Manufactured nanomaterials are currently found in a wide range of commercial products including microelectronics, disinfectants in detergents, wood preservatives, nano pesticides, fillers for plastics and rubber, cosmetics/health, medical delivery devices, and construction materials, sensors, solar energy devices and image contrast agents. Nanomaterials pose special challenges because tools for relating the inherent chemical properties of these materials to their transport and transformation are different from or more difficult to define, than those used for traditional chemicals. The development of these tools is essential for better understanding these materials that have already been developed for use in a wide range of commercial products. This research provides data and tools for evaluating relationships between inherent chemical properties of manufactured nanomaterials and their transport, transformation and bioavailability in environmental and treatment systems.

Select Publications:


View more research publications by Kim Rogers.

Education:

- Ph.D., Biochemistry, Utah State University, 1987
- B.S., Chemistry, Weber State University, 1980

Professional Experience:

- Research Chemist, USEPA, ORD, NERL, EMMD, PHCB, 1991-present
- Adjunct Faculty, Dept. of Public Health, UNLV, Las Vegas, NV 2005-2006
- Adjunct Faculty, Dept. of Chemistry, UNLV, Las Vegas, NV 1995-2001