
</tbody>
</table>

* Production given in weight of fiber plus primary backing.
Stock and Yarn Dyeing and Finishing

The effluent guidelines for July 1, 1977, for subcategory 7 (stock and yarn) are the average of data from exemplary biological systems treating wastes from dyeing and finishing stock and yarn. The BOD_2, TSS and COD effluent limitations are based on the average BOD_2, TSS and COD discharges listed in Table 29 for biological treatment systems at Mills EE, GG and II. The effluent guidelines for subcategory 7 are as follows: BOD_2 limitation is 3.4 kg/kkg (lb/1000 lb), TSS limitation is 8.7 kg/kkg (lb/1000 lb), the COD effluent limitation is 42.3 kg/kkg (lb/1000 lb).

Effluent limitations for stock and yarn dyeing and finishing plants (subcategory 7) also include pH, sulfide, phenol and total chromium limitations. Control of these pollutants to the required levels is possible through well operated biological treatment systems. The effluent limitations are based on the mean water usage and effluent concentrations generally attainable through biological treatment. The effluent limitations are substantial by water usage and waste water treatment data from a study supported by the American Textile Manufacturers Institute, Inc., and the Carpet and Rug Institute. The effluent limitations are 0.06 kg/1000 kg (lb/1000 lb) for total chromium and phenol and 0.12 kg/1000 kg (lb/1000 lb) for sulfide. Stock and yarn finishing plants should control pH to within the range 6.0 to 9.0.

Commission Finishing

The effluent guidelines for July 1, 1977, for subcategory 8 (commission finishing) are extrapolated from data from exemplary biological systems treating waste from dyeing and finishing operations. Commission houses exist in the wool scouring, wool finishing, woven fabric finishing, and knit fabric finishing subcategories. The exemplary treatment plants in each of these subcategories have been used as a basis for developing effluent limitations for commission finishing plants in the five subcategories listed above. In recognition that biological treatment may be more difficult and that the water usage and the raw pollutant content for commission finishers may be much (approximately 100 percent) greater than for normal or typical finishing operations, the average BOD_2, TSS and COD results from the exemplary biological treatment plants for commission finishing in the five subcategories listed above have been increased by 100 percent. Thus, the BOD_2, TSS and COD effluent limitations range from 4.4-22.4 kg/kkg (lb/1000 lb), 17.4-35.2 kg/kkg (lb/1000 lb), and 60-163 kg/kkg (lb/1000 lb) respectively.

Effluent limitations for commission finishing plants also include pH, sulfide, phenol and total chromium limitations. Control of
these pollutants to the required levels is possible through well operated biological treatment systems. The effluent limitations are based on the mean water usage and the effluent concentration generally attainable through biological treatment. The effluent limitations are substantiated by water usage and waste water treatment data from a study supported by the American Textile Manufacturing Institute, Inc., and the Carpet and Rug Institute. The effluent limitations range from $0.10-0.14$ kg/1000 kg (lb/1000 lb) for total chromium and phenol and $0.20-0.28$ kg/1000 kg (lb/1000 lb) for sulfide. Commission finishing plants should control pH to within the range 6.0 to 9.0.
TABLE 29

PERFORMANCE OF EFFLUENT TREATMENT SYSTEMS
SUBCATEGORY 7: Stock and Yarn Dyeing

<table>
<thead>
<tr>
<th>Plant Code</th>
<th>Production 1000kg/day</th>
<th>BOD<sub>5</sub> Discharge (kg/1000kg)</th>
<th>TSS Discharge kg/1000kg</th>
<th>COD Discharge kg/1000kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1000lb/day)</td>
<td>(lb/1000lb)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE</td>
<td>15.9 (35)</td>
<td>3.6</td>
<td>6.0</td>
<td>-</td>
</tr>
<tr>
<td>GG</td>
<td>13.1 (28.9)</td>
<td>2.3</td>
<td>8.7</td>
<td>28.2</td>
</tr>
<tr>
<td>II</td>
<td>44.0 (96.5)</td>
<td>1.1</td>
<td>2.6</td>
<td>-</td>
</tr>
</tbody>
</table>

| | Average | 2.3 | 5.8 | 28.2 |
| | Average Plus 50 Percent | 3.4 | 8.7 | 42.3 |
RATIONALE FOR THE SELECTION OF
BEST PRACTICABLE CONTROL TECHNOLOGY
CURRENTLY AVAILABLE

Age and Size of Equipment and Facility

The industry has generally modernized its plants as new methods that are economically attractive have been introduced. No relationship between age or size of production plant and effectiveness of its pollution control was found.

Total Cost of Application in Relation to Effluent Reduction Benefits

Based on information contained in Section VIII of this report, the estimated increase in final product costs required to achieve the best practicable effluent reductions range, for small and large plants in the eight subcategories, from 0.6 cents per kilogram product (0.3 cents per pound product) to a high of 2.8 cents per kilogram (1.2 cents per pound). The average price increase is 1.5 cents per kilogram (0.7 cents per pound).

Engineering Aspects of Control Technique Applications

The specified level of technology is practicable because it is being practiced by plants representing a wide range of plant sizes and types. Twenty-five exemplary biological treatment systems have been utilized to develop the effluent limitations (see Tables 21-24, 26, 28 and 29). These systems treat textile waste waters from wool scouring and finishing, knit fabric finishing, dyeing and finishing of broadwoven cotton and cotton-synthetic blends, carpet manufacturing, and stock and yarn dyeing and finishing. The average BOD_5 removal efficiency of these systems is about 95 percent. In the various subcategories there are additional treatment systems that should be capable of meeting those limitations with some modification in operation, perhaps the presence of a knowledgeable operator. In general, some minor plant design changes along with cooperation from management and plant personnel will be required.

Process Changes

Significant in-plant changes will not be needed by textile plants to meet the specified effluent limitations. Some plants may need to improve their water conservation practices and housekeeping, both responsive to good plant management control.

Non-Water Quality Environmental Impact
The major impact when the option of a biological treatment process is used to achieve the limits will be the problem of sludge disposal. Nearby land for sludge disposal may be necessary. Properly operated biological systems would permit well conditioned sludge to be placed in small nearby soil plots for drying without great difficulty.

It is concluded that no new kinds of impacts will be introduced by application of the best current technology.

Factors to be Considered in Applying BPC/CA Guidelines

1. Limitations are based on 30 day averages. Based on performances of biological waste treatment systems, the maximum daily limitations for BOD$_5$, TSS, COD, oil and grease, total chromium, phenol, and sulfide should not exceed the 30 day average limitations by more than 100 percent. The maximum 30 day and daily limitations for pH and fecal coliforms are identical.

2. If a plant produced materials in more than one subcategory, for instance wool and synthetics, the effluent limitations should be set by proration on the basis of the percentage of fiber being processed to each product.

3. Monitoring of total chromium, phenol and sulfide should be conducted at a frequency less than BOD$_5$, TSS or COD. Monitoring of fecal coliforms may not be required if sanitary wastes are not discharged in the plant effluent.

4. These effluent limitations apply to a textile installation processing a fiber or fabric through a series of processes to a specific final product or products. As such, the limitations are theoretically intended to apply to all the unit processes performed at a single mill. In a number of practical cases where the processing and finishing operations are performed on the same fiber or fabric at multiple mills, "double counting" shall not be permitted but the production shall be prorated as accurately as possible to each mill in the overall process sequence.
SECTION X

EFFlUENT REDUCTION ATTAINABLE THROUGH THE APPLICATION OF THE BEST AVAILABLE TECHNOLOGY ECONOMICALLY ACHIEVABLE EFFlUENT LIMITATIONS GUIDELINES

INTRODUCTION

The effluent limitations which must be achieved no later than July 1, 1983, are not based on an average of the best performance within an industrial category, but are determined by identifying the very best control and treatment technology employed by a specific point source within the industrial category and subcategory, or by one industry where it is readily transferable to another. A specific finding must be made as to the availability of control measures and practices to eliminate the discharge of pollutants, taking into account the cost of such elimination.

Consideration must also be given to:

The age of the equipment and facilities involved;

The process employed;

The engineering aspects of the application of various types of control techniques;

Process changes;

The cost of achieving the effluent reduction resulting from application of the technology;

Non-water quality environmental impact (including energy requirements).

Also, Best Available Technology Economically Achievable emphasizes in-process controls as well as control or additional treatment techniques employed at the end of the production process.

This level of technology considers those plant processes and control technologies which, at the pilot plant, semi-works, and other levels, have demonstrated both technological performances and economic viability at a level sufficient to reasonably justify investing in such facilities. It is the highest degree of control technology that has been achieved or has been demonstrated to be capable of being designed for plant scale operation up to and including "no discharge" of pollutants. Although economic factors are considered in this development, the costs for this level of control are intended to cover the top-of-the-line of current technology, subject to limitations imposed by economic and
engineering feasibility. However, there may be some technical risk with respect to performance and with respect to certainty of costs. Therefore, some industrially sponsored development work may be needed prior to application of some of the technologies.

EFFLUENT REDUCTION ATTAINABLE THROUGH APPLICATION OF THE BEST AVAILABLE TECHNOLOGY ECONOMICALLY ACHIEVABLE

Based on the information contained in Sections III through VIII of this report, a determination has been made that the quality of effluent attainable through the application of the Best Available Technology Economically Achievable is as listed in Table 30. The technology to achieve these goals is generally available, although the advanced treatment techniques may not have yet been applied at full scale to plants within each subcategory.

IDENTIFICATION OF THE BEST AVAILABLE TECHNOLOGY ECONOMICALLY ACHIEVABLE

Best available control technology economically achievable for the textile manufacturing industry includes the preliminary screening, primary settling (wool scouring only), coagulation (carpet mills only), secondary biological treatment and chlorination (dry processing only) listed under the Best Practicable Control Technology Currently Available. In addition, it includes additional treatment techniques such as multi-media filtration and chemical coagulation/clarification following biological treatment. Chlorination for all subcategories is included.

Management controls over housekeeping and water use practices will be stricter than required for 1977. However, no additional in-plant controls will be required to achieve the specified levels of effluent reduction. There are several in-plant controls and modifications that provide alternatives and trade-offs to additional effluent treatment. For example, a scouring bowl train designed for complete counter-current operation can significantly reduce water usage at wool scouring facilities.

In Section IX, the maximum 30 day effluent limitations were calculated by applying a factor of 50 percent to the pollutant discharge quantities from the exemplary treatment systems to account for the natural variation in effluent quality from a biological treatment plant. The maximum daily limitations were calculated by applying a factor of 100 percent to the maximum 30 day limitations to account for the inherent variation in pollutant load from the manufacturing facilities. The best available control technology includes better in-plant waste management practices, improved biological treatment operation, and additional treatment processes (filtration and chemical treatment) so that the variability associated with the biological treatment facilities should be
minimal. However, the variability associated with the manufacturing facility cannot be significantly controlled by these treatments and controls. Thus, the factor of 50 percent is not needed to calculate maximum 30 day limitations but the factor of 100 percent is still required to calculate the maximum day limitations.

Multi-media filtration and chemical coagulation/clarification have been demonstrated at a few textile mills as well as plants in other industrial categories. Multi-media filtration has been shown to consistently remove TSS to a level between 5 - 8 mg/l. A TSS level of 10 mg/l has been used below to calculate TSS discharge limits. Chemical coagulation/clarification has been shown to remove over 50 percent of the COD in applications in the textile and pulp and paper industries. A COD removal efficiency of 50 percent has been utilized below to calculate COD effluent limitations.

BATEA effluent limitations for wool scouring plants subcategory are based on an optimized treatment system including a hot acid cracking process for grease removal and a biological treatment system. The model system is similar to that demonstrated on a pilot scale at plant B (see Table 21). The effluent limitations for BOD5, TSS and COD are modeled after this plant and are as follows: 2.4 kg/kkg (lb/1000 lb) for BOD5; 2.0 kg/kkg (lb/1000 lb) for TSS; and 18 kg/kkg (lb/1000 lb) for COD. Grease limitations based on this system are 1.0 kg/kkg (lb/1000 lb). BATEA effluent limitations for wool finishing plants (subcategory 2) are based on BPTCA plus multi-media filtration and chemical coagulation/clarification. The BOD5 effluent limitation is based on the water usage demonstrated by mill G, a wool finishing mill - 247 l/kg (30 gal/lb) of dry wool fiber. This water usage figure is applied to the current water usage of exemplary mills C and D to calculate their respective BOD discharges. The effluent BOD limitation is the average of the present BOD concentration values from mills C and D. A water usage of 247 l/kg (30 gal/lb) and a concentration of 10 mg/l of TSS has been used to calculate the TSS limitation. The COD limitations are based on a fifty percent reduction of the COD discharge from exemplary plants C and D (Table 22). This reduction should be consistently achieved through filtration and coagulation. The effluent limitations for BOD5, TSS and COD are as follows: 4.6 kg/kkg (lb/1000 lb) for BOD5; 2.5 kg/kkg (lb/1000 lb) for TSS; and 27.1 kg/kkg (lb/1000 lb) for COD.

BATEA for dry processing operations (subcategory 3) is BPTCA plus multi-media filtration. Limitations are substantiated by the demonstrated results from exemplary plant I (See Table 23) and data supplied through the American Textile Manufacturers Institute and the Carpet and Rug Institute. The BOD5, TSS and COD effluent limitations are as follows: 0.2 kg/kkg (lb/1000 lb) for BOD; 0.2 kg/kkg (lb/1000 lb) for TSS; and 0.4 kg/kkg (lb/1000 lb) for COD.
BATEA limits for woven fabric finishing plants (subcategory 4) are based on BPCTCA plus multi-media filtration and chemical coagulation/clarification. The BOD_5 effluent limitation is based on results tabulated in Table 24. The BOD_5 limitation is the average BOD_5 from the exemplary plants. The COD effluent limitations are based on the complexity and fiber composition factors developed in Section IX, although the factor for variability due to the biological treatment system has been removed. The BATEA limitations are 50 percent of these values due to the advanced treatment. These effluent levels should be consistently achieved through BPCTCA plus filtration and coagulation. The TSS limitation is based on the mean water usage of 29 woven plants (149 l/kg or 18.1 gal/lb) and a concentration of 10 mg/l. Multi-media filtration should deliver an effluent with a TSS of 5-8 mg/l. Thus, the BOD_5, TSS and COD effluent limitations are 2.2 kg/kkg (lb/1000 lb) for BOD_5, 1.5 kg/kkg (lb/1000 lb) for TSS and 10.0 to 20.0 kg/kkg (lb/1000 lb) for COD.

BATEA limits for knit fabric finishing plants (subcategory 5) are based on BPCTCA plus multi-media filtration and chemical coagulation/clarification. The BOD_5 effluent limitation is based on results tabulated in Table 26. The BOD_5 limitation is the average BOD_5 from the exemplary plants. The COD effluent limitations are based on the complexity and fiber composition factors developed in Section IX, although the factor for variability due to the biological treatment system has been removed. The BATEA limitations are 50 percent of these values due to the advanced treatment. These effluent levels should be consistently achieved through BPCTCA plus filtration and coagulation. The TSS limitations are based on the mean water usage of 18 knit plants (166 l/kg or 20.2 gal/lb) and a concentration of 10 mg/l. Multi-media filtration should deliver an effluent with a TSS of 5-8 mg/l. Thus, the BOD_5, TSS and COD effluent limitations are 1.7 kg/kkg (lb/1000 lb) for BOD_5, 1.7 kg/kkg (lb/1000 lb) for TSS and 10.0 to 16.7 kg/kkg (lb/1000 lb) for COD.

BATEA limits for carpet mills (subcategory 6) are based on BPCTCA plus multi-media filtration and chemical coagulation/clarification. The BOD_5 effluent limitation is based on results tabulated in Table 28. The BOD_5 limitation is the average BOD_5 from the exemplary plants. The COD effluent limitations are based on the manufacturing complexity factor in Section IX, although the factor for variability due to the biological treatment system has been removed. The BATEA limitations are 50 percent of these values due to the advanced treatment. These effluent levels should be consistently achieved through BPCTCA plus filtration and coagulation. The TSS limitation are based on the mean water usage of 38 carpet mills (62 l/kg or 7.5 gal/lb) and a concentration of 10 mg/l. Multi-media filtration should deliver an effluent with a TSS of 5-8 mg/l. Thus, the BOD_5, TSS and COD
BATEA limitations for stock and yarn dyeing and finishing plants (subcategory 7) are based on BPCTCA plus multi-media filtration and chemical coagulation/clarification. The BOD$_5$ and COD effluent limitations are based on results tabulated in Table 29. The BOD$_5$ limitation is the average BOD$_5$ from the exemplary plants and the COD limitation is 50 percent of the average COD from the exemplary plants. These effluent levels should be consistently achieved through BPCTCA plus filtration and coagulation. The TSS limitations are based on the mean water usage of 27 subcategory 7 plants (183 l/kg or 22.3 gal/lb) and a concentration of 10 mg/l. Multi-media filtration should deliver an effluent with a TSS of 5-8 mg/l. Thus, the BOD$_5$, TSS and COD effluent limitations are 2.3 kg/kg (lb/1000 lb) for BOD$_5$, 1.9 kg/kg (lb/1000 lb) for TSS and 14.1 kg/kg (lb/1000 lb) for COD.

BATEA limitations for commission finishers in four subcategories (wool scouring, wool finishing, woven fabric finishing and knit fabric finishing) are based on BPCTCA plus multi-media filtration and chemical coagulation/clarification. As in Section IX, the exemplary treatment plants in each of the subcategories has been used as a basis for developing the effluent limits for commission finishing. The BATEA limitations for each of these four subcategories have been increased by 100 percent for commission finishing to account for their higher water and waste loadings and their difficulty of treatment. Thus, the BOD$_5$, TSS and COD effluent limitations for commission finishing in the five subcategories range from 2.6-9.2 kg/kg (lb/1000 lb), 3.0-5.0 kg/kg (lb/1000 lb) and 20-54.2 kg/kg (lb/1000 lb) respectively.

BPCTCA effluent limitations for phenol, total chromium and sulfide are included in the BATEA limitations for appropriate subcategories as described in Section IX. Fecal coliform limits of 400 per 100 ml MPN are also included in each subcategory as BATEA effluent limitations. pH between 6-9 is also included for all subcategories as BATEA. The data base for the limitation is such that the Agency recognizes these color limits may need substantial revision prior to the implementation of BATEA guidelines. The limits are 600 ADMI units for wool scouring and wool finishing plants (subcategories 1 and 2), 300 ADMI units for woven and knit fabric finishing, and stock and yard dyeing and finishing subcategories (subcategories 4, 5, and 7) and 225 ADMI units for carpet mills (subcategory 6). Limits vary from 600 to 1200 ADMI units for commission finishers in the five subcategories listed above. No limits are required for dry processing operations (subcategory 3). See Appendix A for the analytical procedure and the calculations required to test for color.
<table>
<thead>
<tr>
<th>Subcategory</th>
<th>BOD5</th>
<th>TSS</th>
<th>COD</th>
<th>Total</th>
<th>Chromium</th>
<th>Phenol</th>
<th>Sulfide</th>
<th>Fecal Coliform</th>
<th>Color (z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wool Scouring(3,4)</td>
<td>2.4</td>
<td>2.0</td>
<td>18.0</td>
<td>0.05</td>
<td>0.05</td>
<td>0.10</td>
<td>400 MPN</td>
<td>100ml</td>
<td>600</td>
</tr>
<tr>
<td>Wool Finishing (4)</td>
<td>4.6</td>
<td>2.5</td>
<td>27.1</td>
<td>0.07</td>
<td>0.07</td>
<td>0.14</td>
<td>400 MPN</td>
<td>100ml</td>
<td>600</td>
</tr>
<tr>
<td>Dry Processing</td>
<td>0.2</td>
<td>0.2</td>
<td>0.4</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>400 MPN</td>
<td>100ml</td>
<td>---</td>
</tr>
<tr>
<td>Woven Fabric Finishing (4)</td>
<td>2.2</td>
<td>1.5</td>
<td>10.0-20.2</td>
<td>0.05</td>
<td>0.05</td>
<td>0.10</td>
<td>400 MPN</td>
<td>100ml</td>
<td>300</td>
</tr>
<tr>
<td>Knit Fabric Finishing (4)</td>
<td>1.7</td>
<td>1.7</td>
<td>10.0-16.7</td>
<td>0.05</td>
<td>0.05</td>
<td>0.10</td>
<td>400 MPN</td>
<td>100ml</td>
<td>300</td>
</tr>
<tr>
<td>Carpet Mills</td>
<td>2.0</td>
<td>1.0</td>
<td>11.7-15.0</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
<td>400 MPN</td>
<td>100ml</td>
<td>225</td>
</tr>
<tr>
<td>Stock and Yarn Dyeing and Finishing (4)</td>
<td>2.3</td>
<td>1.9</td>
<td>14.1</td>
<td>0.06</td>
<td>0.06</td>
<td>0.12</td>
<td>400 MPN</td>
<td>100ml</td>
<td>300</td>
</tr>
</tbody>
</table>

(1) Expressed as kg (lb) pollutant except Wool Scouring as kg (lb) pollutant kkg (1000 lb) product and Carpet Mills as kg (lb) pollutant kkg (1000 lb) raw grease wool

(2) Color in APHA units

(3) Oil and Grease limitations for Wool Scouring is 1.0 kg (lb) kkg (1000 lb) raw grease wool

(4) For those plants identified as Commission Finishers, an additional allocation of 100% of the guidelines is to be allowed for the 30 day and maximum levels.
RATIONALE FOR THE SELECTION OF BEST AVAILABLE CONTROL TECHNOLOGY ECONOMICALLY ACHIEVABLE

Age and Size of Equipment and Facilities

The industry has generally modernized its plants as new methods that are economically attractive had been introduced. No relationship between age or size of production plant and effectiveness of its pollution control was found.

Total Cost of Application in Relation to Effluent Reduction Benefits

Based on information in Section VIII of this report, the estimated additional increase in final product costs required to achieve effluent reductions through the application of the best available technology range, for small and large plants in the eight subcategories, from 0.7 cents per kilogram (0.3 cents per pound) of product to 7.3 cents per kilogram (3.2 cents per pound) of product. The average additional price increase is 2.3 cents per kilogram (1.0 cents per pound of product).

Engineering Aspects of Control Technique Application

The specified level of technology is achievable. Biological treatment is practiced throughout the textile industry; its effectiveness is demonstrated in Tables 21-24, 26, 28 and 29. Chemical coagulation has been studied for textile waste treatment for over 20 years. It has been successfully demonstrated at three mills although its effectiveness has not been demonstrated in all textile subcategories. The best available limits for \(\text{BOD}_5 \), TSS and COD are being met by a subcategory 4 plant K and the \(\text{BOD}_5 \) and COD limits are being met by plants M, Q, S, and V. An alternative to chemical coagulation is activated carbon. Although somewhat more expensive, the waste water benefits from activated carbon can justify carbon at many larger textile plants. It may be especially attractive to new textile plants. Ozonation may also be an alternative.

Filtration is the most common form of advanced waste water treatment because of its relatively inexpensive nature and its effectiveness in removing suspended solids and the organics associated with the solids. Multi-media filtration has been used effectively in various EPA applications including Lebanon, Ohio, and Washington, D.C. Filtration has been demonstrated with full-scale units at at least two textile mills and another plant is currently installing filtration equipment.
Process Changes

No in-plant changes will be needed by most plants to meet the limits specified. Some in-plant techniques are available as alternatives to effluent treatment techniques.

Non-Water Quality Environmental Impact

The non-water quality environmental impacts will essentially be those described in Section IX. Additional solid waste impacts may result from the waste sludge generated from chemical coagulation. However, these wastes are handled effectively in sanitary landfills. Thus, it is concluded that no new serious impacts will be introduced.

Factors to be Considered in Applying BATEA Guidelines

1. Limitations are based on 30 day averages. Based on performances of biological waste treatment systems, the maximum daily limitations for BOD₅, TSS, COD and oils and grease should not exceed the 30 day average limitations by more than 100 percent. The maximum 30 day and daily limitations for pH and fecal coliforms are identical.

2. If a plant produced materials in more than one subcategory, for instance wool and synthetics, the effluent limitations should be set by proration on the basis of the percentage of fiber being processed to each product.

3. Monitoring of total chromium, phenol and sulfide should be conducted at a frequency less than BOD₅, TSS or COD. Monitoring of fecal coliforms may not be required if sanitary wastes are not discharged in the plant effluent.

4. These effluent limitations apply to a textile installation processing a fiber or fabric through a series of processes to a specific final product or products. As such, the limitations are theoretically intended to apply to all the unit processes performed at a single mill. In a number of practical cases where the processing and finishing operations are performed on the same fiber or fabric at multiple mills, "double counting" shall not be permitted but the production shall be prorated as accurately as possible to each mill in the overall process sequence.
SECTION XI
NEW SOURCE PERFORMANCE STANDARDS

INTRODUCTION

The effluent limitations that must be achieved by new sources are termed performance standards. The New Source Performance Standards apply to any source for which construction starts after the publication of the proposed regulations for the Standards. The Standards are determined by adding to the consideration underlying the identification of the Best Practicable Control Technology Currently Available, a determination of what higher levels of pollution control are available through the use of improved production processes and/or treatment techniques. Thus, in addition to considering the best in-plant and end-of-process control technology, New Source Performance Standards are based on an analysis of the process itself. Alternative processes, operating methods or other alternatives are considered. However, the end result of the analysis is to identify effluent standards which reflect levels of control achievable through the use of improved production processes (as well as control technology), rather than prescribing a particular type of process or technology which must be employed. A further determination made is whether a standard permitting no discharge of pollutants is practicable.

Consideration must also be given to:

- Operating methods;
- Batch, as opposed to continuous, operations;
- Use of alternative raw materials and mixes of raw materials;
- Use of dry rather than wet processes (including substitution of recoverable solvents for water);
- Recovery of pollutants as by-products.

EFFLUENT REDUCTION ATTAINABLE FOR NEW SOURCES

The effluent limitation guidelines for new sources are based on the Best Practical Control Technology Currently Available plus multimedia filtration (Table 31). This limitation is achievable in newly constructed plants. In-plant controls and waste treatment technology identified in Section IX are available now and applicable to new plants.

RATIONALE FOR THE SELECTION OF NEW SOURCE PERFORMANCE STANDARDS

The new source technology includes the technology identified in Section IX: preliminary screening, primary settling (wool scouring
only), coagulation (carpet mills only), and biological treatment. It also includes multi-media filtration which has been demonstrated at a few textile mills as well as in many other industries. The TSS limits are such that in many cases they can be achieved with a well designed and well operated biological treatment system. In some cases, chemical addition may be needed in the final clarifier and in a few cases, multi-media filtration may be required. Because most plants will be able to attain these standards without significant additions to the best practicable control technology, the general conclusion reached in Section IX with respect to Total Cost of Application in Relation to Effluent Reduction Benefits, the Engineering Aspects of Control Technique Application, Process Changes, Non-Water Quality Environmental Impact and Factors to be Considered in Applying BPTCA Guidelines, apply with equal force to those New Performance Standards.

ENGINEERING ASPECTS AND COSTS OF APPLICATION IN RELATION TO EFFLUENT REDUCTION BENEFITS

However, the cost and engineering conclusions require additional explanation. The average final product cost increase associated with biological treatment and multi-media filtration for both small and large plants in the eight subcategories is projected to be 2.3 cents per kilogram product (1.0 cents per pound product). This compares with an average cost increase associated with biological treatment alone of 1.5 cents per kilogram (0.7 cents per pound). The availability of multi-media filtration also requires explanation. Filtration is the most common form of advanced waste water treatment because of its relatively inexpensive nature and its effectiveness in removing suspended solids and the organics associated with the solids. Multi-media filtration has been used effectively in various EPA applications and at least two textile mills. Another mill is currently installing filtration. The TSS new source standards are currently being achieved with biological treatment plants without filtration at seven mills in five subcategories. Thus, multi-media filtration will consistently achieve new source TSS standards, and a well designed and operated biological treatment system is also capable of achieving the standards.

PRETREATMENT REQUIREMENTS

Several constituents of the waste water from plants within the textile industry have been found which would interfere with, pass through, or otherwise be incompatible with a well designed and operated publicly owned activated sludge or trickling filter waste water treatment plant. Waste water constituents include grease from wool scouring operations, COD, total chromium, phenol and sulfide.

Adequate control methods can and should be used to keep significant quantities of these materials out of the waste water. Dye substitutes are available for many dyes containing heavy metals.
Table 31
Maximum Thirty Day Average Effluent Limitations Guidelines (1) for New Sources

<table>
<thead>
<tr>
<th>Subcategory</th>
<th>BOD5</th>
<th>TSS</th>
<th>COD</th>
<th>Total Chromium</th>
<th>Phenol</th>
<th>Sulfide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wool Scouring (2,4)</td>
<td>5.3</td>
<td>5.3</td>
<td>69.0</td>
<td>0.05</td>
<td>0.05</td>
<td>0.10</td>
</tr>
<tr>
<td>Wool Finishing (4)</td>
<td>11.2</td>
<td>11.2</td>
<td>81.5</td>
<td>0.07</td>
<td>0.07</td>
<td>0.14</td>
</tr>
<tr>
<td>Dry Processing (3)</td>
<td>0.7</td>
<td>0.7</td>
<td>1.4</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Woven Fabric Finishing (4)</td>
<td>3.3</td>
<td>3.3</td>
<td>30-</td>
<td>0.05</td>
<td>0.05</td>
<td>0.10</td>
</tr>
<tr>
<td>Knit Fabric Finishing (4)</td>
<td>2.5</td>
<td>2.5</td>
<td>30-</td>
<td>0.05</td>
<td>0.05</td>
<td>0.10</td>
</tr>
<tr>
<td>Carpet Mills</td>
<td>3.9</td>
<td>3.9</td>
<td>35.1-</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>Stock and Yarn Dyeing and Finishing (4)</td>
<td>3.4</td>
<td>3.4</td>
<td>42.3</td>
<td>0.06</td>
<td>0.06</td>
<td>0.12</td>
</tr>
</tbody>
</table>

(1) Expressed as \(\frac{\text{kg (lb) pollutant}}{\text{kg (1000 lb) product}} \) except Wool Scouring as \(\frac{\text{kg (1b pollutant}}{\text{kg (1000 lb) raw grease wool}} \)
and Carpet Mills as \(\frac{\text{kg (lb) pollutant}}{\text{kg (1000 lb) primary backed carpet}} \)

(2) Oil and Grease Limitation for Wool Scouring is 3.6 \(\frac{\text{kg (lb)}}{\text{kg (1000 lb) raw grease wool}} \)

(3) Fecal Coliform Limit for Dry Processing is 400 \(\frac{\text{MPN}}{\text{per 100 ml}} \).

(4) For those plants identified as Commission Finishers, an additional allocation of 100% of the guidelines is to be allowed for the 30 day maximum levels.
SECTION XII

ACKNOWLEDGMENTS

Special thanks and appreciation are due the following manufacturing organizations: The American Textile Manufacturers Institute; The Northern Textile Association; The Carpet and Rug Institute; and The American Association of Textile Chemists and Colorists.

Appreciation is expressed for the interest of several individuals within the Environmental Protection Agency: W. H Cloward, Region IV; Thomas Sargent, SERL, Athens, Georgia; Edmund Struzeski, NFIC, Denver, Colorado; Charles Ris, O R & D; Richard Sternberg, Mark Moser, William Hancuff, John Riley, George Webster, Ernst Hall, Allen Cywin, EGD.

Thanks are also due the many secretaries who typed and retyped this document: Acqua Dulaney, Pearl Smith, Karen Thompson, Jane Mitchell, and Barbara Wortman.

Special acknowledgment is made of the contributions of industry personnel who provided information to the study. Their active response, cooperation and assistance is greatly appreciated.
SECTION XIII

REFERENCES

A review of the recent literature for references on Textile wastes and waste treatment has produced over 200 references. Brief abstracts of 50 of these references are included as well as the full list of references.

(self-explanatory)

(15) "What the Mills are Doing to Control Water Pollution" Textile Chemist and Colorist, (1) No. 6, 25-36, 1969.

This article gives a brief rundown of waste control activities at:

1. American Enka, N.C. facility, where rayon, nylon, and polyester are produced

2. Burlington Industries (general)

3. Cannon Mills (discussed new design in detail)

4. Cone Mills (general)

5. Dan River Mills (Danville plant)

6. M. Lowenstein & Sons (Lyman Printing and Finishing Co.)

(18) Molvar, A., C. Rodman, and E. Shunney "Treating Textile Wastes with Activated Carbon"

Discusses activated carbon treatment in general, pilot plant work, and actual operating data for a full size waste treatment system. The mill's identity is not given (dyeing and finishing).

(21) Souther, R.H.

Detailed operating data on the Arrow Co., Division at Waterford, New York. The treatment system consists of an "extended-contact, activated sludge step, bio-aeration process." Also includes caustic recovery.

195
(22) "Wastewater Treatment Recycles 80 Percent of Industrial Flow"

Very brief description and general flow diagram of the waste treatment system using activated carbon at Hollytex Carpet Mills (near Philadelphia). No real operating data is given.

(25) Jones, E.L., T.A. Alspaugh, and H.B. Stokes
"Aerobic Treatment of Textile Mill Waste"
JWPCF (34) No. 5, 495-512, 1962.

Cone Mills, joint treatment of mill and municipal sewage by contact stabilization process. (Pilot plant operating data.)

(47) Poon, C.P.C.
"Biodegradability and Treatability of Combined Nylon and Municipal Wastes"
JWPCF (42) No. 1, 100-105, 1970.

Treatability study of wastes taken from the Belding Chemical Co. in Thomaston, Connecticut. Strictly a laboratory study.

(49) Kwie, W.W.
"Ozone Treats Wastestreams from Polymer Plant"

Laboratory study on ozone treatment of wastes from polymer plant (including SANS). The study did not produce very satisfying results.

(52) Wheatland, A.B.
"Activated Sludge Treatment of Some Organic Wastes"

Treatability study on a simulated synthetic fiber production and dyeing waste using a bench scale activated sludge unit.

(53) Carrigue, C.S., and L.U. Jauregui
"Sodium Hydroxide Recovery in the Textile Industry"

Castelar Textile Mill, Argentina (cotton goods) Description of NaOH recovery from the mercerizing process. NaOH is filtered and then concentrated by evaporating. Design criteria, operating data and capital and operating costs are given.

(56) Taylor, E.F., G.C. Gross, and R.F. Rocheleau
"Biochemical Oxidation of Wastes from the New Plant for Manufacturing Orion at Waynesboro, Va."
Detailed description of Dupont's Waynesboro works. Waste facilities consist of a catalytic oxidation unit which completely oxidizes the organics associated with the recovery of dimethylformamide and an activated sludge unit for treatment of dilute organic materials such as acrylonitrile, dimethylformamide and formic acid.

(57) Sadow, R.D. "The Treatment of Zefran Fiber Wastes" (acrylic fiber)
Dow Chemical Company's Williamsburg, Va., plant. Description of waste treatment process which includes primary settling, chemical coagulation, a Dowpac oxidation tower, and secondary settling. Operating data and design criteria are given.

Gives a rather brief description of their activated sludge unit with design criteria, operating data (sketchy) and cost information.

Very general article, gives some synthetic textile waste characteristics and very brief descriptions of waste characteristics and treatment methods at:
2. J.P. Stevens Co., Wallace Plant

Operating experience of the Chemstrand Corp. Pensacola plant which utilizes an activated sludge unit followed by a post-treatment lagoon.

Describes solvent sizing and dyeing processes. This is an informative but not very detailed article.

(95) Porter, J.J.
"Concepts for Carbon Adsorption in Waste Treatment"
The history of carbon's entry into the waste treatment field is presented. Interpretations of the fundamental kinetics and thermodynamics of carbon adsorption are also given with several specific examples cited.

(99) Rodman, C.A.
"Removal of Color from Textile Dye Wastes"
Solutions of four types of dyestuffs were treated by several methods that have been used practically or experimentally for color removal. Among these were coagulation by lime and by alum; extended aeration, activated carbon adsorption, reverse osmosis, and treatment with high pressure oxygen and cobalt-60 radiation.

(100) Rhame, G.A.
"Aeration Treatment of Textile Finishing Wastes in South Carolina"
American Dyestuff Reporter (60) No. 11, 46, 1971.
Operating data of several unidentified plants is presented along with general design criteria.

(103) Porter, J.J.
"Treatment of Textile Waste with Activated Carbon"
American Dyestuff Reporter (61) No. 8, 24-7, 1972.
Considerations in evaluating the potential application of carbon adsorption to a waste stream are discussed along with procedures for conducting laboratory studies.

(106) Stone, R.
"Carpet Mill Industrial Waste System"
A description of the waste treatment system of the Walter Carpet Mill, City of Industry, California is presented.

(108) Little, A.H.
"Use and Conservation of Water in Textile Processing"
Investigation of water usages in unit processes under normal pro-
duction conditions. The effects of different dyeing and bleaching processes have been studied. Possible methods of conservation of water are discussed, including Contra-flow washing. In addition, the effects of changes in processing, the size, type and speed of machines and the effects of cloth weight and batch size are discussed.

(110) Masseli, J.W., N.W. Massell, and M.C. Burford
"Factors Affecting Textile Waste Treatability"
Textile Industries for October 1971, p. 84-117

General design parameters of activated sludge waste treatment are discussed along with startup and operational considerations. Waste contributions (in terms of % total BOD) are given for the individual process chemicals used in a typical cotton mill, cotton/synthetic mill, and woolen mill.

(111) Shunney, E.L., Perratti, A.E., and Rodman, C.A.
"Decolorization of Carpet Yarn Dye Wastewater"
American Dyestuff Reporter (60) No. 6, 32-40, 1971.

Laboratory and full-scale operation of bio-regenerated activated carbon treatment of carpet yarn fiber dyeing are discussed. The facility described is the C. H. Masland & Sons plant in Wakefield, Rhode Island.

(113) Rodman, C.A., and E. L. Shunney
"A New Concept for the Biological Treatment of Textile Finishing Wastes"

(Same subject as ref. 111)

(115) Rodman, C.A. and E. L. Shunney
"Novel Approach Removes Color from Textile Dyeing Wastes"

(Same subject as ref. 111)

(118) "Bio-regenerated Activated Carbon Treatment of Textile Dye Wastewater"
Water Pollution Control Research Series 1209 OD WW 01/71.

(Same subject as ref. 111)

(122) Powell, S.D.
"Biodegradation of Anthraquinone Disperse Dyes"

Three anthraquinone disperse dyes, Disperse Violet 1 (C.I. 61100), Disperse Blue 3 (C.I. 61505) and Disperse Blue 7 (C.I. 62500), were partially metabolized by bacteria normally present in domestic
activated sludge. Disperse Red 15 (C.I. 60710), was left unchanged by the sludge. The nature of the metabolites produced showed that the dyes had not actually been degraded, but merely converted to derivatives of the original dyes.

(123) Hood, W.S.
"Color Evaluation in Effluents from Textile Dyeing and Finishing Processes"

Initial concentration and rates of degradation of dyes and chemicals in textile effluents were studied. Field studies were made to observe conditions and to collect samples of water from streams in the Coosa River Basin. The samples were analyzed for content of specific dye auxiliaries and color. Color degradation was achieved under simulated stream conditions, both in textile effluents and in river samples.

(124) Soria, J.R.R.
"Biodegradability of Some Dye Carriers"

Carriers covered in this study were resistant to degradation in conventional activated sludge waste disposal plants. Where bacteria were acclimated to the chemicals and treatment times were extended, degradation did occur.

(125) Arnold, L.G.
"Forecasting Quantity of Dyestuffs and Auxiliary Chemicals Discharged into Georgia Streams by the Textile Industry"

The quantity and concentration of the major textile wet-processing chemicals in effluents are reported.

(126) Pratt, H.D., Jr.
"A Study of the Degradation of Some Azo Disperse Dyes in Waste Disposal Systems"

Two azo disperse dyes, Disperse Orange 5 (C.I. 11100) and Disperse Red 5 (C.I. 11215), were degraded by the bacteria in conventional waste treatment facilities into aromatic amines. Biological degradation produced identical metabolites as those formed by chemical reduction.

(127) Anderson, J.H.
"Biodegradation of Vinyl Sulfone Reactive Dyes"

Biodegradation of three vinyl sulfone reactive dyes, Reactive
Blue 19, Reactive Violet 5, and Reactive Black 5, were investigated under laboratory conditions simulating those employed in conventional activated sludge plants. The study failed to show any evidence of degradation. Reactive Blue 19, and Reactive Violet 5 showed evidence of degradation under anaerobic conditions.

(141) "The Centrifugal Recovery of Wool Grease"

This very detailed article discussed the composition of wool scour liquor, general principles of recovery, detailed operating characteristics of centrifuges, and the economics of wool grease recovery.

(143) Harker, R.P., and B.M. Rock
"Water Conservation and Effluent Disposal in the Wool Textile Industry"

Discusses the wool textile industry in the U.K. Gives water consumption for various unit processes in terms of gal/lb product. This article also gives typical wool processing effluents and a description of the Traflo-W process which entails chemical coagulation followed by vacuum filtration. BOD is reduced by 80%.

(149) Rea, J.E.
"Treatment of Carpet Wastes for Disposal"

This paper identifies design criteria and operating data for the waste treatment facilities at Sequoyah Mills in Anadarko, Okla. The waste treatment facilities consist of an aerated lagoon and stabilization pond. Pilot work is included which shows the relationship of BOD removal to aeration time.

(150) Paulson, P.
"Water Purification - An Alternative to Solvent Dyeing"

A brief description of a new waste treatment process employing sedimentation followed by ion exchange. Pilot plant work on dyeing liquor showed COD removals greater than 90%.

(161) Kulkarni, H.R., S.U. Khan, and Deshpande
"Characterization of Textile Wastes and Recovery of Caustic Soda from Kier Wastes"

A case study of "A Typical Cotton Textile Industry" is presented in the paper with reference to economical method, of treatment of
the waste waters and recovery of caustic soda during the process of treatment. Ninety-eight percent caustic recovery has been accomplished using dialysis.

(162) "Biodegradation of "Elvanol" - A Report from Du Pont"

The report concludes that domestic and textile mill activated sludge microorganisms can acclimate to "Elvanol" T-25 under conditions attainable in conventional waste treatment systems and that removals of over 90% can be achieved if the organisms are properly acclimated.

(164) Ryder, L.W.
"The Design and Construction of the Treatment Plant for Wool Scouring and Dyeing Wastes at Manufacturing Plant, Glasgow, Va."

This article gives a very detailed description and design basis for the waste treatment system consisting of equalization, acidification, and neutralization. The plant achieves a BOD removal of 60%, SS removal of 96%, and a grease removal of 97%.

(168) Rodman, C.A., and E.L. Shunney
"Clean Clear Effluent"

A description of the Fram Corporation bio-regenerated carbon adsorption process is given along with laboratory and pilot plant operating data. The pilot plant treated waste water from the carpet yarn fibre dyeing plant of C.H. Masland & Sons, Wakefield, Rhode Island. A COD reduction of 81% and a color reduction of 99.4% is reported.

(175) Wilroy, R.D.
"Industrial Wastes from Scouring Rug Wools and the Removal of Dieldrin"

The article describes design considerations and operating experience of a waste treatment system consisting of fine screens, sedimentation basin, and an anaerobic lagoon. A BOD reduction of between 80 and 90% and a Dieldrin reduction of 99% is claimed for the system.

(181) Stewart, R.G.
"Pollution and the Wool Industry"

This article is a rather general outline of the sources of wool processing wastes and the present waste treatment technology
available.

(190) Rebhun, M., A. Weinberg, and N. Narkis
"Treatment of Wastewater from Cotton Dyeing and Finishing Works for Reuse"

This article describes the results of pilot plant work on the waste from a cotton dyeing and finishing mill in Israel. Alum flocculation followed by filtration was shown to produce a 95\% color reduction and a 67\% COD reduction. Activated carbon was shown to be a poor sorbent, and greater success was achieved using a weak base ion exchange resins.

(202) Alspaugh, T.A.
"Treating Dye Wastewaters"
45th Annual Conference of the Water Pollution Control Federation
Atlanta, Georgia, Oct. 8-13, 1972.

Alspaugh gives a very thorough evaluation of presently employed and promising future waste treatment unit operations. Experienced removal efficiencies and general treatment costs are also given. A summary of current waste treatment research is given.

(213) Corning, V.
"Pollution Control in Jantzen Dyehouse"

Brief description of Portland, Oregon plant; little detail.

(214) "Textile Water Pollution Cleanup Picks Up Speed"

Fairly general article but does give some operating data and waste treatment descriptions for several plants:

1. J.P. Stevens & Co., Wallace, N.C. plant
2. UPD's Bluefield, Va., plant
3. Burlington's Cooleemee, N.C.
4. Lyman Printing and Finishing Co., Lyman, N.C.
5. J. P. Stevens & Co., Utica-Mohawk plant

(215) Sahlie, R.S., and C.E. Steinmetz
"Pilot Wastewater Study Gives Encouraging Indications"
Description of pilot plant work at Fiber Industries, Shelby, N.C. plant. Article is not very detailed.

(216) "Trade Effluent Control in the Carpet Industry"

General discussion, gives values for typical effluents.
BIBLIOGRAPHY

15. "What The Mills Are Doing to Control Water Pollution," Textile

29. Kwie, W.W., "Ozone Treats Wastestreams From Polymer Plant," Water

40. Environmental Protection Agency--Contract 12090 DWM, Masland and Sons--"Demonstration of a New Process for the Treatment of Textile Dyeing and Finishing Wastes."

42. Ibid--Contract C 12090 GOX, Fiber Industries, "Reuse of Chemical Fiber Plant Wastewater and Cooling Water Blowdown."

43. Ibid--Contract 12090 EGW, Holliston Mills, "Treatment of Cotton Textile Wastes by Enzymes and Unique High Rate Trickling Filter System."

45. Ibid--Contract 12090 FWD, American Association of Textile Chemists and Colorists, "The use of oxygen and ionizing radiation to decolorize dye wastes."

74. Starling, "Problem of Textile Chemical Wastes," American Dyestuff

121. "Pollution Control: Plant Design is the Payoff," (Staff Interview with Charles Roberts), Textile Industries, (135) No. 11, 78-80, 117, 1971.

144. "Water Cleanup Costs, Cannon $6-million," Textile World, (122) No. 1,
61, 63, 65, 1972.

215

173. Laurie, D.T., and C.A. Willis, "Treatment Studies of Combined Textile and Domestic Wastes."

190. Rebhun, M., A. Weinberg, and N. Narkis, "Treatment of Wastewater from Cotton Dyeing and Finishing Works for Reuse."

SECTION XIV

GLOSSARY

acetate - A manufactured fiber made from cellulose acetate.

acid dye - A type of dye commonly used to color wool and nylon but may be used on other fibers.

Acrilan - Trademark of Monsanto for acrylic fiber.

acrylic - A manufactured fiber in which the fiber-forming substance is any long chain synthetic polymer composed of at least 85% by weight of acrylonitrile units. Made in both filament and staple form. (See Acrilan, Orlon, Creslan.)

Arnel - Trademark (Celanese Corp.) for cellulose triacetate fiber.

Avicron - Trademark (FMC Corp.) for rayon filament yarn.

Avril - Trademark (FMC Corp.) for staple and filament rayon.

beck - A chamber in which goods may be scoured and dyed. May be operated at atmospheric pressure or at elevated temperature and pressure.

biochemical oxygen demand (BOD) - A method of measuring rate of oxygen usage due to biological oxidation. A BOD5 of 1000 mg/liter means that a sample (1 liter) used 1000 mg of oxygen in 5 days.

biphenyl (or diphenyl) - A carrier used in dyeing polyester.

bleaching - Removal of colored components from a textile. Common bleaches are hydrogen peroxide, sodium hypochlorite, and sodium chlorite.

blend - the combination of two or more types of fibers and/or colors in one yarn.

bottom chrome - Term used in application of certain dyes to wool. Involves use of chromium compounds.

butyl benzoate - A carrier used in dyeing polyester.

carded - Yarn in which fibers are separated and aligned in a thin web, then condensed into a continuous, untwisted strand called a "sliver."
carrier - An organic material used in dyeing polyester. (See biphenyl, orthophenyl phenol, trichlorobenzene, butyl benzoate.)

cationic dye - The colored component of this type of dye bears a positive charge.

caucetic soda - A strong alkali used, for example, in mercerizing.

cellulose - Major component of cotton and rayon. Also used as the base for acetate fiber.

chemical oxygen demand (COD) - The amount of oxygen required to oxidize materials in a sample by means of a dichromate solution.

combed cotton - Cotton yarn that is cleaned after carding by wire brushes (combs) and roller cards to remove all short fibers and impurities.

Commission finishing - The term "commission finishing" shall mean the finishing of textile materials, 50 percent of more of which are owned by others, in mills that are 51 percent or more independent (i.e. only a minority ownership by company(ies) with greige or integrated operations); the mills must process 20 percent or more of their commissioned production through batch, non-continuous processing operations, with 50 percent or more of their commissioned orders processed in 5,000-yard or smaller lots.

crease-resistant - Fabrics that have been treated to make them resistant to wrinkling. One of the most common methods is to incorporate a resin.

Creslan - Trademark owned by American Cyanamid Co. for acrylic fibers.

cross-dyed - Multicolored effects produced in one dye bath from fabrics containing fibers with different affinities to the same dye.

Dacron - Trademark owned by Du Pont for polyester filaments and staple fibers.

denier - Unit of weight indicating size of a fiber filament based on weight in grams of a standard strand of 9000 meters.

desize - Removal of size. Several methods may be used. (See enzyme.)

developed dye - An azo dye whose color is developed by reaction on cotton.
dichromate - A chemical used widely in applying some dyes. Also used in boiler water. A toxic material.

dieldrin - Chemical applied to wool to eliminate damage due to moths. Toxic.

diphenyl - (See biphenyl).

direct dyes - Class of dyestuffs that colors cellulosic fibers in full shades.

disperse dye - A type of dye used to color several synthetic fibers. Applied as a fine dispersion using a carrier. On cloth, padded dye may be baked on or "thermofixed."

dissolved solids - Total solids - suspended solids in a sample of waste water.

dope-dyed - Trade slang for "solution dyed" or "spun dyed" meaning that color is put into the chemical liquid from which synthetic fibers are drawn. Filaments emerge colored.

double knit - Knitted fabric made on a special knitting machine that combines a double set of needles to produce a fabric.

Durable Press - Goods that require no ironing during the normal use-life of a garment. The term applies to apparel and other textile products such as sheets, draperies, etc. As a rule, DP is achieved in two ways: 1. Pre-curing fabrics with a special resin finish then pressing made-up garment. 2. Post-curing fabric with a resin finish then cooking made-up garments in an oven. As a rule, polyester-cotton blends are used, but there are 100% cottons, and other blends also.

enzyme - An agent used to remove starch size.

felt - A mat of fiber of wool often mixed with cotton or rayon.

flock - Short fibrous particles of fibers or short hairs applied by various processes to the surface of a fabric.

fly - Waste fibers or particles which fly out into the air during carding, drawing, spinning, or other fiber processing.

Fortrel - Trademark owned by Fiber Industries, Inc., for polyester fiber.

greige - Fabrics in unbleached, undyed state before finishing. In U.S., "gray goods" or "grey goods."

223
Herculon - Trademark owned by Hercules, Inc., for polypropylene fibers.

jig-dyed - Dyed in open width on a machine called a "jig." Cloth moves from one roll to another through the dye liquor until the desired shade is obtained.

jute - Coarse, brown fiber from the stalk of a bast plant grown in India. Used mainly for burlap, cordage, and as a backing for rugs and carpets.

kier - A piece of equipment in which cotton is boiled with dilute caustic soda to remove impurities. Also used as a verb to describe the process.

knitting - Process of making fabric by interlocking series of loops of one or more yarns. Types are: jersey (circular knits), tricots (warp knits), double knits.

Kodel - Trademark owned by Eastman Chemical Products Inc. for polyester yarn and fiber.

Lycra - Trademark (Du Pont) for polyurethane multafilament elastic yarn. The fused multafilaments in a bundle form a monofilament yarn that stretches and snaps back.

mercerizing - Finish used on cotton yarns and fabrics to increase luster, improve stretch and dyeability. Treatment consists of impregnating fabrics with cold concentrated sodium hydroxide solution.

Mitin - Trademark owned by Geigy Co., Inc. for a moth-repellent finish for woolens.

modacrylic - Generic name established by the Federal Trade Commission for a "manufactured fiber in which the fiber-forming substance is any long-chain synthetic polymer composed of less than 85% but at least 35% by weight of acrylonitrile units."

mordant - A metallic salt used for fixing dyes on fibers.

naphthol dye - A azo dye whose color is formed by coupling with a naphthol. Used chiefly on cotton.

non-woven - A material made of fibers in a web or mat generally held together by a bonding agent.

nylon - Generic name for a manufactured fiber in which the fiber-forming substance is any long-chain synthetic polyamide having recurring amide groups as an integral part of the polymer chain.
Orlon - Trademark (Du Pont) for acrylic fiber.

ortho phenyl phenol - A carrier used in dyeing polyester.

package dye - A method for dyeing many cones of yarn at once by pumping a dye solution through the yarn.

permanent finish - Fabric treatments of various kinds to improve glaze, hand, or performance of fabrics. These finishes are durable to laundering.

pH scale - A method used to describe acidity or alkalinity. pH 7 is neutral; above 7 - alkaline; below 7 - acid. The scale extends from 0 to 14 and a change of 1 unit represents a tenfold change in acidity or alkalinity.

pigment prints - Made with insoluble pigment mixed with a binder and thickener to form the printing paste.

pile fabric - Fabric with cut or uncut loops which stand up densely on the surface.

polyamide - (See nylon.)

polyester - A manufactured fiber in which the fiber-forming substance is any long-chain synthetic polymer composed of at least 85% by weight of an ester of dihydric alcohol and terephthalic acid. (See Dacron, Fortrel, Kodel.)

polypropylene - Basic fiber-forming substance for an olefin fiber.

Post-cured - Technique for imparting durable press that requires baking apparel in ovens to cure fabrics that have been impregnated with special resins. Most common technique used with polyester and cotton blends. (See durable press.)

precured fabric - Technique for imparting durable press by impregnating fabrics with special resins then curing same. Does not require oven after-treatment of apparel. (See durable press.)

printing - Process of producing designs of one or more colors on a fabric. There are several methods, such as roller, block, screen, etc., and several color techniques, such as direct, discharge, and resist.

print paste - A mixture containing a dye or pigment used in printing. Generally contain gums (thickener) and a solvent. (See also pigment prints.)
raschel - Warp-knit, similar to tricot, but coarser. Made in a wide variety of patterns.

rayon - A generic name for man-made fibers, monofilaments, and continuous filaments, made from regenerated cellulose. Fibers produced by both viscose and cuprammonium process are classified as rayon.

reactive dyes - Dyes that react chemically with the fiber.

resin - A chemical finish used to impart a property desired in a fabric, such as water repellency or hand, etc. (See durable press.)

resist dye - Method of treating yarn or cloth so that in dyeing the treated parts do not absorb the dyestuff.

roller prints - Machine made, using engraved copper rollers, one for each color in the pattern.

scouring - Removal of foreign components from textiles. Normal scouring materials are alkalies (e.g., soda ash) or trisodium phosphate, frequently used in the presence of a surfactant. Textile materials are sometimes scoured by use of a solvent.

screen prints - A screen of fine silk, nylon, polyester, or metal mesh is employed. Certain areas of the screen are treated to take dye, others to resist dye. A paste color is forced through the screen onto the fabric by a "squeegee" to form the pattern.

sequestrant - A chemical used to bind foreign metal ions. Frequently used in dyeing. A common sequestrant is EDTA.

size - A material applied to warp yarns to minimize abrasion during weaving. Common sizes are starch, polyvinyl alcohol (PVOH), and carboxymethyl cellulose. Sizes are applied continuously in a slasher.

softener - A chemical used to apply a soft, pleasant hand. Fat derivatives and polyethylene are common softeners.

solution-dyed - Synthetic fibers sometimes are dyed by adding color to the chemical polymer before fibers are formed. Also called dope dyed.

standard raw waste load (SRWL) - A description of the properties of waste water before treatment.

starch - Organic polymer material used as a size; highly biodegradable.
sulfur dye - A class of dyes which dissolve in aqueous sodium sulfide forming products with a marked affinity for cotton; the dyes are regenerated by air oxidation.

suspended solids - Amount of solids separated by filtration of a sample of waste water.

textured - Bulked yarns that have greater volume and surface interest than conventional yarn of same fiber.

top chrome - Term used in application of certain dyes to wool. Involves use of chromium compounds.

top-dyed - Wool which is dyed in the form of a loose rope of parallel fibers prior to spinning fibers into yarn.

total organic content (TOC) - The total organic materials present in a sample of waste water.

total oxygen demand (TOD) - The amount of oxygen necessary to completely oxidize materials present in a sample of waste water.

total solids - Amount of residue obtained on evaporation of a sample of waste water.

triacetate - Differs from regular cellulose acetate, which is a di-acetate. The description implies the extent of acetylation and degree of solubility in acetone.

tricot - Warp-knitted fabric. Tricots are flat knitted with fine ribs on the face (lengthwise) and ribs on the back (widthwise).

vat dye - A type of dye applied from a liquor containing alkali and a powerful reducing agent, generally hydrosulfite. The dye is subsequently oxidized to the colored form. Widely used on cellulosic fibers.

warp - Set of lengthwise yarns in a loom through which the crosswise filling yarns (weft) are interlaced. Sometimes called "ends."

weaving - The process of manufacturing fabric by interlacing a series of warp yarns with filling yarns at right angles.

yarn - An assemblage of fibers or filaments, either manufactured or natural, twisted or laid together so as to form a continuous strand
which can be used in weaving, knitting, or otherwise made into a textile material.

yarn-dyed - Fabrics in which the yarn is dyed before weaving or knitting.
APPENDIX A

PROCEDURE FOR DETERMINING ADMI COLOR VALUE

I. Principle

The color of a sample is considered to be the color of the light transmitted by the solution after removing the suspended material, including the pseudo-colloidal particles. It is recognized that the color characteristics of some samples are affected by the light reflection from the suspended material present. However, until a suitable method is available for making solution reflectance determinations, the color measurements will be limited to the characteristics of light transmitted by clarified samples. Suspended materials are removed by filtration through a standard filter aid medium.

This method is based on the premise that the Adams Nickerson Chromatic Value formula for calculating single number color difference values from C.I.E. tristimulus values adequately transforms C.I.E. color space into a visually uniform color space so that if two colors, A and B, are visually judged to differ from colorless to the same degree, the vector in the transformed color space from colorless to color A will be the same length as the vector from colorless to color B, the length of these vectors being the single number uniform color difference.

Thus a blue solution which would be visually judged to differ from colorless to the same degree that the APHA 100 platinum-cobalt color standard (yellow) differs from colorless would have a vector in Adams Nickerson Chromatic Value color space from colorless to the point for the blue solution which is equal in length to the vector from colorless to the point for the APHA 100 platinum-cobalt standard, and thus the two colored solutions would have similar single number color difference values. The scaling coefficient has been defined so that the values so calculated are of the same magnitude as the values assigned to the APHA platinum-cobalt standards, that is the ADMI Value for the blue solution would be 100.

II. Pretreatment of Samples

1. Apparatus (see Footnote A)

A filtration system, consisting of the following (see Figure 30, Section 206A (2) of Standard Methods):

a. Filtration flasks, 250-ml, with side tubes.
b. Walter crucible holder.
c. Micrometallic filter crucible, average pore size 40 microns.
d. Calcined filter aid.*
e. Vacuum system.

*Celite No 505 (Johns-Manville Corporation) or equivalent.

A. The procedure given is taken from 13th Edition of Standard Methods. However, it is considered to be inconvenient and requires attention to produce a clear filtrate. A more convenient procedure is to use the precoat technique on a circle of glass-fiber filter paper (5.5 cm Reeve Angel Glass Fiber Filter Paper, Grade 934AH) supported on a Buchner funnel.
2. Procedure

a. Preparation of sample: Bring two 100 ml samples to room temperature. Use one sample at the original pH value (record pH value), adjust the pH value of the other to 7.6 by using conc H₂SO₄ or NaOH as required. A standard pH is necessary because of the variation of color with pH. Remove excessive quantities of suspended materials by centrifuging. Treat each sample separately, as follows: Thoroughly mix 0.1 g filter aid in a 10-ml portion of centrifuged sample and filter the slurry to form a precoat in the filter crucible. Direct the filtrate to the waste flask as indicated in Figure 30 (Section 206A (2) of Standard Methods). Mix 80 mg filter aid in a 80-ml portion of the centrifuged sample. While the vacuum is still in effect, filter through the precoat and pass the filtrate to the waste flask until clear; then direct the clear filtrate flow to the clean flask by means of the three-way stopcock and collect 70 ml for the transmittance determination.

III. Spectrophotometry

1. Apparatus

a. General

Procedures are given for a wide variety of color measuring instruments. As already pointed out, it is important, however, that the instrument be calibrated as described in Section V and the calibration data for one instrument not be applied to another instrument, particularly a different type instrument or an instrument employing a different cell path length.

b. Cells

Clean, matched cells with a cell path of 5.0 cm are recommended where color values are less than 250. Cell paths of 1.0 cm should be used where samples have higher color values; however, calibration must be carried out using appropriate higher APHA platinum-cobalt color standards.*

c. Reference Liquid

In all cases the reference is a cell of the same nominal path length filled with distilled water. For all double beam instruments a "100% line" is measured (both cells filled with distilled water) and these measurements used to generate the \(X_c\), \(Y_c\), and \(Z_c\) (tristimulus values for "colorless") used in subsequent calculations. For single-beam instruments, the reference cell is used to set "100% T" prior to each measurement of the colored solution. In this instance fixed values for \(X_c\), \(Y_c\), and \(Z_c\) given in Section III are used.

*When a spectrophotometer is used for the color measurement, alternatively samples may be diluted prior to measurement in a 5.0 cm cell and the calculated value multiplied by the dilution factor. This alternative is not recommended when the instrument is a filter colorimeter. In this case a shorter cell path and the appropriate calibration should be employed.
2. Measurement Procedure

a. Double-beam spectrophotometers equipped with a tristimulus integrator or digital computer giving tristimulus value read-out: Record a "100% line" (both cells filled with distilled water) from 400 nm to 700 nm with control parameters set so that the read-out will be the values for X, Y, Z (as percentage) for C.I.E. Source C. Designate these values as X_c, Y_c, Z_c. Rinse the sample cell twice and then fill with clarified sample (Section II above) and record the absorption spectrum of the sample in the same manner. Designate the tristimulus values of the sample as X_s, Y_s, Z_s.

b. Double-beam ratio-recording spectrophotometers - Record a "100% line" (both cells filled with distilled water) from 400 nm to 700 nm with the instrument controls set to record percent transmittance. Rinse the sample cell twice and then fill it with clarified sample (Section II above) and record the spectrum of the sample in the same manner. The plotted curves are used to calculate C.I.E. tristimulus values using either the Weighted Ordinate Method, the Ten Selected Ordinates Method or the Thirty Selected Ordinates Method. The tristimulus values for the "100% line" are designated X_c, Y_c, Z_c, the values for the sample X_s, Y_s, Z_s.

c. Abridged Spectrophotometers (Color-Eye)

 (1) Using Four Tristimulus Filters - Follow the manufacturer's instructions for transmittance measurements and calculation of the C.I.E. Tristimulus Values. Use a cell filled with distilled water to generate the tristimulus values for "colorless" and designate these values X_c, Y_c, Z_c. Use the same cell filled with clarified sample (Section II above) to generate the sample tristimulus values and designate these X_s, Y_s, Z_s.

 (2) Using Wavelength Isolation Interference Filters - Follow the manufacturer's instructions for transmittance measurements and calculation of C.I.E. Tristimulus Values (Source C).

 Use a cell filled with distilled water to generate the transmittance data for "colorless" and from these values calculate the tristimulus values (Source C) designated X_c, Y_c, Z_c. Use the same cell filled with clarified sample solution (Section II above) to generate the "sample" transmittance data and from these data calculate the tristimulus values (Source C) designated X_s, Y_s, Z_s.

d. Single Beam Manual Spectrophotometers (Beckman DU-2) - Fill the reference cell with distilled water and fill the matched sample cell with clarified sample. At each required wavelength, set the transmittance scale to 100%. With the reference cell in the light beam balance the instrument as detailed in the manufacturer's instructions, then move the sample cell into the light beam, bring the instrument to balance by adjusting the transmittance knob, then read and record the percent transmittance at that wavelength. Replace the reference cell in the light beam, adjust the wavelength scale to the next required wavelength and repeat.
The wavelengths at which transmittance measurements must be made depend on which method of calculating C.I.E. Tristimulus Values is employed, the Weighted Ordinate Method, the Ten Selected Ordinates Method or the Thirty Selected Ordinates Method. Convenient work sheets for calculation of the tristimulus values X, Y, Z are given. In this instance only the tristimulus values for "colorless" are fixed as follows:

\[x^* = 98.06 \]
\[y^* = 100.00 \]
\[z^* = 118.14 \]

IV. Conversion of C.I.E. Tristimulus Values to Munsell Values and Calculation of ADMI Color Value

1. Convert the six C.I.E. tristimulus values \(X, Y, Z \) and \(X', Y', Z' \) to the corresponding values for \(V_x, V_y, V_z \) by the use of tables giving the interdependence of \(X \) and \(V_x \), \(Y \) and \(V_y \), \(Z \) and \(V_z \) (the most convenient tables are in J. Soc. Dyers and Colorists, 86, No 8, 354 (1970); Tables 6.4(A), 6.4(B), and 6.4(C) of Color Science by Wyszecki and Stiles, Wiley, N. Y., 1967; or Tables A, B and C in the Appendix of "Color in Business, Science and Industry," 2nd Edition, by Judd and Wyszecki, Wiley, N. Y. (1963).)

2. Calculate the intermediate value \(DE \) from the following equation:*

\[DE = [(0.236V_x)^2 + (0.236V_y)^2 + (0.415V_z)^2]^{1/2} \]

3. Calculate the ADMI value by interpolation on a plot of \(DE \) versus ADMI value or by one of the other alternatives given in Section V-3.

V. Calibration of Color Measuring Instrument

1. Preparation of Standards

 a. Dissolve 1.246 g potassium chloroplatinate, \(K_2PtCl_6 \) (equivalent to 500 mg metallic platinum) and 1.00 g crystallized cobaltous chloride, \(CoCl_2 \cdot 6H_2O \) (equivalent to about 250 mg metallic cobalt) in distilled water with 100 ml conc HCl and dilute to 1,000 ml with distilled water. This stock standard has a color of 500 units.

 b. If potassium chloroplatinate is not available, dissolve 500 mg pure metallic platinum in aqua regia with the aid of heat; remove nitric acid by repeated evaporation with fresh portions of conc HCl. Dissolve this product, together with 1.00 g crystallized cobaltous chloride, as directed above.

*A work sheet convenient for carrying out the tabulation and calculations required is given.
c. Prepare standards having colors of 25, 50, 100, 150, 200 and 250 by diluting 5.0, 10.0, 20.0, 30.0, 40.0, and 50.0 ml stock color standard with distilled water to 100 ml in volumetric flasks. Protect these standards against evaporation and contamination.

2. Spectrophotometry of Standards

a. Carry each standard through the spectrophotometry procedure appropriate for that instrument being used as described in Section III above.

b. Calculate for each color standard values for \(X, Y, Z\). If the spectrophotometry was all carried out at the same time a single "100% line" recording will suffice to generate values for \(X_c, Y_c, Z_c\).

c. Calculation of Calibration Factor (F)

a. From the values of \(X, Y, Z\) for each color standard and the values for \(X_c, Y_c, Z_c\), calculate for each color standard the intermediate value \(DE\) as described in Section IV above.

A plot of \((DE)\) on the X axis and ADMl value on the Y axis should be prepared. When a sample is carried through the procedure and the intermediate value DE has been calculated, this plot can be used to determine the ADMl value. Figure 4 illustrates such a plot for one recording spectrophotometer equipped with a tristimulus integrator.

b. As an alternative to the use of a calibration graph as described in a. above, an empirical equation relating \(DE\) and ADMl (APHA) value may be developed. The data from spectrophotometers have been found to give a good fit to a hyperbolic equation of the form:

\[
\text{ADMl Value} = \frac{DE}{a + (b \times DE)}
\]

The "least squares" evaluation of the coefficients \(a\) and \(b\) is described in "Precision Measurement and Calibration," Vol 1, Statistical Concepts and Procedures, SP300, National Bureau of Standards, p 234. For one recording spectrophotometer \(a = 3.503 \times 10^{-3}\) and \(b = -2.689 \times 10^{-3}\). Insert values for these constants here.

c. Calculate for each color standard the calibration factor \((F)_n\) by the following equation:

\[
(F)_n = \frac{(APHA)_n (b)}{(DE)_n}
\]

where \((APHA)_n\) = APHA Color Value for Standard \(n\).

\((DE)_n\) = Intermediate value calculated as above for Standard \(n\).

\(b\) = Cell path used in spectrophotometry, cm.
For undemanding work the values for \((F) \) may be averaged to give a mean value of \(F \) to use in the calculation of ADMI values of samples as shown in Step 8 of the work sheet*.

Then

\[
\text{ADMI Value} = \frac{(F)(DE)}{b}
\]

Calculation of the C.I.E. tristimulus values is described and illustrated and a work sheet for calculation of ADMI values from Munsell values is also included. Alternatively, tristimulus values may be calculated by the 10 or the 30 selected ordinate methods as described in Section 206A of the 13th Edition of Standard Methods for the Examination of Water and Waste Treatment.(15)

*This value should be approximately \(1.4 \times 10^3 \) for the mean of APHA 50, APHA 100, and APHA 150 standards as measured on a recording spectrophotometer equipped with a tristimulus integrator.
CALCULATION OF C.I.E. TRISTIMULUS VALUES
BY THE WEIGHTED ORDINATE METHOD

This method requires transmittance data at equal 10 nm intervals from 400 nm to 700 nm, a total of 31 data points. Each transmittance value is multiplied by a weighting factor for X, another weighting factor for Y and a third weighting factor for Z. There are thus three weighting factors for each of the 31 wavelengths. The products for each of the three C.I.E. primaries are then summed to give the three C.I.E. Tristimulus Values:

\[
X = (T_{\lambda=1} \cdot fx_{\lambda=1}) + (T_{\lambda=2} \cdot fx_{\lambda=2}) + \cdots + (T_{\lambda=31} \cdot fx_{\lambda=31})
\]

\[
Y = (T_{\lambda=1} \cdot fy_{\lambda=1}) + (T_{\lambda=2} \cdot fy_{\lambda=2}) + \cdots + (T_{\lambda=31} \cdot fy_{\lambda=31})
\]

\[
Z = (T_{\lambda=1} \cdot fz_{\lambda=1}) + (T_{\lambda=2} \cdot fz_{\lambda=2}) + \cdots + (T_{\lambda=31} \cdot fz_{\lambda=31})
\]

While this method requires 85 multiplications and 3 additions, 2 of 31 terms each, and one of 23 terms, it is not too cumbersome using a desk calculator. Programmable electronic calculators make it even simpler and access to a time-sharing digital computer terminal makes it even quicker.

An advantage of this method is that the transmittance data are at unit wavelengths which are easily and quickly set on a wavelength scale or read on the wavelength grid of a spectrophotometric curve.

Included is a work sheet which gives the 93 weighting factors for C.I.E. 1931 Tristimulus Values, Source C. A worked example is included.
WORK SHEET FOR CALCULATION OF ADMI
VALUES FROM C.I.E. TRISTIMULUS VALUES

<table>
<thead>
<tr>
<th>C.I.E. Tristimulus Values</th>
<th>V_x</th>
<th>V_y</th>
<th>V_z</th>
<th>(V_x-V_y)</th>
<th>(V_y-V_z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y_c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z_c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y_s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z_s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step (1) $\Delta V_y = \frac{\Delta V_y}{V_y}$

Step (2) $0.23\Delta V_y = (0.23\Delta V_y)^2$

Step (3) $\Delta(V_x-V_y) = (\Delta(V_x-V_y))^2$

Step (4) $\Delta(V_y-V_z) = (\Delta(V_y-V_z))^2$

Step (5) $0.4\Delta(V_y-V_z) = (0.4\Delta(V_y-V_z))^2$

Step (6) Sum =

Step (7) $DE = \sqrt{\text{Sum}}$ =

Calibration Factor (F) =

Cell Path Length, cm(b) =

Step (8) ADMI Value = $F \frac{DE}{D} = (\ldots) \times (\ldots)$
Work Sheet for Calculation of C.I.E. Tristimulus Values

Weighted Ordinate Method

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>%</th>
<th>X Factor</th>
<th>%T x Fact.</th>
<th>Y Factor</th>
<th>%T x Fact.</th>
<th>Z Factor</th>
<th>%T x Fact.</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td></td>
<td>0.00108</td>
<td></td>
<td>0.00002</td>
<td></td>
<td>0.00513</td>
<td></td>
</tr>
<tr>
<td>410</td>
<td></td>
<td>0.00329</td>
<td></td>
<td>0.00009</td>
<td></td>
<td>0.01570</td>
<td></td>
</tr>
<tr>
<td>420</td>
<td></td>
<td>0.01238</td>
<td></td>
<td>0.00037</td>
<td></td>
<td>0.05949</td>
<td></td>
</tr>
<tr>
<td>430</td>
<td></td>
<td>0.02977</td>
<td></td>
<td>0.00122</td>
<td></td>
<td>0.14628</td>
<td></td>
</tr>
<tr>
<td>440</td>
<td></td>
<td>0.03975</td>
<td></td>
<td>0.00262</td>
<td></td>
<td>0.19938</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td></td>
<td>0.03915</td>
<td></td>
<td>0.00443</td>
<td></td>
<td>0.20638</td>
<td></td>
</tr>
<tr>
<td>460</td>
<td></td>
<td>0.03362</td>
<td></td>
<td>0.00694</td>
<td></td>
<td>0.19299</td>
<td></td>
</tr>
<tr>
<td>470</td>
<td></td>
<td>0.02272</td>
<td></td>
<td>0.01058</td>
<td></td>
<td>0.14972</td>
<td></td>
</tr>
<tr>
<td>480</td>
<td></td>
<td>0.01112</td>
<td></td>
<td>0.01615</td>
<td></td>
<td>0.09461</td>
<td></td>
</tr>
<tr>
<td>490</td>
<td></td>
<td>0.00363</td>
<td></td>
<td>0.02358</td>
<td></td>
<td>0.05274</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
<td>0.00052</td>
<td></td>
<td>0.03401</td>
<td></td>
<td>0.02864</td>
<td></td>
</tr>
<tr>
<td>510</td>
<td></td>
<td>0.00089</td>
<td></td>
<td>0.04833</td>
<td></td>
<td>0.01520</td>
<td></td>
</tr>
<tr>
<td>520</td>
<td></td>
<td>0.00576</td>
<td></td>
<td>0.06462</td>
<td></td>
<td>0.00712</td>
<td></td>
</tr>
<tr>
<td>530</td>
<td></td>
<td>0.01523</td>
<td></td>
<td>0.07934</td>
<td></td>
<td>0.00388</td>
<td></td>
</tr>
<tr>
<td>540</td>
<td></td>
<td>0.02785</td>
<td></td>
<td>0.09149</td>
<td></td>
<td>0.00195</td>
<td></td>
</tr>
<tr>
<td>550</td>
<td></td>
<td>0.04282</td>
<td></td>
<td>0.09832</td>
<td></td>
<td>0.00086</td>
<td></td>
</tr>
<tr>
<td>560</td>
<td></td>
<td>0.05680</td>
<td></td>
<td>0.09841</td>
<td></td>
<td>0.00339</td>
<td></td>
</tr>
<tr>
<td>570</td>
<td></td>
<td>0.07322</td>
<td></td>
<td>0.09147</td>
<td></td>
<td>0.00020</td>
<td></td>
</tr>
<tr>
<td>580</td>
<td></td>
<td>0.08417</td>
<td></td>
<td>0.07992</td>
<td></td>
<td>0.00016</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td></td>
<td>0.08984</td>
<td></td>
<td>0.06627</td>
<td></td>
<td>0.00010</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td></td>
<td>0.08949</td>
<td></td>
<td>0.05316</td>
<td></td>
<td>0.00007</td>
<td></td>
</tr>
<tr>
<td>610</td>
<td></td>
<td>0.08325</td>
<td></td>
<td>0.04176</td>
<td></td>
<td>0.00002</td>
<td></td>
</tr>
<tr>
<td>620</td>
<td></td>
<td>0.07070</td>
<td></td>
<td>0.03153</td>
<td></td>
<td>0.00002</td>
<td></td>
</tr>
<tr>
<td>630</td>
<td></td>
<td>0.05309</td>
<td></td>
<td>0.02190</td>
<td></td>
<td>0.00000</td>
<td>0.00</td>
</tr>
<tr>
<td>640</td>
<td></td>
<td>0.03693</td>
<td></td>
<td>0.01443</td>
<td></td>
<td>0.00000</td>
<td>0.00</td>
</tr>
<tr>
<td>650</td>
<td></td>
<td>0.02349</td>
<td></td>
<td>0.00866</td>
<td></td>
<td>0.00000</td>
<td>0.00</td>
</tr>
<tr>
<td>660</td>
<td></td>
<td>0.01361</td>
<td></td>
<td>0.00504</td>
<td></td>
<td>0.00000</td>
<td>0.00</td>
</tr>
<tr>
<td>670</td>
<td></td>
<td>0.00708</td>
<td></td>
<td>0.00259</td>
<td></td>
<td>0.00000</td>
<td>0.00</td>
</tr>
<tr>
<td>680</td>
<td></td>
<td>0.00169</td>
<td></td>
<td>0.00134</td>
<td></td>
<td>0.00000</td>
<td>0.00</td>
</tr>
<tr>
<td>690</td>
<td></td>
<td>0.00171</td>
<td></td>
<td>0.00062</td>
<td></td>
<td>0.00000</td>
<td>0.00</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>0.00156</td>
<td></td>
<td>0.00056</td>
<td></td>
<td>0.00000</td>
<td>0.00</td>
</tr>
</tbody>
</table>

\[
X = \text{Sum} = \\
Y = \text{Sum} = \\
Z = \text{Sum} =
\]

\[
237
\]
WORKED EXAMPLES OF CALCULATION OF C.I.E. TRISTIMULUS VALUES AND CONVERSION TO ADMI COLOR VALUES

The data used in the example calculating the C.I.E. Tristimulus Values by the Weighted Ordinate Method were taken from a transmittance curve obtained on a Cary 14 double beam spectrophotometer using as sample an NBS 2105 glass filter (2.93 mm). The C.I.E. Source C tristimulus values given by NBS for this filter are as follows:

\[
\begin{align*}
X &= 51.8 \pm 0.4 \\
Y &= 56.1 \pm 0.3 \\
Z &= 75.4 \pm 0.7
\end{align*}
\]

Also included in this Appendix is a worked example of conversion of the C.I.E. Tristimulus Values (Selected Ordinate Method) to ADMI Color Value. This calculation assumes that the data were obtained on a solution measured in a 5 cm cell. Attention is drawn to the necessity of keeping track of the algebraic sign of the differences calculated.
Work Sheet for Calculation of C.I.E. Tristimulus Values

Weighted Ordinate Method

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>T Factor</th>
<th>%T x T Factor</th>
<th>X Factor</th>
<th>%T x X Factor</th>
<th>Y Factor</th>
<th>%T x Y Factor</th>
<th>Z Factor</th>
<th>%T x Z Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>23.8</td>
<td>0.00108</td>
<td>0.02571</td>
<td>0.00002</td>
<td>0.0005</td>
<td>0.00513</td>
<td>0.1221</td>
<td></td>
</tr>
<tr>
<td>410</td>
<td>40.0</td>
<td>0.00329</td>
<td>0.1316</td>
<td>0.00009</td>
<td>0.0036</td>
<td>0.01570</td>
<td>0.6280</td>
<td></td>
</tr>
<tr>
<td>420</td>
<td>48.2</td>
<td>0.01238</td>
<td>0.5967</td>
<td>0.00037</td>
<td>0.0178</td>
<td>0.05949</td>
<td>2.8674</td>
<td></td>
</tr>
<tr>
<td>430</td>
<td>54.4</td>
<td>0.02997</td>
<td>1.6304</td>
<td>0.00122</td>
<td>0.0664</td>
<td>0.14628</td>
<td>7.9576</td>
<td></td>
</tr>
<tr>
<td>440</td>
<td>60.3</td>
<td>0.03975</td>
<td>2.3969</td>
<td>0.00262</td>
<td>0.1580</td>
<td>0.19938</td>
<td>12.0226</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>65.8</td>
<td>0.03915</td>
<td>2.5761</td>
<td>0.00443</td>
<td>0.2915</td>
<td>0.20638</td>
<td>13.5798</td>
<td></td>
</tr>
<tr>
<td>460</td>
<td>70.1</td>
<td>0.03362</td>
<td>2.3567</td>
<td>0.00694</td>
<td>0.4865</td>
<td>0.19299</td>
<td>13.5286</td>
<td></td>
</tr>
<tr>
<td>470</td>
<td>71.5</td>
<td>0.02272</td>
<td>1.6244</td>
<td>0.01058</td>
<td>0.7565</td>
<td>0.14972</td>
<td>10.7050</td>
<td></td>
</tr>
<tr>
<td>480</td>
<td>70.9</td>
<td>0.01112</td>
<td>0.7884</td>
<td>0.01618</td>
<td>1.1472</td>
<td>0.09461</td>
<td>6.7078</td>
<td></td>
</tr>
<tr>
<td>490</td>
<td>68.5</td>
<td>0.00363</td>
<td>0.2486</td>
<td>0.02358</td>
<td>1.6152</td>
<td>0.05274</td>
<td>3.6127</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>66.1</td>
<td>0.00052</td>
<td>0.0344</td>
<td>0.03401</td>
<td>2.2481</td>
<td>0.02864</td>
<td>1.8931</td>
<td></td>
</tr>
<tr>
<td>510</td>
<td>62.9</td>
<td>0.00089</td>
<td>0.0560</td>
<td>0.04833</td>
<td>3.0400</td>
<td>0.01520</td>
<td>0.9560</td>
<td></td>
</tr>
<tr>
<td>520</td>
<td>59.5</td>
<td>0.00576</td>
<td>0.3472</td>
<td>0.06462</td>
<td>3.8449</td>
<td>0.00712</td>
<td>0.4236</td>
<td></td>
</tr>
<tr>
<td>530</td>
<td>57.0</td>
<td>0.01523</td>
<td>0.8681</td>
<td>0.07934</td>
<td>4.5223</td>
<td>0.00388</td>
<td>0.2212</td>
<td></td>
</tr>
<tr>
<td>540</td>
<td>57.0</td>
<td>0.02785</td>
<td>1.5874</td>
<td>0.09149</td>
<td>5.2149</td>
<td>0.00195</td>
<td>0.1111</td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>60.5</td>
<td>0.04282</td>
<td>2.5906</td>
<td>0.09832</td>
<td>5.9484</td>
<td>0.00868</td>
<td>0.0520</td>
<td></td>
</tr>
<tr>
<td>560</td>
<td>62.3</td>
<td>0.05880</td>
<td>3.6632</td>
<td>0.09841</td>
<td>6.1309</td>
<td>0.00033</td>
<td>0.0243</td>
<td></td>
</tr>
<tr>
<td>570</td>
<td>58.8</td>
<td>0.07322</td>
<td>4.3053</td>
<td>0.09147</td>
<td>5.3784</td>
<td>0.00020</td>
<td>0.0118</td>
<td></td>
</tr>
<tr>
<td>580</td>
<td>51.4</td>
<td>0.08417</td>
<td>4.3262</td>
<td>0.07992</td>
<td>4.1079</td>
<td>0.00016</td>
<td>0.0082</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>44.9</td>
<td>0.08984</td>
<td>4.0338</td>
<td>0.06627</td>
<td>2.9755</td>
<td>0.00010</td>
<td>0.0045</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>44.9</td>
<td>0.08949</td>
<td>4.0181</td>
<td>0.05316</td>
<td>2.3869</td>
<td>0.00007</td>
<td>0.0031</td>
<td></td>
</tr>
<tr>
<td>610</td>
<td>46.4</td>
<td>0.08325</td>
<td>3.8628</td>
<td>0.04176</td>
<td>1.9377</td>
<td>0.00002</td>
<td>0.0009</td>
<td></td>
</tr>
<tr>
<td>620</td>
<td>46.6</td>
<td>0.07070</td>
<td>3.2946</td>
<td>0.03153</td>
<td>1.4693</td>
<td>0.00002</td>
<td>0.0006</td>
<td></td>
</tr>
<tr>
<td>630</td>
<td>45.8</td>
<td>0.05309</td>
<td>2.4315</td>
<td>0.02190</td>
<td>1.0030</td>
<td>0.00000</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>640</td>
<td>44.8</td>
<td>0.03693</td>
<td>1.6545</td>
<td>0.01443</td>
<td>0.6465</td>
<td>0.00000</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>650</td>
<td>45.0</td>
<td>0.02349</td>
<td>1.0570</td>
<td>0.00886</td>
<td>0.3987</td>
<td>0.00000</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>660</td>
<td>43.4</td>
<td>0.01361</td>
<td>0.5907</td>
<td>0.00504</td>
<td>0.2187</td>
<td>0.00000</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>670</td>
<td>54.3</td>
<td>0.00708</td>
<td>0.3844</td>
<td>0.00259</td>
<td>0.1406</td>
<td>0.00000</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>680</td>
<td>63.0</td>
<td>0.00369</td>
<td>0.2325</td>
<td>0.00134</td>
<td>0.0844</td>
<td>0.00000</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>690</td>
<td>72.0</td>
<td>0.00171</td>
<td>0.1231</td>
<td>0.00062</td>
<td>0.0446</td>
<td>0.00000</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>79.1</td>
<td>0.00156</td>
<td>0.1234</td>
<td>0.00056</td>
<td>0.0443</td>
<td>0.00000</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

\[X = \text{Sum} = 51.96 \quad Y = \text{Sum} = 56.33 \quad Z = \text{Sum} = 75.44 \]
WORK SHEET FOR CALCULATION OF ADMI VALUES FROM C.I.E. TRISTIMULUS VALUES

<table>
<thead>
<tr>
<th>C.I.E. Tristimulus Values</th>
<th>V_x</th>
<th>V_y</th>
<th>V_z</th>
<th>(V_x-V_y)</th>
<th>(V_y-V_z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_c = 98.00$</td>
<td>9.900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Y_c = 100.00$</td>
<td></td>
<td>9.902</td>
<td>-0.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Z_c = 118.35$</td>
<td></td>
<td>9.910</td>
<td>-0.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$X_s = 51.96$</td>
<td>7.543</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Y_s = 56.33$</td>
<td></td>
<td>7.841</td>
<td>-0.198</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Z_s = 75.44$</td>
<td></td>
<td>8.263</td>
<td>-0.422</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step (1) $\Delta V_y = 2.061$

Step (2) $0.23\Delta V_y = 0.474$

Step (3) $\Delta(V_x-V_y) = 0.196$

Step (4) $\Delta(V_y-V_z) = 0.414$

Step (5) $0.4\Delta(V_y-V_z) = 0.166$

Step (6) Sum = 0.290

Step (7) $DE = \sqrt{\text{Sum}} = \sqrt{0.290} = 0.539$

Calibration Factor (F) = 1.4×10^3

Cell Path Length, cm (b) = 5.0

Step (8) ADMI Value = $F \frac{DE}{5} = (1.4 \times 10^3 \times 0.539) = 151$
METRIC UNITS

CONVERSION TABLE

MULTIPLY (ENGLISH UNITS) by

<table>
<thead>
<tr>
<th>ENGLISH UNIT</th>
<th>ABBREVIATION</th>
<th>CONVERSION</th>
<th>ABBREVIATION</th>
<th>METRIC UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>acre</td>
<td>ac</td>
<td>0.405</td>
<td>ha</td>
<td>hectares</td>
</tr>
<tr>
<td>acre - feet</td>
<td>ac ft</td>
<td>1233.5</td>
<td>cu m</td>
<td>cubic meters</td>
</tr>
<tr>
<td>British Thermal Unit</td>
<td>BTU</td>
<td>0.252</td>
<td>kg cal</td>
<td>kilogram - calories</td>
</tr>
<tr>
<td>British Thermal Unit/pound</td>
<td>BTU/lb</td>
<td>0.555</td>
<td>kg cal/lb</td>
<td>kilogram calories/kilogram</td>
</tr>
<tr>
<td>cubic feet/minute</td>
<td>cfm</td>
<td>0.028</td>
<td>cu m/min</td>
<td>cubic meters/minute</td>
</tr>
<tr>
<td>cubic feet/second</td>
<td>cfs</td>
<td>1.7</td>
<td>cu m/min</td>
<td>cubic meters/minute</td>
</tr>
<tr>
<td>cubic feet</td>
<td>cu ft</td>
<td>0.028</td>
<td>cu m</td>
<td>cubic meters</td>
</tr>
<tr>
<td>cubic feet</td>
<td>cu ft</td>
<td>28.32</td>
<td>l</td>
<td>liters</td>
</tr>
<tr>
<td>cubic inches</td>
<td>cu in</td>
<td>16.39</td>
<td>cu cm</td>
<td>cubic centimeters</td>
</tr>
<tr>
<td>degree Fahrenheit</td>
<td>°F</td>
<td>0.555*(F-32)*</td>
<td>°C</td>
<td>degree Centigrade</td>
</tr>
<tr>
<td>feet</td>
<td>ft</td>
<td>0.3048</td>
<td>m</td>
<td>meters</td>
</tr>
<tr>
<td>gallon</td>
<td>gal</td>
<td>3.785</td>
<td>l</td>
<td>liters</td>
</tr>
<tr>
<td>gallon/minute</td>
<td>gpm</td>
<td>0.0631</td>
<td>l/sec</td>
<td>liters/second</td>
</tr>
<tr>
<td>horsepower</td>
<td>hp</td>
<td>0.7457</td>
<td>kw</td>
<td>kilowatts</td>
</tr>
<tr>
<td>inches</td>
<td>in</td>
<td>2.54</td>
<td>cm</td>
<td>centimeters</td>
</tr>
<tr>
<td>inches of mercury</td>
<td>in Hg</td>
<td>0.03342</td>
<td>atm</td>
<td>atmospheres</td>
</tr>
<tr>
<td>pounds</td>
<td>lb</td>
<td>0.454</td>
<td>kg</td>
<td>kilograms</td>
</tr>
<tr>
<td>million gallons/day</td>
<td>mgd</td>
<td>3,785</td>
<td>cu m/day</td>
<td>cubic meters/day</td>
</tr>
<tr>
<td>mile</td>
<td>mi</td>
<td>1.609</td>
<td>km</td>
<td>kilometer</td>
</tr>
<tr>
<td>inch (gauge)</td>
<td>psig</td>
<td>(0.06805 psig +1)*</td>
<td>atm</td>
<td>atmospheres (absolute)</td>
</tr>
<tr>
<td>square feet</td>
<td>sq ft</td>
<td>0.0929</td>
<td>sq m</td>
<td>square meters</td>
</tr>
<tr>
<td>square inches</td>
<td>sq in</td>
<td>6.452</td>
<td>sq cm</td>
<td>square centimeters</td>
</tr>
<tr>
<td>tons (short)</td>
<td>ton</td>
<td>0.907</td>
<td>kkg</td>
<td>metric tons (1000 kilograms)</td>
</tr>
<tr>
<td>yard</td>
<td>yd</td>
<td>0.9144</td>
<td>m</td>
<td>meters</td>
</tr>
</tbody>
</table>

* Actual conversion, not a multiplier