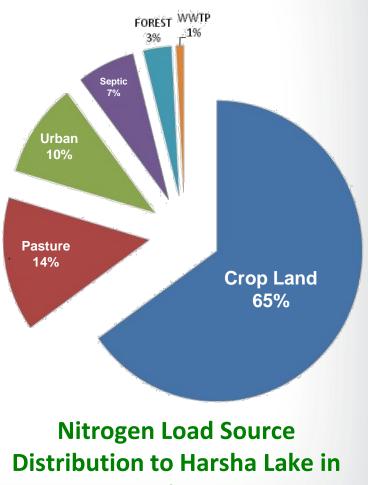


EPA Tools and Resources Webinar: Harmful Algal Blooms

May 18, 2016 3:00 – 4:00 PM ET

Thomas Speth, EPA Office of Research and Development Hannah Holsinger, EPA Office of Water

EPA's Research on the Control of Cyanobacterial Toxins


Thomas Speth, PhD, PE EPA Office of Research and Development

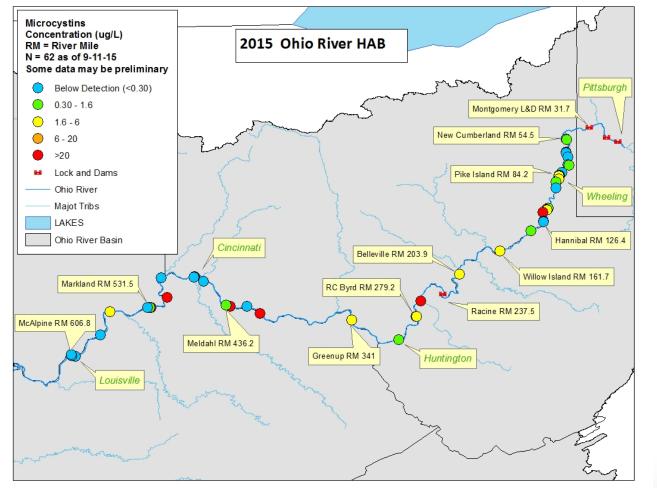
⇔EPA

Background

Complex Issue:

- Excessive nitrogen and phosphorous levels can cause harmful algal blooms
- Different algal/cyanobacteria strains bloom under different conditions, at different times, and have spatial variability (horizontal and vertical)
- Different strains produce different toxins at varying amounts
- Different analytical methods tell different pictures of what is going on
- Toxins can be intracellular (within algae itself) or extracellular (dissolved in the water)
- Drinking water treatment is a balancing act between Distribution to Harsh processes
 Ohio

SEPA


Cyanobacteria Strains & Associated Toxins

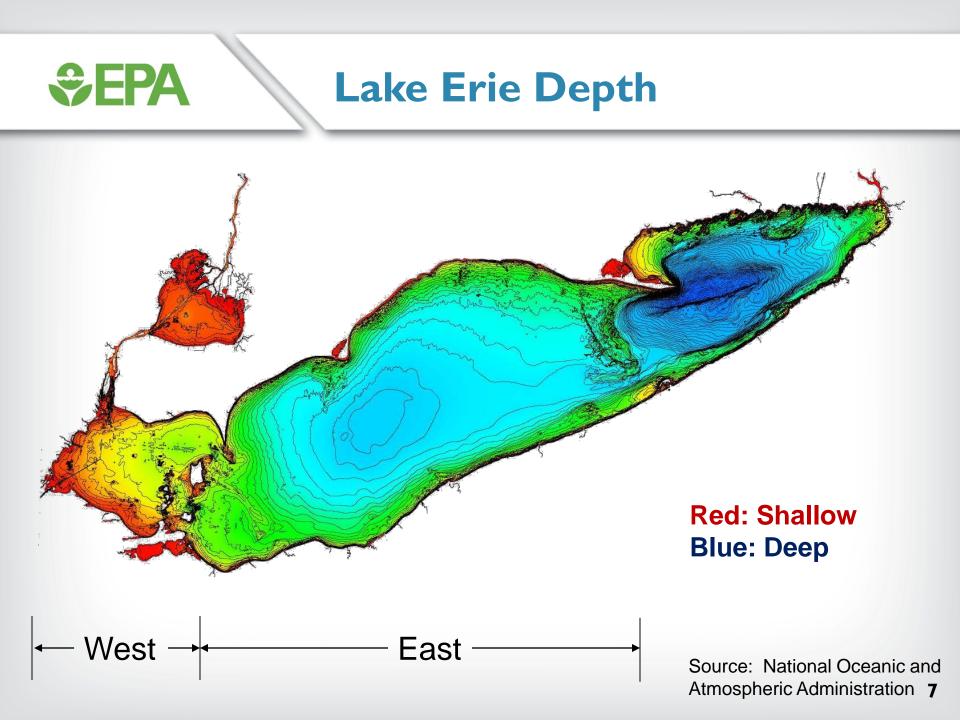
- Strains produce
 different toxins at
 different amounts
- Toxins can have multiple variants
 Example: Over 80 known microcystin variants

Toxins analyzed by USEPA (544 and 545)

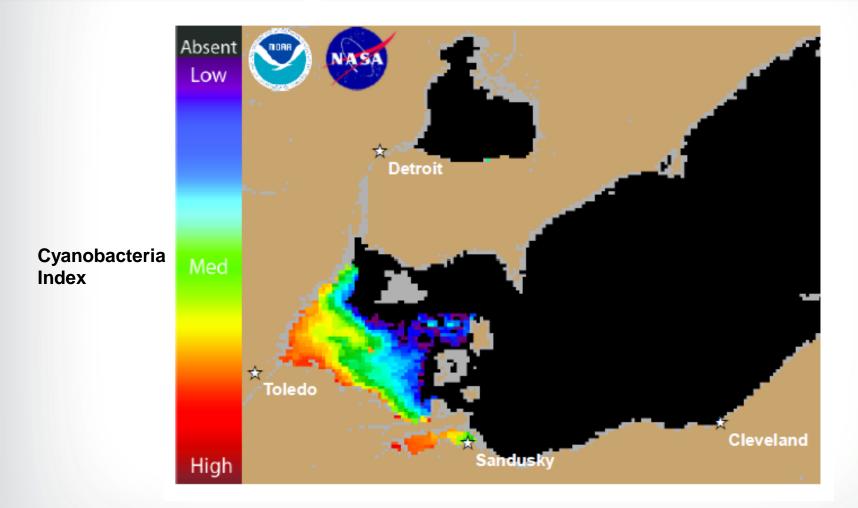
	Cyanobacteria Taxa											
Adapted from : Paerl and Otten 2013. Harmful Cyanobacterial Blooms: Causes, Consequences, and Controls. Microbial Ecology 65:4 995-1010 Toxin	Anabaena	Aphanizomenon	Aphanocapsa	Chroococcus	Cylindrospermopsis	Limnothrix	Merismopedia	Microcystis	Planktolyngbya	Planktothrix	Pseudanabaena	Nodularia
Aeruginosin								Х		Х		
Anatoxin-a/homoanatoxin-a	Х	Х			Х				Х	Х		
Anatoxin-a(S)	Х											
Aplysiatoxins									Х			
BMAA	Х	Х			Х			Х	Х	Х		
Cyanopeptolin	Х							Х		Х		
Cylindrospermopsin	Х	Х			Х							
Jamaicamides									Х			
Lyngbyatoxin									Х			
Microcystin	Х	Х	Х		Х	Х	Х	Х		Х	Х	
Nodularin												Х
Saxitoxin	Х	Х			Х					Х		

Spatial Issues: 2015 Ohio River Bloom

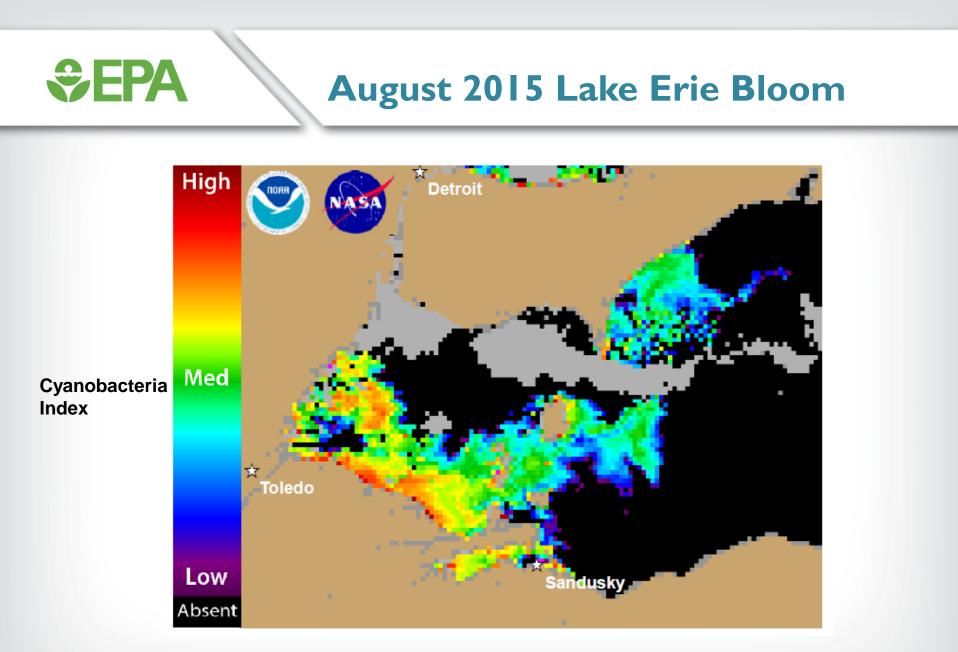
€ EPA


Little consistency over small or large scale

Source: Ohio River Sanitation Commission


€PA

Spatial Issues: 2015 Ohio River Bloom



August 2014 Lake Erie Bloom

*€***EPA**

Sources: National Oceanic and Atmospheric Administration; National Aeronautics and Space Administration

Sources: National Oceanic and Atmospheric Administration; National Aeronautics and Space Administration

Lake Erie DW Treatment Plant Study

Field Studies

SEPA

- Monitoring cyanobacteria toxins through numerous treatment plants on Lake Erie
- Parameters (not inclusive)
 - NO₃/NO₂/NH₃
 - PO₄
 - TOC/Total N
 - Total alkalinity
 - Trace metals by ICP
 - Toxins (Microcystins, Cylindrospermopsin, Anatoxin, Saxitoxin)

Conneaut AO Ashtabula MICHIGAN Lake Erie Fairport Harbor PENNSYLVANIA Painesville AO Mentor Lake County East Lake County West Lake Erie Utility Nottingham Oregon Put-in-Bay Baldwin Kelley's Island Avon Lake Toledo Lorain Morgan Marblehead Carroll Ottawa Crown Sandusky Elvria Huron Vermilion OHIO

Bench- and Pilot-Scale Studies

- Bench-scale permanganate, ozone, and activated carbon trials
- Pilot installation in Toledo, OH

Analytical Methods

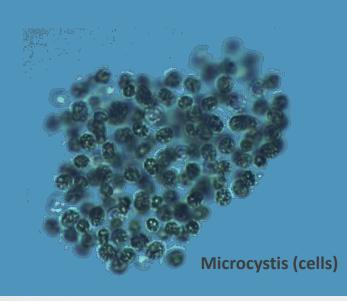
ELISA

EPA

- Broad-based method (measures 80+ toxin congeners/variants)
- Can give both internal and external toxin levels
- Easy and relatively inexpensive
- Relatively quick

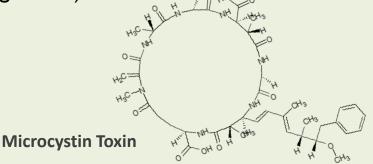
LC-MS/MS

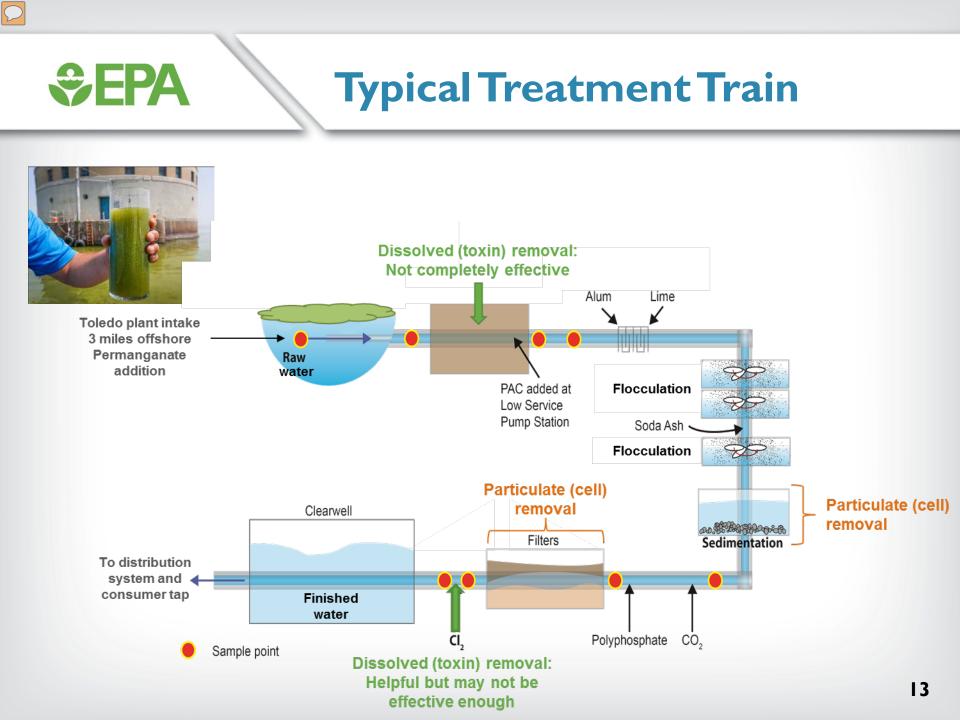
- EPA research methods typically tests for 13 microcystin congeners/variants (over 80 known)
- Can give both internal and external toxin levels
- Requires significant expertise and analytical equipment
- Takes time



Treatment for Cyanobacteria Toxins

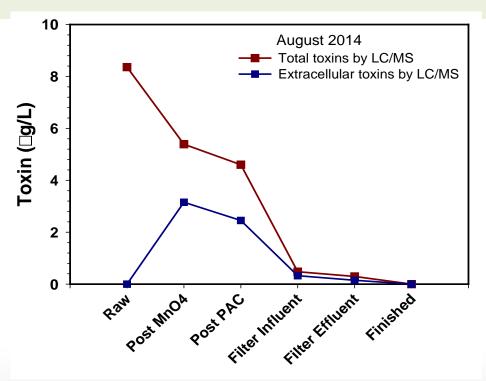
Toxin within the cell and those that are dissolved require different treatment processes

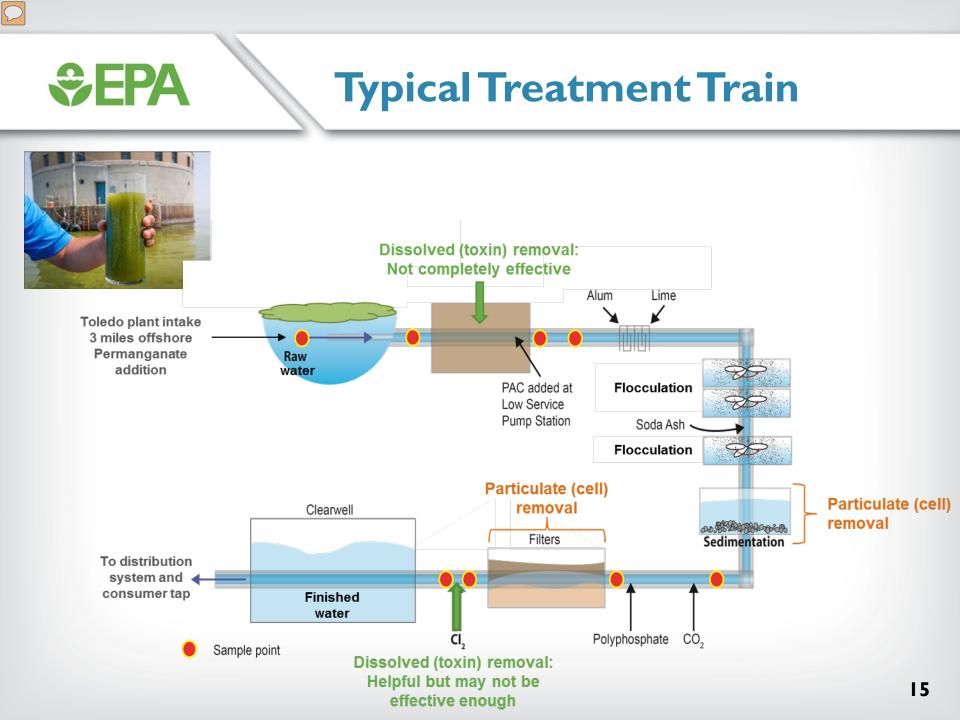

Particulates (toxin in cell)


Solids removal processes effective

Dissolved (toxin released from cell)

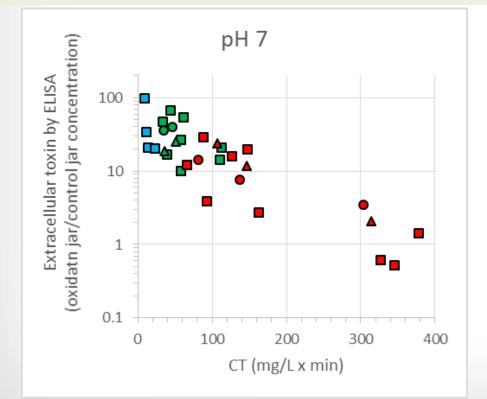
- Solids removal processes ineffective
- Typical disinfectants may not be effective enough (e.g., permanganate, chlorine)
- More effective treatments are expensive and plants typically do not have them in place (e.g., GAC)





Through Treatment (Toxin)

Permanganate reducing total and increasing extracellular toxin Powdered activated carbon reducing the extracellular toxin Particulate removal removes the intracellular toxin



Modeling Permanganate

CT approach can be C helpful in understanding pr degradation

Can be used for predictive purposes

Additional work on different waters and pHs being conducted

1 mg/L KMnO₄ 2.5 mg/L KMnO₄ 5 mg/L KMnO₄

- \Box Turbidity = 0.1 NTU
- \triangle Turbidity = 5 NTU
- Turbidity = 20 NTU

\$EPA

Treatment Conclusions

- If the bulk of the cyanobacterial toxin remains in the cell, particulate control can serve as an effective barrier against toxin exposure
- Common doses of oxidants (permanganate and ozone) can be sufficiently high to damage cells and release toxins, yet potentially too low to completely degrade the released toxin
- The optimal use of oxidants and PAC regarding their points of application and dose should be evaluated for a given plant (bloom dependent)
- Projects are ongoing to further understand and help predict treatment performance

SEPA

2016 Monthly Webinar Series:

Challenges and Treatment Solutions for Small Drinking Water and Wastewater Systems

Presented by EPA's Office of Research and Development (ORD) and Office of Water (OW)

R O O f O f O Ni

May 31, 2016, 2:00-3:00 PM EST (Optional Q&A session from 3:00-3:30) Responding to Harmful Algal Blooms, Optimization Guidelines, and Sampling for Utilities

Nick Dugan (USEPA) / Heather Raymond (Ohio EPA)

Webinar Support Phone Number: 1-800-263-6317

Audio Controls: Your audio is muted by the organizer

To Ask a Question: Type question in text box located in the lower section of your screen

A certificate for one continuing education contact hour will be offered for this webinar

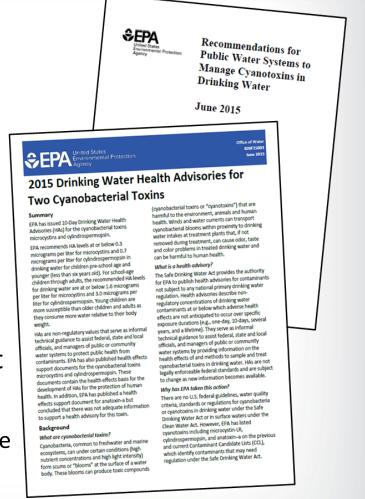
If you did not request the credit at registration, send email request to <u>webcastinfo@cadmusgroup.com</u> or respond to your registration confirmation email

Overview of EPA's Activities to Support Public Water Systems to Manage Cyanotoxins in Drinking Water

Hannah Holsinger EPA Office of Ground Water and Drinking Water

Presentation Overview

- Brief overview of past EPA Office of Water (OW) drinking water cyanotoxin management activities
- Discussion of EPA's Recommendations for Public Water Systems to Manage Cyanotoxins in Drinking Water
- Overview of H.R. 212, Drinking Water Protection Act


EPA

 Brief discussion on EPA OW ongoing drinking water cyanotoxin management activities

SEPA

Cyanotoxin Activities in EPA's Office of Water

- EPA placed algal toxins on the Safe Drinking Water Act's Contaminant Candidate Lists (CCLs) including draft CCL 4
- 2007 National Lakes Assessment (NLA)
 - 30% of lakes had microcystin detections
 - 1% had detections over 1 μg/L
- Development of analytical methods for cyanotoxins
- Public meeting on April 29th, 2016 to obtain public feedback on cyanotoxin management
- Information on cyanotoxins
 - Cyanobacteria Harmful Algal Blooms Webpage
 - Cyanobacteria/Cyanotoxins Fact Sheet for Drinking Water Systems

EPA's Ten-Day Health Advisories for Cyanotoxins

June 2015 EPA released Drinking Water Health Advisories (HA) for cyanotoxins

- Microcystins

- Human data suggest that the liver is the target organ of toxicity. Acute and sub-chronic toxicity studies confirm the liver, kidney and testes as target organs.
- There is inadequate information to assess the carcinogenic potential of microcystins.

- Cylindrospermopsin

- Human data on oral toxicity of cylindrospermopsin suggests liver and kidney as the target organs. This is confirmed by acute and sub-chronic toxicity studies. Kidney is primarily affected.
- There is inadequate information to assess the carcinogenic potential of cylindrospermopsin.

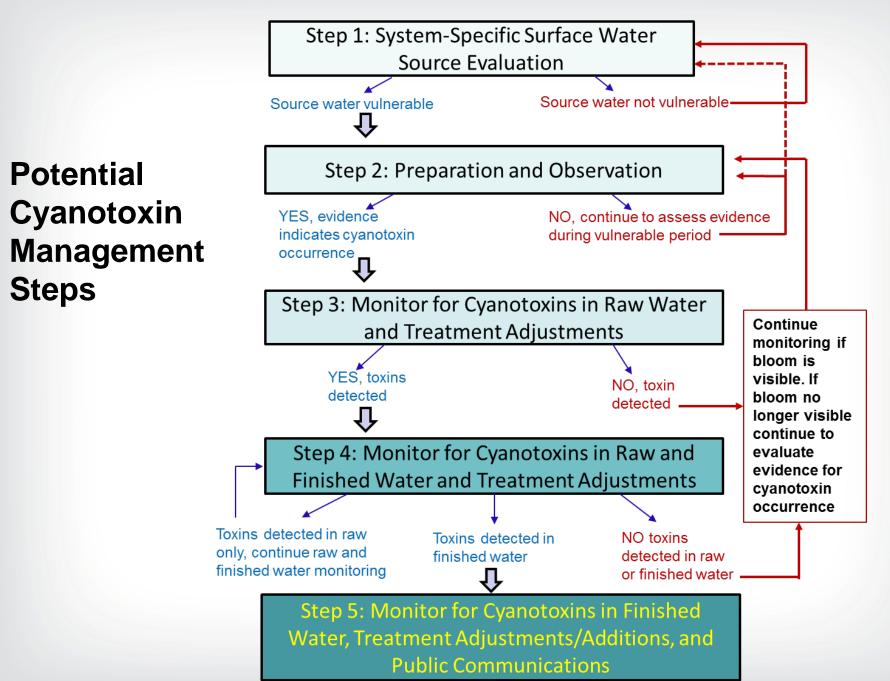
€PA

EPA's Ten-Day Health Advisories for Cyanotoxins

- **Exposure pathway**: oral ingestion of drinking water
- **Exposed life stage and population**: children and adults

chemical	10-day	advisory		
	Bottle-fed infants and pre- school children	School-age children and adults		
microcystins	0.3 μg/L	1.6 μg/L		
cylindrospermopsin	0.7 μg/L	3 μg/L		

- 10-Day Health Advisory value is considered protective of non-carcinogenic adverse health effects over a 10-day exposure in drinking water.
- Health Advisories are non-enforceable and are intended to provide technical guidance to states and other public health officials on health effects, analytical methods, and treatment technologies.


Managing Cyanotoxins in Drinking Water

 In June 2015, EPA released Recommendations for Public Water Systems to Manage Cyanotoxins in Drinking Water.

SEPA

• This document assists interested states and utilities manage risks from cyanobacterial toxins in drinking water, recognizing the most appropriate course of action will vary on a case by case basis.

€PA

Step 1: System-Specific Surface Water Source Evaluation

- Key objective: Determine if source water is vulnerable to harmful algal blooms
- Potential information to consider when conducting a system-specific evaluation:
 - Evaluation of source waters at or near the intake:
 - Source Water Characteristics
 - Water Quality Parameters
 - Source Water Assessment Information
 - Climate and Weather Information
 - Land Use
 - Nutrient Levels

Set EPA

Step 2: Preparation and Observation

Preparation

- Potential actions to consider if a system is determined to be vulnerable in Step 1:
 - Determine when (e.g., which seasons) systems are most vulnerable to HABs
 - System Evaluation
 - Assess status of treatment plant prior to harmful algal bloom season
 - If source water is vulnerable and existing treatment is not sufficient to remove cyanotoxins from peak blooms, evaluate whether supplemental treatment (e.g., coagulant) might be needed during bloom season, or
 - If source water is vulnerable and existing treatment is frequently challenged by cyanotoxins, consider whether long-term treatment enhancements are needed

Step 2: Preparation and Observation

Preparation (Cont'd)

- -Monitoring
 - Prepare for possible future cyanotoxin monitoring by ordering necessary lab materials for screening tests or setting up contracts with outside labs

-Communication

 Establish partnerships with primacy agencies, state, and local public health officials

Set EPA

Step 2: Preparation and Observation

Observation

- Key observation objective: Identify potential cyanotoxin occurrence in source and raw water
- 3 Key Potential Observations:
 - 1. Visual: Visually confirm the presence of a bloom at intake structure or confirm public reports of blooms near raw water intake
 - 2. System effects: Track changes in treatment plant operations, water quality parameters, etc.
 - 3. Indicators: Indicator occurrence in source water and raw water at intake

Steps 3-5: Monitoring, Treatment Adjustments, and Communication

• Key objectives:

EPA

- Determine if cyanotoxins have reached or are likely to reach the raw water intake
- Determine the effectiveness of cyanotoxin removal via drinking water treatment operations
- Adjust or consider additional treatment to reduce risks from cyanotoxins in drinking water
- Confirm whether cyanotoxins are detected in finished water
- Reduce risks from cyanotoxins in drinking water
- Inform the public of the need to take actions to reduce their risks

Step 5: Monitor for Cyanotoxins in Finished Water, **Treatment Adjustments and Public Communications**

Low Level Microcystins: ≤ 0.3 μg/L	<mark>Medium Level</mark> Microcystins: > 0.3μg/L ≤ 1.6 μg/L	High Level Microcystins: > 1.6 μg/L
<u>Communication</u>		
Continue communication with State primacy agency and local health officials on monitoring results.	Notify local public health agency, primacy agency and the public. Recommend use of alternative sources for bottle-fed infants and young children of pre-school age.	Notify local public health agency, primacy agency and the public. Recommend ' <u>Do Not Drink/ Do Not</u> <u>Boil Water'</u> advisory for all consumers.
Treatment Actions		

Adjust existing treatment to reduce Modify treatment as necessary to the concentration to below $0.3 \,\mu g/L$ keep algal toxins below HA values. as soon as possible. Modify or amend treatment as necessary.

Adjust existing treatment to reduce the concentration to below 0.3 µg/L as soon as possible. Modify or amend treatment as necessary.

Monitoring

Continue sampling raw and finished water at least 2-3 times per week until levels are below quantification in at least 2-3 consecutive samples in raw water, then return to Step 3.

Continue sampling raw and finished water daily until finished water levels are below quantification in at least 2-3 consecutive samples.

Continue sampling raw and finished water at least daily until finished water levels are below quantification in at least 2-3 consecutive samples.

H.R. 212

- On August 7th, 2015, H.R. 212 (Drinking Water Protection Act) was signed into law
- Directed EPA to develop and submit a strategic plan for assessing and managing risks associated with algal toxins in drinking water provided by public water systems
- Strategic plan developed with input from:
 - Various EPA Offices and Regions
 - Federal partners from the Interagency Working Group established by the Harmful Algal Bloom and Hypoxia Research and Control Act Amendments of 2014
 - Stakeholders through a listening session webinar including states, utilities, industry representatives and environmental organizations
 - Transmitted to Congress in November 2015

Algal Toxin Risk Assessment and Management Strategic Plan for Drinking Water

Strategy Submitted to Congress to Meet the Requirements of P.L. 114-45

Product of the United States Environmental Protection Agency

November 2015

- EPA's strategic plan includes steps and timelines for:
 - Assessing Human Health Effects. Evaluating and summarizing risks to human health from drinking water systems contaminated with algal toxins
 - Listing of Algal Toxins. Developing and maintaining list of algal toxins which may have adverse human health effects
 - Publishing Health Advisories. Determining whether to publish additional health advisories for the list of algal toxins
 - Providing Treatment Options. Evaluating and providing guidance on feasible treatment options
 - Providing Analytical and Monitoring Approaches. Developing and providing guidance on analytical methods and monitoring techniques, particularly monitoring frequency

€PA

Algal Toxin Risk Assessment and Management Strategic Plan for Drinking Water

- EPA's strategic plan includes steps and timelines for, continued:
 - Summarizing the Causes of HABs. Summarizing factors that cause toxin-producing HABs to proliferate and release toxins
 - Recommending Source Water Protection. Evaluating and recommending feasible source water protection practices
 - Strengthening Collaboration and Outreach. Entering into cooperative agreements and provide technical assistance to affected states and PWSs
- Identifies information gaps
- Assembles and publishes information from each federal agency that has examined algal toxins or addressed public health concerns related to HABs

EPA's Office of Water Ongoing Cyanotoxin Management Activities

- Developing cyanotoxin management plan templates to help utilities nationwide manage cyanotoxins
 - The templates, based on real-world utility plans, are anticipated to be completed in 2016
- Included cyanotoxin monitoring at drinking water utilities on the proposed UCMR 4 list
- Regional workshops focusing on HABs and source water protection activities
- Recent public meeting on April 29th to seek feedback from the public on strategies for managing cyanotoxin risks to drinking water
- Continue to support states and utilities in their cyanotoxin management efforts

Set EPA

Contact Information

<u>Contacts</u>

<u>Research on Cyanobacterial Toxins</u> Tom Speth: <u>Speth.Thomas@epa.gov</u> 513-569-7208

Cyanotoxin Management in Drinking Water Hannah Holsinger: <u>holsinger.hannah@epa.gov</u> 202-564-0403

<u>Cyanotoxin Health Advisories</u> Lesley D'Anglada: <u>danglada.lesley@epa.gov</u> 202-566-1125

<u>HR 212 Strategy Implementation</u> Katie Foreman: <u>foreman.katherine@epa.gov</u> 202-564-3403

<u>CyanoHABs website</u> <u>https://www.epa.gov/cyanohabs</u>

Questions?