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Notice/Disclaimer 
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Quality Assurance Project Plan (Quality Assurance Identification Number S-14987-QP-
1-0). It has been subjected to the Agency’s peer and administrative review and has been 
approved for publication as an EPA document. Mention of trade names or commercial 
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Foreword 

The U.S. Environmental Protection Agency (US EPA) is charged by Congress with 
protecting the Nation's land, air, and water resources. Under a mandate of national 
environmental laws, the Agency strives to formulate and implement actions leading to a 
compatible balance between human activities and the ability of natural systems to support 
and nurture life. To meet this mandate, US EPA's research program is providing data and 
technical support for solving environmental problems today and building a science 
knowledge base necessary to manage our ecological resources wisely, understand how 
pollutants affect our health, and prevent or reduce environmental risks in the future. 

The National Risk Management Research Laboratory (NRMRL) within the Office of 
Research and Development (ORD) is the Agency's center for investigation of 
technological and management approaches for preventing and reducing risks from 
pollution that threaten human health and the environment. The focus of the Laboratory's 
research program is on methods and their cost-effectiveness for prevention and control of 
pollution to air, land, water, and subsurface resources; protection of water quality in 
public water systems; remediation of contaminated sites, sediments and ground water; 
prevention and control of indoor air pollution; and restoration of ecosystems. NRMRL 
collaborates with both public and private sector partners to foster technologies that reduce 
the cost of compliance and to anticipate emerging problems. NRMRL's research provides 
solutions to environmental problems by: developing and promoting technologies that 
protect and improve the environment; advancing scientific and engineering information 
to support regulatory and policy decisions; and providing the technical support and 
information transfer to ensure implementation of environmental regulations and strategies 
at the national, state, and community levels.  



Abstract 
This guide provides an introduction into QSAR (Quantitative Structure Activity 
Relationship) models, a detailed description of the QSAR methodologies in TEST, a 
description of the experimental datasets, a detailed analysis of the validation results for 
the external test sets, and step-by-step instructions for using the software.  
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1. Introduction

Quantitative Structure Activity Relationships (QSARs) are mathematical models that are used to 
predict measures of toxicity from physical characteristics of the structure of chemicals (known as 
molecular descriptors). Acute toxicities (such as the concentration, which causes half of fish to 
die) are one example of toxicity measures, which may be predicted from QSARs. Simple QSAR 
models calculate the toxicity of chemicals using a simple linear function of molecular 
descriptors: 

cbxaxToxicity  21

where x1 and x2 are the independent descriptor variables and a, b, and c are fitted parameters. The 
molecular weight and the octanol-water partition coefficient are examples of molecular 
descriptors. 

QSAR toxicity predictions may be used to screen untested compounds in order to establish 
priorities for expensive and time-consuming traditional bioassays designed to establish toxicity 
levels. When conditions do not permit traditional bioassays, QSARs are an alternative to 
bioassays for estimating toxicity. In addition, QSAR models are useful for estimating toxicities 
needed for green process design algorithms such as the Waste Reduction Algorithm 1. 

The Toxicity Estimation Software Tool (T.E.S.T.) has been developed to allow users to easily 
estimate toxicity using a variety of QSAR methodologies. T.E.S.T allows a user to estimate 
toxicity without requiring any external programs. Users can input a chemical to be evaluated by 
drawing it in an included chemical sketcher window, entering a structure text file, or importing it 
from an included database of structures. Once a chemical has been entered, its toxicity can be 
estimated using one of several advanced QSAR methodologies. The program does not require 
molecular descriptors from external software packages (the required descriptors are calculated 
within T.E.S.T.). 

1.1. Toxicity Endpoints 

T.E.S.T allows you to estimate the value for several toxicity end points: 
1. 96 hour fathead minnow LC50 (concentration of the test chemical in water in

mg/L that causes 50% of fathead minnow to die after 96 hours)
2. 48 hour Daphnia magna LC50 (concentration of the test chemical in water in

mg/L that causes 50% of Daphnia magna to die after 48 hours)
3. 48 hour Tetrahymena pyriformis IGC50 (concentration of the test chemical in

water in mg/L that causes 50% growth inhibition to Tetrahymena pyriformis after
48 hours)

4. Oral rat LD50 (amount of chemical in mg/kg body weight that causes 50% of rats
to die after oral ingestion)

5. Bioaccumulation factor (ratio of the chemical concentration in fish as a result of
absorption via the respiratory surface to that in water at steady state)

6. Developmental toxicity (whether or not a chemical causes developmental toxicity



effects to humans or animals) 
7. Ames mutagenicity (a compound is positive for mutagenicity if it induces 

revertant colony growth in any strain of Salmonella typhimurium) 
 
T.E.S.T. allows you estimate several physical properties: 
1. Normal boiling point (the temperature in °C at which a chemical boils at 

atmospheric pressure) 
2. Density (the density in g/cm³) 
3. Flash point (the lowest temperature in °C at which it can vaporize to form an 

ignitable mixture in air) 
4. Thermal conductivity (the property of a material in units of mW/mK reflecting its 

ability to conduct heat)  
5. Viscosity (a measure of the resistance of a fluid to flow in cP defined as the 

proportionality constant between shear rate and shear stress) 
6. Surface tension (a property of the surface in dyn/cm of a liquid that allows it to 

resist an external force) 
7. Water solubility (the amount of a chemical in mg/L that will dissolve in liquid 

water to form a homogeneous solution) 
8. Vapor pressure (the pressure of a vapor in mmHg in thermodynamic equilibrium 

with its condensed phases in a closed system) 
9. Melting point (the temperature in °C at which a chemical in the solid state 

changes to a liquid state) 
 

1.2. QSAR Methodologies 

T.E.S.T allows you to estimate toxicity values using several different advanced 
QSAR methodologies 2: 
 
 Hierarchical method: The toxicity for a given query compound is estimated 

using the weighted average of the predictions from several different models. The 
different models are obtained by using Ward’s method to divide the training set 
into a series of structurally similar clusters. A genetic algorithm based technique 
is used to generate models for each cluster. The models are generated prior to 
runtime. 

 FDA method: The prediction for each test chemical is made using a new model 
that is fit to the chemicals that are most similar to the test compound. Each model 
is generated at runtime. 

 Single model method: Predictions are made using a multilinear regression model 
that is fit to the training set (using molecular descriptors as independent variables) 
using a genetic algorithm based approach. The regression model is generated prior 
to runtime. 

 Group contribution method: Predictions are made using a multilinear regression 
model that is fit to the training set (using molecular fragment counts as 
independent variables). The regression model is generated prior to runtime. 

 Nearest neighbor method: The predicted toxicity is estimated by taking an 
average of the 3 chemicals in the training set that are most similar to the test 



chemical.  
 Consensus method: The predicted toxicity is estimated by taking an average of 

the predicted toxicities from the above QSAR methods (provided the predictions 
are within the respective applicability domains). 

 Random forest method: The predicted toxicity is estimated using a decision tree 
which bins a chemical into a certain toxicity score (i.e. positive or negative 
developmental toxicity) using a set of molecular descriptors as decision variables. 
The random forest method is currently only available for the developmental 

toxicity endpoint. The random forest models for the developmental toxicity 
endpoint were developed by researchers at Mario Negri Institute for 
Pharmacological Research as part of the CAESAR project 3. 

 Mode of action method: The predicted toxicity is estimated using a two-step 
process. In the first step the mode of action is determined from the linear 
discriminant analysis model with the highest score. In the second step the toxicity 
is estimated using the multilinear regression model corresponding to the predicted 
mode of action. The mode of action method is currently only available for the 96 

hour fathead minnow LC50 endpoint. 
 
T.E.S.T provides multiple prediction methodologies so one can have greater 
confidence in the predicted toxicities (assuming the predicted toxicities are similar 
from different methods). In addition, some researchers may have more confidence in 
particular QSAR approaches based on personal experience. The QSAR 
methodologies above are described in more detail in the Theory section. The 
advantages and disadvantages of the different QSAR methods are given in Table 1.2. 

 



Table 1.2. Advantages and disadvantages of the QSAR methods in T.E.S.T. 
 

Method Advantages Disadvantages 
Hierarchical  Can produce more reliable 

predictions since predictions are 
made from multiple models 

 Cannot provide external estimates of 
toxicity for compounds in the training 
set 

Single model  Single transparent model can be 
easily viewed/exported 

 The model does not need to rely 
on clustering the chemicals 
correctly 

 

 Since the model is fit to the entire 
dataset it may incorrectly predict the 
trends in toxicity for certain chemical 
classes 

 Cannot provide external estimates of 
toxicity for compounds in the training 
set 

Group contribution  Single transparent model can be 
easily viewed/exported 

 Estimates of toxicity can be 
made without using a computer 
program 

 

 The model doesn’t correct for the 
interactions of adjacent fragments  

 Since the model is fit to the entire 
dataset it may incorrectly predict the 
trends in toxicity for certain chemical 
classes 

 Cannot provide external estimates of 
toxicity for compounds in the training 
set 

FDA  Can generate a new model 
based the closest analogs to the 
test compound 

 Always provides an external 
prediction of toxicity 

 Predictions sometimes take longer 
since it has to generate a new model 
each time 

 

Nearest neighbor  Provides a quick estimate of 
toxicity 

 Allows one to determine 
structural analogs for a given test 
compound 

 Always provide an external 
prediction of toxicity 

 It does not use a QSAR model to 
correlate the differences between the 
test compound and the nearest 
neighbors 

 Was shown to achieve the worst 
prediction results during external 
validation 

MOA  Provides a more biologically 
relevant estimate of acute 
aquatic toxicity which provides 
greater confidence in the 
prediction for toxicologists 

 Size of the training set is reduced 
 Prediction error may be compounded 

by the fact that the mode of action 
must be predicted correctly 

Consensus  Was shown to achieve the best 
prediction results during external 
validation 

 Cannot provide external estimates of 
toxicity for compounds in the training 
set 

  



2. THEORY

2.1. Molecular Descriptors 

Molecular descriptors are physical characteristics of the structure of chemicals such 
as the molecular weight or the number of benzene rings. The overall pool of 
descriptors in the software contains 797 2-dimensional descriptors. The descriptors 
include the following classes of descriptors: E-state values and E-state counts, 
constitutional descriptors, topological descriptors, walk and path counts, connectivity, 
information content, 2d autocorrelation, Burden eigenvalue, molecular property (such 
as the octanol-water partition coefficient), Kappa, hydrogen bond acceptor/donor 
counts, molecular distance edge, and molecular fragment counts. The complete list of 

descriptors and their sources from the literature are described in the Molecular 

Descriptors Guide.  

The descriptors were calculated using computer code written in Java. The basis of the 
molecular calculations was the Chemistry Development Kit 4. The Chemistry 
Development Kit (CDK) is a Java library for structural chemo- and bioinformatics 5. 
The descriptor values were validated using MDL QSAR 6, Dragon 7, and Molconn-z 
8. The descriptor values were generally in good agreement (aside from small
differences in the descriptor definitions for descriptors such as the number of 
hydrogen bond acceptors). 

2.2. QSAR Methodologies 

2.2.1. Hierarchical Clustering 

The hierarchical clustering method utilizes a variation of Ward’s Method 9 to 
produce a series of clusters from the training set. Clusters are subsets of chemicals 
from the overall set, which possess similar properties. An example of a hierarchical 
clustering for a hypothetical training set with five chemicals is given in Figure 2.2.1. 



Figure 2.1.1. Hierarchical clustering with five chemicals 

For a training set of n chemicals, initially there will be n clusters (each cluster 
contains one chemical). The overall variance in the system at a given step l is defined 
to be the sum of the variances of the individual clusters: 
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where  lkv ,  is the variance (in terms of the molecular descriptors) for cluster k at
step l: 
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where kn is the number of chemicals in the kth cluster, d is the number of descriptors 
in the overall descriptor pool, ijx is the normalized descriptor j for chemical i, and jC

is the centroid or average value for descriptor j for cluster k: 
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Each step of the method adds two of the clusters together into one cluster so that the 
increase in variance over all clusters in the system is minimized: 

),(),()1,()()1()1(min 21 lkvlkvlkvlVlVlV  (4) 

where clusters 1k  and 2k  join together at step l  to make cluster k   at step 1l . The 
process of combining clusters continues until all of the chemicals are lumped into a 
single cluster.  
After the clustering is complete, each cluster is analyzed to determine if an 

1 2 3 4 Step 1 

7 3 4 

5 

5 Step 2 

7 8 5 Step 3 

7 9 Step 4 

10 Step 5 



acceptable QSAR can be developed. Each cluster undergoes evaluation using a 
genetic algorithm technique to determine an optimal descriptor set for characterizing 
the toxicity values of the chemicals within that cluster. The maximum number of 
descriptors allowed for a given cluster will be 5/kn  because the recommended ratio 
of compounds to variables should be at least 5 10, 11 for reasonably small probability 
for chance correlations. The genetic algorithm used in this study was taken from the 
Weka statistical package, version 3.5.1 12, 13. 
 
The genetic algorithm is used to maximize the adjusted fivefold leave many out cross 
validation coefficient ( 2

,LMOadjq ): 
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where iŷ  and iyexp,  are the predicted and experimental toxicity values for chemical i, 

expy is the average experimental toxicity for the chemicals in the cluster, and p is the 
number of parameters in the model. The predicted toxicity values are calculated by 
dividing the dataset into five folds (a fold is a subset of the training set). The 
toxicities of the chemicals in each fold ( iŷ ) are predicted using a multiple linear 
regression model fit to the chemicals in the other folds. The five fold q2 was used 
instead of the traditional q2 LOO (leave-one-out) inside the genetic algorithm 
because it yields a significant degree of computational savings for large cluster sizes. 
The 1 pnk  term penalizes models that include extra parameters that do not 
significantly increase the predictive power of the model (by decreasing the value of 

2
,LMOadjq ). 

 
During the optimization process the models are checked for outliers. A chemical is 
determined to be an outlier if at least two statistical tests (e.g., DFFITS, leverage, 
Cook’s distance, and covariance ratio) indicate that the chemical represents an 
influential data point and if the chemical represents an outlier in terms of the 
studentized deleted residual 14. If a chemical is determined to be an outlier, the 
chemical is deleted from the cluster and the genetic algorithm descriptor selection is 
repeated. The process of model building via the genetic algorithm and outlier 
removal is repeated until no outliers are detected in the optimized model. For binary 

endpoints such as Ames mutagenicity, outliers were not removed because this had 

the potential to produce clusters with all positive or all negative chemicals. In 

addition the outlier statistical tests described above may not apply to binary 

endpoints. 

 
Once the iteration for the optimum model has been completed, the q2 LOO value for 
the model is calculated. If the q2 LOO is greater than or equal to 0.5, the model is 
considered to be valid (see pg 67 of Erikkson et al. 15). If the q2 LOO is less than 0.5, 
the model from the cluster is not used to make predictions for test compounds. For 



binary endpoints, the validity of a model is determined from the concordance LOO 
instead of q2 LOO. Concordance is the fraction of all compounds that are predicted 
correctly (i.e., experimentally active compounds that are predicted to be active and 
experimentally inactive compounds that are predicted to be inactive). If the 
concordance LOO is greater than or equal to 0.8, the model is considered to be valid. 
In addition both the leave-one-out sensitivity and specificity must be at least 0.5 to 
avoid using models which are heavily biased to predict either active or inactive 
scores. Sensitivity is the fraction of experimentally active compounds that are 
predicted to be active. Specificity is the fraction of experimentally inactive 
compounds that are predicted to be inactive. 
 
The predicted toxicity ( ŷ ) for a test chemical is given by the weighted average for 
all the valid predictions 16: 
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where jŷ  and wj are prediction and weight for the jth model and nvc is the number 
of valid cluster model predictions. If the mean toxicity is given by the maximum 
likelihood estimator of the mean of the probability distributions, the weight values 
are given by 16 
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where sej is the standard error for the jth prediction given by 
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where nj is the number of chemicals in cluster model j and pj is the number of model 
parameters for model j. h00, the leverage for the test chemical, is given by 

  0
1

00 XXXXh TT

o
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where X0 is the vector of model descriptor values for the test compound. For binary 

endpoints such as Ames mutagenicity, the predictions were made using equal 

weighting of the individual predictions (i.e. wj = 1 in equation 6) because weighting 

by the standard error (see equation 7) did not improve the external prediction 

accuracy. 
 
The square of the standard deviation for the prediction from multiple models ( 2

 ) 
can be approximated as 
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The uncertainty ( û ) in the overall prediction for the test chemical is given by  

 
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where t is the t-statistic,   = 0.1 (90% confidence interval), and sej is the standard 
error for the jth prediction. The prediction interval is obtained by adding and 
subtracting the uncertainty from the predicted toxicity: 

uyToxicityuy ˆˆˆ   (13) 
The prediction interval indicates that one is 90% confident that the actual toxicity is 
between uy ˆˆ   and uy ˆˆ  .  
 
 The prediction uncertainty for a given cluster model is given by 17 

 00
2

1 /2,-1 1 htu pnj j
    (14)  

The uncertainty is a function of the quality of the regression model (from the 2  
parameter) and the distance (in the descriptor space of the model) between the test 
chemical and the chemicals in the cluster used to build the model (from the h00 
parameter).  
 
 Before any cluster model can be used to make a prediction for a test chemical, it 
must be determined whether the test chemical falls within the domain of applicability 
for the model. The applicability domain is defined using several different constraints. 
The first constraint, the model ellipsoid constraint, checks if the test chemical is 
within the multidimensional ellipsoid defined by the ranges of descriptor values for 
the chemicals in the cluster (for the descriptors appearing the cluster model). The 
model ellipsoid constraint is satisfied if the leverage of the test compound (h00) is 
less than the maximum leverage value for all the compounds used in the model 17. 
The second constraint, the Rmax constraint, checks if the distance from the test 
chemical to the centroid of the cluster is less than the maximum distance for any 
chemical in the cluster to the cluster centroid. The distance is defined in terms of the 
entire pool of descriptors (instead of just the descriptors appearing in the model): 

 

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d

j

jiji Cxdistance
1

2  (15) 

where distancei is the distance of chemical i to the centroid of the cluster. 
The last constraint, the fragment constraint, is that the compounds in the cluster have 
to have at least one example of each of the fragments contained in the test chemical. 
For example if one was trying to make a prediction for ethanol, the cluster must 
contain at least one compound with a methyl fragment (-CH3 [aliphatic attach]), one 
compound with a methylene fragment (-CH2 [aliphatic attach]), and one compound 
with a hydroxyl fragment (-OH [aliphatic attach]). This constraint was added to 



avoid situations where a chemical might have a similar backbone structure to the 
chemicals in a given cluster but has a different functional group attached. For 
example if a given cluster contained only short-chained aliphatic amines one would 
not want to use it to predict the toxicity of ethanol. If a chemical contains a fragment 
that is not present in the training set, the toxicity cannot be predicted. The fragment 
constraint can be removed by checking the Relax fragment constraint checkbox. 
For binary endpoints such as Ames mutagenicity, the fragment constraint was not 

employed since it did not improve the external prediction accuracy and decreased 

the prediction coverage. 

 
 In the current version of the software, the predictions are made using the closest 
cluster from each step in the hierarchical clustering (in terms of the distance of the 
chemical to the centroid of the cluster defined above). The rationale behind this 
approach is that one would like to follow the hierarchical clustering process, 
selecting the best model from each step. In order for the prediction from the model to 
be used it must be statistically valid and meet the constraints defined above. If the 
closest cluster for a given step does not have a statistically valid model (or violates 
any of the constraints), no prediction is used from that step. If the closest cluster for a 
given step in the clustering process is the same as the closest cluster from a previous 
step, it is not used again in the prediction of toxicity. 
 

2.2.2. FDA Method 

The Food and Drug Administration (FDA) method is based on the work of Contrera 
and coworkers 18. In this method, predictions for each test chemical are made using a 
unique cluster (constructed at runtime) which contains structurally similar chemicals 
selected from the overall training set. This is in contrast to the Hierarchical method, 
where the predictions are made using one or more clusters that were constructed a 

priori using Ward’s method.  
 
Contrera and coworkers constructed the training cluster by selecting 15-20 
chemicals, which had at least a cosine similarity coefficient of 75% with the test 
chemical. The cosine similarity coefficient, kiSC , , is given by 
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where xij is the value of the jth normalized descriptor for chemical i (normalized with 
respect to all the chemicals in the original training set) and xkj is the value of the jth 
descriptor for chemical k. A multiple linear regression model is then built for the new 
cluster using a genetic algorithm and the toxicity is predicted. The advantage of this 
method is that the training cluster is tailored to fit the test chemical. In addition, the 
test chemical is never present in the cluster model, which allows one to make 
external predictions for training set chemicals. The disadvantage of this method is 



that a new model has to be generated at runtime (which takes somewhat longer than 
computing the toxicity from preexisting models).  
 
 In this version of the software, clusters are constructed using the 30 most similar 
chemicals from the training set in terms of the cosine similarity coefficient. 
However, a minimum similarity coefficient of 75% is not required for membership in 
the training cluster. Previously, it was determined that this constraint did not increase 
the predictive performance of the methodology 2. For a prediction to be valid, the 
cluster must not violate the model ellipsoid and fragment constraints described 
above. In addition, the predicted toxicity value must be within the range of 
experimental toxicity values for the chemicals used to build the model. This 
additional constraint was added to avoid potentially erroneous predictions. However 

this constraint was not utilized for binary toxicity endpoints such as Ames 

mutagenicity since predicted values less than 0 or greater than 1 do not invalidate 

the prediction result. 

  

Again, for a cluster to have a valid predictive model, the LOO q2 must be at least 0.5. 
If the model for the cluster is invalid or the prediction violates one of the constraints, 
the cluster size is increased incrementally (up to a maximum of 75 chemicals) until a 
valid prediction can be made. If a prediction cannot be made using a cluster with 75 
chemicals, no prediction is made. 
 

2.2.3. Single model  

In the single model approach, a single multiple linear regression model is fit to the 
entire training set. The model is generated using techniques and constraints similar to 
those for the hierarchical method (except that the training cluster contains the entire 
training set). The advantage of this approach is that a simple transparent model can 
be developed which does not rely on clustering the chemicals correctly. The 
disadvantage of this approach is that sometimes an overall model cannot correctly 
correlate the toxicity for every chemical class 19. For example the single model might 
be able to correctly describe the trend of linearly increasing toxicity for a series of 
normal alcohols (i.e. 1-propanol, 1-butanol,1-pentanol, …), but it may incorrectly 
describe the trend for a series of normal acids (i.e. propanoic acid, butanoic acid, 
pentanoic acid, …) that does not increase linearly. 
 

2.2.4. Group contribution 

The group contribution approach is based on the group contribution approach of 
Martin and Young 20. Fragment counts (such as the number of methyl and hydroxyl 
groups in a compound) are used to fit a multiple linear regression model to the entire 
data set. A genetic algorithm approach is not used to reduce the number of 
parameters in the model because the approach tries to characterize the contribution 
from all the fragments appearing in the training set. The only constraint on the 
fragments appearing in the final model is that there must be at least three molecules 
in the training set that contain each fragment. If a fragment appears less than three 



times in the training set, it is deleted from the list of fragments and all the chemicals 
containing this fragment are removed from the training set. After the multiple linear 
regression is performed, the model is checked for outliers. If outliers are detected, 
they are removed and the regression is performed again. The process is repeated until 
no more outliers are found. Similar to the hierarchical methodology, predictions are 
made using the model ellipse and fragment constraints. 
  
The advantage of this approach is a single transparent model can be developed 
whose descriptors can be determined from visual inspection of the molecular 
structure of the test compound. The disadvantage of this approach is that it assumes 
that the contribution of each fragment does not depend on the presence of nearby 
fragments in the molecule.  
 

2.2.5. Nearest neighbor 

In the nearest neighbor approach, the predicted toxicity is simply the average of the 
toxicities of the three most similar chemicals (structural analogs) in the training set. 
In order to make a prediction, each of the structural analogs must exceed a certain 
minimum cosine similarity coefficient (SCmin). SCmin was set at 0.5 so that the 
prediction coverage was similar to the other QSAR methods 2. The nearest neighbor 
method provides a quick external estimate of toxicity (the test chemical is never 
present in the selected set of analogs). The disadvantage of the nearest neighbor 
method is that the structural differences between the test chemical and its structural 
analogs are not accounted for. 
 

2.2.6. Mode of action 

In the mode of action (MOA) method, the toxicity is predicted using a two-step 
process 21, 22. In the first step, the MOA is predicted using a series of linear 
discriminant analysis (LDA) models. The predicted MOA is given by the LDA 
model, which yields the highest score. In order for a predicted MOA to be valid, the 
maximum score must be at least 0.5. In addition, the model ellipsoid and Rmax 
constraints must be satisfied. In the second step, the toxicity is predicted using the 
multilinear regression model, which corresponds to the predicted MOA. Again, the 
model ellipsoid and Rmax constraints must be satisfied for the toxicity model for a 
prediction to be within the domain of applicability. The fragment constraint is not 

employed for the MOA method. The advantage of the MOA method is that it 
provides a more biologically relevant estimate of acute aquatic toxicity, which can 
greater confidence in the prediction for toxicologists. The disadvantages of this 
method are that the size of the training set is reduced (which reduces the chemical 
space covered by the model) and that the prediction error may be compounded by the 
fact that the mode of action must be predicted correctly. 
 

2.2.7. Consensus 

In the consensus method, the predicted toxicity is simply the average of the predicted 



toxicities from the other QSAR methodologies (taking into account the applicability 
domain of each method)23. If only a single QSAR methodology can make a 
prediction, the predicted value is deemed unreliable and not used. This method 
typically provides the highest prediction accuracy since errant predictions are 
dampened by the predictions from the other methods. In addition, this method 
provides the highest prediction coverage because several methods with slightly 
different applicability domains are used to make a prediction. 

2.3. Validation Methods 

2.3.1. Statistical external validation 

The predictive ability of each of the QSAR methodologies was evaluated using 
statistical external validation 24. In version 2.0 of the TEST software, the data set was 
divided into training and test sets using the Kennard-Stone rational design algorithm 
25-28. Starting in version 3.0, random selection was used to develop the training and 
test sets because it was felt that using Kennard-Stone method yields an overly 
optimistic estimate of predictive ability (because the test compounds are always 
within the model calibration domain). For the developmental toxicity endpoint, 

however, the training and test sets were taken from the datasets used in CAESAR 3. 
This was done so that the CAESAR random forest model could be incorporated into 
the TEST software. 
A QSAR model has acceptable predictive power if the following conditions are 
satisfied 29: 

;5.02 q  (17) 
;6.02 R  (18) 
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where q2 is the leave one out correlation coefficient for the training set, R2 is 
correlation coefficient between the observed and predicted toxicities for the test set, 

2
oR  is correlation coefficient between the observed and predicted toxicities for the 

test set with the Y-intercept set to zero (where the regression line is given by Y=kX). 

The prediction accuracy will be evaluated in terms of equations 18 and 19. In 
addition the accuracy will be evaluated in terms of the RMSE (root mean square 
error), and the MAE (mean absolute error) for the test set. It has been demonstrated 
that q2 (the leave one out correlation coefficient for the training set) is not correlated 
with R2 for the test set 30. The prediction coverage (fraction of chemicals predicted) 
must be considered because the prediction accuracy (in terms of R2 and RMSE) can 
sometimes be improved at the sacrifice of the prediction coverage. 

For binary (active/inactive) toxicity endpoints such as developmental toxicity, the 
prediction accuracy is evaluated in terms of the fraction of compounds that are 
predicted accurately. The prediction accuracy is evaluated in terms of three different 
statistics: concordance, sensitivity, and specificity. Concordance is the fraction of all 



compounds that are predicted correctly (i.e. experimentally active compounds that 
are predicted to be active and experimentally inactive compounds that are predicted 
to be inactive). Sensitivity is the fraction of experimentally active compounds that 
are predicted to be active. Specificity is the fraction of experimentally inactive 
compounds that are predicted to be inactive. 

3. EXPERIMENTAL DATA SETS

3.1. 96 hour fathead minnow LC50 data set 

The fathead minnow LC50 endpoint represents the concentration in water, which kills 
half of fathead minnow (Pimephales promelas) in 4 days (96 hours). The data set for 
this endpoint was obtained by downloading the ECOTOX aquatic toxicity 
database31. 

The database was then filtered using the following criteria: 
 The ECOTOX “Media Type” field = “FW” (fresh water)
 The ECOTOX “Test Location” field = “Lab” (laboratory)
 The ECOTOX “Conc 1 Op (ug/L)” field cannot be <, >, or ~ (i.e. use only

discrete LC50 values)
 The ECOTOX “Effect” field = “Mor” (mortality)
 The ECOTOX “Effect Measurement” field = “MORT” (mortality)
 The ECOTOX “Exposure Duration” field = “4” (4 days or 96 hours)
 Compounds can only contain the following element symbols: C, H, O, N, F, Cl,

Br, I, S, P, Si, As
 Compounds must represent a single pure component (i.e. salts, undefined

isomeric mixtures, polymers, or mixtures were removed)

The LC50 values were taken from the “Conc 1 (ug/L)” field in ECOTOX. For 
chemicals with multiple LC50 values, the median value was used. 

In version 2.0 of T.E.S.T., 10 compounds in this dataset possessed 2d isomers (the 
structures were equivalent in terms of their molecular connectivity). In version 3.0, 
only one isomer was kept, using the average toxicity value. In version 4.0, all isomers 
were kept since the presence of the isomers had negligible impact on the external 
prediction statistics. The final fathead minnow LC50 data set contained 823 chemicals. 
For use in QSAR modeling, the experimental values in g/L were converted to –
Log10 (LC50 mol/L).  
For the hierarchical, single model, group contribution, FDA, Nearest neighbor, and 
Consensus methods, the data set were divided randomly into a training set (80% of 
the overall set) and a test set (20% of the overall set). For the mode of action method, 

chemicals with a known MOA (372 chemicals) were placed in the training set while 

the remaining chemicals (440 chemicals) were placed in the test set22. Thus, the 

results for the mode of action method will have to be considered separately. 



3.2. 48 hour Daphnia magna LC50 data set 

The Daphnia magna LC50 endpoint represents the concentration in water, which kills 
half of D. magna (a water flea) in 48 hours. The data set for this endpoint was 
obtained from the ECOTOX aquatic toxicity database31. The database was filtered 
using the same criteria as those for the 96 hour fathead minnow LC50. The final D. 
magna LC50 data set contained 353 chemicals. The modeled endpoint was –Log10 
(LC50 mol/L). 
 

3.3. 40 hour Tetrahymena pyriformis IGC50 data set 

The Tetrahymena pyriformis IGC50 endpoint represents the 50% growth inhibitory 
concentration of the T. pyriformis organism (a protozoan ciliate) after 40 hours. The 
IGC50 training set was obtained from Schultz and coworkers 23, 32-69. The final T. 
pyriformis IGC50 data set contained 1792 chemicals. The modeled endpoint was –
Log10 (IGC50 mol/L). 
 

3.4. Oral rat LD50 data set 

The oral rat LD50 endpoint represents the amount of the chemical (mass of the 
chemical per body weight of the rat) which when orally ingested kills half of rats. The 
dataset for this endpoint was obtained by downloading records from the ChemIDplus 
database 70. 13548 records were obtained by using the following search criteria: 
 “Test” = LD50 
 “Species” = rat 
 “Route” = oral 
 
The list of chemicals was filtered using the following criteria: 
 Only chemicals with discrete LD50 values were used (i.e. chemicals with LD50 

values with “>” or “<” were removed) 
 Compounds can only contain the following element symbols: C, H, O, N, F, Cl, 

Br, I, S, P, Si, or As 
 Compounds must represent a single pure component (i.e. salts, undefined 

isomeric mixtures, polymers, or mixtures were removed) 
 
In version 2.0 of T.E.S.T., the final dataset consisted of 7392 chemicals. 87 
compounds in this dataset possessed 106 2d isomers. In version 3.0, only one isomer 
was kept, using the average toxicity value. In version 4.0 and greater, all isomers 
were kept because the presence of the isomers had negligible impact on the external 
prediction statistics. The final oral rat LD50 data set contained 7413 chemicals. The 
modeled endpoint was the –Log10 (LD50 mol/kg). 
 



3.5. Bioconcentration factor data set 

The bioconcentration factor (BCF) is defined as the ratio of the chemical 
concentration in biota as a result of absorption via the respiratory surface to that in 
water at steady state 71. Data were compiled from several different databases 72-75. The 
final dataset consists of 676 chemicals (after removing salts, mixtures, and ambiguous 
compounds). The modeled endpoint was the Log10(BCF). 
 

3.6. Developmental toxicity data set  

The developmental toxicity is defined as whether or not a chemical causes 
developmental toxicity effects in humans and animals. Developmental toxicity 
includes any effect interfering with normal development, both before and after birth. 
A dataset of 293 chemicals was created by Arena and Coworkers 76, 77 by combining 
data from the Teratogen Information System (TERIS) 78 and FDA guidelines 79. The 
developmental toxicity values were taken from the revised binary toxicity values 
developed for the CAESAR project 3. One chemical, Azatguiorube, was removed 
because structural information could not be found for this chemical. The final dataset 
consists of 285 chemicals (after removing salts, mixtures, and ambiguous 
compounds). 
 

3.7. Ames mutagenicity data set  

In the Ames test, frame-shift mutations or base-pair substitutions can be detected by 
exposure of histidine-dependent strains of Salmonella typhimurium to a test 
compound. When these strains are exposed to a mutagen, reverse mutations that 
restore the functional capability of the bacteria to synthesize histidine enable bacterial 
colony growth on a medium deficient in histidine (revertants). A compound is 
classified Ames positive if it significantly induces revertant colony growth in at least 
one of out of five strains. A dataset of 6512 chemicals was compiled by Hansen and 
coworkers from several different sources 80, 81. The final dataset consists of 5743 
chemicals (after removing salts, mixtures, ambiguous compounds, and compounds 
without CAS numbers). 
 

3.8. Normal boiling point 

The normal boiling point is defined as the temperature at which a chemical boils at 
atmospheric pressure. The data set for this endpoint was obtained from the boiling 
point data contained in EPI Suite 82. Forty-one chemicals were removed from the data 
set because they were previously shown to be badly predicted and had experimental 
values which were significantly different (>50K) from other sources such as NIST83 
and LookChem 84. The final data set contained 5759 chemicals. The modeled 
property was the boiling point in °C. 
 



3.9. Density 

The density is defined as mass per unit volume. The data set for this endpoint was 
obtained from the density data contained in LookChem 84. The data set was restricted 
to chemicals with boiling points greater than 25°C (or the boiling point was 
unavailable). The data set was further restricted to chemical with densities > 0.5 and 
< 5 g/cm3. The final dataset consisted of 8909 chemicals. Data from LookChem are 
not peer reviewed but the set is very large and thus provides a large degree of 
structural diversity. The modeled property was density in g/cm3. 
 

3.10.  Flash point 

The flash point is defined as the lowest temperature at which a chemical can vaporize 
to form an ignitable mixture in air. A dataset of 8362 chemicals was compiled from 
lookchem.com 84. Chemicals with flash points greater than 1000°C were omitted from 
the data set. The modeled property was the flash point in °C. 
 

3.11.  Thermal conductivity 

Thermal conductivity is defined as a materials ability to conduct heat. The thermal 
conductivity at 25°C for 442 chemicals was obtained from Jamieson and Vargaftik 85, 

86. Thermal conductivity values were obtained from Jamieson and Vargaftik as 
follows: 
 If a value is available at 25°C this value is used  
 If an experimental value is not available, a value is extrapolated to 25°C (as long 

as the closest data point is within 10°C of 25°C) 
 If the temperature coefficient is not available (or only a single data point is 

available), the thermal conductivity of the nearest data point is used (as long as 
the closest data point is within 10°C of 25°C) 

 Only data with a quality grade of A or B (preferably grade A) in Jamieson were 
used. The thermal conductivities for the chemicals in common between Jamieson 
and Vargaftik agreed rather well (R2 = 0.95 for 381 compounds). The modeled 
property was the thermal conductivity in mW/mK. 

  
3.12.  Viscosity 

Viscosity is a measure of the resistance of a fluid to flow in cP defined as the 
proportionality constant between shear rate and shear stress). The viscosity at 25°C 
for 557 chemicals was obtained from Viswanath and Riddick 87, 88. The viscosity 
values were obtained from Viswanath and Riddick were obtained as follows: 
1. If a value is available at 25°C this value is used  
2. If an experimental value is not available, a value is extrapolated to 25°C (as 

long as the closest data point is within 10°C of 25°C) using the following 
empirical correlation: 



log10 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 = 𝐴 + 𝐵/𝑇 
Extrapolation was used in order to expand size of the overall dataset. The modeled 
property was log10(viscosity cP). 

3.13.  Surface tension 

Surface tension is a property of the surface of a liquid that allows it to resist an 
external force. The surface tension at 25°C for 1416 chemicals was obtained from the 
data compilation of Jaspar 89. The experimental values (at 25°C) are estimated using 
an empirical correlation, which is fit to experimental data from Jaspar:  

surface tension = 𝐴 − 𝐵𝑇 
The estimated experimental surface tension value is only used if the closest 
experimental data point is within 10°C of 25°C. The modeled property was the 
surface tension in dyn/cm. 

3.14.  Water solubility 

Water solubility is defined as the amount of chemical that will dissolve in liquid 
water to form a homogeneous solution. A dataset of 5020 chemicals was compiled 
from the database in EPI Suite 82. Chemicals with water solubilities exceeding 
1,000,000 mg/L were omitted from the overall dataset. In addition, data were limited 
to data points that are within 10°C of 25°C. The water solubility is an important 
property because sometimes the predicted LC50 values for aquatic species can exceed 
the water solubility. The modeled property was −Log10(water solubility mol/L). 

3.15.  Vapor pressure 

Vapor pressure is defined as the pressure of a vapor in mmHg in thermodynamic 
equilibrium with its condensed phases in a closed system. The vapor pressure at 25°C 
for 2511 chemicals was obtained from the database in EPI Suite 82. The modeled 
property was Log10(vapor pressure mmHg).  

3.16. Melting point 

Melting point is the temperature, in °C, at which a chemical in the solid state changes 
to a liquid state. The melting point for 9385 chemicals was obtained from the 
database in EPI Suite 82. The modeled property was Log10(vapor pressure mmHg).  

4. VALIDATION RESULTS

4.1. 96 hour fathead minnow LC50



4.1.1. Statistical External Validation 

The consensus approach achieved the best results in terms of all the prediction 
statistics (see Table 4.1.1).  The hierarchical method achieved the best results of any 
of the individual QSAR methods. Statistics highlighted in pink represent predictions 
where a condition in equation 18 or 19 was not met. Models, which do not meet 
these conditions, are not invalid, per se, but should be used with caution.  The 
predicted values for the test set for the fathead minnow LC50 endpoint for the 
consensus method are given in Figure 4.1.1. 

Table 4.1.1. Prediction results for the fathead minnow LC50 test set 

Method R2 𝑹𝟐 − 𝑹𝟎
𝟐

𝑹𝟐
k RMSE MAE Coverage 

Hierarchical 0.710 0.075 0.966 0.801 0.574 0.951 

Single Model 0.704 0.134 0.960 0.803 0.605 0.945 

FDA 0.626 0.113 0.985 0.915 0.656 0.945 

Group contribution 0.686 0.123 0.949 0.810 0.578 0.872 

Nearest neighbor 0.667 0.080 1.001 0.876 0.649 0.939 

Consensus 0.728 0.121 0.969 0.768 0.545 0.951 



 

Figure 4.1.1. Experimental vs predicted values for the fathead minnow LC50 test set 

 

  



4.1.2. Statistical External Validation for mode of action method 

The mode of action method yields slightly worse results than the hierarchical and 
single model methods (see Table 4.1.2). The results for the hierarchical and single 
model methods are worse than those from section 4.1.1 because the training set used 
to fit the models was smaller. 

Table 4.1.2. Prediction results for the fathead minnow LC50 test set using the MOA method 

Method R2 𝑹𝟐 − 𝑹𝟎
𝟐

𝑹𝟐
k RMSE MAE Coverage 

Hierarchical 0.612 0.242 0.990 0.847 0.611 0.907 

Single model 0.575 0.141 0.993 0.920 0.640 0.902 

Mode of action 0.543 0.049 0.949 0.978 0.678 0.834 

4.2. 48 hour Daphnia magna LC50

4.2.1. Statistical External Validation 

The consensus method achieved the best results in terms of both prediction accuracy 
and coverage (see Table 4.2.1). The prediction results for the consensus method are 
given in Figure 4.2.1. 

Table 4.2.1. Prediction results for the D. magna LC50 test set 

Method R2 𝑹𝟐 − 𝑹𝟎
𝟐

𝑹𝟐
k RMSE MAE Coverage 

Hierarchical 0.695 0.151 0.981 0.979 0.757 0.886 

Single Model 0.697 0.152 1.002 0.993 0.772 0.871 

FDA 0.565 0.257 0.987 1.190 0.909 0.900 

Group contribution 0.671 0.049 0.999 0.803 0.620 0.657 

Nearest neighbor 0.733 0.014 1.015 0.975 0.745 0.871 

Consensus 0.739 0.118 1.001 0.911 0.727 0.900 



Figure 4.2.1. Experimental vs predicted values for the fathead minnow LC50 test set 

4.3. Tetrahymena pyriformis 50% growth inhibitory concentration 
(IGC50) 

4.3.1. Statistical External Validation 

Again, the consensus method achieved the best results (see Table 4.3.1). The R2 
value for the consensus method in version 4.1 of TEST was slightly lower than the 
value for version 4.0. This is because the data set has been expanded to include a 
wider variety of chemical classes. The prediction results for the consensus method 
are given in Figure 4.3.1. 



Table 4.3.1. Prediction results for the T. pyriformis IGC50 test set 

Method R2 𝑹𝟐 − 𝑹𝟎
𝟐

𝑹𝟐
 k RMSE MAE Coverage 

Hierarchical 0.719 0.023 0.978 0.539 0.358 0.933 

FDA 0.747 0.056 0.988 0.489 0.337 0.978 

Group contribution 0.682 0.065 0.994 0.575 0.411 0.955 

Nearest neighbor 0.600 0.170 0.976 0.638 0.451 0.986 

Consensus 0.764 0.065 0.983 0.475 0.332 0.983 

 
Figure 4.3.1. Experimental vs predicted values for the T. pyriformis IGC50 test set 

 

4.4. Oral rat LD50 dataset 

4.4.1. Statistical External Validation 

It was not possible to develop a single model or a group contribution model that fit 
the entire training set (see Table 4.4.1). The consensus method achieved the best 
results in terms of both prediction accuracy and prediction coverage. The prediction 
statistics for this endpoint were not as good as those for the other endpoints. This is 
not surprising because this endpoint has a higher degree of experimental uncertainty 
and has been shown to be more difficult to model than other endpoints 90. The 
prediction results for the consensus method are given by in Figure 4.4.1. 



  

Table 4.4.1. Prediction results for the oral rat LD50 test set 

Method R2 𝑹𝟐 − 𝑹𝟎
𝟐

𝑹𝟐
 k RMSE MAE Coverage 

Hierarchical 0.578 0.184 0.969 0.650 0.460 0.876 

FDA 0.557 0.238 0.953 0.657 0.474 0.984 

Nearest neighbor 0.557 0.243 0.961 0.656 0.477 0.993 

Consensus 0.626 0.235 0.959 0.594 0.431 0.984 

 

 
Figure 4.4.1. Experimental vs predicted values for the oral rat LD50 test set 



4.5. 1Bioaccumulation factor (BCF) 

4.5.1. Statistical External Validation 

Again, the consensus method yielded the best statistics if one considers both 
prediction accuracy and coverage (see Table 4.5.1.). The prediction results for the 
consensus method are given in Figure 4.5.1. 

Table 4.5.1. Prediction results for the BCF test set 

Method R2 𝑹𝟐 − 𝑹𝟎
𝟐

𝑹𝟐
k RMSE MAE Coverage 

Hierarchical 0.734 0.019 0.888 0.712 0.541 0.926 

Single Model 0.742 0.083 0.901 0.684 0.543 0.926 

FDA 0.705 0.036 0.905 0.746 0.571 0.911 

Group Contribution 0.675 0.187 0.888 0.760 0.622 0.874 

Nearest neighbor 0.609 0.100 0.931 0.884 0.604 0.948 

Consensus 0.760 0.066 0.900 0.661 0.513 0.926 



 
Figure 4.5.1. Experimental vs predicted values for the BCF test set 

 
The BCFBAF (bioconcentration factor bioaccumulation factor) module (v. 3.00) of 
US EPA’s EPI Suite software package 82 yielded an R2 value of 0.766 and MAE of 
0.50 (for the same chemicals that were able to be predicted by the consensus 
method). Thus, the predictions for the consensus method are comparable to those 
from EPI Suite. However, this may not be a fair comparison because some of the 
chemicals in the prediction set may have appeared in the training set for the BCF 
model in EPI Suite. 
 

4.6. Developmental toxicity  

4.6.1. Statistical External Validation 

The consensus method achieved the best results for the EPA developed QSAR 
methods (in terms of prediction accuracy and coverage) (see Table 4.6.1). The 
CAESAR random forest method achieved similar results to the EPA Consensus 
model (the concordance was higher but the coverage was lower). All of the methods 
achieved appreciably higher prediction sensitivities than specificities. This is 
acceptable for regulatory applications because it is desired to minimize the number 
of false negatives.  

 

  



Table 4.6.1. Prediction results for the reproductive toxicity test set 

Method Concordance Sensitivity Specificity Coverage 

Hierarchical 0.724 0.829 0.471 1.000 

Single Model 0.732 0.850 0.438 0.966 

FDA 0.724 0.780 0.588 1.000 

Nearest neighbor 0.795 0.844 0.667 0.759 

Consensus 0.793 0.902 0.529 1.000 

Random Forest 0.852 0.949 0.600 0.931 

4.7. Ames mutagenicity 

4.7.1. Statistical External Validation 

Again, the consensus method achieved the best prediction accuracy (concordance) 
and prediction coverage (see Table 4.7.1). The single model and group contribution 
methods could not be applied to this endpoint. All of the methods achieved a nice 
balance of prediction sensitivity and specificity. 

Table 4.7.1. Prediction results for the Ames mutagenicity test set 

Method Concordance Sensitivity Specificity Coverage 
Hierarchical 0.763 0.776 0.746 0.956 
FDA 0.775 0.766 0.787 0.961 
Nearest neighbor 0.770 0.783 0.752 0.990 
Consensus 0.790 0.789 0.791 0.995 

4.8. Normal boiling point 

4.8.1. Statistical External Validation 

The consensus method achieved the best statistics in terms of both prediction 
accuracy and coverage (see Table 4.8.1). In general, the prediction statistics for the 
physical properties were excellent. The prediction results for the consensus method 
are given in Figure 4.8.1. 



Table 4.8.1. Prediction results for the normal boiling point test set 

Method R2 𝑹𝟐 − 𝑹𝟎
𝟐

𝑹𝟐
k RMSE MAE Coverage 

Hierarchical 0.949 0.001 0.991 18.700 10.613 0.935 
FDA 0.936 0.002 0.991 21.431 12.214 0.988 
Group contribution 0.897 0.002 0.997 27.554 17.000 0.977 
Nearest neighbor 0.877 0.005 0.968 29.967 19.754 0.988 
Consensus 0.947 0.002 0.987 19.403 11.460 0.986 

Figure 4.8.1. Experimental vs predicted values for the normal oiling point test set 

4.9. Density 

4.9.1. Statistical External Validation 

For this property, the hierarchical and FDA methods gave a slightly higher R2 value 
than the consensus method (see Table 4.9.1.). However, the consensus method 
yielded a near 100% prediction coverage. The prediction results for the consensus 
method are given in Figure 4.9.1. 



Table 4.9.1. Prediction results for the density test set 
 

Method R2 𝑹𝟐 − 𝑹𝟎
𝟐

𝑹𝟐
 k RMSE MAE Coverage 

Hierarchical 0.972 0.001 0.997 0.052 0.026 0.942 

FDA 0.968 0.001 0.993 0.057 0.031 0.992 

Group contribution 0.872 0.005 0.997 0.116 0.071 0.992 

Nearest neighbor 0.859 0.021 0.978 0.121 0.073 0.997 

Consensus 0.956 0.005 0.991 0.068 0.038 0.996 

 
Figure 4.9.1. Experimental vs predicted values for the density test set 

 

  



4.10. Flash point 

4.10.1. Statistical External Validation 

For this property, the consensus method gives the best results in terms of prediction 
accuracy and coverage (see Table 4.10.1). The prediction results for the consensus 
method are given in Figure 4.10.1. 

Table 4.10.1. Prediction results for the flash point test set 

Method R2 𝑹𝟐 − 𝑹𝟎
𝟐

𝑹𝟐
k RMSE MAE Coverage 

Hierarchical 0.871 0.008 0.962 28.898 16.749 0.924 

FDA 0.853 0.010 0.960 31.481 19.227 0.989 

Group contribution 0.834 0.009 0.968 33.630 20.426 0.987 

Nearest neighbor 0.801 0.018 0.925 36.833 23.832 0.993 

Consensus 0.879 0.011 0.953 28.503 16.908 0.992 

4.10.1. Experimental vs predicted values for the flash point test set 



4.11. Thermal conductivity 

4.11.1. Statistical External Validation 

For this property, the hierarchical method gives similar results to the consensus 
method (see Table 4.11.1). The prediction results for the consensus method are given 
in Table 4.11.1. 

Table 4.11.1. Prediction results for the thermal conductivity test set 

Method R2 𝑹𝟐 − 𝑹𝟎
𝟐

𝑹𝟐
k RMSE MAE Coverage 

Hierarchical 0.906 0.025 0.996 11.024 6.731 0.956 

Single Model 0.890 0.031 0.992 11.864 8.524 0.956 

FDA 0.845 0.000 1.018 16.406 9.008 0.967 

Group contribution 0.803 0.088 0.979 15.898 9.825 0.911 

Nearest neighbor 0.884 0.021 1.004 12.832 8.449 0.978 

Consensus 0.892 0.010 1.005 12.413 7.046 0.967 

Figure 4.11.1. Experimental vs predicted values for the thermal conductivity test set 



4.12. Viscosity 

4.12.1. Statistical External Validation 

For this property, the consensus method gives the best results if you consider both 
prediction accuracy and coverage (see Table 4.12.1). The low k values for this 
endpoint can be attributed to the two possible outliers in the test set that fall below 
the Y=X line. The prediction results for the consensus method are given Figure 
4.12.1. 

Table 4.12.1. Prediction results for the viscosity test set 

Method R2 𝑹𝟐 − 𝑹𝟎
𝟐

𝑹𝟐
k RMSE MAE Coverage 

Hierarchical 0.868 0.001 0.809 0.214 0.131 0.929 

Single Model 0.644 0.010 0.625 0.346 0.217 0.929 

FDA 0.868 0.003 0.875 0.207 0.142 0.929 

Group contribution 0.888 0.001 0.831 0.200 0.113 0.814 

Nearest neighbor 0.757 0.009 0.726 0.289 0.194 0.920 

Consensus 0.876 0.004 0.778 0.215 0.125 0.929 

Figure 4.12.1. Experimental vs predicted values for the viscosity test set 



4.13.  Surface tension 

4.13.1. Statistical External Validation 

For this property, the consensus method gives the best results in terms of prediction 
accuracy and coverage (see Table 4.13.1(. The prediction results for the consensus 
method are given Figure 4.13.1. 
 

Table 4.13.1. Prediction results for the surface tension test set 

Method R2 𝑹𝟐 − 𝑹𝟎
𝟐

𝑹𝟐
 k RMSE MAE Coverage 

Hierarchical 0.929 0.016 0.989 1.792 1.037 0.919 

FDA 0.890 0.015 0.992 2.219 1.297 0.979 

Group contribution 0.794 0.044 0.986 2.933 2.114 0.926 

Nearest neighbor 0.759 0.068 0.973 3.317 1.923 0.936 

Consensus 0.903 0.027 0.987 2.112 1.317 0.968 

 

 
Figure 4.13.1. Experimental vs predicted values for the surface tension test set 

 



4.14.  Water solubility 

4.14.1. Statistical External Validation 

For this property, the consensus method gives the best statistics in terms of 
prediction accuracy and coverage (see Table 4.14.1). The prediction results for the 
consensus method are given in Figure 4.14.1. 
 

Table 4.14.1. Prediction results for the water solubility test set 

Method R2 𝑹𝟐 − 𝑹𝟎
𝟐

𝑹𝟐
 k RMSE MAE Coverage 

Hierarchical 0.834 0.015 0.943 0.903 0.601 0.935 

FDA 0.809 0.014 0.950 0.953 0.639 0.984 

Group contribution 0.766 0.039 0.933 1.074 0.798 0.982 

Nearest neighbor 0.791 0.022 0.950 1.023 0.735 0.985 

Consensus 0.857 0.021 0.943 0.835 0.578 0.987 

 
Figure 4.14.1. Experimental vs predicted values for the water solubility test set 

 



4.15.  Vapor pressure 

4.15.1. Statistical External Validation 

The prediction statistics were excellent and again the consensus method achieved the 
best results (see Table 4.15.1). The prediction results for the consensus method are 
given in Table 4.15.1. 
 

Table 4.15.1. Prediction results for the vapor pressure test set 
 

Method R2 𝑹𝟐 − 𝑹𝟎
𝟐

𝑹𝟐
 k RMSE MAE Coverage 

Hierarchical 0.956 0.001 0.977 0.745 0.455 0.940 

FDA 0.946 0.001 0.985 0.827 0.494 0.982 

Group contribution 0.929 0.001 1.020 0.998 0.608 0.968 

Nearest neighbor 0.878 0.001 0.937 1.251 0.823 0.980 

Consensus 0.954 0.001 0.980 0.769 0.466 0.980 

 

 
Figure 4.15.1. Experimental vs predicted values for the vapor pressure test set 

 



4.16.  Melting point 

4.16.1. Statistical External Validation 

The prediction statistics were very good and the again the consensus method 
achieved the best results (see Table 4.16.1.). The prediction results for the consensus 
method are given in Figure 4.16.1. 
 

Table 4.16.1. Prediction results for the water solubility test set 
 

Method R2 𝑹𝟐 − 𝑹𝟎
𝟐

𝑹𝟐
 k RMSE MAE Coverage 

Hierarchical 0.811 0.011 0.892 44.355 31.433 0.932 

FDA 0.801 0.011 0.879 45.095 32.920 0.993 

Group contribution 0.704 0.065 0.837 54.947 41.274 0.997 

Nearest neighbor 0.738 0.017 0.850 52.095 37.837 0.998 

Consensus 0.834 0.021 0.863 41.464 30.207 0.998 

 
Figure 4.16.1. Experimental vs predicted values for the melting point test set 

 

  



5. USING THE SOFTWARE

5.1. Importing a single compound 
A compound can be imported into the software several different ways: 

 Drawn using the provided molecular structure drawing tool
 Imported from an MDL molfile
 Imported from a SMILES string
 Imported from the included structure data base

5.1.1. Drawing a molecule using the structure drawing tool 

 First, add any rings present in the molecule using the ring template buttons
 (click on a button and then click somewhere in the document). 

 Next, step add any chains using the  button. 
 Next, add double or triple bonds by using  again and clicking on the bonds to 

make them double or triple bonds. You can use  and  to make existing bonds 
wedge bonds or you can draw wedge bonds directly. 

 Finally, any hetero atoms (non carbon atoms) need to be set. Either use one of the
element symbol buttons and click on an atom to change it to this symbol. You can use
the periodic table  to choose an element. 

 Finally, with  you can go through some common elements by clicking on an atom 
repeatedly. With  and  you can change the charge. 

5.1.2. Importing a molecule from an MDL molfile 

The structure for a test compound can be imported from an MDL molfile 
(https://en.wikipedia.org/wiki/Chemical_table_file) 

To import a structure using a MDL molfile, select Import from MDL molfile from 
the File menu. 

5.1.3. Import a molecule from a SMILES string 

The structure for a test compound can be imported from a SMILES string 
(http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html). 

To import a structure using a SMILES string, select Generate from SMILES string 
from the File menu. 

Enter the desired SMILES string in the dialog box provided and press OK. 

https://en.wikipedia.org/wiki/Chemical_table_file
http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html


 
 
For example, to import benzene enter c1ccccc1 as the SMILES string. A SMILES 
string can be pasted from the clipboard by selecting Generate from SMILES on 

clipboard. 
 

5.1.4. Import from the structure database 

To import a structure from the structure database, first select Import from structure 

database from the File menu. 

 
One can then import a structure from the CAS number, molecular weight, or 
formula: 
 

  
 
One can enter the CAS number with or without dashes (i.e. 71-43-2 or 71432). The 
Currently drawn structure option allows you to retrieve the CAS number for a 
given drawn structure (assuming it is available in the database included with the 
software). 
 
You can import a chemical by its CAS number by entering a CAS number in the 
Molecule ID field and pressing enter. 
 

5.2. Importing multiple compounds (batch import) 

Multiple compounds can be imported simultaneously several different ways: 
 Importing from a MDL SDfile 



 Importing from a list of CAS numbers
 Importing from a list of SMILES strings

Sample files in each of these formats are available in a zip file at the following link: 
https://www.epa.gov/sites/production/files/2015-07/samplefiles.zip 

5.2.1. Importing from a MDL SDfile 

To import multiple structures from an MDL SDfile select Batch import from MDL 

SDfile from the Import Chemical menu option. 

For best results, one should use SDfiles with either a “CAS” or a “Name” field 
included to uniquely identify each chemical in the file. The program first looks for a 
“CAS” field and then looks for “Name” field when assigning identifiers. For 
example, a sample from an SDfile including formaldehyde would be as follows: 

Formaldehyde 

csChFnd80/07260508122D 

 2 1 0 0 0 0 0 0 0 0999 V2000 

 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 

 1.4000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 

 1 2 2 0 0 0 0 

M END 

> <CAS> 

50-00-0 

> <Name> 

Formaldehyde 

$$$$ 

5.2.2. Importing from a list of CAS numbers 

To import multiple structures from a list of CAS numbers (in a text file), select 
Batch import from list of CAS numbers from the Import Chemical menu option. 

For example to import benzene and formaldehyde, the contents of the text file should 
be as follows: 

71-43-2 

50-00-0 

https://www.epa.gov/sites/production/files/2015-07/samplefiles.zip


5.2.3. Importing from a list of SMILES strings 

To import multiple structures from a list of SMILES strings (in a text file), select 
Batch import from list of SMILES strings from the Import Chemical menu 
option. 
 
The text file should contain the SMILES string and an unique identifier on each line. 
A comma, tab, or a space can separate the SMILES string and the identifier. The text 
file should not container a header line. 
 
For example to import benzene and formaldehyde, the contents of the text file should 
be as follows: 
 
c1ccccc1 71-43-2 
C=O 50-00-0 

 

5.2.4. Editing a chemical in the batch list 

After importing the desired set of chemicals, you can edit individual chemicals in the 
list by double clicking on its row in the list. An example of an imported batch list is 
given in Figure 5.2.4. 

 

  



Figure 5.2.4. Batch mode screen in T.E.S.T. 
 

 

 

5.2.5. Adding chemicals to the batch list 

To add chemicals to the list, click the Add button. Double click on the new chemical 
to add the molecular structure for the new chemical. 
 

5.2.6. Deleting chemicals from the batch list 

To delete chemicals from the list, select one or more rows in the batch list and click 
the Delete button (or press the Delete key on the keyboard). 
 

5.2.7. Saving the batch list 

To save the batch list as an MDL SD file, click on the Save list as SDF button. This 
feature allows you to save changes to your list. 

 

5.2.8. Closing the batch list 

To close the batch list click on the Close batch list button. One can close the batch 



list by deleting all the chemicals in the list. 
 

5.3. Performing toxicity predictions 

If the Molecule ID is blank, enter a unique identifier for the compound. It is 
recommended that the CAS number be used for the Molecule ID but the name can be 
used as well. The software needs the Molecule ID in order to generate the output web 
pages. Warning: if two molecules have the same Molecule ID, the results files will get 

overwritten. 

Select a toxicity endpoint using the drop down list provided (the fathead minnow 
LC50 is selected by default). 
Select a QSAR toxicity estimation method using the drop down list provided (the 
hierarchical clustering method is chosen by default). The methodologies are described 
in detail in the Theory section. 
Sometimes predictions for a given chemical cannot be made because the model(s) 
violate the fragment constraint. The fragment constraint says that in order for a 
prediction to be made using a given model, the chemicals used in the construction of 
the model must possess at least one example of each molecular fragment present in 
the test compound. One can relax this constraint by checking the Relax fragment 

constraint checkbox (now accessed by clicking the Options button on the bottom of 
the screen). The fragment constraint is described in the Theory section. 
Once the desired options have been selected, one can start the toxicity estimation 
calculations by clicking Calculate!.  
Before the calculations can proceed, one must first select the location where the 
output files will be stored: 

 

 

The output folder can be changed at any time by choosing Select output folder from 
the Options screen. The software will remember the selected output folder the next 
time the software is loaded. 
 
If one wishes to abort the currently running calculations, click on the red Stop button. 

 



5.4. Interpretation of results 

After performing the toxicity estimation calculations, a web page is generated which 
displays the results. The results for 87-60-5 (for the Tetrahymena pyriformis IGC50 
endpoint and the Consensus method) are given in Table 5.4.1.  The predicted toxicity 
is 69.12 mg/L and the experimental value is 59.03 mg/L. The prediction is flagged in 
this example because the chemical was part of the external test set. The predicted 
toxicity from the consensus method represents the average of the predicted toxicities 
from all the different QSAR methods incorporated into the TEST software. The 
individual prediction are given in Table 5.4.2.  The average of the values from all the 
different QSAR methods is 3.31 which is close to the experimental value of 3.38 (in 
units of -Log(mol/L)).  

 
Table 5.4.1. Prediction results from the consensus method for 87-60-5 

 

Prediction results 

Endpoint 

Experimental value (CAS= 

87-60-5) 

Source: TETRATOX 

Predicted valuea 

T. pyriformis IGC50 (48 hr) -Log10(mol/L) 3.38 3.31 

T. pyriformis IGC50 (48 hr) mg/L 59.03 69.12 

aNote: the test chemical was present in the external test set. 

 

Table 5.4.2 Individual predictions for 87-60-5 

Individual Predictions 

Method 
Predicted value 

-Log10(mol/L) 

Hierarchical clustering 3.37 

Group contribution 3.36 

FDA 3.37 

Nearest neighbor 3.15 

 

Test chemical 

 

 

http://www.vet.utk.edu/TETRATOX/index.php
file:///C:/Documents%20and%20Settings/tmarti02/My%20Documents/MyToxicity5/ToxRuns/ToxRun_87-60-5/T.%20pyriformis%20IGC50%20(48%20hr)/PredictionResultsHierarchicalclustering.html
file:///C:/Documents%20and%20Settings/tmarti02/My%20Documents/MyToxicity5/ToxRuns/ToxRun_87-60-5/T.%20pyriformis%20IGC50%20(48%20hr)/PredictionResultsGroupcontribution.html
file:///C:/Documents%20and%20Settings/tmarti02/My%20Documents/MyToxicity5/ToxRuns/ToxRun_87-60-5/T.%20pyriformis%20IGC50%20(48%20hr)/PredictionResultsFDA.html
file:///C:/Documents%20and%20Settings/tmarti02/My%20Documents/MyToxicity5/ToxRuns/ToxRun_87-60-5/T.%20pyriformis%20IGC50%20(48%20hr)/PredictionResultsNearestneighbor.html


The software provides predictions for similar chemicals from the test set (see Figure 
5.4.1).  The colors of the data points are defined in Table 5.4.3.  The MAE (mean 
absolute error) for similar chemicals (0.25) was slightly lower than the value for the 
entire test set (0.33). This increases ones confidence in the predicted value.  The 
structures for the similar chemicals in the test set are given in Table 5.4.3. 

 

Test set chemicals MAE* 

Entire set 0.33 

Similarity coefficient ≥ 
0.5 

0.25 

*Mean absolute error in -
Log10(mol/L)  

Figure 5.4.1. Predictions for similar chemicals from the test set   



Table 5.4.3. Structures for the similar chemicals in the test set 

CAS Structure 
Similarity 

Coefficient 

Experimental value 

-Log10(mol/L) 

Predicted value 

-Log10(mol/L) 

87-60-5 

(test chemical) 

 

 3.38 3.31 

108-42-9 

 

0.84 3.22 3.07 

626-43-7 

 

0.80 3.71 3.96 

95-81-8 

 

0.77 3.20 3.31 

… … … … … 

 

The most similar chemicals are very similar to the test chemical (benzenes substituted 
with chloro and amino groups) and were accurately predicted. This increases ones 
confidence in the predicted value.  The program lists the similar chemicals in the 
training set (see Table 5.4.4).  As shown by the fairly large similarity coefficients, 
there are very similar chemicals in the training set (the only difference is the 
substitution pattern). This increases ones confidence in the predicted value because 
similar chemicals were used to build the QSAR models.   
 
One can view the details of the predictions for the different QSAR methods by 
clicking on the predicted value for each method. For example, for the Hierarchical 

clustering method the main prediction table is given in Table 5.4.5.  The prediction 
interval is 48.78 ≤ Tox ≤ 75.30 (one is 90% confident that the predicted value is 

file:///C:/Documents and Settings/tmarti02/My Documents/MyToxicity5/ToxRuns/ToxRun_87-60-5/StructureData/testchemical.png
file:///C:/Documents and Settings/tmarti02/My Documents/MyToxicity5/ToxRuns/images/108-42-9.png
file:///C:/Documents and Settings/tmarti02/My Documents/MyToxicity5/ToxRuns/images/626-43-7.png
file:///C:/Documents and Settings/tmarti02/My Documents/MyToxicity5/ToxRuns/images/95-81-8.png


between 48.78 and 75.30). The experimental value falls within the prediction interval. 
 

Table 5.4.4. Structures for the similar chemicals in the training set 

CAS Structure 
Similarity 

Coefficient 

Experimental value 

-Log10(mol/L) 

87-60-5 

(test chemical) 

 

 3.38 

95-74-9 

 

0.89 3.39 

87-59-2 

 

0.85 2.57 

95-79-4 

 

0.84 3.50 

… … … … 

 

file:///C:/Documents and Settings/tmarti02/My Documents/MyToxicity5/ToxRuns/ToxRun_87-60-5/StructureData/testchemical.png
file:///C:/Documents and Settings/tmarti02/My Documents/MyToxicity5/ToxRuns/images/95-74-9.png
file:///C:/Documents and Settings/tmarti02/My Documents/MyToxicity5/ToxRuns/images/87-59-2.png
file:///C:/Documents and Settings/tmarti02/My Documents/MyToxicity5/ToxRuns/images/95-79-4.png


Table 5.4.5. Prediction from the hierarchical clustering method. 

Prediction results 

Endpoint 

Experimental value (CAS= 

87-60-5) 

Source: TETRATOX 

Predicted 

valuea 
Prediction interval 

T. pyriformis IGC50 (48 hr) -

Log10(mol/L) 
3.38 3.37 3.27 ≤ Tox ≤ 3.46 

T. pyriformis IGC50 (48 hr) mg/L 59.03 60.61 48.78 ≤ Tox ≤ 75.30 

aNote: the test chemical was present in the external test set. 

 

Cluster model predictions and statistics 

Cluster 

model 

Test chemical  

descriptor 

values 

Prediction 

interval 

-Log10(mol/L) 

r2 q2 #chemicals 

2362 Descriptors 3.31 ± 0.25 0.909 0.834 7 

2481 Descriptors 3.48 ± 0.21 0.926 0.861 10 

2562 Descriptors 3.40 ± 0.23 0.911 0.834 17 

2621 Descriptors 3.24 ± 0.28 0.884 0.796 28 

… … … … … … 

 

Test chemical 

 

 

The predictions from the different clusters were all very similar.  One can click on the 
link for each model (in the Cluster model column) to display its statistics, regression 
plot, parameters, and chemical descriptor values.  For example for model #2481, the 
model statistics are given in Table 5.4.6 and the model regression plot is given in 
Figure 5.4.2. 

 

 

  

http://www.vet.utk.edu/TETRATOX/index.php
file:///C:/Documents%20and%20Settings/tmarti02/My%20Documents/MyToxicity5/ToxRuns/ClusterFiles/T.%20pyriformis%20IGC50%20(48%20hr)/2362.html
file:///C:/Documents%20and%20Settings/tmarti02/My%20Documents/MyToxicity5/ToxRuns/ToxRun_87-60-5/T.%20pyriformis%20IGC50%20(48%20hr)/ClusterFiles/Descriptors2362.html
file:///C:/Documents%20and%20Settings/tmarti02/My%20Documents/MyToxicity5/ToxRuns/ClusterFiles/T.%20pyriformis%20IGC50%20(48%20hr)/2481.html
file:///C:/Documents%20and%20Settings/tmarti02/My%20Documents/MyToxicity5/ToxRuns/ToxRun_87-60-5/T.%20pyriformis%20IGC50%20(48%20hr)/ClusterFiles/Descriptors2481.html
file:///C:/Documents%20and%20Settings/tmarti02/My%20Documents/MyToxicity5/ToxRuns/ClusterFiles/T.%20pyriformis%20IGC50%20(48%20hr)/2562.html
file:///C:/Documents%20and%20Settings/tmarti02/My%20Documents/MyToxicity5/ToxRuns/ToxRun_87-60-5/T.%20pyriformis%20IGC50%20(48%20hr)/ClusterFiles/Descriptors2562.html
file:///C:/Documents%20and%20Settings/tmarti02/My%20Documents/MyToxicity5/ToxRuns/ClusterFiles/T.%20pyriformis%20IGC50%20(48%20hr)/2621.html
file:///C:/Documents%20and%20Settings/tmarti02/My%20Documents/MyToxicity5/ToxRuns/ToxRun_87-60-5/T.%20pyriformis%20IGC50%20(48%20hr)/ClusterFiles/Descriptors2621.html


Table 5.4.6. Regression statistics for model 2481 

Parameter Value 

Endpoint T. pyriformis IGC50 (48 hr) 

r2 0.926 

q2 0.861 

#chemicals 10 

Model Model # 2481 

 

 
Figure 5.4.2. Model regression plot for model 2481 

 
 

  



Table 5.4.6. Model parameters for model 2481 

Model coefficients 

Coefficient Definition Value Uncertainty* 

Intercept Model intercept 2.5043 0.2689 

MATS4e 
Moran autocorrelation - lag 4 / weighted by atomic Sanderson 

electronegativities 
0.7092 0.1648 

GATS3p Geary autocorrelation - lag 3 / weighted by atomic polarizabilities 0.6683 0.2168 

* value for 90% confidence interval 

Table 5.4.6. indicates that the equation for the model is as follows: 
Model equation:  
T. pyriformis IGC50 (48 hr) = 0.7092×(MATS4e) + 0.6683×(GATS3p) + 2.5043  

 
The fit results (and structures) for each chemical in the model’s training set can be 
obtained by clicking on Model 2481 fit results by chemical. 
 
The descriptor values (in a “|” delimited text file) can be obtained by clicking on  
Model 2481 training set descriptors. 
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