Equipment Considerations for Landfill Gas Generator Sets: Total Cost of Ownership

Mauricio Lopez
Caterpillar Electric Power

15th Annual LMOP Conference and Project Expo
Baltimore, January 2012
What Am I Doing Here?

• One year ago in Baltimore
 – Siloxane measurement presentation (SCS)
 – What is the siloxane reading on this LFG sample?

• Several labs different results!
 – No wrong answers, just different points of view.
 – Unit conversion nuances / Different test conditions /
 Different standards / Same standard, different insight.

• Hard to compare results without solid
 understanding of measurement techniques.
What Am I Doing Here?

• Somewhat similar scenario for genset data.
• Hard to compare estimates for total cost of ownership in LFGTE projects (5, 10, 20 years)

- How many kWe will this genset deliver at my job site?
- What will be the engine fuel consumption at site?
- What additional equipment does the genset require?
- What assumptions are built into this O&M cost estimate?
Equipment Considerations for LFG Gensets

Agenda

• Equipment Ratings
• Capital Costs
• Efficiency v. Capacity
• Maintenance & Repair Cost
Ratings – Auxiliary Equipment Power

• For diverse technical and commercial reasons, many published kWe ratings do not include the power required to drive REQUIRED equipment
 – Pumps: water, oil
 – Inlet gas compressors
 – Radiator cooling fan

• If not taken into account, this could make the apparent genset kWe capability and efficiency larger than it is.
Ratings – Auxiliary Equipment Example

• Example: Cat gas engine ratings
 – Std. genset: Rating with water pumps (engine-driven)
 – CHP genset: Rating w/o water pumps (electric)
 – All Cat gas gensets rated w/o cooling fan losses (electric)

• CAT CHP genset: 2x electric water pumps consume approximately 30 kWe
 – Jacket water (JW), separate circuit aftercooler (SCAC)
 – Cost to operate: $13,000 to $25,000 per year
Life Cycle Cost & Water Pumps – G3516C

1.7% more power; 27 additional kW

1.7% lower operating costs
Ratings – Power Factor

• Genset kWe ratings depends on p.f. assumed for the load. Higher p.f. = higher kWe rating.

• However, p.f. of the load is site-specific.
 – Classical electrical engineering calculations and genset ratings developed around estimated ‘real-life’ p.f 0.8
 – Modern industrial sites: p.f. between 0.8 and 0.95

• Manufacturers moving to 1.0 p.f. ratings

• Customers need to adjust rating for their p.f.
Electrical Rating - Power Factor

- Caterpillar publishing new gas genset ratings at both 0.8 and 1.0 pf.
- If a 0.8 p.f. rating was not published, a customer could overestimate his annual energy sale revenues by $23,000.

A 1.0 p.f. Offers a 1.4% rating advantage (27 additional kW) over 0.8 p.f.
Compare G3516C
Difference: 0.8 vs. Unity Power Factor

0.8 Power Factor
0.7% more power; 9 additional kW

1.0 (Unity) Power Factor
0.2% lower operating costs
Combined Effect

Scenario 1
• Sell Power to Industry @0.8PF
• Engine Powered Pumps
• Engine Powered Fans

Scenario 2
• Sell Power to Utility @0.95PF
• Electric Pumps (grid power)
• Electric Fan (grid power)
Other Ratings Considerations

• ISO vs. nominal ratings, fuel efficiency
• Ratings w/ no exhaust backpressure
• IEC losses calculations
• Rating listed at ISO rating conditions vs. IEC
• Minimum Methane Number requirements
Capital Cost – Gas Compression Skid

• Some engines require high inlet gas pressures
 – E.g. Cat G3600 family, pre-chamber design, 150psi
 – A gas compression skid is REQUIRED for operation.

• Other gas engines accept low inlet pressures
 – E.g. Cat G3520C requires only 1.5-5 psi LFG
 – Only a simple gas regulator is needed for operation

• A fair comparison of G3612 v. G3520C cost of ownership needs to include the capital and maintenance cost of the gas compression skid.
Capital Cost – Siloxane Treatment

- Higher efficiency engines accept less LFG contaminants than lower efficiency engines.
- Depending on site specifics, high efficiency engines often REQUIRE specialized siloxane removal (gas conditioning skids).
- A fair comparison of cost of ownership needs to include the capital and maintenance cost of the gas conditioning skid.
Efficiency v. Capacity

• **Electrical Efficiency:** % or energy input to the generator set that gets converted to electrical output. (kW)

• **Capacity Factor:** % of time the generator set is in operation and producing ekW. (Operational Availability)

• Both factors play a key role in maximizing the revenues of your power generation project.
Same Capacity, Different Efficiency

<table>
<thead>
<tr>
<th></th>
<th>Unit A</th>
<th>Unit B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen set kW</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Gas Price $/mmbtu</td>
<td>$2.00</td>
<td>$2.00</td>
</tr>
<tr>
<td>Value of Energy Produced $/MW-hr</td>
<td>$70.00</td>
<td>$70.00</td>
</tr>
<tr>
<td>Generator Efficiency</td>
<td>97.0%</td>
<td>97.0%</td>
</tr>
<tr>
<td>Engine Heat Rate BTU/min</td>
<td>145,000</td>
<td>135,000</td>
</tr>
<tr>
<td>Capacity Factor</td>
<td>96.0%</td>
<td>96.0%</td>
</tr>
<tr>
<td>Generator Set Electrical Efficiency</td>
<td>39.2%</td>
<td>42.1%</td>
</tr>
<tr>
<td>Fuel Consumed/yr mmbtu</td>
<td>73,163.52</td>
<td>68,117.76</td>
</tr>
<tr>
<td>Cost of Fuel/Year</td>
<td>$146,327</td>
<td>$136,236</td>
</tr>
<tr>
<td>MW-Hour produced</td>
<td>8,410</td>
<td>8,410</td>
</tr>
<tr>
<td>Fuel Cost /MW-hr</td>
<td>$17.4000</td>
<td>$16.2000</td>
</tr>
<tr>
<td>Value of Power Produced</td>
<td>$588,672</td>
<td>$588,672</td>
</tr>
<tr>
<td>Net Revenue (Fuel Cost vs Power Produced)</td>
<td>$442,345</td>
<td>$452,436</td>
</tr>
</tbody>
</table>
Same Efficiency, Different Capacity

<table>
<thead>
<tr>
<th></th>
<th>Unit A</th>
<th>Unit B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen set kW</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Gas Price $/mmbtu</td>
<td>$2.00</td>
<td>$2.00</td>
</tr>
<tr>
<td>Value of Energy Produced $/MW-hr</td>
<td>$70.00</td>
<td>$70.00</td>
</tr>
<tr>
<td>Generator Efficiency</td>
<td>97.0%</td>
<td>97.0%</td>
</tr>
<tr>
<td>Engine Heat Rate BTU/min</td>
<td>135,000</td>
<td>135,000</td>
</tr>
<tr>
<td>Capacity Factor</td>
<td>96.0%</td>
<td>90.0%</td>
</tr>
<tr>
<td>Generator Set Electrical Efficiency</td>
<td>42.1%</td>
<td>42.1%</td>
</tr>
<tr>
<td>Fuel Consumed/yr mmbtu</td>
<td>68,117.76</td>
<td>63,860.40</td>
</tr>
<tr>
<td>Cost of Fuel/Year</td>
<td>$136,236</td>
<td>$127,721</td>
</tr>
<tr>
<td>MW-Hour produced</td>
<td>8,410</td>
<td>7,884</td>
</tr>
<tr>
<td>Fuel Cost /MW-hr</td>
<td>$16.20</td>
<td>$16.20</td>
</tr>
<tr>
<td>Value of Power Produced</td>
<td>$588,672</td>
<td>$551,880</td>
</tr>
<tr>
<td>Net Revenue (Fuel Cost vs Power Produced)</td>
<td>$452,436</td>
<td>$424,159</td>
</tr>
</tbody>
</table>
What affects each factor?

• Efficiency:
 – Product design/technology/quality.
 – Fuel quality.

• Capacity
 – Product design/technology/quality.
 – Service capability
 – Parts Availability.
Maintenance and Repair Considerations

- **Cost Factors**
 - Preventive Maintenance
 - Scheduled Maintenance
 - Unplanned Repairs

- **kWh Production**
 - Parasitic Losses (Pumps / Fans)
 - Capacity Factor (Fuel Availability)
 - Ambient Conditions (Deration)
 - Power Factor (Gen Eff.)
Fuel Quality Impact on M&R Costs

Cost / kWh

Contaminants: Ammonia, Halides, Siloxanes, Hydrogen Sulfide

Assumed Overhaul Schedule (Top End, In Frame, Major)

High Contaminant = 7k, 21k, 35k Hours
Low Contaminant = 18k, 54k, 90k Hours
Fuel Contaminants & Bottom Line

G3520C 1600kW Genset

<table>
<thead>
<tr>
<th></th>
<th>High Contaminant</th>
<th>Low Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>$361,732</td>
<td>$236,039</td>
</tr>
<tr>
<td>Revenue</td>
<td>$1,489,729</td>
<td>$1,507,947</td>
</tr>
<tr>
<td>Profit</td>
<td>$1,127,977</td>
<td>$1,271,908</td>
</tr>
</tbody>
</table>
Repair Risk Management

• Scheduled repairs per service manual intervals

• Predictive Repair Scheduling
 – Valve Recession, Oil Consumption, Fuel Consumption, Exhaust Emissions

<table>
<thead>
<tr>
<th></th>
<th>Cat G3520C HV Low Energy Gas @ 1613 kW, 1200rpm</th>
<th>Cat G3520C HV Low Energy Gas @ 1613 kW, 1200rpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Cost / Revenue Comparison</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per Year</td>
<td>$289,416.97</td>
<td>$246,443.11</td>
</tr>
<tr>
<td>Cost</td>
<td>$289,416.97</td>
<td>$246,443.11</td>
</tr>
<tr>
<td>Revenue</td>
<td>$1,338,064.96</td>
<td>$1,343,508.03</td>
</tr>
<tr>
<td>Profit</td>
<td>$1,048,647.99</td>
<td>$1,097,064.92</td>
</tr>
</tbody>
</table>
Other Operation, M&R Considerations

• Methodology to schedule engine interventions
 – B10 or B50 life?

• Oil consumption costs

• Estimated v. Guaranteed M&R costs.
Thank you!

For additional information, please contact your nearest Caterpillar dealer:

http://www.cat.com/dealer-locator

Online:

E-mail:
lopez_mauricio_a [at] cat [dot] com, 954-885-3172

Materials and specifications are subject to change without notice. CAT, CATERPILLAR, their respective logos, “Caterpillar Yellow,” the “Power Edge” trade dress as well as corporate and product identity used herein, are trademarks of Caterpillar and may not be used without permission. © 2012 Caterpillar Inc. All rights reserved.