H2S Treatment of Landfill Gas at the Roosevelt Landfill

Daniel Waineo, Principal
GC Environmental
107 SE Washington Street
Suite 243
Portland, OR 97214
Phone: 503-234-7984
E-mail: dwaineo@gc-environmental.com

Kevin Ricks
Klickitat Public Utility District
Phone: (509) 773-7430
E-mail: kricks@klickpud.com
LFG Gas Treatment at Roosevelt

- Landfill Gas Blower
 - First Stage Screw Compressor
 - Aftercooler 1
 - H2S Treatment
 - Aftercooler 2
 - Dehydration
 - Siloxane Removal
 - Carbon Backup Vessels
 - Pipeline
 - Second Stage Screw Compressor
 - Aftercooler 3
 - Mars Solar Turbines
 - Existing System
 - 2013 Work
Landfill Gas Blowers/Flares
First Stage Compressors
H2S Treatment
• Glycol Pumps/Double Wall Tank
• New Chiller/Pipebridge

Dehydration System
• Heat Exchangers/ Coalescing Filter

Dehydration System
Siloxane Removal
Second Stage Compression
LFG Pipeline
Second Stage Compressor Cooler
Solar Mars 90 Turbines (2 x 10 MW) Combined Cycle
Lower Compression Area
History of H2S treatment at Roosevelt

- Old System (IC Engines 199x)
 - Iron Sponge
- Temporary New System for Turbines (2011)
 - Sulfatreat
- Final System (Summer 2013)
 - Chelated Iron Hydrogen Sulfide Treatment
• Iron Sponge
 ◦ Dry Media of Iron-Oxide on Wood chips
 ◦ Does best using warm wet gas with Oxygen

 ◦ 4000 SCFM Treating 300 ppmv H2S

Solid Scavengers – Iron Sponge
Solid Scavengers – Iron Sponge

- **Advantages**
 - Simple system
 - Can be regenerated to some extent with a small Oxygen Stream
 - Fairly low capital costs

- **Disadvantages**
 - Exothermic during media Regeneration/Removal
 - Costs for Media Replacement and Disposal of spent material
 - Inconsistent Media Shape
• Sulfatreat (iron oxide on ceramic beads)
 ◦ Does best with warm, humid landfill gas with a small amount of Oxygen

 ◦ 6000 SCFM at 50 psig with 60 ppmv H2S

Solid Scavenger – Sulfatreat
• Advantages
 ◦ Very simple system
 ◦ May be exothermic during media replacement
 ◦ Fairly low capital cost
 ◦ Uniform media shape

• Disadvantages
 ◦ Media replacement costs
 ◦ Spent media disposal costs
 ◦ Water may be required to break and flush media from bed
- LO CAT®
- SulFerox®

- Treatment at KPUD:
 - Unlicensed Iron Chelate Process

- Thanks to:
 - Dow Chemical
 - Provides chemicals and technical assistance
 - Westfield Engineering
 - Provided P&IDs
 - Provided spargers vessels and heater skid
- Unlicensed Chelated Iron Treatment System

Diagram:
- Inlet separator
- Sparger Tower
- Outlet Separator
- Regenerator
- Settling Tank
- Treated LFG
- Sulfur Cake
• Chemistry
• Treatment:
 ◦ $H_2S + Fe^{+3}L \rightarrow 2H^+ + S^0 + Fe^{+2}L$
• Regeneration:
 ◦ $1/2O_2 + 2H^+ + 2Fe^{+2}L \rightarrow H_2O + 2Fe^{+3}L$
• Chelates:
 ◦ Keep the Iron in solution
• Others: Caustic, Surfactants, degradation inhibitors

Chelated Iron Treatment
- Sparger Vessels

Chelated Iron Treatment
Pipe Bridge

Chelated Iron Treatment
- Regeneration and Settling Tanks
- Heater Skid

Chelated Iron Treatment
• Iron Chelate Pumps

Chelated Iron Treatment
Chelated Iron Treatment

- Chemical Pumps
• Sulfur Filter and Sulfur Cake

Chelated Iron Treatment
Insulated Dehydration System
Insulated Glycol Tank/Pumps
Insulated Settler Tanks
Advantages
- Low Cost of Operation
- No disposal (except sulfur cake)
- Continuous process

Disadvantages
- High Capital Costs
- Process operates warm

Performance
- Inlet: 250 ppmv H2S
- Outlet: <10 ppmv H2S
Sulfur Plugging Issues

- Heat exchanger plugging
Cake Consistency Issues
Sulfur Cake
Lessons Learned

- Very reliable system that has been treating continuously since startup in July 2013
- 0.25% Oxygen in landfill gas is sufficient for regeneration (regenerator currently is bypassed)
- 100 lbs of Sulfur made per day (no market found yet)
- Chemical use is a little higher than predicted (especially Caustic)
Questions?

Kevin Ricks
Klickitat Public Utility District
(509) 773-7430

Daniel Waineo, P.E.
GC Environmental
(503) 234-7984

LFG H2S Treatment