Concept to Completion
Maryland Heights Renewable Energy Center

EPA - Landfill Methane Outreach Program
January 30, 2013

Scott Wibenmeyer
General Executive, Renewable Development & Project Management
Legal Disclaimer

The information provided in this presentation is believed to be correct and is being provided for informational and educational purposes. No warranty is given with respect specific accuracy of any provided information.
Presentation

1. Project Background
2. Project Overview
3. Project Challenges
 1. Land
 2. Noise
 3. Emissions
 4. Fuel Treatment
4. Operations
5. Lessons Learned
Missouri – Renewable Energy Standard (RES)

- Green Power Initiative (Prop C)
- Effective date: January 1, 2011
- Solar must be 2%
- Limitations: Cost of compliance is not to exceed a 1% increase in rates
- Generation needed to meet requirements:
 - 2011 ~840,000 MWhs
 - 2025 > 7.3 million MWhs
Project Overview

- Approximately 15 MW of generation – 3 ea. Mercury 50 Turbines
- Approximately 12 MW of generation (Net @ 40 F)
- Net production 70,000 to 110,000 MWh
- Began operation on June 15, 2012
- Design and Build by Green Companies Inc.
 - 20 months to construct
 - Zero lost time accidents
 - 450 employees trained for construction
 - 100,000+ man-hours
 - Over 10,000 feet of pipe installed
 - 1/4 million feet of wire installed
Project Overview - Plant Site
Project Overview – Gas Flow Process

Fred Weber Flare Station

Booster Blowers

3 Positive Displacement Blowers w/ aftercoolers

6000 scfm 40 wc

H2S Removal Vessels

4 H2S Tanks

< 100 ppm H2S

Gas Chiller (Halocarbon) (R134A)

1 Flooded Screw Compressors

2nd Stage Compressors

3 Flooded Screw Compressors w/ aftercoolers

Siloxane Vessels

< 5 ppm siloxane

Ameren Missouri Distribution

Substation Transformer

34.5 kv

13.8 kv ~14 MW

Gas Turbines

3 Solar Mercury 50 Turbine/Generators Nominal 4.6 MW

270 psig 170 F

3rd Stage Compressors

3 Flooded Screw Compressors w/ aftercooler
Project Challenges – Land

- Limited real estate
- Poor soil
- Across two municipalities
- No access road, no utilities

Solution
- Build your own site
- Remove 70,000 CY
- Install over 100,000 CCY
Project Challenges - Noise

- Located near school and homes
- 50 decibel sound limit

Solution
- Enclose equipment inside a plant
- Move cooling equipment and associated fans to north side
- Utilize low noise on outside equipment
- Silencers on gas turbines exhausts
- Utilize doors on north and west sides for routine work
Project Challenges - Emissions

- Located in the St. Louis County non-attainment

- Solution
 - Solar Mercury 50 Turbines
 - 38.5% Efficiency
 - Heat rate of 9,060 btu/kwh
 - 5 ppm NOx, 10 ppm CO
 - Requires removal of siloxane to avoid plugging of recuperator and unit de-rates

- Disadvantages
 - Requires high fuel pressure
 - Overall worse heat rate vs. reciprocating engines
Project Challenges – Fuel Treatment (Pressure)

- High Pressure Gas Required
 - Turbines require high compression gas (300 psi)
 - Landfill supplies gas at ~0 psi

- Solution
 - Install multiple stages of compressors
 - Vilter's single flooded screw gas compressors
Project Challenges – Fuel Treatment (Siloxane)

- Removal of Siloxane
 - Protect the Turbines
 - Siloxane can be found in products such as cosmetics, deodorant, water repelling coatings, food additives, soaps, lotions & plastics

- Solution
 - Install Parker GES system
 - Removes virtually all siloxane, solids, liquids and aerosol contaminants
Project Challenges – Fuel Treatment

- **Gas Treatment**
 - Removal of H_2S
 - Protects Siloxane media
 - Corrosion of gas recovery hardware
 - SOx emissions

- **Solution**
 - Install H_2S scavenging system with SulfurTreat
 - Removed H_2S to less than 100 ppm
 - Utilized fast reactive metal oxide absorbent
Operations

- **24/7 operation**
 - 3 full time on-site operators
 - Combination - Operator, Maintenance, and I&C Technician
 - Remote Operators from central location
 - Ability to acknowledge alarms remotely
 - Instantly informed of plant status changes
 - Highly Automated System (HAS)
 - Remote All Plant Emergency Trip (APET)
Lessons for the Future

- Fixed contract with contingency funds was very beneficial

- Perform design prior to start of construction

- Have all vendors on site during entire commissioning and startup
 - Eliminate any finger pointing and scheduling conflicts

- Future considerations:
 - Moisture requirements for H2S removal
 - Online moisture monitoring
 - Oil carryover limits of turbines
 - Heat added from siloxane removal system
 - Online siloxane sampling
Questions ?

Scott Wibbenmeyer
General Executive, Renewable Development & Project Management
Ameren Missouri

swibbenmeyer@ameren.com