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Through the National Nonpoint Source Monitoring Program (NNPSMP), 
states monitor and evaluate a subset of watershed projects funded by the 
Clean Water Act Section 319 Nonpoint Source Control Program. 

The program has two major objectives:

1.	To scientifically evaluate the effectiveness of watershed technologies 
designed to control nonpoint source pollution

2.	To improve our understanding of nonpoint source pollution

NNPSMP Tech Notes is a series of publications that shares this unique 
research and monitoring effort. It offers guidance on data collection, 
implementation of pollution control technologies, and monitoring design, 
as well as case studies that illustrate principles in action. 

Introduction
An important objective of many nonpoint source (NPS) watershed projects is to document 

water quality changes and associate them with changes in land management. Accounting 

for major sources of variability in water quality and land treatment/land use data increases 

the likelihood of isolating water quality trends resulting from best management practices 

(BMPs). Correlation of water quality and land treatment changes alone is not sufficient 

to infer causal relationships. Factors not related to BMPs may be causing the water quality 

changes, such as changes in land use, climatic, or hydrologic conditions. These factors are 

often referred to as explanatory variables or covariates. 

Including explanatory variables in water quality trend analyses yields estimates of changes 

that are closer to those that would have been measured if the ”non-BMP” factors did not 

vary over time. For example, precipitation totals and patterns that differ substantially 

between the periods before and after BMPs are implemented can essentially shroud the 

impacts of the BMPs on water quality. By accounting for, or filtering out, these changes 

in precipitation it becomes easier to isolate changes in water quality that may be associated 

with the BMPs. In statistical terms, accounting for variability in water quality due to 

these other factors decreases “unexplained” variation in the now-adjusted1 water quality 

data, facilitating documentation of statistically significant trends.

This Tech Note describes explanatory variables that are often important in NPS 

watershed studies and offers suggestions on how to determine which explanatory variables 

should be tracked for a specific project. Techniques to incorporate explanatory variables 

into statistical trend models are highlighted, and example data sets are provided. The 

1	 Data are considered to be “adjusted” after values are altered using appropriate statistical methods to 
account for explanatory variables.
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statistical trend approaches discussed here are parametric. Although explanatory variables 

are also part of biological monitoring efforts, this Tech Note focuses on water chemistry.

Information provided here is directed primarily to water quality personnel, but all involved 

in a NPS watershed project should find the following three sections useful in deciding 

which explanatory variables to monitor. The subsequent section on statistical trend 

analysis approaches and the examples (with sample data sets) are written with additional 

statistical details intended for data analysts.  

What are Explanatory Variables and Why are 
They Important in NPS Watershed Studies
Definition of Explanatory Variable
Explanatory variables can be defined in several, related 

ways. In statistical trend analysis, explanatory variables 

are broadly defined as variables that can be used to 

explain some of the variability in the response of a 

primary variable of interest. The response variable is 

usually referred to as the “Y” or “Dependent” variable. 

The explanatory variables are the “X” or “Independent” 

variables.

In NPS watershed studies, explanatory variables refer 

to the variables that affect the relationship between the 

dependent variable (e.g., water quality variable) and the 

independent variable of primary interest (e.g., trend). 

Inclusion of measured values of explanatory variables in 

trend analysis enables adjustment for their influence on 

measured water quality variables. Under this definition, 

variables such as streamflow and season would be 

examples of explanatory variables, as well as paired water 

quality values from a control (non-treated) watershed.  

Another definition commonly found in statistics books 

is applicable to studies in which a response is measured 

in two or more categorical treatments. In this case, a 

covariate is a continuous variable that is correlated to 

the response (Y) variable and therefore “explains” some 

of the variation in Y in addition to that explained by 

the categorical treatment variable. For example, a NPS 

watershed study might use Pre- and Post- BMP time 

Basic Terms1

Categorical Variable: A variable that can take on one of a 
limited, and usually fixed, number of possible values (e.g., 
seasons).

Continuous Variable: A variable that can take on any value 
between its minimum and maximum value (e.g., flow rate).

Control: The absence of treatment with BMPs or other 
land treatment. Pertains to the control watershed in NPS 
monitoring studies.

Control Variable: A water quality variable (e.g., nitrate) 
measured in a control watershed at the same time it is 
also measured in the treatment watershed, resulting in a 
paired observation.

Covariate: Essentially equivalent to explanatory variable.

Dependent or Response Variable: The “Y” variable in an 
equation, typically the primary water quality variable of 
interest in NPS watershed studies.

Explanatory Variable: Variable that affects the relationship 
between the primary water quality variable of interest and 
the primary land treatment variable of interest (e.g., flow).

Factor: A variable that influences the value of the primary 
variable. Independent and explanatory variables are factors 
influencing the value of the primary water quality variable 
of interest in NPS watershed studies.

Independent Variable: Each “X” variable in an equation 
(e.g., trend variable, land treatment variable such as acres 
with cover crops, control watershed water quality variable, 
and other explanatory variables such as flow or season.

LS-Means: The mean values of Y for each time period that 
have been adjusted for explanatory variable values. 

Primary Variable: The water quality variable of primary 
interest (e.g., total phosphorus).

Treatment: The application of BMPs or land treatment 
during a monitoring study. Occurs in the treatment 
watershed of a NPS monitoring study.

1Definitions are tailored to the purposes of this Tech Note.
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periods as categorical treatments, with water quality values from a non-treated watershed 

or environmental variables such as streamflow used as covariates.

Used in this Tech Note, an explanatory variable is any variable (continuous or categorical) 

that may influence the response of the primary water quality variables to BMP implemen

tation. Of particular interest are the explanatory variables that can be used to adjust for 

the variations in the water quality variable(s) due to variations in hydrologic and climatic 

conditions. Within this context, many statisticians prefer to call these ‘explanatory 

variables’ rather than ‘covariates,’ but the terms are almost interchangeable in practice. 

Importance of Explanatory Variables in Watershed 
Experimental Design 
Because of the complexity and variability of pollutant transport pathways, climate, BMP 

performance, soils, biological communities, and the many other attributes of watersheds, 

it is generally not possible to document the impacts of BMPs on typical NPS pollutants 

(nutrients, sediment, bacteria) by simply monitoring BMP implementation and the 

pollutant of interest (e.g., nitrogen). For example, while reduced tillage practices have 

been shown to reduce soil erosion and off-site delivery of sediment, actual delivery of 

sediment to a monitoring point in a stream can also be influenced by other sources such 

as eroding streambanks. Streambank erosion, in turn, can be influenced by precipitation, 

flow patterns, and the degree to which bedload sediment is carried by the stream. A 

measured reduction in suspended solids concentrations at the monitoring site, therefore, 

may be the result of other factors in addition to the acreage under reduced tillage, 

including a reduction in precipitation and streamflow. These other non-BMP factors must 

be accounted for to isolate the effects of the BMPs.

The most important step in documenting water quality improvements due to BMP 

implementation is the selection of experimental design. The best experimental designs 

incorporate paired observations from both a treated watershed (where BMPs are applied) 

and a comparison watershed that serves as a “control” (Dressing and Meals 2005). In a 

paired-watershed design, these watersheds are referred to as the treatment and control 

watershed, whereas in above/below-before/after designs (functionally equivalent to 

nested-pair designs2) the watersheds may be referred to as treatment and control or as 

above and below watersheds. For both of these designs, however, one watershed is treated 

with BMPs and the other is maintained as a control with no BMPs added.3 A properly 

selected control watershed factors out the effects of hydrologic variation and inherent 

watershed differences to help isolate changes due to the land treatment.

2	 In a nested-pair design the treatment watershed can either be within a smaller headwater subwatershed 
or cover nearly the entire watershed with the exception of a small untreated subwatershed.

3	 Note that studies may include multiple treatment watersheds for comparison with the control 
watershed.
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These two designs incorporate two monitoring periods (calibration and treatment periods) 

to allow for comparisons of statistically valid relationships established between paired 

observations of the same primary variable in the two watersheds before and after BMPs 

are implemented. Differences in the paired-observations relationships from the two 

monitoring periods are used as evidence of the effects of the BMPs. In these studies, the 

primary variable(s) is considered a response variable when measured in the treatment 

watershed and an explanatory variable when measured in the control watershed. 

Explanatory variables play an important role in the analysis of data from other monitoring 

designs as well, including above/below and single-station trend designs (Dressing and 

Meals 2005). These weaker monitoring designs, in fact, generally rely more on the use 

of explanatory variables to tease out the effects of BMPs on measured water quality 

because they do not have the built-in control of the two stronger designs described above. 

This creates a need, for example, to use flow, precipitation, land use, and other factors in 

statistical analyses to account for their influence on the measured parameter(s) of interest. 

Tracking of relevant meteorologic, hydrologic, and land use factors is essential to 

document the impacts of land management and BMPs on water quality. With this 

information, analysts can account for the influence of non-BMP factors to more accurately 

interpret the impacts of NPS management. Observed changes (or lack thereof) could be 

artifacts of hydrologic and/or meteorologic variability or some other hidden variable that 

also changes over time (Hirsch et al., 1982; Joiner, 1981; Baker 1988). Therefore, the 

addition of explanatory variables helps ensure an unbiased estimate of the true differences 

over time due to BMP implementation. 

The ability to detect trends can be increased by the incorporation of explanatory variables 

into trend models, thereby decreasing the unexplained variance in the models. For the 

same reason, the amount of change in water quality needed to be able to detect statistically 

significant changes is decreased (Spooner et al. 2011). In addition, use of explanatory vari-

ables may also minimize the influence of outlier observations (Joiner, 1981). Adjustment 

for explanatory variables such as stream discharge can also reduce autocorrelation (e.g., 

correlation between the current observation and the past or adjacent observations) which 

will increase the effective sample size and increase the power to detect trends. 

Explanatory Variables Commonly Used in 
NPS Watershed Studies
This section lists and describes various types of explanatory variables that can be 

of importance in NPS monitoring efforts. How to incorporate these variables into 

monitoring designs is addressed in the subsequent section.
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Watershed Design Variables from the “Control 
Watershed”
The control variables that are measured as a direct part of the experimental design (for 

paired-watershed, above/below-before/after, or nested-pair designs) are explanatory 

variables (Table 1). These paired observations from the control watershed could be from 

the same date, the same time period for composite samples, or from the same storm event 

as those from the treatment watershed. For example, weekly, flow-weighted composite 

samples taken at the outlet of both control and study (or above/below) watersheds would 

satisfy this requirement. 

Table 1. Explanatory variables from control watersheds.

Watershed Design Control Explanatory Variables

Paired watershed Concentration or load values from the control watershed that can be 
paired with the treatment watershed water quality values

Above/Below-
Before/After

Concentration or load values from the upstream watershed that can be 
paired with the treatment watershed

Nested watershed Concentration or load values from the non-treated watershed that can be 
paired with the treatment watershed

BMPs and Land Use
The basic hypothesis associated with NPS watershed implementation projects is that 

implementation of BMPs or other land management measures will cause an improvement 

in water quality, so it follows that measurement of this activity is essential. Quantitative 

documentation of land treatment trends is a necessary step in linking water quality to land 

treatment in statistical analysis. 

Examples of quantitative measures of land treatment include:

l	 Number or percent of watershed animal units under animal waste management

l	 Acres or percent of cropland in cover crops or residue management

l	 Annual manure-based nutrient or fertilizer application rate and extent

l	 Extent and capacity of stormwater infiltration practices

Land use changes can influence water quality in a number of ways, including changing 

hydrology (e.g., increased impervious surface), altering temperature regimes (e.g., 

decreased shading of stream), and modifying pollutant source areas (e.g., cropland 

converted to pasture). These changes must also be recorded to help isolate the impact of 

BMPs and land treatment on measured water quality. Land use modifications that could 

affect water quality include:

l	 Conversion from pasture to row crops or changes in cropping patterns

l	 Agricultural set-asides
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l	 Changes in the number of animals or animal units per acre

l	 Closure of animal operations

l	 Changes in impervious land areas

l	 Stream channel modification

l	 Roadway maintenance

Water quality and land use/treatment data must be matched (spatially and temporally) if 

water quality changes are to be attributed to BMP implementation. For example, land-

based data must be collected on a watershed basis for linkage to water quality monitoring 

data. The frequency at which BMPs and land use are tracked varies as described in Meals 

et al. (2014). Generally, attributes and activities that change little over time (e.g., broad 

land use categories) may need to be assessed only at the beginning and end of a project, 

whereas more dynamic features (e.g., field-level crop and yield information) may need to 

be tracked annually or semi-annually. Some activities such as manure applications or street 

sweeping should be tracked on a more frequent, often seasonally-variable basis. 

It is important to note that associations between land use observations and water quality 

patterns can be confounded by the timing of the source activities (USDA 2003). For 

example, road salt is applied under icing conditions, while washoff tends to occur during 

periods of thawing or rainfall. Matching weekly water quality and land use/treatment 

data in this case could result in associating high salinity levels with periods of no road 

salt application. As another example, nutrient concentrations peak during wet periods, 

but manure is not usually applied when fields are muddy. Using weekly data, high 

nutrient concentrations could be associated with periods of no manure application. An 

understanding of pollutant pathways and lag time and some creative data exploration are 

often needed to effectively pair land use/treatment observations with water quality data.

Methods of reporting and quantifying land treatment and land use are described in detail 

in Tech Notes 11 (Meals et al. 2014).

Seasonality and Cyclic Patterns
A portion of observed temporal variability in water quality data may be cyclical or vary 

by seasons. Within-year seasonal variations, for example, can be due to natural and 

man-made changes such as rainfall patterns, fertilizer/cropping patterns, and leaching 

through the soil profile when active plant growth is slower (e.g., winter or when crops are 

removed). Seasonality also occurs when the value of an observation collected in one season 

is related to the observations taken in the same season in a previous year (Brocklebank and 

Dickey, 1986).  

Other cycles, such as diurnal or weekly, are also commonly observed in water quality 

datasets. For example, King et al. (1983) measured large diurnal and seasonal variations 

https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/nonpoint-source-monitoring-technical-notes
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in sediment concentrations from field runoff. Diurnal variations were caused by 

irrigation schedules, and seasonal variations were characterized by maximum sediment 

concentrations in June and July with a dramatic drop during July due to declining erosion 

rates after cultivation.

Explanatory variables that can be used to account for seasonal changes include:

l	 Monthly or seasonal indicator variables

l	 Sine and cosine trigonometric functions

l	 Other explanatory variables that also exhibit seasonal patterns (e.g., streamflow)

Time series models can also incorporate seasonality using a “differencing” technique. 

Details on how to calculate explanatory variables for each of these seasonal adjustment 

approaches are given in Attachment 1.

Meteorologic and Hydrologic Variables
Meteorologic and hydrologic processes also contribute to the variability in water quality 

data, often accounting for a portion of the seasonal variation noted above due to seasonal 

patterns in rainfall amount and intensity.  

Hydrologic and meteorologic variables include:

l	 Stream discharge/flow (stage height is sometimes a surrogate)

l	 Antecedent flow conditions prior to a storm

l	 Storm volume

l	 Duration of time to peak of storm hydrograph

l	 Rising or falling limb of storm hydrograph

l	 Direction of the change in flow

l	 Magnitude/peak of event maximum discharge

l	 Precipitation

l	 Storm event intensity and frequency

l	 Ground water table depth

l	 Humidity

l	 Salinity

l	 Water or air temperature
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How to Determine Which Explanatory 
Variables are Most Important to Measure 
and Incorporate into Trend Analyses
Some watershed projects begin with a dataset that can be explored for relationships 

between primary and explanatory variables. Many projects, however, begin with no data 

or such a small dataset that possibilities for analysis are limited. In these cases, project 

personnel should examine data from nearby, similar watersheds and examine the literature 

for information to guide selection of explanatory variables. Past studies have shown that 

a number of explanatory variables are generally useful in most projects. Where projects 

base selection of explanatory variables on information from similar watersheds or from the 

literature, it is important to confirm these relationships in the current study as data are 

collected. 

It is important to keep in mind that monitoring designs should begin with clear goals 

and an outline of data analysis plans designed to determine if these goals have been met 

(Dressing and Meals 2005). The types and uses of explanatory variable data needed 

for statistical analyses should be considered and specified before monitoring begins. 

Reassessment of the value of selected explanatory variables is a necessary component 

of data analysis, and exploratory analysis of new data may reveal relationships between 

variables that were not expected. For these and other reasons, projects should examine 

data frequently (e.g., monthly) to ensure that the monitoring program is on track to meet 

objectives. The information below is designed to help both projects with existing data and 

those that are essentially starting from scratch.

General Rules of Thumb 
Both projects beginning with and without a rich dataset should apply some basic rules of 

thumb when selecting explanatory variables. 

l	 The date should be associated with every variable value, thus allowing assignment 
of month or season to address seasonal considerations.

l	 The literature has many examples of relationships between flow measurements and 
pollutant concentrations and loads (Baker 1988, Foster 1980, Johnson et al. 1969, 
Lowrance and Leonard 1988, and Schilling and Spooner 2006), so flow or a flow 
surrogate (e.g., stage) should be measured whenever possible. 

l	 Runoff begins with precipitation and a multitude of studies has shown the effects 
of rainfall intensity and amount on runoff quality and amount, so precipitation 
should be measured or weather data obtained from a nearby existing weather 
station.

l	 Information on land use and ground cover is essential to most projects, particularly 
given that BMPs are generally targeted on the basis of land use and management.
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l	 Any sources that will be treated (e.g., cropland, streambanks, lawns) should be 
monitored using explanatory variables that relate to water quality and the BMPs 
being implemented (e.g., animal units with access to and excluded from streams, 
nutrient application rates and yield by crop type). 

l	 Some variables of potential use are very inexpensive to track and can be dropped 
later if found to be useless. Examples include water and air temperature and 
salinity or conductivity.

In addition to the list above, projects should consider variables that have been found to be 

useful as explanatory variables in other monitoring efforts in the watershed, nearby, or in 

studies reported by state or university water quality experts. 

Projects should also consider explanatory variables based on their knowledge of the 

watershed, the pollutant sources to be treated, and pollutant pathways. A watershed 

implementation plan can be the source of much of this information and should be 

examined as part of the monitoring design process.

Analysis of Existing Data
For projects that have existing data, the rules of thumb outlined above can be challenged 

and tested, and a more refined examination of potentially useful explanatory variables can 

be performed. Some available exploratory techniques are described below, and readers are 

referred to Meals and Dressing (2005) for additional information and procedures.

Basic graphical techniques available in both spreadsheet software and more advanced 

statistical packages provide a quick, visual means of exploring relationships between 

two variables. The two-dimensional scatterplot, for example, is one of the most familiar 

graphical methods for examining the relationships between variables. This is a simple plot 

of paired values of one variable 

against another. Scatterplots 

can help reveal associations 

between two variables, whether 

the relationship is linear, 

whether different groups of data 

lie in separate regions of the 

scatterplot, whether variability 

is constant over the full range 

of data, and if seasonal patterns 

are evident. Figure 1 illustrates 

a scatterplot that indicates a 

relationship between suspended 

sediment concentration (SSC) 

concentration and flow. Figure 1. Scatterplot of SSC versus flow.
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Box and Whisker plots can reveal important explanatory variables. For example, if 

data are stratified into groupings of the explanatory variable, inspection of the Box and 

Whisker plots may reveal their importance. In this application, concentration/load 

values would be on the Y-axis, and groupings of the potential explanatory variable on the 

X-axis. Examples may include data stratified by season, baseflow and stormflow, or land 

management types. Visual inspection of medians and extreme values may indicate the 

need to use these variables as an explanatory variable.

Time series plots of water quality variable values versus time can reveal seasonal patterns 

in data. For example, weekly flow data from the Corsica River, MD, Clean Water Act 

Section 319 National Nonpoint Source Monitoring Program (NNPSMP) Project shows 

a pattern that indicates a seasonal pattern that should be accounted for in the monitoring 

program (Figure 2).

Although graphical approaches can help to reveal strong candidates for explanatory 

variables, they are not rigorous statistical approaches and do not reveal potential 

correlations between the explanatory variables being considered (e.g., multicollinearity). 

Examples of more advanced statistical approaches are provided below.

Statistical Measures to Determine Important Explanatory 
Variables
Univariate analyses
Correlation and regression analysis between primary and explanatory variables can help 

identify important relationships that can guide selection and use of explanatory variables 

in subsequent data analysis. Correlation analysis is supported by both spreadsheet and 

advanced statistical software. The output of a correlation analysis between two variables 

includes the correlation coefficient (r), which ranges from -1 to 1, and a probability value 

Figure 2.	 Time series of weekly flow from the Three Bridges Branch subwatershed of Corsica River National 
Nonpoint Source Monitoring Program Project.
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indicating the statistical significance of the correlation. The regression of a “Y” variable 

on an “X” variable reveals if there is a significant relationship as well, but also yields 

information on the significance, magnitude, and direction of the slope of the relationship. 

Similarly, correlation or regression analysis of primary variables with seasonal explanatory 

variables (e.g., sine/cosine seasonal components, monthly indicator variables) can be 

performed to test for significant seasonal patterns. 

Analysis of variance (ANOVA) and the non-parametric Kruskal-Wallis test are methods 

that can be used to test for differences between seasons. ANOVA analyzes the differences 

between group means whereas Kruskal-Wallis uses ranks to test whether samples 

originate from the same distribution.

Another approach to determining if a seasonal element exists in a dataset is to examine 

the autocorrelation structure, or the similarity between observations as a function of the 

time lag between them. This type of test is generally not available in spreadsheet software, 

but is commonly found in statistical software packages. A seasonal component in a data 

time series can be indicated by a strong positive autocorrelation at the seasonal lag value 

corresponding to the length of the seasonal cycle. For example, an annual cycle will 

appear as a strong positive autocorrelation at lag 12 when the data consists of monthly 

values. Negative autocorrelations may also appear at lag intervals corresponding to one-

half of the seasonal cycle length. So, while seasonality introduces variability to a dataset, 

it can also introduce autocorrelation which is discussed in greater detail under Data 

Examination and Required Adjustments. Thus, attention must be given to seasonality in the 

analysis of trends in NPS watershed studies, both to explain some of the variability in the 

primary variable and to adjust for seasonally-based autocorrelation to ensure valid results.

Multivariate analyses 
Multivariate statistical procedures such as factor analysis, principal component analysis 

(PCA), and canonical correlation analysis (CCA) are advanced procedures that can be 

used to define (and perhaps subsequently adjust for) complex relationships among variables 

such as precipitation, flow, season, land use, or agricultural activities that influence NPS 

problems. These procedures require a rich dataset that many projects will not have before 

monitoring begins. Projects can also use these methods later, however, to analyze newly 

collected data to strengthen regression analyses.  

Projects with robust historic datasets can apply PCA and factor analysis to help determine 

the most important water quality indicators and stressors, aiding in the selection of water 

quality and land use/treatment variables to be used in the monitoring program. PCA is 

a multivariate technique for examining linear relationships among several quantitative 

variables, particularly when the variables are correlated to each other. This technique can 

be used to determine the relative importance of each independent variable and determine 

the relationship among several variables. The results of PCA can often be enhanced 
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through factor analysis, which is a procedure that can be used to identify a small number 

of factors that explain the relationships among the original variables. One important 

aspect of factor analysis is the ability to transform the factors (i.e., reconfigure the linear 

combinations of original variables) from PCA so that they make more sense scientifically. 

The SAS procedures PROC PRINCOMP and PROC FACTOR can be used for these 

analyses (SAS Institute 2013).

CCA is a technique for analyzing the relationship between two sets of multiple variables 

(e.g., a set of nutrient variables and a set of hydraulic/climatic variables). This multivariate 

approach examines said relationship “by finding a small number of linear combinations 

from each set of variables that have the highest possible between-set correlations” (SAS 

Institute 1985). These linear combinations of variables can be used to guide selection of 

explanatory variables at the beginning of a monitoring program. 

The reader is referred to statistics textbooks, statistical software package guidance, and 

other sources for additional information on these multivariate techniques.

Incorporating Explanatory Variables in 
Statistical Trend Analyses
Explanatory variables can be incorporated into statistical trend analyses in a number of 

ways depending on the monitoring design used and the pattern of the trend. Monitoring 

designs addressed in this section include paired-watershed, above/below-before/after, 

nested-pair, and single-station trend designs. 

Trend Patterns
Possible trend patterns illustrated in Figure 3 include step, linear, monotonic, and ramp 

trends. A step trend is applicable when the BMPs are implemented in a short timeframe 

and a rapid water quality response is expected. A linear trend may be applicable when 

BMPs are implemented over time or water quality improvements are expected to be 

achieved over an extended period of time due to lag time associated with the gradual 

implementation and establishment of BMPs. Monotonic trends exhibit a gradual change 

Figure 3. Possible trend patterns for water quality data.



13

National Nonpoint Source Monitoring Program	 August 2014

over time that is consistent in direction, but not necessarily linear. Ramp trends may 

include time periods of little change (e.g., pre-BMP) followed by improving trends as 

BMP implementation occurs, and perhaps a leveling out when maximum water quality 

improvement has been achieved. The methods presented in this section focus on step, 

linear, and monotonic trends. 

Statistical Test Assumptions
The degree to which the data meet test assumptions must be assessed to ensure 

appropriate application of either parametric or nonparametric tests. Assumptions for the 

residuals4 from parametric trend tests are generally:

l	 Data are normally distributed and independent

l	 Variance is homogenous (i.e., variance doesn’t change over time)

l	 Residuals from the regression models are independent and normally distributed

Clearly, some of these tests can be performed prior to trend analysis, whereas others such 

as testing of residuals are completed as part of the trend analysis.

Data Examination and Required Adjustments
Exploratory data analysis (EDA) procedures should be applied to determine if a dataset 

satisfies the requirements of planned statistical tests. Readers are referred to Meals and 

Dressing (2005) for detailed information on EDA and data transformation in addition to 

what is presented below. 

Data Distribution and Transformation
Most statistics software packages contain a range of options for testing whether a dataset 

meets the distributional requirements of a statistical test, while spreadsheet software 

may be limited to tests for kurtosis and skewness. Nonpoint source datasets are often 

characterized by skewness caused by a long right tail in the distribution (i.e., higher values 

typically occurring during high flows). While many data transformations are possible, the 

log-transformation is most commonly used in NPS watershed studies to reduce skewness 

and enable valid results from parametric statistical trend tests. Data should be re-tested 

after transformation to confirm that test requirements are met. 

Autocorrelation
Time series data collected through monitoring of water resources often exhibit 

autocorrelation (also called serial correlation or dependent observations) where the value 

of an observation is closely related to a previous observation (usually the one immediately 

before it). Autocorrelation in water quality observations is usually positive in that high 

4	 Residuals are the differences between the observed and predicted values of the dependent variable (Y) 
in statistical trend analysis.
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values are followed by high values and low values are followed by low values. For example, 

streamflow data often show autocorrelation, as numerous high wet-weather flows tend to 

occur in sequence, while low values follow low values during dry periods. Autocorrelation 

can also be introduced by seasonality in a dataset.

Autocorrelation can affect statistical trend analyses and their interpretations because it 

reduces the effective sample size (degrees of freedom). Adjustment for autocorrelation is 

needed to ensure that trend tests yield valid results. For example, in a typical weekly or 

biweekly water quality dataset with positive autocorrelation, the significance of simple step 

and linear trends given by the test statistic is artificially increased if autocorrelation is not 

considered in the trend analysis, in some cases indicating a trend when it does not exist. 

In these cases, autocorrelation can be addressed by using a software regression program 

that incorporates the autocorrelation in the error term, for example PROC AUTOREG 

by SAS (SAS Institute 2010). Alternatively, a correction of the standard deviation of 

the slope estimate and revised confidence intervals can be used (see p. 11 of Spooner et 

al. 2011). Aggregating data by computing monthly means or medians from weekly data 

throughout the period of record will reduce autocorrelation, but this approach also reduces 

the sample size and information content of the dataset.

Trend Analysis: Statistical Models and Examples
The following sections provide details on appropriate statistical models to use for analysis 

of step and linear trends and examples using sample datasets accessible by the reader. 

Brief summaries of step and linear trend approaches are provided for readers with limited 

expertise or interest in statistics, followed by more detailed discussions for those with 

greater interest or expertise. Discussions highlight ways to incorporate explanatory 

variables into the analyses. Additional considerations are highlighted in Attachment 1.

Step Trends
Summary of Statistical Approach
Analysis of covariance (ANCOVA) is the most appropriate parametric test for assessing 

a step trend between mean water quality values from before and after BMPs are 

implemented. This method incorporates explanatory variables to isolate the effects of the 

BMPs. The appropriate statistical model will either accommodate a change in both slope 

and mean or just a change in mean. Explanatory variables can be added to either model. 

A t-test is performed to determine if there is a significant difference between the mean Y 

values (adjusted for explanatory variables) from the two periods.

Detailed Discussion of Statistical Method
The graphical depictions of conceptualized step trends in Figure 4 can be used to help 

select the appropriate statistical trend analysis model for NPS studies using the paired-

watershed, above/below-before/after, and single-station trend monitoring designs. In the 
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paired-watershed design (Figures 4A and 4B), for example, the regression relationships 

of the paired water quality observations from the treatment (Y-axis) and control (X-axis) 

watersheds are compared between the calibration (pre-BMP) and treatment (Post-BMP) 

periods. The trend test is the “step change” improvement in the treatment watershed 

calculated by comparing the LS-mean values of the water quality variable for each period. 

LS-means are means of the Y variable that have been adjusted for the explanatory variable 

values. The calculation of LS-means is described in detail on page 20. The red lines in 

Figures 4A and 4B indicate the comparison (“difference”) of the treatment watershed 

LS-means from the calibration and treatment periods evaluated at the control watershed 

value of “X-mean” which is the mean of all sampled values in the control watershed over 

the entire sampling duration (both treatment and calibration period). In the above/below-

before/after watershed study design (Figures 4C and 4D), the regression relationships 

of the paired water quality observations from the downstream (Y-axis) and upstream 

(X-axis) watersheds are similarly compared between the pre-BMP and post-BMP 

time periods. For a nested-pair watershed design, the paired values from the treatment 

watershed would be the “Y” variable and those from the control watershed would be the 

“X” variable as shown in Figures 4A and 4B. For a single-station trend design the water 

quality values in the pre- and post-periods are tested for a step change after adjusting 

for variability in at least one measured explanatory variables (e.g., stream flow as in 

Figures 4E and 4F).

In a statistical step trend model, the trend variable is “categorical,” meaning that all values 

can be ‘grouped’ into each of the distinct time periods: pre- or post-BMP. A t-test or 

analysis of variance (ANOVA) would be used to test for the step trend when evaluating 

only the mean water quality values before and after BMPs are implemented. Such a trend 

test, however, would not incorporate explanatory variables and would generally not be 

Figure 4. Conceptualized regression plots for step changes between pre- (calibration) and post-BMP (treatment) 
time periods for data from a paired-watershed design (A and B), an above/below-before/after design 
(C and D), and a single-station step trend design (E and F). 
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suitable for isolating the effect of BMPs. The ANOVA or t-test model becomes ANCOVA 

when explanatory variables are added to the model. ANCOVA combines the features of 

ANOVA with regression (Snedecor and Cochran 1989) and can be used to compare LS-

mean values from each period instead of simply comparing the unadjusted means. 

When applied to the analysis of paired-watershed data (Figures 4A and 4B), ANCOVA 

is used both (a) to compare pre- and post-BMP regression equations between water 

quality measurement values (e.g., sediment concentration/load) for the treatment and 

control watersheds and (b) to test for differences in the average value (e.g., of sediment 

concentration/load) for the treatment watershed between the two time periods after 

adjusting for measured values of the control watershed and other explanatory variables. 

In the analysis of an above/below-before/after watershed design (Figures 4C and 4D), 

the control variable is the upstream values (e.g., concentration/loads) which are paired 

with the values obtained from the monitoring site downstream of BMP treatment. The 

ANCOVA is used to determine if significant changes occurred in the downstream values 

in the post-BMP period compared to the pre-BMP period, after adjustment for variations 

in the upstream values.  

In the analysis of a single-station step trend design (Figures 4E and 4F), the control 

variable is values of the hydrologic variable (or other appropriate explanatory variable) 

which are paired with the values obtained from the monitoring site downstream of BMP 

treatment. The ANCOVA is used to determine if significant changes occurred in the 

downstream values in the post-BMP period as compared to the pre-BMP period, after 

adjustment for variations in the explanatory variable(s) values.  

There are two basic steps to performing ANCOVA: 

1.	 Determine the proper form of statistical trend model, considering both if the slopes 
are the same in the pre- and post-BMP periods, as well as inclusion of explanatory 
variables.

2.	Calculate the adjusted means (LS-means) and their confidence intervals to 
determine if there is a significant difference in the water quality pollutant values 
between the two periods. This is the estimate for the magnitude of change 
between the pre- (calibration) and post- (treatment) BMP periods.

The trend model that allows for different slopes for the pre- and post-BMP periods in the 

regression of the treatment watershed variable (Y-axis) on the control watershed variable 

(X-axis) is called the “Full Model” (Figures 4B, 4D, and 4F). If there is no statistically 

significant evidence of different slopes, a “Reduced Model” that assumes the same slope 

for each time period is appropriate (Figures 4A, 4C, and 4E). For example, in the paired-

watershed study:

l	 Full Model: The slope of these relationships changes from calibration to treatment 
period (Figure 4B). A change in slope indicates that pollutant concentrations 



17

National Nonpoint Source Monitoring Program	 August 2014

for the treatment watershed exhibited different response to conditions that also 
resulted in changes in the control watershed values, or magnitude, after BMPs 
were applied as compared to the calibration period.

l	 Reduced Model: The slope of the relationship between the treatment watershed 
concentrations/loads and control watershed concentrations/loads remains constant 
throughout both time periods (Figure 4A).  

The homogeneity of slopes (i.e., same or different slopes) is tested using the full model 

to determine which of these statistical trend models is appropriate by evaluating the 

significance of the interaction term (b3 in Equation 1). The full model for the paired-

watershed or above/below-before/after watershed designs is:

Equation 1. Full regression model.

Where:  

	 t	 =	 time of sample (e.g., date of sample taken; could also be sequential such 
as day or week or month since sampling began)

	 i	 =	 time period (e.g., pre-BMP or “Calibration” period or post-BMP or 
“Treatment” period)

	 Yt	 = 	 observation for Y at time t (e.g., weekly pollutant concentration or load 
from treatment watershed or downstream monitoring station)

	 X1t 	 = 	 observation for X1 at time t (X1 is the pollutant concentration or load 
from the control watershed or upstream monitoring station that is 
paired with Yt)

	 X2i	 = 	 Step Trend Variable value in period i (e.g., “0” for the “Calibration” 
period and “1” for the “Treatment” period). Because the values are not 
continuous, X2 is a categorical variable.

(X1t * X2i) = X3	 =	 interaction term that enables different regression slopes for the pre‑and 
post- BMP periods

	 Xct	 = 	 observation for Xc (covariate or explanatory variable) at time t 

	 b0	 = 	 y-intercept of the pre-BMP (calibration) period regression line (i.e., 
during the period for which X2i=0)

	 b1	 = 	 slope of the pre-BMP (calibration) period regression line (i.e., during 
the period for which X2i=0)
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	 b2	 = 	 regression coefficient on the trend variable X2i. Mathematically, this 
is also the difference in the Y-intercept between the calibration and 
treatment periods. 

	 b3	 = 	 regression coefficient indicating the statistical significance of the 
interaction term (e.g., statistical evidence of a different regression slope 
in the calibration vs. BMP treatment periods). Mathematically, this is 
also the difference in the slopes between the calibration and treatment 
periods.

	 bc	 = 	 regression coefficient for explanatory variable Xc 

	 k	 = 	 number of time periods (with only a calibration and treatment period, 
k=2)

	 d	 = 	 number of explanatory variables in addition to the control watershed 
variable and trend terms. For example, if only flow was used as a 
covariate, d=1 and the explanatory variable for flow would be X4.

	 et	 = 	 residuals or experimental error for the tth observation for Y (This would  
be Vt for an autocorrelated error structure, not discussed here.)

Notes:  

l	 Equation 1 can be expanded to more than two time periods, with the number 
of X terms added for the Step Trend Variable equal to k-1. For example, if there 
were three separate time periods for calibration, implementation of BMPs, and 
post-implementation of BMPs, then the two X terms would be X2a (with a 0, 1, 
and 0 value for the calibration, implementation, and post-implementation periods, 
respectively) and X2b (with a 0, 0, and 1 value for the calibration, implementation, 
and post-implementation periods, respectively).  

l	 As a practical matter, most software programs handle this categorical variable as 
a Class, Group, Categorical, or similar variable type so the actual X values do not 
have to be calculated by the user. Because the “0” and “1” values may be assigned 
by the software program in alphabetical order of the names of the time periods, it 
is best to assign the X2 variables values such that they are ordered alphabetically 
or numerically in the sequential time order. For example, calibration comes 
before treatment and “c” comes before “t” so calibration and treatment would 
be conveniently assigned “0” and “1”, respectively. One could name the same 
two periods “calibration” and “BMPs,” but they would be assigned “1” and “0”, 
respectively, requiring extra care in the interpretation of the statistical output.

l	 Because of the form of the trend model, additional explanatory variables (Xc) are 
assumed to have similar relationships to the water quality (Y) variable for each 
time period (e.g., no interaction terms with these variables and the trend variable. 
If this assumption is not expected to be valid, those interactions terms can be 
tested and the model adjusted if required.
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l	 X2i is also used to depict the step trend for the single-station trend design. X1t 
becomes the key explanatory variable ( e.g., stream flow), and other explanatory 
variables (Xc) can be included as appropriate.

This full statistical model allows the slopes to be different for each time period. 

Substituting the values of X2i into Equation 1 for the calibration (X21=0) and treatment 

(X22=1) periods, respectively, yields Equations 2 and 3:

Equation 2. Full regression model for the calibration period.

Equation 3. Full regression model for treatment period.

The homogeneity of slopes is determined by looking at the statistical significance of the 

interaction term, b3 in the statistical software program output. The full model is the 

correct model if the interaction term is significant. If there is no evidence for separate 

slopes, then a reduced model with the same slopes assumed for each group (based on 

pooled data) should be used.

When the reduced model with common slopes is used, the interaction term is dropped 

and the trend model is rerun. Equation 4 would then be used to describe the linear 

regression for each time period (i) which would have the same slope, but be allowed to 

have different intercepts:

Equation 4. Reduced regression model.

Where: 

	 b1	 =	 slope of both the pre-BMP (calibration) and post-BMP (treatment, 
X2i=1) period regression lines

	 (b0 + b2)	 =	 y-intercept of the post-BMP (X2i=1) period regression line 

           	Yt, X1t, X2i, c, d, b0, b2, bc, Xc, and et are defined as above.
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Finally, to test for a statistically significant trend, the LS-means and their confidence 

intervals are examined. LS-means correct for the bias in the X1 and Xc values between the 

pre- and post-BMP periods. The LS-mean of each period (pre- and post- BMP periods) 

is the period mean for Y (Yi) adjusted to the overall mean value of each of the X1 and Xc 

values. In other words, the LS-means are the calibration and treatment period regression 

values for the treated watershed evaluated at the mean of all the control watershed and 

explanatory values over both time periods (e.g., mean of all the X values). Operationally, 

inserting the mean of all X values into the regression equations for the calibration and 

treatment periods and evaluating the equations for the estimated adjusted value of Yi will 

yield the LS-mean values for each period, respectively. A t-test on the adjusted LS-means 

then determines if there is sufficient evidence to conclude that the adjusted LS-mean for 

the treatment period is different from the adjusted LS-mean for the calibration period. 

Most statistics software provides this information. The red lines in Figure 4 indicate the 

comparison of LS-means from the pre-BMP and post-BMP periods. For example, in 

Figure 4A, for the same concentration in the control watershed, there is a lower LS-mean 

value for the treatment watershed in the post-BMP period, indicating an improvement in 

water quality after BMP implementation.

Caution must be used when interpreting the results of comparing adjusted means in the 

full model with individual slopes. When the slopes are not parallel, the comparisons of 

adjusted means may not be the most meaningful question. One may be more interested 

in the behavior over the entire range of X. For example, the regression lines may cross, 

potentially indicating a breakpoint where BMP effectiveness kicks in as described by 

Meals (2001). In this case a graphical presentation may be most appropriate. 

Step Trend Example
Analysis of step trends is illustrated in Attachment 2 using data from Sinbad Creek (a 

simulated dataset based upon a watershed study). Step trend analysis was chosen for this 

example because implementation of livestock exclusion and pasture management occurred 

rapidly between the two monitoring sites and a step improvement in water quality was 

anticipated. Weekly TP and TSS loads were simulated from weekly grab samples and 

continuous flow monitoring conducted before and after BMP implementation. 

Linear Trend Over Time Analysis
Summary of Statistical Approach
The most appropriate parametric test for gradual trends is regression analysis. This 

approach requires paired observations of the primary variable and any explanatory 

variables used in the statistical model. Statistical models can be selected that address 

linear or ramp trends, and all appropriate explanatory variables (e.g., control watershed 

values, discharge, BMPs) can be added to the model. Simple linear regression involves 

a single explanatory variable, while multiple linear regression incorporates two or more 
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explanatory variables. Values of the primary variable are regressed against time and the 

explanatory variables, with a trend indicated by a slope on the trend (e.g., date) variable 

that is statistically different from zero.

Detailed Discussion of Statistical Method
Data from long-term, fixed-station monitoring programs where gradual responses such as 

those due to incremental BMP implementation are likely to occur are more aptly evaluated 

with trend analyses that correlate the response variable (i.e., pollutant concentration or 

load) with time and other independent explanatory variables such as measures of BMP 

implementation, control watershed or upstream station values, and discharge.  

The basic steps to performing trend analysis with explanatory variables include:  

1.	 Obtain paired observations of the primary and explanatory variables for each 
sampling date.

2.	Select the proper form of the statistical model. The type of trend should be 
specified based upon the timing of BMP implementation and the pattern of 
the water quality response (i.e., linear, or ramp trend). Include the appropriate 
explanatory variables.

3.	 From the regression analysis, obtain the estimate of the slope on trend (e.g., date). 
If the slope is statistically different from zero, calculate the amount of pollutant 
change over the monitoring period. 

The form of the regression model for a linear trend over time would be:

Equation 5. Regression model for linear trend.

Where: 

	 t	 =	 time of sample (e.g., date of sample taken; could also be sequential such 
as day or week or month since sampling began)

	 Yt	 =	 observation for Y at time t (e.g., weekly pollutant concentration or load 
from treatment watershed or downstream monitoring station)

	 X1t	 =	 observation for X1 at time t. For the paired, nested, or above/below-
before/after design, X1 is the pollutant concentration or load from the 
control watershed or upstream monitoring station that is paired with 
Yt. This variable is dropped for the single-station monitoring design.
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	 X2i	 =	 the tth time observation, Xt could be input as:

		  l	 a date value such as 6/5/13

		  l	 the number of days, weeks, or months since the start of monitoring

		  l	 a ramp trend variable (e.g., 0 for pre-BMP; 1, 2, 3, ………99 for 
post-BMP)

	 Xct	 =	 observation for Xc (covariate or explanatory variable) at time t 

	 b0	 =	 the overall intercept term. Note that this model does allow the 
intercept for each season or month to differ when indicator variables are 
used for seasons or months.

	 b1	 =	 regression coefficient on the control variable X1

	 b2	 =	 regression coefficient on the trend variable X2t

	 bc	 =	 regression coefficient for explanatory variable Xc 

	 k	 =	 number of time periods (with only a calibration and treatment period, 
k=2)

	 d	 =	 number of explanatory variables in addition to the control watershed 
variable and trend terms. For example, if only flow was used as a 
covariate, d=1 and the explanatory variable for flow would be X3.

	 et	 =	 residuals or experimental error for the tth observation for Y (This would 
be Vt for an autocorrelated error structure, not discussed here.)

For this statistical model, if the test on the t-statistic for b1 indicates that the slope versus 

time is significantly different from zero, the null hypothesis is rejected and it can be 

concluded that there is a linear trend in Y over time. The trend rate is equal to b1.

Note that this form of the regression model assumes that the overall trend is similar after 

adjusting for the explanatory variables. The validity of this assumption can be tested 

by including interaction terms. For example, the slopes of trends may vary by season, 

indicating the need to add an interaction term to account for seasonal influence. For 

additional insights into the broader topic of monotonic trend analyses, see Meals et al. 

(2011).

Linear Trend Example
Data from the Corsica River, MD, NNPSMP project (MDNR 2012) are used to 

illustrate linear trend analysis in Attachment 3. Linear trend analysis was chosen for 

this example because the impact of winter cover crops on TN concentration and load 

was expected to be gradual. Monitoring included continuous discharge and weekly flow-
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weighted composite samples for analysis of TN. The example dataset is from one of three 

treatment watersheds: Three Bridges Branch Subbasin. The data and conclusions are 

preliminary and project monitoring is expected to continue for at least 2 more years. 

Summary and Recommendations
The often extreme variability in NPS-related water quality data creates challenges in data 

interpretation that can only be met through sound design and execution of the monitoring 

plan coupled with defensible statistical analysis of the data. All NPS watershed projects 

designed to document water quality improvements and relate them to improved land 

management and treatment with BMPs should include explanatory variables in their 

monitoring programs. By collecting data on explanatory variables, projects strengthen 

their capabilities to detect true changes in water quality and isolate the likely causes of 

those changes. 
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Incorporating Seasonal Patterns into Trend Analysis
A range of options exist for factoring cyclic seasonal patterns into trend analysis, including 

the following four approaches:

l	 Using monthly or seasonal indicator variables

l	 Using sine and cosine trigonometric functions

l	 Using other explanatory variables that also exhibit seasonal patterns (e.g., 
streamflow)

l	 Using time series models with seasonal “differencing”

Monthly or Seasonal Indicator Variables
A common approach is to simply add monthly (or other seasonal) indicators to each 

observation in the dataset and incorporate these indicator variables into a regression 

model. The number of indicator variables needed is S-1, where S represents the number 

of time periods (e.g., months, seasons). For example (S-1) would be 11 when the cycle 

is annual, but where the same months behave similarly over the years. Each indicator 

variable (X1 through X11) is assigned a value of 0 or 1, as illustrated below: 

	 X1	 =	 “1” for “January” but “0” otherwise

	 X2	 =	 “1” for “February” but “0” otherwise

	 …

	 X11	 =	 “1” for “November” but “0” otherwise

	 Note:	 December values would all be represented by “0” values for X1-X11

These indicator variables enable the adjustment (or evaluation) of each monthly/seasonal 

trend. This approach forms the basis for seasonal adjustments used in nonparametric trend 

tests as illustrated in Example 3 in Meals et al. (2011). 

Trigonometric Functions
The trigonometric approach assumes that the sine or cosine term realistically simulates 

annual, semiannual, seasonal, or more frequent cycles. For annual cycles, 2 trigonometric 

terms would be used:  

l	 sin (2πt/n)

l	 cos(2πt/n)

Attachment 1.
Additional Information on Incorporating Explanatory 
Variables into Parametric Approaches



27

National Nonpoint Source Monitoring Program	 August 2014

Where:

t=1,2,3...N (N=total number of samples)

n = number of samples per year (e.g., 12 for monthly data, 52 for weekly data)

2π/n is known as the “fundamental frequency”, sometimes denoted as ω0

Note: a date variable (e.g., DATE) can be used instead of t with n=365.25 
because ‘DATE’ is a daily value.

Adding only an annual cycle assumes that the seasonal component can be described 

by a perfectly shaped sine wave, which is generally not the case. Additional terms 

corresponding to multiples of the fundamental frequency (also known as harmonics) 

should be added as explanatory variables. For example, if the sinusoidal model allowed a 

cycle every 12 months and every 6 months (twice the fundamental frequency), then the 

explanatory variables you would calculate to add to the statistical trend analyses would be:

l	 sin (2πt/n)

l	 cos(2πt/n)

l	 sin (2πt/2n)

l	 cos(2πt/2n)

Additional sine and cosine terms should be used until all the significant harmonics are 

represented. For example, if the maximum number of harmonics were used, there would 

be 11 explanatory variables for monthly data with a fundamental period of 12 months.

These trigonometric functions are added to the regression model such that Equation 1 

becomes, for example:

Equation 6. Regression model with trigonometric functions.

Where:

bd+4 and bd+5 are coefficients for the sine and cosine terms, respectively, and other 

terms are defined above and as for Equation 1.

Explanatory Variables with Seasonal Patterns
The third approach would be to use other explanatory variables that exhibit seasonal 

patterns similar to those of the primary variable(s) (e.g., streamflow or precipitation). The 

addition of such explanatory variables may account for a significant portion of the seasonal 

behavior, but the residuals of the trend statistical model should be tested to evaluate if 

significant seasonal patterns remain after addition of such explanatory variables. These 

variables would simply be added as Xc variables in Equations 1-5.
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Differencing
A fourth approach is to incorporate seasonality into a time series model using a technique 

called differencing. With this approach, the differences in monthly observations between 

each month and the same month in the previous year are calculated to create a new time 

series that is then used in a time series analysis. A downside of this approach is that the 

power to detect trends may be decreased. Readers are referred to Brocklebank and Dickey 

(1986) and other sources for additional information on this approach.  

Incorporating Variables Measured Very Frequently or Continuously into Trend 
Analysis
Trend analyses require that the explanatory series of data (Xt) has a one-to-one pair with 

the dependent variable series (Yt). Hydrologic and meteorologic data, however, are often 

collected more frequently than water quality samples. When matching water quality 

observations with variables measured more frequently it may be necessary to calculate 

summary values of these explanatory variables. For example, water quality sampling 

may be performed biweekly, but streamflow or ground water depth may be measured 

continuously, hourly, or daily. Depending on the specific explanatory variable, the primary 

variable observation can be paired with the mean, median, total, or extremes of the values 

measured for the explanatory variable over the timeframe represented by the primary 

variable observation. 

Incorporating Discrete or Infrequently Measured Explanatory Variables into 
Trend Analysis
Most of the explanatory variables in NPS watershed studies are continuous variables, 

as illustrated by the X-axis in Figures 4A-4F. Some land management variables, 

however, are discrete (e.g., number of cattle in a watershed) and most are usually 

recorded less frequently than water quality data. When performing trend analyses, the 

land management information for a given X variable may need to be repeated for the 

time range applicable to the analysis. For example, the conservation tillage acreage in a 

watershed may not change throughout the summer, so that same acreage would be paired 

with each water quality value recorded for the summer.
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Attachment 2.
Sinbad Creek. Above/Below-Before/After 
Watershed Design
A.	 Procedure using JMP software (SAS 2013) 

a.	 SAS Institute. 2013b. JMP® Version 11.0.1, 2013. SAS Institute Inc., Cary, NC. 
http://www.jmp.com/software/ (Accessed 7-18-14).  
Using their own statistics software, readers are encouraged to perform this analysis 
using the data set Sinbad.xlsx.

b.	 Analyze => Fit Model => Select “Y” Variable. Add variables to the Model Effects 
(“X” and “PERIOD”), highlight PERIOD and X variables in Select Column, 
select “Cross” in Model Effects to include interaction term, =>Run. Note that 
the Y variable is the downstream TP load (Log10_TP_Load_Downstream), 
while the upstream TP load (Log10_TP_Load_Upstream) and PERIOD are the 
explanatory X variables. PERIOD timeframes were selected to reflect conditions 
before and after installation of livestock exclusion and pasture management 
between the two monitoring sites.

c.	 Note regarding data setup:  

i.	 The input data set has columns for each of the variables: Y (Log10_TP_
Load_Downstream), X (Log10_TP_Load_Upstream), PERIOD, and 
DATE. Although DATE is not used in this example, it is useful to match 
the values in each row for Y, X, and PERIOD to the correct sample 
collection date so that the Y and X values are correctly paired. PERIOD 
can be “0” and “1” or “Calibration” and “Treatment” or any other numeric 
or character value desired. But, be aware that internal to SAS, “0” and “1” 
values will be generated based upon the alphabetical order – something to 
consider when interpreting the solutions for the regression line equations for 
each time period.

d.	 Note: if data exhibit autocorrelation (e.g., autoregression, order 1 or AR(1) error 
series), a corrected standard error on the differences between LS-means (which 
can be found in Table 7) can be estimated using Equation 7 (Spooner at al. 2011). 
The corrected standard error can then be used in the t-test to determine if this 
difference is statistically different from zero.

Equation 7. Correction of standard error for autocorrelation.

Where:

 ρ = autocorrelation coefficient at lag 1

se = standard error on the differences of the LS-means

http://www.jmp.com/software/
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e.	 The percent decrease in the original, untransformed scale can be calculated by 
(Spooner et al., 2011):

Equation 8. Equation to calculate percent decrease on the original, untransformed  
data scale when log10 transformed data are used in the step trend analysis.

f.	 Note: the statistical analysis steps are the same for the paired-watershed study 
design. The treatment watershed variable values are on the “Y” axis and the paired 
control watershed variables values are on the “X” variable.

B.	 Example: Weekly TP loads, Log10 Transformed, Analysis using JMP 

Step 1. Exploratory Data Analysis

Data were first examined to determine if they were independent and normally distributed. 

Log transformation of TP loads (lbs/week) was needed to meet the normality requirement.  

Step 2. Full Model, Log10 TP Weekly Load 

The full model was used to test for homogeneity of slopes between 

the calibration and treatment periods (Figure 5). JMP output 

for regression analysis is organized in a number of reports (SAS 

2013). Information in the Parameter Estimates report (Table 2) 

indicates that the interaction term is not statistically significant 

(Prob>0.2517). Thus, there is no evidence that the slope of the 

relationship between the downstream and upstream weekly load 

pairs is different in the treatment period as compared to the 

calibration period. It is therefore appropriate to rerun the trend 

model without the interaction term to enable the same (pooled 

over all the data) slope for both time periods.  

Table 2. Parameter Estimates report for full model regression for log TP.

Term Estimate Std Error t Ratio Prob> |t|

Intercept 0.8052209 0.033064 24.35 <.0001*

Log10_TP_Load_Upstream 0.8683563 0.061154 14.20 <.0001*

Period[Treatment-Calibration]  -0.293827 0.042749  -6.87 <.0001*

Period[Treatment-Calibration]*(Log10_TP_Load_Upstream+0.20483) 0.0847582 0.073843 1.15 0.2517
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Figure 5. Full model regression plot for log TP.

Interaction Term is not significant, Reduced model more appropriate
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Step 3. Reduced Model, Log10 TP Weekly Load

As noted in Step 2, the interaction term is not included in the reduced model to allow 

for a common, or pooled slope (Figure 6). The adjusted R² (RSquare Adj) in the 

Summary of Fit report (Table 3) indicates that 69 percent of 

the variability in downstream log TP loads is explained by the 

model. The Analysis of Variance report provides the F Ratio 

which is the test statistic for assessing whether the model 

differs significantly from a model where all predicted values 

are equal to the response mean (Table 4). The Prob>F gives 

the p-value for the test, with small values (<.0001* in this case) 

considered evidence that there is at least one significant effect 

in the model. The Parameter Estimates report (Table 5) shows 

that the slope (Log10_TP_Load_Upstream=0.9264871) is 

significant (Prob<.0001), confirming a strong relationship 

between the downstream and upstream paired data.  

Table 3. Summary of Fit report for log TP reduced regression model.

RSquare 0.695487

RSquare Adj 0.693979

Root Mean Square Error 0.389958

Mean of Response 0.428103

Observations (or Sum Wgts) 407

Table 4. Analysis of Variance report for log TP reduced regression model.

Source DF Sum of Squares Mean Square F Ratio

Model 2 140.31375 70.1569 461.3542

Error 404 61.43518 0.1521 Prob > F

C. Total 406 201.74893 <.0001*

Table 5. Parameter Estimates report for log TP reduced regression model.

Term Estimate Std Error t Ratio Prob>|t|

Intercept 0.805526 0.033076 24.35 <.0001*

Log10_TP_Load_Upstream 0.9264871 0.03429 27.02 <.0001*

Period[Treatment-Calibration]  -0.284982 0.042065  -6.77 <.0001*
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Figure 6. Reduced model regression plot for log TP.
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The Effect Tests report (Table 6) provides the F statistic for testing whether the effect of 

the variable (source) is zero, with the p-value for the test given as Prob>F. In this case, 

both Log10_TP_Load_Upstream and PERIOD have a significant effect. Figure 7 shows 

the Prediction Expression, or the equation used to predict the response. For example, the 

following equation (with rounding) would be applicable for the treatment (post-BMP) 

period.

The t-test of the LS-means from the calibration (0.61575720) and treatment 

(0.33077542) periods indicates a statistically different (and reduced) level of TP loading 

in the treatment period (Table 7). The Durbin-Watson test result in Table 8 indicates that 

there is some positive autocorrelation of the residuals (ρ = 0.3076). Durbin-Watson scores 

range between 0 and 4, with a value of 2 indicating no correlation. Ideally, the standard 

deviation would be corrected (as described above under A.d.) and the test for significance 

of the difference between the LS-means re-run (not shown here—see Attachment 3 for 

example). Because the data were log-transformed, the decrease on the original (non-

log) scale is calculated using Equation 8 (Spooner et al. 2011) with results shown in 

Equation 9. The result of this analysis indicates a change of 48 percent.

Table 6. Effect Tests report for log TP reduced regression model.

Source Nparm DF Sum of Squares F Ratio Prob > F

Log10_TP_Load_Upstream 1 1 111.01378 730.0308 <.0001*

Period 1 1 6.97966 45.8985 <.0001*

Figure 7. Prediction Expression for log TP reduced regression model.
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Table 7. Student’s t testing of difference in LS-means of log TP.

α=0.050  t=1.96585
LSMean[i] By LSMean[j]

Mean[i]-Mean[j]
Std Err Dif
Lower CL Dif
Upper CL Dif

Calibration Treatment Level Least Sq Mean

Calibration A 0.61575720

Treatment B 0.33077542

Calibration 0
0
0
0

0.28498
0.04206
0.20229
0.36767

Levels not connected by same letter are significantly different.

Treatment -0.285
0.04206
-0.3677
-0.2023

0
0
0
0

Level - Level Difference Std Err Dif Lower CL Upper CL p-Value

Calibration Treatment 0.2849818 0.0420647 0.2022888 0.3676748 <.0001*

Table 8. Durbin-Watson test for independence of residuals from the regression model 
for Log10_TP_Load_Downstream.

Durbin-Watson Number of Obs. AutoCorrelation Prob<DW

1.3730166 407 0.3076 <.0001*

Equation 9. Calculation of decrease on the original (non-log) scale.
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C.	 Example: Weekly TSS loads, Log10 Transformed, Analysis using JMP 

Data were first examined to determine if they were independent and normally distributed. 

Log transformation of TSS loads (lbs/week) was needed to meet the normality 

requirement. Testing of the full model revealed that the interaction term is significant 

(Prob=0.0005) (Table 9) and the full model is appropriate (Figure 8). 

Tables 9–12 provide information similar to that described in 

the previous example. For example, Table 9 shows that the 

slope (Log10_TSS_Load_Upstream=0.5551274) is significant 

(Prob<.0001), confirming a strong relationship between 

the downstream and upstream paired data. The adjusted 

R² in Table 10 indicates that 60 percent of the variability in 

downstream log TSS loads is explained by the model. The F 

Ratio test results in Table 11 indicate that there is at least one 

significant effect in the model. 

The LS-means in Table 12 show a statistically significant 

reduction in TSS loads in the treatment period (1.2466732) as 

compared to the calibration period (1.9527570). Examination 

of the slopes in Figure 8, however, indicates that the reductions 

in TSS are greater at conditions with lower TSS (e.g., lower 

flows). Figure 9 shows the prediction expression for Log10_TSS_Load_Downstream. 

No significant autocorrelation of residuals of the regression was observed (See Table 13 for 

the Durbin Watson test). Because the data were log-transformed, Equation 8 (results in 

Equation 10) was used to estimate a change of 80 percent in mean weekly TSS loads from 

the pre- to the post-BMP periods.

Table 9. Parameter Estimates report for log TSS full regression model.

Term Estimate Std Error t Ratio Prob>|t|

Intercept 1.3345455 0.088332 15.11 <.0001*

Log10_TSS_Load_Upstream 0.5551274 0.056535 9.82 <.0001*

Period[Treatment-Calibration]  -0.706084 0.063528  -11.11 <.0001*

Period[Treatment-Calibration]*(Log10_TSS_Load_Upstream-1.11364) 0.2586197 0.074072 3.49 0.0005*
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Figure 8. Full model regression plot for log TSS.
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Table 10. Summary of Fit report for log TSS full regression model.

RSquare 0.60489

RSquare Adj 0.601779

Root Mean Square Error 0.589063

Mean of Response 1.483762

Observations (or Sum Wgts) 385

Table 11. Analysis of Variance report for log TP reduced regression model.

Source DF Sum of Squares Mean Square F Ratio

Model 3 202.39860 67.4662 194.4295

Error 381 132.20539 0.3470 Prob > F

C. Total 384 334.60399 <.0001*

Figure 9. Prediction Expression for log TSS full regression model.
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Table 12. Student’s t testing of difference in LS-means of log TSS.

α=0.050  t=1.96621
LSMean[i] By LSMean[j]

Mean[i]-Mean[j]
Std Err Dif
Lower CL Dif
Upper CL Dif

Calibration Treatment Level Least Sq Mean

Calibration A 1.9527570

Treatment B 1.2466732

Calibration 0
0
0
0

0.70608
0.06353
0.58117
0.83099

Levels not connected by same letter are significantly different.

Treatment -0.7061
0.06353

-0.831
-0.5812

0
0
0
0

Level - Level Difference Std Err Dif Lower CL Upper CL p-Value

Calibration Treatment 0.7060838 0.0635282 0.5811739 0.8309936 <.0001*

Table 13.	Durbin-Watson test for independence of residuals from the regression model 
for Log10_TSS_Load_Downstream.

Durbin-Watson Number of Obs. AutoCorrelation Prob<DW

1.905797 385 0.0426 0.1545

Equation 10. Calculation of decrease on the original (non-log) scale. 
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Attachment 3.
Corsica River Single-Station Trend 
Monitoring Design
A.	 Procedure using JMP software (SAS 2013). 

a.	 SAS Institute. 2013b. JMP® Version 11.0.1, 2013. SAS Institute Inc., Cary, NC. 
http://www.jmp.com/software/ (Accessed 7-18-14). 
Using their own statistics software, readers are encouraged to perform this analysis 
using the data set Corsica.xlsx.

b.	 Analyze => Fit Model => Under “Model Specifications”

i.	 Select “Y” Variable (for this example, LTN_Conc or LTN_Load, which 
are the log-transformed weekly flow-weighted composite concentration or 
weekly load, respectively). 

ii.	 Select Trend variable (in this example, DATE) and add to “Construct 
Model Effects”. The Date variable is stored internally as a number that 
increases by one each subsequent day. 

iii.	Select other Explanatory Variables:
1)	 In this example, MONTH is included as a seasonal indicator variable, 

and has been set up in the data table as a “Modeling Type = Ordinal”. 
This will enable 11 df for the 12 months. Equivalently, X1, X2, …, 
X11 indicator variables could be created with values of 0 or 1 (see 
Attachment 1 for procedure details).  

2)	 In this example, annual cover crop acres (COVER CROP (acres)) is also 
included because the BMP installed was winter cover crops.

3)	 In this example, log10 weekly flow (L_FLOW) is added as an 
explanatory variable for the weekly concentration data.

iv.	=>Run

c.	 Note: if data exhibit autocorrelation (e.g., autoregression, order 1 or AR(1) error 
series), a corrected standard error on the trend slope (which can be found as “Std 
Error” for DATE in the “Parameter Estimates” report, Table 16) can be estimated 
using Equation 11 (Spooner at al. 2011). The corrected standard error can then be 
used to re-test for the statistical significance of the trend.

Equation 11. Correction of standard error for autocorrelation.

Where:

 ρ = autocorrelation coefficient at lag 1

se = standard error on the trend slope

http://www.jmp.com/software/
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d.	 Calculate percent change over time. The percent decrease in the original, 
untransformed scale can be calculated by (Spooner et al. 2011):

Equation 12. Equation to calculate percent decrease on the original, untransformed 
data scale when log10 transformed data are used in the linear trend analysis.  

This assumes the trend variable is DATE, coded as a ‘date’ format.

e.	 To plot the predicted values from the regression trend model:

i.	 On the top left of “Regression Output”, select Save Columns  Predicted 
Values. This will save a new column containing the predicted values at the 
end of the JMP data table.

ii.	 From the main data table menu: Graph Overlay Plot  Select Predicted 
Value as the “Y” and DATE as the “X”  OK

iii.	On top of the Overlay Plot, select “Connect Through Missing” to add a line 
connecting the points.

B.	 Example: Weekly TN Composite Samples Concentrations, Log10

	 Transformed vs Date, Analysis using JMP 

Step 1. Exploratory Data Analysis

Data were first examined to determine if they were independent and normally distributed. 

Log transformation of TN concentration (mg/l) was needed to meet the normality 

requirement. 

Step 2. Trend Model, Log10 TN Weekly Concentration 

The best trend model included explanatory variables for seasonality (MONTH), log 

transformation of weekly total flow (liters) (L_FLOW), and annual cover crop acres 

(COVER CROP (acres)). The R-Square value (adjusted) indicates that 35 percent of 

the variability in weekly LTN_Conc is explained by the model (Table 14). The F Ratio 

test results in Table 15 indicate that there is at least one significant effect in the model. 

Table 16 shows that the slope (DATE) of -1.261e-9 is statistically significant (Prob>[t] 

<.0001*). Using equation 12, the average percent change was:
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Table 14. Summary of Fit report for LTN concentration regression model.

RSquare 0.385474

RSquare Adj 0.351198

Root Mean Square Error 0.095831

Mean of Response 0.513519

Observations (or Sum Wgts) 266

Table 15. Analysis of Variance report for LTN concentration regression model.

Source DF Sum of Squares Mean Square F Ratio

Model 14 1.4459194 0.103280 11.2461

Error 251 2.3050953 0.009184 Prob > F

C. Total 265 3.7510147 <.0001*

Table 16. Parameter Estimates report for LTN concentration regression model.

Term Estimate Std Error t Ratio Prob>|t|

Intercept 4.2651538 0.793788 5.37 <.0001*

Date  -1.261e-9 2.37e-10  -5.32 <.0001*

Month[2-1] 0.046479 0.028005 1.66 0.0982

Month[3-2]  -0.024229 0.02693  -0.90 0.3692

Month[4-3] 0.0277314 0.025257 1.10 0.2733

Month[5-4] 0.0271395 0.02698 1.01 0.3154

Month[6-5] 0.0060973 0.028441 0.21 0.8304

Month[7-6]  -0.021351 0.030881  -0.69 0.4900

Month[8-7]  -0.019748 0.032455  -0.61 0.5434

Month[9-8]  -0.009332 0.032457  -0.29 0.7740

Month[10-9]  -0.06902 0.031078  -2.22 0.0273*

Month[11-10]  -0.074561 0.030027  -2.48 0.0137*

Month[12-11] 0.081474 0.030368 2.68 0.0078*

L_Flow 0.0512238 0.020067 2.55 0.0113*

Cover Crop (acres) 5.5619e-5 3.076e-5 1.81 0.0717
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The terms “Month[2-1]”, etc., are the coefficient estimates for the seasonal indicator 

variables. They indicate how much the average of each month’s values differs from the 

overall mean values. They are used in the regression predictor equation (Figure 10).

Three of the four explanatory variables (DATE, MONTH, L_FLOW) used in the 

regression model have a significant effect at the 95% confidence level, with COVER 

CROP (acres) having an effect at the 90% confidence level (Table 17). Figure 10 shows 

the Prediction Expression, or the equation used to predict the response. For example, the 

following equation (with rounding) would be applicable for April (MONTH=4):

Table 17. Effect Tests report for LTN concentration regression model.

Source Nparm DF Sum of Squares F Ratio Prob > F

Date 1 1 0.26017293 28.3300 <.0001*

Month 11 11 0.74580806 7.3828 <.0001*

L_Flow 1 1 0.05983779 6.5157 0.0113*

Cover Crop (acres) 1 1 0.03003297 3.2703 0.0717

Figure 10.	Prediction Expression for LTN 
concentration regression model.
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Figure 11 shows the plot of predicted values of LTN_Conc versus DATE. The seasonal 

pattern and an overall decreasing trend are clear from this figure. JMP also provides 

the user “leverage plots.” These leverage plots show the impact of adding an explanatory 

variable or “effect” to the model, given the other explanatory variables already in 

the model. For example, Figures 12 and 13 show the strong influence of DATE and 

MONTH on LTN concentration, supporting the pattern found in Figure 11. The 

influence of COVER CROP (acres) is less pronounced (p=0.07, see Table 16), yet 

COVER CROP (acres) is still significant at the 90% confidence level (Figure 14).

The Durbin-Watson test result in Table 18 indicates that there is some positive 

autocorrelation of the residuals (ρ=0.3945). In this case, the adjusted standard error 

becomes 3.6e-10 (versus 2.37e-10 in Table 16) using the approach described above under 

A.c. This results in a revised t Ratio and Prob>[t] of -3.5 and <0.001, respectively, for 

DATE in Table 16. The trend remains significant.

Figure 11. Plot of predicted values versus date for LTN concentration regression model.
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Figure 12.	Leverage plot for LTN concentration 
versus DATE.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

LT
N

_C
on

c 
Le

ve
ra

ge
 R

es
id

ua
ls

0.40 0.45 0.50 0.55 0.60

Month Leverage, P<.0001

Figure 13.	Leverage plot for LTN concentration 
versus MONTH.
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Table 18. Durbin-Watson test for independence of residuals from the regression 
model for log TN concentration.

Durbin-Watson
Number of 

Obs. AutoCorrelation Prob<DW

1.2062499 266 0.3945 <.0001*

C.	 Example: Weekly TN Composite Samples Loads, Log10  Transformed vs Date,

	 Analysis using JMP 

Step 1. Exploratory Data Analysis

Data were first examined to determine if they were independent and normally distributed. 

Log transformation of TN load (lbs/week) was needed to meet the normality requirement. 

Step 2. Trend Model, Log10 TN Weekly Load

The best trend model included explanatory variables for seasonality (MONTH) and 

annual cover crop acres (COVER CROP (acres)). The adjusted R² is 0.40 (Table 19), 

and the F Ratio in Table 20 is significant (Prob>F is <0.0001) indicating at least one 

significant effect in the model. The slope (DATE = -1.424e-9) in the regression model 

appears to be weakly statistically significant (Prob>[t] = 0.0826), as is the coefficient for 

COVER CROP (acres) (Table 21). The terms “Month[2-1]”, etc., are the coefficient 

estimates for the seasonal indicator variables. They indicate how much the average of 

each month’s values differs from the overall mean values. They are used in the regression 

predictor equation (Figure 18).
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versus COVER CROP (acres).
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Table 19. Summary of Fit report for LTN load regression model.

RSquare 0.432562

RSquare Adj 0.403289

Root Mean Square Error 0.330382

Mean of Response 2.871705

Observations (or Sum Wgts) 266

Table 20. Analysis of Variance report for LTN load regression model.

Source DF Sum of Squares Mean Square F Ratio

Model 13 20.968259 1.61294 14.7770

Error 252 27.506355 0.10915 Prob > F

C. Total 265 48.474614 <.0001*

Table 21. Parameter Estimates report for LTN load regression model.

Term Estimate Std Error t Ratio Prob>|t|

Intercept 7.6392053 2.671289 2.86 0.0046*

Date  -1.424e-9 8.17e-10  -1.74 0.0826

Month[2-1] 0.0309237 0.096542 0.32 0.7490

Month[3-2] 0.1171765 0.092376 1.27 0.2058

Month[4-3]  -0.070419 0.086834  -0.81 0.4182

Month[5-4]  -0.147059 0.092307  -1.59 0.1124

Month[6-5]  -0.132443 0.097628  -1.36 0.1761

Month[7-6]  -0.237887 0.105505  -2.25 0.0250*

Month[8-7]  -0.085802 0.111805  -0.77 0.4435

Month[9-8]  -0.077986 0.111807  -0.70 0.4861

Month[10-9] 0.0491881 0.106858 0.46 0.6457

Month[11-10] 0.2826064 0.100815 2.80 0.0055*

Month[12-11] 0.2625916 0.104015 2.52 0.0122*

Cover Crop (acres) 0.0003233 0.000105 3.09 0.0022*
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The significance of the effects of MONTH and COVER CROP (acres) is greater than 

that for DATE (Table 22), an observation supported by the leverage plots (Figures 15-17). 

Table 22. Effect Tests report for LTN load regression model.

Source Nparm DF Sum of Squares F Ratio Prob > F

Date 1 1 0.2331510 3.0371 0.0826

Month 11 11 16.763917 13.9621 <.0001*

Cover Crop (acres) 1 1 1.043763 9.5625 0.0022*

Figure 18 shows the Prediction Expression, or the equation used to predict the response. 

For example, the following equation (with rounding) would be applicable for April 

(MONTH=4):

The plot of predicted values of LTN_load versus DATE shows a clear seasonal pattern 

(Figure 19). The Durbin-Watson test result in Table 23 indicates that there is some 

positive autocorrelation of the residuals (ρ=0.4394). Using the approach described above 

under A.c., the adjusted standard error becomes 1.31e-9 (versus 8.17e-10 in Table 21). 

This results in a revised t Ratio and Prob>[t] of -1.09 and 0.28, respectively, for DATE in 

Table 21. The trend (slope on DATE) is now found to not be significant. The regression 

analysis should then be re-run without DATE as a variable, and focus on changes 

attributable to COVER CROP. 
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Figure 15.	Leverage plot for LTN load versus 
DATE.
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Figure 16.	Leverage plot for LTN load versus 
MONTH.
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Figure 19. Plot of predicted values versus date for LTN load regression model.

Table 23. Durbin-Watson test for independence of residuals from the regression 
model for log TN load.

Durbin-Watson
Number of 

Obs. AutoCorrelation Prob<DW

1.119256 266 0.4394 <.0001*

Figure 18.	Prediction Expression for LTN load 
regression model.

2.0

2.5

3.0

3.5

4.0

4.5
LT

N
_L

oa
d 

Le
ve

ra
ge

 R
es

id
ua

ls

0 200 400 600 800 1000 1200

Cover Crop (acres) Leverage, P=0.0022

Figure 17.	 Leverage plot for LTN load versus 
COVER CROP (acres).


