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Through the National Nonpoint Source Monitoring Program (NNPSMP), 
states monitor and evaluate a subset of watershed projects funded by the 
Clean Water Act Section 319 Nonpoint Source Control Program. 

The program has two major objectives:

1. To scientifically evaluate the effectiveness of watershed technologies 
designed to control nonpoint source pollution

2. To improve our understanding of nonpoint source pollution

NNPSMP Tech Notes is a series of publications that shares this unique 
research and monitoring effort. It offers guidance on data collection, 
implementation of pollution control technologies, and monitoring design, 
as well as case studies that illustrate principles in action. 

Statistical Analysis for Monotonic Trends

Introduction
The purpose of this technical note is to present and demonstrate the 

basic analysis of long-term water quality data for trends. This publication 

is targeted toward persons involved in watershed nonpoint source 

monitoring and evaluation projects such as those in the National Nonpoint 

Source Monitoring Program (NNPSMP) and the Mississippi River 

Basin Initiative, where documentation of water quality response to the 

implementation of management measures is the objective. The relatively 

simple trend analysis techniques discussed below are applicable to water 

quality monitoring data collected at fixed stations over time. Data collected 

from multiple monitoring stations in programs intentionally designed to 

document response to treatment (e.g., paired-watershed studies or above/

below-before/after with control) or using probabilistic monitoring designs 

may need to apply other techniques not covered in this technical note.

Trend Analysis
For a series of observations over time—mean annual temperature, or weekly 

phosphorus concentrations in a river—it is natural to ask whether the values are going up, 

down, or staying the same. Trend analysis can be applied to all the water quality variables 

and all sampling locations in a project, not just the watershed outlet or the receiving water. 

Broadly speaking, trends occur in two ways: a gradual change over time that is consistent 

in direction (monotonic1) or an abrupt shift at a specific point in time (step trend). In 

watershed monitoring, the questions might be “Are streamflows increasing as urbanization 

increases?” [a monotonic trend] or “Did nonpoint source nutrient loads decrease after the 

TMDL was implemented in 2002?” [a step trend]. When a monitoring project involves 

widespread implementation of best management practices (BMPs), it is usually desirable 

1 Linear trends are a subset of monotonic trends.
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to know if water quality is improving: “Have suspended sediment concentrations gone 

down as conservation tillage adoption has gradually increased?” [a monotonic trend] or 

“Has the stream macroinvertebrate community improved after cows were excluded from 

the stream with fencing in 2005?” [a step trend]. If water quality is improving, it is also 

important to be able to state the degree of improvement. 

Trend analysis has advantages and disadvantages for the evaluation of nonpoint source 

projects, depending on the specific situation (Table 1). Simple trend analysis may be the 

best — or only — approach to documenting response to treatment in situations where 

treatment was widespread, gradual, and inadequately documented, or where water quality 

data are collected only at a single watershed outlet station. For data from a short-term 

(e.g., 3 years) monitoring project operated according to a paired-watershed design (Clausen 

and Spooner 1993), analysis of covariance (ANCOVA) using data from the control 

watershed may be more appropriate than trend analysis to evaluate response to treatment 

because it directly accounts for the influences of climate and hydrology in a short-term data 

set. In contrast, for a long data record from a single watershed outlet station, trend analysis 

may be the best approach to evaluate gradual change resulting from widespread BMP 

implementation in the watershed in the absence of data from a control site.

Table 1. Advantages and disadvantages of simple trend analysis as the principal approach for evaluation of 
nonpoint source monitoring projects.

Advantages Disadvantages

Can be done on data from a single monitoring 
station

Usually requires long, continuous data record

Does not require calibration period Difficult to account for variability in water quality data 
solely related to changes in land treatment or land 
management 

Applicable to large receiving waterbodies that 
may be subject to many influences

Not as powerful as other watershed monitoring designs 
that have baseline (or pre-BMP data) with controls (e.g., 
control watershed or upstream data), especially with small 
sample sizes

Useful for BMPs that develop slowly or 
situations with long lag times

Provides no insight into cause(s) of trend

The application of trend analysis to evaluate the effects of a water quality project 

depends on the monitoring design. Data from a watershed project that uses an upstream/

downstream or before/after study design where intensive land treatment occurs over a 

short period generating an abrupt or step change may be evaluated for a step trend using 

a variety of parametric and nonparametric tests including the two sample t-test, paired 

t-test, sign test, analysis of (co)variance, or Kruskal-Wallis test. In general, these tests are 

most applicable when the data can be divided into logical groups.
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On the other hand, data from long-term, fixed-station monitoring programs where 

gradual responses such as those due to incremental BMP implementation or continual 

urbanization are of most interest, are more aptly evaluated with monotonic trend analyses 

that correlate the response variable (i.e., pollutant concentration or load) with time 

or other independent variables. These types of analyses are useful in situations where 

vegetative BMPs like the riparian buffers implemented in the Stroud Preserve NNPSMP 

project (Newbold et al. 2008) must mature, resulting in gradual effects expressed over 

time. Trend analysis of data collected in a large receiving waterbody such as a lake or 

estuary may be the principal way of evaluating large, complex watershed programs. The 

Chesapeake Bay Program has conducted trend analyses since the early 1990s to detect 

and quantify water quality responses in the Bay to nutrient reduction actions to measure 

progress toward Bay restoration goals (CBP 2007). While the examples in this technical 

note focus on detection of changes in concentration of individual pollutants with respect 

to time, these tools can also be used when evaluating the relationship between variables 

such as chlorophyll and nutrients.

Trend analysis needs to account for the variability in water quality 

data that can be due to many factors, including:

l Seasonal cycles;

l Diurnal cycles;

l Variations in hydrology and weather;

l Human activities and management;

l Measurement error;

l Natural variability; and

l Actual trends

The task of trend analysis is to characterize and account for other sources of variation and 

to identify and quantify the actual trend in a statistically rigorous way.

It is important to recognize some other limitations of trend analysis. Trend analysis is 

more effective with longer periods of record. Short monitoring periods and small sample 

sizes make documentation of trends more difficult. Most importantly, the statistical 

methods discussed below can help identify trends and estimate the rate of change, but 

will not provide much insight in attributing a trend to a particular cause. Interpreting 

the cause of a trend requires knowledge of hydrologic processes, land use, and human 

activities in the watershed. Establishing causality requires a different study design.

Finally, in looking for trends in water quality, it is important to recognize that some 

increasing or decreasing patterns in water quality especially over short time periods are 

not trends. Many water quality variables exhibit seasonality as a result of temperature, 

Statistical trend analysis can help to 
identify trends and estimate the rate of 
change, but will not provide much insight 
in attributing a trend to a particular cause. 
Interpreting the cause of a trend requires 
knowledge of the watershed, and a 
specific study design.
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precipitation, and flow. A snapshot of water quality data from a few months may suggest 

an increasing trend, while examination of an entire year shows this “trend” to be part 

of a regular cycle associated with temperature, precipitation, or cultural practices. 

Autocorrelation—the tendency for the value of an observation to 

be similar to the observation immediately before it—may also be 

mistaken for a trend over the short term. Changes in sampling 

schedules, field methods, personnel, or laboratory practices may 

also cause shifts in data that could be erroneously interpreted as 

trends. Characterization of project data through exploratory data 

analysis (see Tech Note #1) will help recognize and account for such 

features in a dataset.

General Considerations
Is a simple trend analysis appropriate?
The first step in trend analysis is to decide if it is an appropriate tool for answering the 

questions you have about project data. Effective trend analysis requires a fairly long 

sequence of data collected at a fixed location, collected by consistent methods, with few 

long gaps. It has been suggested that five years of monthly data are the minimum for 

monotonic trend (continuous rate of change, increasing or decreasing) analysis; for a 

step trend (abrupt shift up or down), at least two years of monthly data before and after 

treatment are required (Hirsch 1988). These time frames are only guidelines; longer 

periods of record and/or more intensive sampling frequency would generally provide a 

greater sensitivity to detect smaller changes. Trend analysis is best suited for a situation 

where the land treatment program has been successful in implementing BMPs over an 

extensive portion of the critical area, implementation occurs over several years, and water 

quality change is expected to be gradual. 

The water resource type, project design, type of land treatment, and implementation 

schedule largely determine the type of trend to be expected. Most of the trend analysis 

techniques discussed in this publication apply to the evaluation of a monotonic trend, the 

kind of change that might be expected in response to gradual, widespread implementation 

of BMPs. Step trends may occur in response to an abrupt change in the watershed, such 

as the completion of a detention pond or a ban on winter manure application. To properly 

evaluate a step trend, it is critical to have a solid a priori hypothesis concerning when the 

step change took place; examination of the data themselves to search for the best place 

to locate a shift is inappropriate. Although techniques exist for testing for step trends, in 

many cases a two-sample test (e.g., t-test of before vs. after) may be a better choice when 

an abrupt change at a specific point in time is expected.

All increasing or decreasing patterns in 
water quality are not trends. Characterize 
your data to avoid misinterpreting seasonal 
cycles, autocorrelation, or changes in 
monitoring methods as significant trends.

https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/nonpoint-source-monitoring-technical-notes
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Explore the data first
Before beginning trend analysis, define the question that needs to be answered and then 

conduct exploratory data analysis (EDA) on the data set (see Tech Note #1). EDA will 

often give preliminary indications of trends and set the stage for further trend analysis. 

Use EDA to evaluate how well the data satisfy assumptions of parametric statistical 

analysis (normal distribution, constant variance, and independence), evaluate the 

effectiveness of transformations, and characterize relationships between variables. EDA 

can reveal important explanatory variables (covariates) like flow or precipitation that 

drive dependent variables at this point. Some trend analysis techniques can account for 

covariates.

Evaluate the data set for significant missing observations, such as a year-long interruption 

in the middle of a 7-year program. Some techniques are sensitive to gaps in data 

collection. If a long gap exists in the data, step trend procedures (e.g., assessing the 

difference in sample means between the two periods using a two-sample t-test) may be 

more appropriate than the monotonic trend analysis techniques discussed below. Although 

there is no specific decision rule, Helsel and Hirsch (1992) advise using step trend rather 

than monotonic trend analysis if a data gap is greater than one-third of the total record.

Select variables
Trend analysis can be applied to all the water quality variables and all sampling locations 

in the project. In large projects tracking many variables at many stations, this can be a 

daunting task. If full analysis is not feasible, there are several options. First, a subset of 

monitored variables can be selected, focusing on those expected to be most responsive to 

land treatment or those that directly relate to water quality impairment. Alternatively, it 

may be possible to use an index that combines information from a number of variables, 

such as the Index of Biotic Integrity (IBI) for stream fish communities (Karr 1981), or 

the Oregon Water Quality Index (OWQI) that integrates measurements of temperature, 

dissolved oxygen, BOD, pH, ammonia+nitrate nitrogen, total phosphate, total solids, 

and fecal coliform (Cude 2005). Third, overall water quality trends have been efficiently 

assessed and presented by conducting trend analysis on principal components as surrogate 

variables for individual water quality constituents (Ye and Zou 1993).

Data reduction and flow adjustment
Before proceeding to trend analysis tests, it may be necessary or beneficial to perform 

some preliminary data reduction. Transformations may be necessary to satisfy assumptions 

for parametric analysis. If sampling has been collected regularly at very frequent intervals, 

the data can be aggregated to standard periods (e.g., from daily observations to monthly 

means or medians). Adjusting data because of changing sampling frequency (i.e., weekly 

https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/nonpoint-source-monitoring-technical-notes
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in years 1–5, monthly in years 6–10) requires subsampling from the higher frequency 

data to create data of the same frequency as the lower frequency to preserve constant 

variance. For example, do not compute monthly averages from weekly data in the early 

part of the record to combine with monthly data collected in the more recent part of the 

record. Rather, randomly choose one sample per month from the weekly data to construct 

a consistent data record of monthly samples. On the other hand, aggregating data, by 

computing monthly means or medians from weekly data throughout the period of record 

will reduce autocorrelation. 

The flow-weighted or time-weighted mean concentrations are common methods to 

aggregate data collected with high frequency (Richards and Baker 1993). Flow-weighted 

mean concentration (FWMC) can be defined as:

FWMC = 
∑ ciqiti

∑ qiti

where ci is the concentration of the ith sample, qi is the instantaneous flow associated 

with the ith sample, and ti is the time associated with the ith sample. In other words, the 

FWMC is calculated by dividing the total pollutant load by the total flow volume over a 

given time period. The FWMC can be thought of as pollutant load normalized for flow 

or a flow-proportional concentration. 

The time-weighted mean concentration (TWMC) can be defined as:

TWMC = 
∑ citi

∑ ti

In a fixed-frequency sampling program, the TWMC would be identical to the arithmetic 
mean of the observed concentrations.

Because much of the variance in nonpoint source pollutant concentra-

tions may result from variation in streamflow, flow adjustment is a 

common technique to prepare for trend analysis. Removing this source 

of variance from the data makes subsequent trend tests more power-

ful and prevents the identification of a trend in concentration when it 

is the result of correlation with flow. When flow effects are removed 

from a record of concentrations, the test performed becomes a test for 

a time trend in the flow-adjusted concentrations versus time. 

A regression of concentration against some function of discharge is computed and the 

residuals (the differences between observed concentrations and concentrations predicted 

from the regression, i.e., flow-adjusted concentrations) are then tested for trend. Examples 

of this analysis are found in Hirsch et al. (1991) and Helsel and Hirsch (1992). This 

Flow adjustment is a common technique to 
prepare for trend analysis. Removing this 
source of variance from the data makes 
subsequent trend tests more powerful 
and prevents the identification of a trend 
in concentration when it is the result of 
correlation with flow.
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technique requires that a relationship exists between concentration and discharge. For 

this procedure to be valid, the streamflow distribution must be stationary, i.e., be itself 

free of trend. If the distribution of streamflow has changed over the period of record (e.g., 

because of diversions, detention ponds, or stormwater BMPs), then residuals analysis or 

any other flow-adjustment technique should not be used. Presence or absence of trend 

in flow can be verified through knowledge of changes in watershed hydrology or by 

independent analysis of trends in the streamflow record itself. Where streamflows are not 

stationary, it may be possible to remove the effects of varying hydrologic conditions on 

the concentration variable by using some appropriate measure of basin precipitation as a 

covariate or account for hydrologic changes by other trend analysis techniques.

Alternatively, because land treatment effects are generally expected to change the 

relationship between concentrations and flow, an analysis of covariance will usually be 

appropriate. 

Graphing
Before proceeding to intensive numerical analysis, it is useful to re-examine the time 

series plots developed earlier in the process of exploratory data analysis. Visual inspection 

of a time series plot is the easiest way to look for a trend, but data variability may obscure 

a trend. Visualization of trends in noisy data can be clarified by various data smoothing 

techniques. Plotting moving averages or medians, for example, instead of raw data points, 

reduces apparent variation and may reveal general tendencies. Spreadsheets like Excel can 

display a moving-average trend line in time-series scatterplots with adjustable averaging 

periods. A more complex smoothing algorithm, such as LOWESS (LOcally WEighted 

Scatterplot Smoothing), can reveal patterns in very large datasets that would be difficult 

to resolve by eye. LOWESS is computationally intensive (see Helsel and Hirsch 1992), 

but computer programs exist that make the procedure relatively easy to accomplish.

Note, however, that visualization has limitations because people tend to focus on outliers, 

strong seasonal variation can mask trends in a variable of interest, and gradual trends 

are difficult to detect by eye alone. Additionally, simple visualization cannot adequately 

quantify the magnitude of a trend. Visualization is not a substitute for the hypothesis 

testing discussed below.

Monotonic Trend Analysis
A number of statistical tests are available to identify and quantify monotonic trends 

in a way that is defensible and repeatable. Statistical trend analysis is a hypothesis-

testing process. The null hypothesis (HO) is that there is no trend; each test has its own 

parameters for accepting or rejecting HO. Failure to reject HO does not prove that there 
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is not a trend, but indicates that the evidence is not sufficient to conclude with a specified 

level of confidence that a trend exists.

Table 2 lists some trend tests available for different circumstances, including adjustments 

for a covariate and the presence of seasonality. The tests are further divided into para-

metric, nonparametric, and mixed types. Parametric tests are considered more powerful 

and/or sensitive to detect significant trends than are nonparametric tests, especially with 

a small sample number. However, unless the assumption of normal distribution for para-

metric statistics is met, it is generally advisable to use a nonparametric test (Lettenmaier 

1976, Hirsch et al. 1991, Thas et al. 1998). Both parametric and nonpara metric tests 

require constant variance and independence. Methods for testing assumptions of distri-

bution, constant variance, and independence required for parametric linear regressions 

are discussed in detail in USEPA (1997a). Nonparametric tests provide higher statistical 

power in case of nonnormality and are robust against outliers and large data gaps.

Table 2. Classification of tests for trend (adapted from Helsel and Hirsch 1992)

Type of test
Not Adjusted for  

covariate (X) Adjusted for covariate (X)

No 
seasonality

Parametric Linear regression of Y on t Multiple linear regression of Y on X and t

Mixed – Mann-Kendall on residuals from regression of Y on X

Nonparametric Mann-Kendall Mann-Kendall on residuals from LOWESS of Y on X

Seasonality

Parametric Linear regression of Y on t 
and periodic functions

Multiple linear regression of Y on X, t, and periodic 
functions

Mixed Regression of 
deseasonalized Y on t

Seasonal Kendall on residuals from regression of Y on X

Nonparametric Seasonal Kendall on Y Seasonal Kendall on residuals from LOWESS of Y on X

Y = dependent variable of interest; X = covariate, t = time

These tests will be discussed below, with emphasis on linear regression, Mann-Kendall, 

and seasonal Kendall procedures. For more detailed information, consult the references 

listed at the end of this technical note.

Tests without covariates (Y versus time)
Parametric test: Linear regression of Y on t (Example 1, p. 18). 
If project data satisfy all the assumptions necessary for linear regression (Y is linearly 

related to t, residuals are normally distributed, residuals are independent, and variance of 

residuals is constant), a simple linear regression of Y on time is a test for linear trend:

Y = β0 + β1t + ε

The null hypothesis is that the slope coefficient β1 = 0. The t-statistic on β1 is tested 

to determine if it is significantly different from zero. If the slope is nonzero, the null 
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hypothesis is rejected and it can be concluded that there is a linear trend in Y over time, 

with rate equal to β1. Missing values are allowed. In some cases, it might have been 

necessary to log transform the data to satisfy the above regression assumptions. In this 

case, the trend slope will be expressed in log units. A linear trend in log units is an 

exponential trend in original units. This can be expressed in percent per year to make the 

trend easier to interpret. If β1 is the estimated slope of the linear trend in log10 units, then 

the percentage change over any given year is (10β1 – 1)* 100. When there is no trend, the 

slope is zero and the equation results in zero percent change (i.e., β1 = 0). 

Nonparametric test: Mann-Kendall (Example 2, p. 19)
If the data do not conform to a normal distribution, the Mann-Kendall test can be 

applied. This test evaluates whether y values tend to increase or decrease over time 

through what is essentially a nonparametric form of monontonic trend regression analysis. 

The Mann-Kendall test analyzes the sign of the difference between later-measured data 

and earlier-measured data. Each later-measured value is compared to all values measured 

earlier, resulting in a total of n(n-1)/2 possible pairs of data, where n is the total number 

of observations. Missing values are allowed and the data do not need to conform to 

any particular distribution. The Mann-Kendall test assumes that a value can always be 

declared less than, greater than, or equal to another value; that data are independent; and 

that the distribution of data remain constant in either the original units or transformed 

units (Helsel and Hirsch 1992). Because the Mann-Kendall test statistics are invariant to 

transformations such as logs (i.e., the test statistics will be the same value for both raw and 

log-transformed data), the Mann-Kendall test is applicable in many situations.

To perform a Mann-Kendall test, compute the difference between the later-measured 

value and all earlier-measured values, (yj-yi), where j>i, and assign the integer value of 1, 

0, or –1 to positive differences, no differences, and negative differences, respectively. The 

test statistic, S, is then computed as the sum of the integers:

n-1

∑
i=1

n

∑
  j= i+1

S = sign (yj - yi)

Where sign(yj - yi), is equal to +1, 0, or -1 as indicated above. 

When S is a large positive number, later-measured values tend to be larger than earlier 

values and an upward trend is indicated. When S is a large negative number, later values 

tend to be smaller than earlier values and a downward trend is indicated. When the 

absolute value of S is small, no trend is indicated. The test statistic τ can be computed as:

τ  = 
S

n(n - 1)/2
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which has a range of  –1 to +1 and is analogous to the correlation coefficient in regression 

analysis. The null hypothesis of no trend is rejected when S and τ are significantly 

different from zero. If a significant trend is found, the rate of change can be calculated 

using the Sen slope estimator (Helsel and Hirsch 1992):

β1 = median (        )yj - yi

xj - xi

for all i < j and i = 1, 2, …, n-1 and j = 2, 3,…, n; in other words, computing the slope for 

all pairs of data that were used to compute S. The median of those slopes is the Sen slope 

estimator.

Tests accounting for covariates
Variables other than time usually influence the behavior of water quality variables. 

These covariates are usually natural phenomena such as precipitation, temperature, 

or streamflow. By removing the variation caused by these explanatory variables, the 

noise may be reduced and a trend revealed. Correction for hydrologic and meteorologic 

variability is essential in both parametric and nonparametric trend tests to determine if 

the statistically significant trends are due to processes and transport changes such as land 

use changes, or to artifacts of system variability.

Selection of an appropriate covariate is critical. It should be a measure of the driving 

force behind the behavior of the variable of interest, but must not be subject to human 

manipulation during the course of the project, i.e., must not be changed by BMPs or 

the land treatment program. In nonpoint source monitoring, much of the variance in 

concentration data is usually a function of runoff and streamflow; thus, natural streamflow 

is a commonly used covariate in trend analysis. However, streamflow should not be used 

as a covariate if the land treatment program itself affects streamflow, such as with urban 

stormwater infiltration practices or conservation tillage. In such cases, precipitation may 

be a good choice for a covariate.

In deciding whether or not to remove the variation caused by flow from a data set, 

consider project objectives and the nature of the land treatment program. If a land 

treatment program has caused a measurable change in the watershed flow regime, such 

a change may in fact be a desired outcome and the resulting trend in both flow and 

pollutant concentration may be important to detect and quantify. Removing variation 

caused by flow may risk reducing the magnitude of any trend in concentration alone 

below detection level, considering other noise in the system. On the other hand, failure 

to account for a trend in flow that is not associated with the land treatment program may 

result in showing a trend in concentration where none exists. It is generally advisable to 

test the covariate data set independently for trend before proceeding. 
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Parametric: Multiple linear regression of Y on X and t
Multiple linear regression can be used to account for the effects of other variables such 

as flow, land management, or other water quality characteristics on a response variable. 

Multiple regression includes covariates in trend analysis in a single step. Appropriate 

covariates are those that are correlated with the water quality variable Y and adjust for 

changes in climate to better isolate trends due to BMPs. Consider multiple regression of 

concentration (Y) versus time (t) and flow (Q ):

Y = β0 + β1 t + β2 Q + ε

The test accounts for the effects of the covariate by including them in the regression 

model. The null hypothesis for the trend test is β1 = 0; the t-statistic for β1 tests for trend. 

If the coefficient β2 for the covariate is not significantly different from zero, the effect of 

the covariate is not significant and a simple regression model of Y on t should be used. 

An exception to this would be the case where flow is increasing over time and the effects 

of increasing flow are already accounted for in the time component; in such a case, flow 

might still be logically included in the regression model even if β2 is not different from 

zero. It should be emphasized that as for simple linear regression, the assumptions that Y 

is linearly related to t and Q , that residuals are normally distributed and independent, and 

that variance of residuals is constant must be satisfied to use this test properly.

Mixed: Mann-Kendall on residuals from regression of Y on X
This is a hybrid test that includes removal of covariate effects by a parametric procedure, 

followed by a nonparametric test for trend. If a reasonable linear regression can be 

obtained (i.e., residuals have no extreme outliers, Y is approximately linear with X), the 

regression between Y and one or more Xs (i.e., Y = β0 + β1 X + ε) can remove the effect of 

X prior to performing the Mann-Kendall test for trend. 

The residuals (R) from the regression model are computed as observed minus predicted 

values:

R = Y - β0 + β1 X

Then the Kendall S statistic is computed on the R-time data pairs and tested to see if 

it differs significantly from zero. If assumptions for parametric statistics are seriously 

violated, a fully nonparametric alternative (e.g., using LOWESS) should be selected to 

estimate the relationship between Y and X as described in the next section. 

Nonparametric: Mann-Kendall on residuals from LOWESS of Y on X
The LOWESS smoothing technique describes the relationship between Y and a covariate 

X without assuming linearity or normality of residuals. Applying LOWESS smoothing to 

a scatterplot of X and Y is roughly analogous to regression, without forcing a straight line. 

Given the LOWESS fitted value Y’, the residuals (R) are computed as:

R = Y - Y’

Then, the Kendall S statistic is computed on the R-t data pairs and tested to see if it 

differs significantly from zero. 
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If the distribution of the data is unknown or known to violate parametric assumptions, 

this procedure should be used instead of the parametric or mixed tests.

Seasonality
Frequently, changes between seasons are a major source of variation 

in water quality data because land management and use change 

with the seasons. Most concentrations in surface waters show 

strong seasonal patterns. Seasonal variation in streamflow is an 

important component of this seasonality, but biological processes 

(e.g., enhanced survival of fecal microorganisms in colder water temperatures, release of 

nitrogen through decomposition) and management activities (e.g., fertilizer applications, 

tillage) often contribute to seasonal variation. Thus, some techniques beyond controlling 

for the effects of a flow covariate are often necessary for water quality trend analysis.

Some trend analysis techniques require you to define a “season” in advance. Examination 

of box plots of data by season or other graphical displays may help identify reasonable 

divisions. In general, seasons should be just long enough so that some data are available 

for most of the seasons in most years of monitoring. If data are collected or aggregated 

on a monthly frequency, for example, seasons should be defined representing each of the 

12 months. If data are considered in quarterly blocks, there should be four seasons. In 

agricultural settings, it may make sense to consider either two or four “seasons”: cropping 

and non-cropping, or non-cropping, seed preparation, cropping, and harvest.

Parametric: Linear regression of Y on X, t, and periodic functions 
Periodic functions like sine and cosine can be used to describe cyclic seasonal variations in 

a multiple regression model, with or without covariates. For an annual cycle:

Yτ = β0 + β1sin (2πt/n) + β2 cos(2πt/n) + β3 t + other terms + ετ

Where: t=1,2,3...N  (N=total number of samples) 

n = number of samples per year (e.g., 12 for monthly data, 52 for weekly data) 

note: a “DATE” variable can be used instead of ‘t’ with n=365.25 because ‘DATE’ 

is a daily value.

Where “other terms” are covariates such as flow, precipitation, or other influences. The 

trend test is conducted by determining if the slope coefficient on t (β3) differs significantly 

from zero. This test assumes that the sine and cosine terms realistically simulate annual 

seasonal cycles. Of course, the usual assumptions of parametric regression must be met. 

If variability introduced by strong seasonality (e.g., extremely dry or wet season) is high 

enough to cause violation of parametric assumptions, it may become necessary to break 

out data by season before conducting trend analysis.

Water quality data often show seasonal 
patterns that require trend analysis 
techniques that go beyond simply 
controlling for the effects of flow.
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Mixed: Seasonal Kendall on residuals from regression of Y on X and 
Regression of deseasonalized Y on t 
Two hybrid procedures may be used to account for seasonality. First, the seasonal 

Kendall test can be applied to residuals from a simple linear regression of Y versus X. 

This approach should only be used when the relationship of Y and X complies with the 

appropriate assumptions for parametric statistics.

Second, the data can be “deseasonalized” by subtracting seasonal medians or some other 

measure of seasonal effect from all the data within the season. The deseasonalized data is 

then regressed against time (Montgomery and Reckhow 1984). Although this technique 

has the advantage of producing a description of seasonality (seasonal medians), it has 

generally low statistical power.

Nonparametric: Seasonal Kendall on Y (Example 3, p. 21)
The seasonal Kendall test statistic is computed by performing a Mann-Kendall calculation 

for each season, then combining the results for each season. For monthly seasons, January 

observations are compared only to other January observations, etc. No comparisons are 

made across seasonal boundaries. The Seasonal Kendall test is highly robust and relatively 

powerful, and is often the recommended method for most water quality trend monitoring.

The Sk statistic is computed as the sum of the S from each season:
m

∑
i=1

Sk = Si 

where Si is the S from the ith season and m is the number of seasons.

The seasonal statistics are summed and a Z statistic is computed; consult other sources 

for the method of calculating ZSk (e.g., Helsel and Hirsch 1992, USEPA 1997b). If the 

number of seasons and years are sufficiently large (seasons * years > 25), the Z value may 

be compared to standard normal tables to test for a statistically significant trend. For 

fewer seasons/years, the applicability of standard normal tables has not been evaluated. 

An estimate of the trend slope for Y over time can be computed as the median of all 

slopes between data pairs within the same season using a generalized version of the Sen 

slope estimator described above. Consult other sources for the method of calculation (e.g., 

Helsel and Hirsch 1992, USEPA 1997b).

Emerging trend analysis techniques
A recent paper by Hirsch et al. (2010) called for a “next generation” of trend analysis 

techniques in response to the observations that new and longer monitoring data sets 

exist, new questions about the effectiveness of control efforts, and the availability of new 
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statistical tools. The authors identified seven critical attributes for the next generation of 

trend analysis:

l Focuses on revealing the nature and magnitude of change, rather than strict 
hypothesis testing;

l Does not assume that the flow-concentration relationship is constant over time;

l Makes no assumptions that seasonal patterns repeat exactly over the period of 
record, but allow the shape of seasonality to evolve over time;

l Allows the shape of an estimated trend to be driven by the data and not 
constrained to follow a specific form such as linear or quadratic; trend patterns 
should be allowed to differ for different seasons or flow conditions;

l Provides consistent results describing trends in both concentration and load;

l Provides not only estimates of trends in concentration and flux but also trend 
estimates where the variation in water quality due to variation in streamflow has 
been statistically removed; and

l Includes diagnostic tools to assist in understanding the nature of the changes that 
have taken place over time, e.g., to identify particular times of year or hydrologic 
conditions during which water quality changes are most pronounced.

The authors propose and demonstrate an experimental trend analysis technique called 

Weighted Regressions on Time, Discharge, and Season (WRTDS) that addresses these critical 

attributes. While a presentation of this approach is beyond the scope of this Tech Note, 

the reader is referred to the original paper for additional information.

Step Trends
Monotonic trend analysis may not be appropriate for all situations. Other statistical tests 

for discrete changes (step trends) should be applied where a known discrete event (like 

BMP implementation over a short period) has occurred. Testing for differences between 

the “before” and “after” conditions is done using two-sample procedures such as t-tests 

and analysis of covariance (parametric techniques) and nonparametric alternatives such 

as the rank-sum test, Mann-Whitney test, and the Hodges-Lehmann estimator of step-

trend magnitude (Helsel and Hirsch 1992, Walker 1994).

Monitoring Program Design and Trend 
Analysis
Trend analysis is effective with data sampled continuously at fixed-time intervals. If 

you are presently designing your watershed monitoring program, here are key points to 

consider if you plan to use trend analysis to evaluate your project: 

l Use consistent sampling locations throughout the monitoring period;

l Operate the monitoring program continuously, starting before implementation and 
continuing after implementation; 
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l Use consistent field and laboratory procedures;

l Collect data on important covariates to help explain variations in water quality; 
and

l Monitor land treatment, land use, and other nonpoint source-related activities in 
your watershed to provide information to help you interpret observed trends.

Statistical tools for trend analysis
Trend tests, especially nonparametric tests like the Mann-Kendall and seasonal Kendall 

are computationally intensive and are impractical to apply manually in most cases. 

Unfortunately, statistical software packages that calculate Mann-Kendall and other 

nonparametric analyses are less common than those that perform parametric tests. The 

table below lists some examples of software that will run some or all of the nonparametric 

tests discussed in this publication and web sites to visit for more information. Practical 

Stats (see Further Reading and Resources, below) provides a useful review of the 

capabilities of low-cost statistical software at: http://www.practicalstats.com/aes/aes/

DownloadsAES_files/Evaluation2.pdf

Package Name Web Site URL
Add-ins for MS Excel:

XLStat http://www.xlstat.com/en/home/

Analyse-it http://www.analyse-it.com/

WinStat http://www.winstat.com/

StatistiXL http://www.statistixl.com/default.aspx

Fast Statistics http://www.fatesoft.com/excel/

Stand-alone statistical software:
ChemStat http://www.pointstar.com/ChemStat/chemstat.asp

JMP http://www.jmp.com/

MINITAB http://www.minitab.com/products/minitab/default.aspx

R http://www.r-project.org/
S-Plus http://www.msmiami.com/directory.cfm?CategoryID=42  

[add-in programs for nonparametric trend analysis from USGS software 
library: http://water.usgs.gov/software/S-PLUS/]

SAS http://www.sas.com/technologies/analytics/statistics/index.html

SPSS http://www.spss.com/spss/

SYSTAT http://www.systat.com/products/Systat/

Stand-alone Windows programs for running Mann-Kendall and Seasonal Kendall tests 

have been published by USGS and are available for free download at  

http://pubs.usgs.gov/sir/2005/5275/. An example of a custom-made spreadsheet 

calculator for running Mann-Kendall tests on quarterly data can be found at  

http://www.in.gov/idem/4213.htm (Indiana Department of Environmental 

Management 2011).

http://www.practicalstats.com/aes/aes/DownloadsAES_files/Evaluation2.pdf
http://www.practicalstats.com/aes/aes/DownloadsAES_files/Evaluation2.pdf
http://www.xlstat.com/en/home/
http://www.analyse-it.com/
http://www.winstat.com/
http://www.statistixl.com/default.aspx
http://www.fatesoft.com/excel/
http://www.pointstar.com/ChemStat/chemstat.asp
http://www.jmp.com/
http://www.minitab.com/products/minitab/default.aspx
http://www.r-project.org/
http://water.usgs.gov/software/S-PLUS/
http://www.spss.com/spss/
http://www.systat.com/products/Systat/
http://pubs.usgs.gov/sir/2005/5275/
http://www.in.gov/idem/4213.htm


16

National Nonpoint Source Monitoring Program November 2011

References
Chesapeake Bay Program. 2007. Chesapeake Bay 2007 health & restoration assessment.  

http://www.chesapeakebay.net/content/publications/cbp_ 26038.pdf   
[Accessed 9-15-2011]

Clausen, J.C. and J. Spooner. 1993. Paired watershed study design. 841-F-93-009. U.S. 
Environmental Protection Agency, Office of Water, Washington, DC

Cude, C. 2005. Specific examples of trend analysis using the Oregon water quality index. 
Oregon Department of Environmental Quality, Laboratory Division,  
http://www.deq.state.or.us/lab/wqm/trendex.htm  [Accessed 9-15-2011]

Helsel, D.R. and R.M. Hirsch. 1992. Statistical methods in water resources. Studies in 
Environmental Science 49. New York: Elsevier. (available on-line as a pdf file at: 
http://water.usgs.gov/pubs/twri/twri4a3/) [Accessed 9-15-2011].

Helsel, D.R., D.K. Mueller, and J.R. Slack. 2005. Computer program for the Kendall 
family of trend tests. USGS Scientific Investigations Report 2005-5275, U.S. 
Geological Survey, Reston, VA.  http://pubs.usgs.gov/sir/2005/5275/  [Accessed 
9-15-2011]

Hirsch, R.M. 1988. Statistical methods and sampling design for estimating step trends in 
surface water quality. Water Resour. Res. 24:493-503.

Hirsch, R.M., R.B. Alexander, and R.A. Smith.1991. Selection of methods for the 
detection and estimation of trends in water quality. Water Resour. Res. 27:803-813.

Hirsch, Robert M., Douglas L. Moyer, and Stacey A. Archfield, 2010. Weighted 
regressions on time, discharge, and season (WRTDS), with an application to 
Chesapeake Bay river inputs. J. Am. Water Resour. Assoc. 46(5):857-880.

Indiana Department of Environmental Management. 2011. Mann-Kendall spreadsheet. 
http://www.in.gov/idem/4213.htm  [Accessed 9-15-2011].

Karr, J.R. 1981. Assessment of biotic integrity using fish communities. Fisheries 6(6):28-30.

Lettenmaier. D.P. 1976. Detection of trends in water quality data from records with 
dependent observations. Water Resour. Res. 12:1037-1046.

Meals, D.W. 2001. Lake Champlain Basin agricultural watersheds section 319 national 
monitoring program project, final project report: May, 1994-September, 2000. Vermont 
Dept. of Environmental Conservation, Waterbury, VT, 227 p.

Montgomery, R.H. and K.H. Reckhow. 1984. Techniques for detecting trends in lake 
water quality. Water Resour. Bull. 20(1):43-52.

Newbold, J.D., S. Herbert, B.W. Sweeney and P. Kiry. 2008. Water quality functions of 
a 15-year-old riparian forest buffer system. NWQEP Notes No. 130. NCSU Water 
Quality Group, NC State University, Raleigh, NC.

http://www.chesapeakebay.net/content/publications/cbp_26038.pdf
http://www.deq.state.or.us/lab/wqm/trendex.htm
http://water.usgs.gov/pubs/twri/twri4a3/
http://pubs.usgs.gov/sir/2005/5275/
http://www.in.gov/idem/4213.htm


17

National Nonpoint Source Monitoring Program November 2011

Richards, R.P. and D.B. Baker. 1993. Trends in nutrient and suspended sediment 
concentrations in Lake Erie tributaries, 1975-1990. J. Great Lakes Res. 19(2):200-211.

Thas O., L. Van Vooren, and J.P. Ottoy. 1998. Nonparametric test performance for trends 
in water quality with sampling design applications. J. American Water Resour. Assoc. 
34(2):347-357.

US EPA. 1997a. Linear regression for nonpoint source pollution analysis. EPA-
841-B-97-007. Office of Water, Washington, DC.

US EPA. 1997b. Monitoring guidance for determining the effectiveness of nonpoint 
source control projects. EPA 841-B-96-004. Office of Water, Washington, DC.

Walker, J.F. 1994. Statistical techniques for assessing water quality effects of BMPs. J. Irr. 
Drainage Eng. ASCE. 120(2):334-347.

Ye, Y-S and S. Zou. 1993. Relating trends of principal components to trends of water-
quality constituents. Water Resour. Bull. 29(5):797-806.

Further Reading and Resources
There is far more to trend analysis than is covered in this technical note. For more 
details on the techniques and calculations discussed, examples, and information on other 
approaches, consult these additional sources:

Berryman, D., B. Bobee, D. Cluis, and J. Haemmerli. 1988. Nonparametric tests for trend 
detection in water quality time series. Water Resour. Bull. 24(3):545-556.

Gilbert, R.O. 1987. Statistical methods for environmental pollution monitoring. New York: 
Van Nostrand Reinhold.

Grabow, G.L., L.A. Lombardo, D.E. Line, and J. Spooner. 1999. Detecting water quality 
improvement as BMP effectiveness changes over time: use of SAS for trend analysis. 
NWQEP Notes No. 95. NCSU Water Quality Group, NC State University, Raleigh, NC.

Hirsch, R.M, J.R. Slack, and R.A. Smith. 1982. Techniques of trend analysis for monthly 
water quality data. Water Resour. Res. 18:107-121.

Practical Stats, offering statistical training for environmental sciences and natural resources, 
with emphasis on applied environmental statistics, nondetects data analysis, and 
multivariate analysis. http://www.practicalstats.com/index.html  [Accessed 9-15-2011].

Rheem, S. and G.I. Holtzman. 1990. A SAS program for seasonal Kendall trend analysis 
of monthly water quality data. Proceedings, Sixteenth Annual SAS Users Group 
International (SUGI) Conference, February 17-20, 1991, New Orleans.

Richards, R.P. and D.B. Baker. 2002. Trends in water quality in LEASEQ rivers and 
streams (northwestern Ohio), 1975-1995. J. Environ. Qual. 31(1): 90 - 96.

Taylor, C.H. and J. C. Loftis. 1989. Testing for trend in lake and ground water time 
series. Water Resour. Bull. 25(4):715-726.

http://www.practicalstats.com/index.html


18

National Nonpoint Source Monitoring Program November 2011

Trend analysis example 1: Simple linear regression

l Eight years of monthly total phosphorus concentration data from Samsonville 
Brook, a stream draining a Vermont agricultural watershed

l Data satisfy assumptions for regression after log transformation
• Normal distribution

• Constant variance

• Independence (low autocorrelation)

Rate of change: 

Slope of log-transformed data = -0.00414

(10-0.00414 - 1)*100 = -0.95%/month or ~11%/yr

This result suggests that total P concentrations have decreased significantly over the 

period at a rate of approximately 11% a year.

Simple linear regression 

(using Excel or any basic statistical package)

Log [TP] = -0.8285 - 0.00414(Time)

r2 = 0.18  F = 21.268  P < 0.001

Note: data used in this example are taken from the Vermont NMP Project, Lake Champlain Basin agricultural watersheds section 319 
national monitoring program project, 1993 – 2001 (Meals 2001).
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Trend analysis example 2: Mann-Kendall

l Eight years of quarterly mean total phosphorus 
concentration data from Samsonville Brook, a stream 
draining a Vermont agricultural watershed

l Data satisfy assumptions for constant variance and 
independence, but are not normally-distributed without 
transformation

The Mann-Kendall trend test for this example may be evaluated 

in two ways. First, in a manual calculation, use the formulas 

below. The value of S (sum of the signs of differences between 

all combinations of observations) can be determined either 

manually or by using a spreadsheet to compare combinations, 

create dummy variables (-1, 0, and +1), and sum for S.

n-1

∑
i=1

n

∑
  j= i+1

S = sign (yj - yi)  =  -106Mann – Kendall

τ = 
S

n(n - 1)/2
= 

-106
300

= -0.353 decreasing trend

Calculating ZS as (S ± 1)/σs   where σs =   (n/18) × (n - 1) × (2n + 5) = 42.817

Z = 
-105

42.817
= -2.454  (USEPA 1997b)

Month
(n=25)

[TP] 
(mg/L)

 1 0.180

 5 0.200

9 0.250

13 0.068

17 0.201

21 0.063

25 0.099

29 0.125

33 0.205

37 0.078

41 0.216

45 0.059

49 0.098

53 0.102

57 0.137

61 0.037

65 0.100

69 0.051

73 0.180

77 0.060

81 0.095

85 0.021

89 0.120

93 0.063

97 0.035



20

National Nonpoint Source Monitoring Program November 2011

This Z statistic is significant at P = 0.014, indicating a significant trend, i.e., we are 98.6% 

confident there is a decreasing trend in TP. See USEPA (1997b) for the calculation of σS 

when there are ties among the data.

To estimate the rate of change, use the Sen slope estimator

   β1 = median (        )yj - yi

xj - xi

211 individual slopes  -0.00945  to  +0.00766 

median slope = -0.0011 mg/L/month  =  -0.013 mg/L/yr

This result suggests that total P concentration decreased significantly over the period at a 

rate of about 0.013 mg/L/yr.

Alternatively, use a statistics computer program to run the Mann-Kendall procedure. For 

example, using the USGS program for the Kendall family of tests (Helsel et al. 2005), 

set up a text data input file specifying the Mann-Kendall test (test #4) without flow 

adjustment (“0”) or seasons (blanks) and name the data input file (“MKexample2.txt”) as:

4  0 MKexample 2
1 0.180
5 0.200
9 0.250
.
.
97 0.035

The output from the program gives the same results as shown above, including the 

estimated slope of the trend (-0.0011) computed by the Sen slope estimator above:

Kendall's tau Correlation Test 
US Geological Survey, 2005

Data set:     MK Example 2 

The tau correlation coefficient is -0.353 
S = -106. 
z = -2.454 
p = 0.0141

The relation may be described by the equation: 

Y = 0.15412  +  -0.1125E-02 * X

Note: data used in this example are taken from the Vermont NMP Project, Lake Champlain Basin agricultural watersheds section 319 
national monitoring program project, 1993 – 2001 (Meals 2001).

Helsel, D.R., D.K. Mueller, and J.R. Slack. 2005. Computer program for the Kendall family of trend tests. USGS Scientific 
Investigations Report 2005-5275, U.S. Geological Survey, Reston, VA.  http://pubs.usgs.gov/sir/2005/5275/

http://pubs.usgs.gov/sir/2005/5275/
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Trend analysis example 3: Seasonal Kendall

l Six years of weekly E. coli data from a stream draining Godin Brook, a Vermont 
agricultural watershed

l Data satisfy assumptions for constant variance and independence, but are not 
normally-distributed without transformation

l Data display high degree of seasonality to the eye (low E. coli counts in winter, 
high counts in summer) due to influence of water temperature on bacteria survival 
and to grazing season

Raw data plotted:

Data aggregated to monthly median values:

Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May

1994 3750 7725 16350 4600 565 535 74

1995 4400 5900 3300 2663 1530 345 69 29 12 31 8 688

1996 6788 2125 14500 11450 2900 190 43 72 20 69 50 185

1997 4825 13250 3635 592 4100 116 20 33.5 19 20 18 262

1998 2025 1200 3083 5825 1563 78 23 14 11 63 16 807.5

1999 378 265 109 1000 2360 653 37 21 8.5 19 6 161

2000 106 4.5 24 42 1432

(values represent  E. coli/100 ml)
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Monthly median data plotted still show a strong seasonal cycle:

As in Example 2, the Seasonal Kendall trend test may be computed manually, using the 

formulas below, either by hand or using a spreadsheet:

The Mann-Kendall statistic (Si) is calculated for each month; the seasonal Kendall 

statistic Sk calculated as sum of monthly Si:

m

∑
i=1

Sk = Si = -48 suggesting a downward trend

ZSk is estimated as ZSk=(S+1)/σSk where σSk =             (ni/18) × (ni - 1) × (2ni + 5) 

= 18.439

Z = 
-47

18.439
= -2.549 (USEPA 1997a)

This Z statistic is significant at P = 0.011, indicating a significant decreasing trend.

To use the Sen slope estimator, calculate slopes between all possible pairs within each 

season, rank all slope estimates, and find the median: 

   β1 = median (        )yj - yi

xj - xi

180 individual slopes  -13,050  to  +11,200 

median slope = -5.8 E. coli/100 ml/yr

This result suggests that E. coli counts have decreased significantly over the period at an 

approximate rate of 6 E. coli/100 ml/yr.

Sm
i=1
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Alternatively, use a statistics computer program to run the Seasonal Kendall procedure. 

For example, using the USGS program for the Kendall family of tests (Helsel et al. 2005), 

set up a text data input file specifying the Seasonal Kendall test with data as year, season, 

and value (test #2) without flow adjustment (“0”), seasons (ignored for this type of input 

data) and name the data input file (SKexample3.txt) as:

2  0 SK Example 3
1994 6 3750
1994 7 7725
1994 8 16350
.
.
.
2000 3 24
2000 4 42
2000 5 1432

The output from the program gives the same results as shown above, including the 

estimated slope of the trend (-5.75) computed by the Sen slope estimator above:

Seasonal Kendall Test for Trend 
US Geological Survey, 2005

Data set:     SK Example 3

The record is 7 complete water years with 12 seasons per 
year beginning in water year 1994.

The tau correlation coefficient is -0.267 
S = -48. 
z = -2.549 
p = 0.0108 
p = 0.2003 adjusted for correlation among seasons  
 (such as serial dependence)

The adjusted p-value should be used only for data with more 
than 10 annual values per season.

The relation may be described by the equation: 

Y = 246.1  +  -5.750 * Time 

where Time = Year (as a decimal) - 1993.75 (beginning 
of first water year)

Note: data used in this example are taken from the Vermont NMP Project, Lake Champlain Basin agricultural watersheds section 319 
national monitoring program project, 1993 – 2001 (Meals 2001).

Helsel, D.R., D.K. Mueller, and J.R. Slack. 2005. Computer program for the Kendall family of trend tests. USGS Scientific 
Investigations Report 2005-5275, U.S. Geological Survey, Reston, VA.  http://pubs.usgs.gov/sir/2005/5275/

http://pubs.usgs.gov/sir/2005/5275/

