Problem 3: Compare two groups

It is often important to determine if a monitored variable is significantly higher, lower, or the same between two locations or two periods (e.g., before and after implementation of treatment). This example demonstrates two statistical tests – one parametric, one nonparametric – to assess with statistical confidence whether two data groups are significantly different.

a. Student's t-Test

Using Dataset 1 in file Sampledata.xlsx, and assuming that log-transformed data satisfy all requirements for parametric statistical analysis, use a Student's t-Test to test the hypothesis that mean TP export at Station 2 (mean of log-transformed values of TPX_2) did not differ significantly in the Calibration and Treatment periods (Period=CAL and TRT, respectively). In this case we are using a two-tailed t-Test, i.e., we are interested in whether the means of the two groups are different in either direction, not specifically if one group is significantly higher or lower than the other.

logTPX t Test TRT-CAL								
Difference Std Err Dif		0.01390 t Ratio 0.06796 DF Prob > t	<mark>0.204541</mark> 331 <mark>0.8381</mark>		-0.2 -0.1 0.0 0.1 0.2			
Means and Std Deviations								
Level	Number	Mean	Std Dev	Std Err Mean	Lower 95%	Upper 95%		
CAL TRT	181 152	<mark>1.07870</mark> 1.09260	0.570200 0.669912	0.04238 0.05434	0.99507 0.98524	1.1623 1.2000		

The low t statistic (0.20) and associated P (0.84) indicate that we cannot reject the hypothesis that mean TP export measured at Station 2 during the Calibration (1.08) and Treatment (1.09) periods did not differ significantly.

b. Wilcoxon/Kruskal-Wallis

Using Dataset 1, apply the nonparametric Wiloxon/Kruskal-Wallace test on raw (non-transformed) data to test the hypothesis that mean TP export at Station 2 (TPX_2) in the Calibration and Treatment periods did not differ significantly.

Wilcoxon / Kruskal-Wallis Tests (Rank Sums)

Period	Ν	Median	Ave Rank	Ζ
CAL	181	7.992	167.4	0.09
TRT	152	8.917	166.5	-0.09
Overall	333		167.0	

H = 0.01 DF = 1 P = 0.930

The *P* value indicates that we cannot reject the hypothesis that mean TP export measured at Station 2 did not differ significantly between the Calibration and Treatment periods.